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Abstract
The classification of Alzheimer’s disease (AD) using ADNI dataset requires suitable feature segmenting techniques to detect
the existing and relevant finer smaller brain region features, together with effective classification model, to eliminate a
massive, labor-intensive and time-consuming voxel-based morphometry technique. Here, in this paper, a deep learning-based
segmenting method using SegNet to detect AD pertinent brain parts features from structural magnetic resonance imaging
(sMRI) and subsequently classifying accurately AD and dementia condition using ResNet-101 is presented. A deep learning-
based image segmenting approach is experimented in detecting the delicate features of brain morphological changes due
to AD that benefits classification performance for cognitive normal, mild cognitive impairment and AD, and thus provides
an easy automatic diagnosis of Alzheimer’s diseases. For classification, ResNet-101 is trained applying features extracted
from SegNet with ADNI dataset. This paper demonstrated particularly to attain top-level automated classification. The seven
morphological features like grey matter, white matter, cortex surface, gyri and sulci contour, cortex thickness, hippocampus
and cerebrospinal fluid space extracted from 240 sMRI with SegNet are used to train ResNet for classification, and this
classifier achieved a sensitivity of 96% and an accuracy of 95% over 240 ADNI sMRI other than used for training.

Keywords Alzheimer’s disease · Cognitive normal (CN) · Mild cognitive impairment (MCI) · ADNI · Grey matter · White
matter · Cortex surface · Gyri and sulci contour · Cortex thickness · Hippocampus · Cerebrospinal fluid (CSF) · SegNet ·
ResNet-101

1 Introduction

Alzheimer’s disease (AD) is a disorder that slowly progresses
which causes neurons to degenerate. AD is commonly
observed to be kind of persistent mental illness (called
dementia), reporting 60% to 80% of entire dementia diag-
noses. It is a complicated ailment classified by the deposition
of β-amyloid and disorganized microtubules of neurons [1],
which are constituted of τ -amyloid filaments associated with
synapse failure or loss, and slow degeneration of neurons
causes a loss of memory and diverse cognitive impairments.
The pathologically functional variations that result in dis-
abilities on psychic, function and behavior are considered

