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Abstract

The principle purpose of the current study is to hybridize firefly algorithm (FA) as a nature-inspired meta-heuristic developed
based on the flashing patterns and biogeography-based optimization (BBO) to present a qualified algorithm in the case of
optimization of steel frame (SF) structures. In the proposed meta-heuristic algorithm, FA works as a global search engine while
BBO achieves the local search