B P. R. Buvaneswari
bhuvaneswaripr@saveetha.ac.in

R. Gayathri
rgayathri@svce.ac.in

1 Saveetha Engineering College, Chennai, India

2 Sri Venkateswara College of Engineering, Chennai, India

to occur few years or possibly a decade before appearance
of any associated medical signs. AD is commonly identified
among individuals whose age above 65, and it is reported
that AD-affected population is likely to increase twice five-
yearly once the individual crosses age of 65 [2]. By 2050, it
was estimated that one individual among 85 is likely to prone
by AD [3]. The mean half-life recovery period of AD will be
from 3 to 10 years based on the age at what time the AD was
diagnosed. The central life time is so far as between 7 and
10 years among AD cases where their illness were detected
while theywere in late 60s or the beginning of 70s. This value
is likely to decrease by 3years for diagnosedAD cases, while
their ages were 90s [4]. Lately, quite accurate detailed guide-
lines were suggested for prompt and effective AD diagnoses
in preliminary condition ormild cognitive impairment (MCI)
[5], be of considerable significance for early care and delay-
ing the occurrence. MCI is usually referred that AD patients
will have cognitive decline (memory slip) without any sig-
nificant impact on activities of everyday lives [6,7].
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Commonly, MCI individuals will exhibit two kinds of
medical variations. Firstly, certain MCI individuals may
finally progress into AD patients, MCI leads to AD (mAD),
termed as MCI converters, while the rest of them will not
progress to AD and show stabilized MCI (aAD), termed
as MCI non-converters. Nearly 35 MCI patients out of
100 may progress as dementia or AD patients in a 3-year
timeline with annual rate of conversion about 5 to 10%.
Both mAD and aAD individuals are discriminated based on
intense of amnesic disability. An aAD is identified based on
amnesic test resultmore than1.5 times standard deviation and
lower normalized value on memory test, and mAD based on
amnesic test result ranges from 1 to 1.5 times standard devia-
tion lower normalized value [8,9]. aAD individuals will have
moderate verbal memory disability in comparisonwithmAD
and are considered to typify an early onset of the impairment
which will be best possible in modifying the remedies for
disease. Both MCI sub-types variation may have impact for
variations in biomarker anomalies, possibly clinical history
and health reaction [8]. Due to diversified medical examina-
tion and basic causatives among MCI patients, there exists
no proper treatment procedure for MCI patients. Moreover,
MCI clinical history ismore diverse rather typical. Still,many
factors may induce MCI, but every factor cannot cause asso-
ciated neural degeneration. Hence, diagnostics of basic cause
is really difficult for persons with cognitive decline and it is
essential for quite effective diagnostics to recognize MCI
individuals with AD as cause. The diagnostics must be car-
ried out during neural degeneration without delay [10]. This
issue of qualitative diagnosis can be addressed through the
categorization between mAD and aAD. Since AD is a con-
tinuing neural degeneration, consistent variations between
already estimated and recent clinical outcome values, that is,
Mini-Mental State Examination (MMSE) and AD Assess-
ment Scale Cognitive Subscale (ADAS-Cog). Hence, it is
crucial to anticipate future clinical outcome values on the
basis of information from previous instants which is specifi-
cally supportive for controlling development of the disease.
Still, the categorization of AD is difficult and standard out-
comes exhibited less accuracy because of complexity of
patterns of cortical thickness in aAD patients [10,11]. This
constraint is overwhelmed by rising the number of sam-
ples for training to include whole complicate patterns or
by selecting useful characteristics to consider the variations
between both populations. Recently, the big steps in brain
scanning gave chances to analyze the neural associated dis-
orders which enhances for timely and precise intervention of
AD [12–14]. Magnetic resonance imaging (MRI) is increas-
ingly popular to carry out AD associated examinations due to
its noninvasive procedure and no pain to the patients. Further,
MRI contributes a good contrast and a fine structural resolu-
tion. Thereby, several investigations have applied structural
MRI (sMRI)-supported biological indicators to sort AD pop-

ulations [15–20]which denotes size variation on brain tissues
and neural degeneration.

Likewise, functional MRI (fMRI) is employed to describe
the physiological reaction pertinent to neurological perfor-
mance and thus establishes connectivity between functional
and structural [21,22]. This permits one to explain neural dis-
orders of entire brain by connectivity. Here, in this research
sMRI is used for classification of AD. The severity and grade
of neural degeneration are recognized with the assistance
of deterioration assessed from sMRI [23]. Therefore, sMRI-
supported extraction of features has captivated the interest
among investigators to perform classification of AD. These
findings comprise morphological measurements processes,
namely volume of interest (VOI) of grey matter voxels for
automated segmenting the images [24] and the measures
of the medial temporal lobe and the hippocampus [25].
Manymachine learningmethods were applied to distinct AD
patients from old-aged intervention group employing diverse
biological markers. The customary classifiers comprise arti-
ficial neural network (ANN), support vector machine (SVM)
and various ensembling of classifiers. Inter alia, SVM and its
alternative versions were fully examined because of its quite
best accuracy and capacity to handle higher-dimensional
data.

2 Literature Survey

A SVM kind of classifier proposed by Magnin et al. [26]
starts by learning method in training the dataset comprising
clearly distinguished cases with known conditions; that is,
the labels about cases are marked. Subsequently, the classi-
fier objects in maximizing the data margin by developing the
optimum partitioning of hyperplane or group of hyperplanes
over one or multi-dimensions. Classification is carried out
for testing data on the basis of learnt hyperplanes at a test-
ing level. Broadly, three-dimensional T1-weighted MRI of
every case was parcellated automatically into ROIs. From
every ROI, the grey matter will be extracted as depicted in
Fig. 1, as one of the feature in the process of classification.
A classification of multimodal method proposed by Zhang
et al. [15] used multi-kernel SVM on biological markers
comprising sMRI [20] and cerebrospinal fluid (CSF) [27]
to distinguish AD or MCI from healthy cases. From the out-
comes of binary classification, which is between AD and
healthy or MCI and healthy, their suggested procedure may
derive a best accuracy in classification of both AD and MCI,
respectively. Liu et al. [28,29] suggested a deep learning tech-
nique for classification ofmultiple class amonghealthy cases,
MCI non-converters, MCI converters and AD cases on the
basis of eighty-three ROI of sMRI images and the appro-
priate recorded PET scans. Stacked auto-encoder (SAE) is
applied for unsupervisory learning to derive top level ele-
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Fig. 1 Proposed architecture

ments, and subsequently logistic regression of softmax is
used in the classifier. Whereas the experimental outcomes
appeared fairlywell achievement, it is, however, debating that
the de-noising in SAE may become problematic in appropri-
ate feature learning. Hence, it has been troublesome to use
practically. Li et al. [30] intended accurate adjustment of
novel features on the basis of principle component analysis
(PCA), stable preference, dropout and multiple task learn-
ing, in which restricted Boltzmann machine (RBM) concept
was applied as a deep-learning model. Ninety-three number
of ROIs from PET and MRI, jointly using CSF biological
markers, are utilized. Ye et al. [31] presented a theoretical
machine learning-introducedmultiplemodal data unification
method employing PET,MRI, CSF, genetics, CSF, demogra-
phy for AD-associated analysis and functional connectivity
study. In recent days,Ramaet al. [32] suggested import vector
machine (IVM)-dependent technique for multiple-label clas-
sification, in which just the subgroup of characteristics from
sMRI were the inputs to kernel-based logistic regression,
thereby decreasing the computing expense. This approach
employed complete ROIs of 65 in number as features to
train and test and attained the maximum accuracy of 70%
when sorting AD, MCI and healthy and 76.9% for biform
classification of AD and healthy [32]. An algorithm of joint
regression and classification (JRC) was presented by Zhu et
al. [33] and has shown an effective procedure in diagnos-
ing AD or MCI on the basis of multiple modalities images.
The weight basis multiple modality sparse characterization-
dependent classification (mSRC) was evolved by Xu et al.
[34] and used it to distinguish AD or MCI on the basis of

multiple modality images. A supervisory internally class-
homogeneity discriminative dictionary learning (SCDDL)
was widened in a kernel structure, because multiple fea-
ture kernel learning algorithm (MKSCDDL) was proposed
to effectively fuse features by Gonen and Alpaydin [35] and
ultimately it was shown as efficient tool in detecting faces
by Wu et al. [36]. Vierra et al. [37] successfully used deep
learning method to ADNI dataset by automatically infer-
ring features as an optimal characterization from real images
with no need of any preselection of features, leading to a
more substantive and objective process. When many meth-
ods have been suggested in classification of various AD
levels, using comparatively lesser data, it is quite tough to
obtain influential data. The work proposed here aims at intro-
ducing effective classification method operating firmly over
smaller dataset. For the purpose, an effective feature selection
method of SegNet and a residual network (ResNet) for the
multiple-label classification of three progressive AD stages
are adopted.

3 ResearchMaterials

3.1 Structural MRI Dataset Augmentation

Datasets employed here were accessed from the database
of Alzheimer’s disease neuroimaging initiative (ADNI)
(http://adni.loni.usc.edu/). The database of ADNI was com-
menced in the year of 2003 in a joint association of
government and private sectors. The main purpose of ADNI

Table 1 Information of ADNI
subjects used in training dataset

Specification CN MCI AD

Sample size 80 80 80

No of males 40 40 40

No of females 40 40 40

Age range—Male 71–86 67–87 72–92

Average age ± SD–Male 77.3 ± 4 78.03 ± 5.8 79.03 ± 5.47

Age range—Female 71–88 65–82 70–91

Average age ± SD—female 78.8 ± 4.8 73.63 ± 5 79.8 ± 6.98

Average MMSE ± SD 28.3 ± 1.3 26.4±1.6 22.4 ± 2.6

MMSE range 26–30 25–30 17–27
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database creation is to research openly in finding out
the series PET, MRI, PET, biomarkers and clinical and
neurological-physical evaluation in combination with the
measures about the development of MCI and onset AD.
The multiple-label classification for normal, MCI and AD
is performed. For the selected cases as given in Table 1,
the features listed in Table 2 were extracted from sMRI for
the research. Segmented brain regions chosen for the clas-
sification as features are depicted in Fig. 3. Every region is
distinguished from other tissues transversal view of sMRI.
The sMRI employed in this paper was obtained from 1.5T
CT scanners.

3.2 ADNI Participants

The ADNI dataset comprises in excess of 6000 cases with
the age between 18 and 96. From it, 240 cases are chosen for
training. The chosen cases fulfilled the requirements stated in
the ADNI propriety. An evenly handed dataset is constructed
comprising 240 cases in the following manner:

(1) 80 normal cases: 40 females, and 40maleswith age range
71–88 years and 71–86 years and age± SD= 78.8± 4.8
years and 77.3 ± 4 years, respectively, and with mini-
mental state estimation (MMSE) score of 28.3 ± 1.3, in
the range between 26 and 30.

(2) 80 MCI cases who had not converted to AD within 18
months: 40 males, 40 females; with age range 65–82
years and 67–87 years and Age ± SD= 73.63 ± 5 years
and 78.03 ± 5.8 years, respectively, and with MMSE
score of 26.4 ± 1.6, in the range between 25 and 30.

(3) 80 AD cases: 40 females, 40 males with age range 70–91
years and 72–92 years and age± SD= 79.8± 6.98 years
and 79.03 ± 5.47 years, respectively, and with MMSE
score of 22.4 ± 2.6, in the range between 17 and 27.

Table 1 depicts some of the characteristics of chosen
cases. Entire sMRIs employed here were obtained from 1.5T
scanners. The primary aim here was to detail the supervi-
sory multiple-label classification within normal, MCI and
AD cases on the basis of proposed architecture, SegNet +
ResNet 101 classifier as depicted in Fig. 1. Hence, to acquire
impartial estimates of the performance of the classifier, the
chosen cases were divided at random into 2 sets as training
and testing dataset. The model was trained using training
dataset, and the diagnostic performances like accuracy, sen-
sitivity and specificity were assessed separately with testing
dataset. Both training and testing datasets used uniform ages
and equal number of genders.

Table 2 Feature and feature measure

Sl.No Feature Measurement

1 Grey matter Area

2 White matter Area

3 Gyri and sulci Length

4 Gyrification Index (Ratio)

5 Cortex Thickness

6 Hippocampus Area

7 Cerebrospinal space Area

4 Proposed Architecture for Feature
Extraction and Classification

Segmentation ofROI of greymatter, whitematter, hippocam-
pus, cerebrospinal fluid and cortical thickness is considered,
which are basis for feature extraction and measure gyrifi-
cation index too. Whole brain regions are not considered
as ROI for feature extraction in diagnosing AD clinically.
Since certain features are not distinctive and are not sup-
portive in diagnosis, possibly they may influence the AD
detection accuracy. SegNet network is adapted and trained
independently to segment some of the brain regions from
sMRIs. The initial layers of the SegNet learn basic features
such as edges and circles, whereas the inner layers learn
more complex and beneficial delicate features. The machine
learnt features by the final layer of de-convolution in Seg-
Net amount to various segment images, associated with the
three classification labels (CN, MCI and AD). The proper-
ties of every segmented image constitute those strong features
about labels that comprise whole graded features, benefitting
to improve the performance of classification. To additionally
enhance the feature data for classification, a characteristic
vector is created on the basis of combining the pixel intensity
values of feature segmented images. Eventually the charac-
teristic vector is fed to a ResNet-101 classifier to classify
every sMRI image into presence and absence of AD or MCI.
The rationale behind applying ResNet as a classifier here is
its high performance for classification using attributes [38].

4.1 SegNet Architecture

SegNet comprises an encoder and a respective decoder archi-
tecture, continuedwith an image classification using ResNet.
This SegNet network construction is depicted in Fig. 2.
Encoder comprises 13 convolution layers that fit to the ini-
tial 13 convolution layers as like in VGG16 [39] framed for
classification of objects. Hence, the training process is initial-
ized using trained weights for the classification on larger sets
of data [40]. Further, the fully connected layers (FCN) are
discarded on behalf of preserving highly resolved features
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Fig. 2 SegNet architecture [44]

Fig. 3 SegNet encoder architecture [44]

maps deep down at the output of encoder. It too decreases
the amount of parameters in the encoder of SegNet substan-
tially, from 134M to 14.7M, in comparison with other newly
neural structures [41,42]. Every layer of encoder comprises
respective decoder, and thus, the decoder too contains 13
number of layers. The eventual output of decoder is applied
to a multiple-label softmax classifier to generate group prob-
abilities separately.

Every encoder as shown in Fig. 3 carries out convo-
lution operation using filter banks to generate a group of
feature maps. Then, they are applied with batch normal-
ization [43,44]. Subsequently, a feature-wise rectified linear
nonlinearity (ReLU) is used. After this, 2× 2 max-pooling
window and non-overlappingwindowof stride 2 are operated
and the resultant outcome is down sampled with a factor of 2.
Max-pooling is applied to attain shift invariability over lower
spatial translations in the image applied as input. Downsam-
pling provides a huge number of contexts, spatial windows,
of input image for every feature inmap.Whenmany layers of
max-pooling and downsampling can attain more shift invari-
ability for powerful classification proportionately, there will
be drop in space resolution in feature maps. The growing
loss image model on edge descriptions is disadvantageous
for segmenting when edge definition is crucial. Hence, it is
required to acquire and stock edge details in the feature maps
of encoder prior downsampling is operated. When memory
due to interpretation is unconstrained, subsequently whole
feature maps of encoder once downsampling can be pre-
served. It is generally no accident in actual implementations,

and thus, a quite effective approach is applied to preserve this
detail.

This includes preserving just the indices of max-pooling;
that is, the positions of the maximal value of feature of every
pooling grid are stored for every feature map of the encoder.
As a rule, it is achievable by employing 2 bits for every
2×2 window of pooling and is therefore far more effec-
tive to preserve in comparison with storing feature map in
floating point precision. The smaller memory provides an
insignificant accuracy loss, but is quite appropriate for real
implementations. The suitable decoder in the decoder archi-
tecture upsamples the feature map of input by employing
the stored indices of max-pooling from the respective fea-
ture map of encoder. This procedure generates sparse feature
map. This SegNet upsampling method is demonstrated in
Fig. 4. The maps of features are subsequently applied with
convolution using filter banks for decoder that capacitated
to learn to generate densely feature maps. These maps are
then batch-normalized as subsequent step. The decoder in
accordance with the initial encoder which accepts the input
image results in a multiple pipeline feature maps, although
its encoder input image comprises RGB channels. It is dis-
tinct that the rest of the decoders in the architecture generate
feature maps of equal amount of channels and size identical
to inputs of encoder. The higher-dimension feature scheme at
the output of the last decoder is applied to a tractable softmax
classifier. This softmax categorizes every feature separately.
The predicted segmentation corresponds to the class with
maximum probability at each pixel.
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Fig. 4 SegNet upsampling [44]

Simple SegNet comprises encoders and decoders of 4 in
number each. The encoders in simple SegNet carry out max-
pooling and downsampling, and the associated decoder’s
upsampling of its input employs the collected indices ofmax-
pooling. Batch normalization is applied to every convolution
layer of the encoder and decoder. Biases are not employed
after convolutional operations, and nonlinear ReLU is absent
in the decoder. Moreover, a constant 7 × 7 kernel for entire
layers of the encoder and decoder is selected to give out
smooth labeling under broader setting, i.e., a feature in the
profound feature map layer (that is 4th layer) can be track
down to a background window in the input image with pixels
of 256×180. Such simple SegNet permits one to investigate
several distinct variants and train them in lesser time span.

4.2 ResNet-101 Architecture

Every applied layer of ResNet [38] uses identity mapping as
a major component. Therefore, when new additional layer is
trained into an identity function f (x) = x , the novel repre-
sentation will be more efficient compared to initial scheme.
As this novel representation may be a best option to accom-
modate the train dataset, the additional layer could do it
simpler to decrease the errors on training. Further, the identity
mapping instead of zero, f (x) = 0 is the most simple func-
tion into a layer. Such thoughts are quite complex; however,
they resulted in an unexpectedly easy solution, a residual
block. This design had an enormous effect on building deep
neural networks.

Considering a part of the neural network, as described in
Fig. 5, x is specified as the input. It is assumed that the ideal
function that desires to achieve during learning is f (x) and
this will be applied as an input to the activation function.
The box of dashed line depicted in the left image shown in
Fig. 5 should exactly accommodate the function f (x). It may
be complex when it is unnecessary that specific layer and it

Fig. 5 The comparison between a regular block (left-side) and a resid-
ual block (right-side). In the last instance, the convolutions are shorted
[45]

is necessary better withhold the input x. The box of dashed
line depicted in the right image shown in Fig. 5 at present
just requires to setup through parameters the variance from
the identity, because it returns x + f (x). Actually, mapping
the residual is quite simple for optimization. So it is just
required to make f (x) = 0. The right-side image in Fig. 5
demonstrates the simple ResNet residual block.

ResNet includes full 3 × 3 convolution layer scheme of
VGG. The residual block contains 3 × 3 convolution lay-
ers of two in number with the equal amount of output lines.
Every convolution layer subsequently comprises a layer of
batch normalization and a ReLU as activating function. Sub-
sequently, these 2 convolution performance are skipped and
sum the input straightaway prior the ultimate ReLU activat-
ing function. This type of scheme, depicted in Fig. 6, requires
that the outputs of the 2 convolution layers must have identi-
cal size as input; thus, they can be summed up. When likely
to alter the size of output or the stride, an extra 1 × 1 con-
volution layer must be introduced to change the input into
required size to perform addition operation.

When the shorting passes over featuremaps of two in size,
it is carried out with 2 stride. Every block of ResNet is with
either 2 deep layers (usually employed in smaller architec-
tures such as ResNet 18, 34) or 3 deep layers such as ResNet
50, 101 and 152. Every 2-layered block is inserted with this
3-layer bottleneck block in the 34-layer network, generating
a 50-layer ResNet (refer to Table 3). ResNets constructed
using 101 layers and 152 layers use more blocks of 3 layers
(refer to Table 3). In spite of increasing the depth, ResNet of
152 layers which has 11.3 billion FLOPs has low-complexity
compared with VGG-16 or VGG-19 nets which has 15.3 or
19.6 billion FLOPs. Table 3 describes different ResNet archi-
tectures.

123



Arabian Journal for Science and Engineering (2021) 46:5373–5383 5379

Fig. 6 Left: regular ResNet block; right: ResNet block with 1 × 1
convolution [45]

5 Experiments and Results

5.1 Experimental Setup

In order to evaluate the performance of proposed architec-
ture in classifying Alzheimer’s disease into CN, MCI and
AD from test sMRI, considerable experiments are carried
out. The suggested architecture will be selecting both the
elementary and class-matched features. The experiments are
carried out using the area, length and thickness voxel fea-
tures. Specifically, whole dataset is shuffled in random and
initially employed for segmenting. The segmenting is car-
ried out by using sMRI training set to obtain segmented
feature images using SegNet. Then, for training the classifier,
entire SegNet segmented feature output images are utilized
for classification using ResNet-101. Notably, the training of

the ResNet-101 classifier is independent of feature extracting
models.

The performance of SegNet + ResNet-101 was verified
and assessed on controls and subjects, with major clas-
sification of three labels: CN, MCI and AD. For feature
extraction, the SegNet was used firstly with ADNI dataset
and for the classification of three labels, ResNet-101 was
subsequently used with ADNI dataset. From Fig. 7, each
classification comprised three stages: (i) training, (ii) valida-
tion and (iii) testing. The sMRI featured image data were
randomly grouped into a larger training set (total of 216
images, 72 of each label) and smaller validation set (total
of 24 images, 8 of each label). The new sMRI was used as
a testing set (once again 80 images). Augmentation of fea-
tures was used on opted segmented images for training and
validation for the purpose of generating further synthetic
features and thus avoiding over-fitting, which can happen
while a fully connected layer captures several parameters.
Supplying a classifier with increased training and validation
data can decrease over-fitting problem. Feature augmentation
approach comprised segmenting the regions and contouring
the segmented regions.

5.2 Image Preprocessing

Here, completely automated segmenting method is used to
evaluate regional segmentation from whole set of sMRI and
obtain the beneficial ROI data. The skull stripping is car-
ried out as image preprocessing operations on the raw sMRI
dataset, and its output is depicted in Fig. 7. The preprocessing
stages comprise skull striping using automated algorithm.

Table 3 ResNets comparison [46]

Layer name Output size 18-layer 34-layer 50-layer 101-layer 152-layer

Conv1 112× 112 7× 7,64, stride 2

Conv2_x 3× 3 maxpool, stride 2

56× 56

[
3× 3 64
3× 3 64

]
×2

[
3× 3 64
3× 3 64

]
×3

⎡
⎣1× 1 64
3× 3 64
1× 1 256

⎤
⎦ ×3

⎡
⎣1× 1 64
3× 3 64
1× 1 256

⎤
⎦ ×3

⎡
⎣1× 1 64
3× 3 64
1× 1 256

⎤
⎦ ×3

Conv3_x 28× 28

[
3× 3 128
3× 3 128

]
×2

[
3× 3 128
3× 3 128

]
×4

⎡
⎣1× 1 128
3× 3 128
1× 1 512

⎤
⎦ ×4

⎡
⎣1× 1 128
3× 3 128
1× 1 512

⎤
⎦ ×4

⎡
⎣1× 1 128
3× 3 128
1× 1 512

⎤
⎦ ×8

Conv4_x 14× 14

[
3× 3 256
3× 3 256

]
×2

[
3× 3 256
3× 3 256

]
×6

⎡
⎣1× 1 256
3× 3 256
1× 1 1024

⎤
⎦ ×6

⎡
⎣1× 1 256
3× 3 256
1× 1 1024

⎤
⎦ ×23

⎡
⎣1× 1 256
3× 3 256
1× 1 1024

⎤
⎦ ×36

Conv5_x 7× 7

[
3× 3 512
3× 3 512

]
×2

[
3× 3 512
3× 3 512

]
×3

⎡
⎣1× 1 512
3× 3 512
1× 1 2048

⎤
⎦ ×3

⎡
⎣1× 1 512
3× 3 512
1× 1 2048

⎤
⎦ ×3

⎡
⎣1× 1 512
3× 3 512
1× 1 2048

⎤
⎦ ×3

1× 1 Average pool, 1000-d fc, softmax

FLOPs 1.8× 109 3.6× 109 3.8× 109 7.6× 109 11.3× 109
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Fig. 7 Flowchart of the major
stages of the experiments
carried out

Fig. 8 Skull stripping. Left: with skull; right: without skull

5.3 Feature Extraction Using SegNet

The white matter, grey matter and the pial regions are
extracted from brain. Cortical thickness at every cortex crest
is described by the average shortest gap lengths between
white matter and pial regions. Similarly, gyrification index,
which is measure of volume of cortex concealed under the
folds of sulci against the volumeof viewable cortex in circular
ROI, is employed. Schaer [47] suggested the procedure that
was applied to measure the gyrification index on the entire
brain cortex. Hippocampus is the increasingly being applied
sMRI biological marker for timely identification of AD [25].
The right hippocampus and left hippocampus are together
parceled. The technique in applying segmentation of them is
based on a specific parts on the basis of a foreknowledge con-
cerning spatially related, which is obtained using algorithm.

It applied the variations in pixel intensity to find and seg-
ment cortical regions. Complete extracted derived features
are described with feature measure as depicted in Table 2.

Figure 9a shows feature outputs from SegNet using ADNI
CN subjects MRI: (a) segmenting grey matter; (b) segment-
ingwhitematter; (c) contouring gyri and sulci; (d) contouring
cortical surface; (e) segmenting hippo campus; (f) contouring
cortical thickness; (g) segmenting CSF.

Figure 9b shows feature outputs from SegNet usingADNI
MCI subjects MRI: (a) segmenting grey matter; (b) segment-
ingwhitematter; (c) contouring gyri and sulci; (d) contouring
cortical surface; (e) segmenting hippo campus; (f) contouring
cortical thickness; (g) segmenting CSF.

Figure 9c shows feature outputs from SegNet using ADNI
AD subjects MRI: (a) segmenting grey matter; (b) segment-
ingwhitematter; (c) contouring gyri and sulci; (d) contouring
cortical surface; (e) segmenting hippo campus; (f) contouring
cortical thickness; (g) segmenting CSF.

5.4 Classification Using ResNet-101

For SegNet-based extraction of the features and to train
ResNet-101 with those features, ADNI dataset is very com-
fortable because of existing label for every image. Thus,
ADNI dataset images are employed. For the purpose of
assessing the performance of AD classifier, same ADNI
dataset is opted for the research.

Regular ADNI dataset comprises three labels of sMRI
images: CN, MCI and AD with the split shown in Table
1; the segmentation features by images are extracted from
ADNI dataset by annotating with the labels of regions like
hippocampus, cortex, grey matter, white matter and CSF
as detection features described in Table 2. Firstly, for effi-
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Fig. 9 Feature outputs from SegNet

Table 4 Confusion matrix parameters of classifier

Parameters/disease condition CN MCI AD

Accuracy 92.5 95.0 96.3

Precision 98.1 96.8 96.8

Specificity 96.1 93.8 93.9

Sensitivity 96.3 96.3 96.7

cient segmentation of features, sMRI images are resized to
150 ×150 pixels. Next, for good performance during fea-
ture extraction, skull stripping as preprocessing method is
adopted, described in Fig. 8, and these images are fed to
SegNet for segmenting images for efficient feature detection
of brain regions. Figure 9 depicts the intermediate outputs
by this experiment. To implement practically the proposed
method, CPU is used to meet the intended results.

Table 4 depicts confusion matrix statistics of the classifier
of ResNet-101, and Fig. 10 depicts the confusion matrix of
the classifier while performing classification for CN, MCI
and AD. The experiment of testing is carried out using 240
images fromADNIDatasets.CNand twoADseverity images
are considered as per Table 1.

Fig. 10 Confusion matrix of the classifier when classifying the CN,
MCI and AD

Table 5 shows comparison of earlier and proposed meth-
ods in segmentation of brain MRI and classification of AD
using deep learning models
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Table 5 Comparison of earlier and proposed methods in segmentation of brain MRI and classification of AD using deep learning models

Author Year Content Image Segmentation Classifier Dataset Accuracy Sensitivity Specificity

Donghuan [48] 2018 Full brain MRI Free surfer ROI Multimodal and
multi-scale deep
neural network

ADNI (626) 75.4 73.3 76.2

Lian [49] 2020 Full brain MRI Patch wise Hierarchical fully
CNN

ADNI (821) 90.3 82.4 96.5

Proposed 2020 Grey + White
matters +
CSV+HCC

MRI SegNet ResNet-101 ADNI (240) 96.3 96.7 93.9

The comparisons between earlier and proposed segmen-
tation of brain MRI and classification of AD are described
in Table 5. It is noted that the segmenting brain images
using deep learning model which being input to the classifier
increases the performances of the classification of AD.

6 Conclusion

The current investigation is performedwith a conception that
productive image segmentationmethod, specifically for brain
MRI, by any deep learning model presumably enhances the
accuracy during classification. The suggested SegNet-based
deep learning method for segmenting has shown a positive
indication while extracting the AD pertinent brain morpho-
logically local features required to classify AD condition,
accurately classifying more severity conditions against CN
and progressive MCI. Many researchers have applied VBM
technique which needs more time and resources.

The current approach though it needs preliminary elab-
orate investigation supplies very good result and too pow-
erfully demonstrates that deep learning model-based feature
segmentation is very supportive to increase the classifier per-
formance. The classification here is a three-class challenge
for overall detection of AD condition using a ResNet model.
The striking benefit of using ADNI MRI image dataset for
extracting feature and training the classifier is that it permits
the classifier to straightaway learn brain morphological local
features than examining features in itself from images. For
testing the classifyingperformance, the sameADNIdataset is
used because its AD conditionwas already available. In prac-
tice, the images applied directly to deep neural network for
assessing AD condition cannot accurately predict and grade
those images. So the applied input images are essentially
to be adequately segmented to the image bearing localized
features. The deep neural network as such has no learning
problem to detect diseased images. This is feasible onlywhen
huge volume of healthy and diseased images are present in
dataset. So the classification with medium amount of dataset
is better supplying ROI (grey matter, white matter, contour-

ing gyri and sulci, contouring cortical surface, hippocampus,
contouring cortical thickness, CSF) segmented images to the
classifier rather than supplying raw images.

Acknowledgements The sMRI datasetwas collected fromAlzheimer’s
Disease Neuroimaging Initiative (ADNI) http://adni.loni.usc.edu/data-
samples/access-data/.
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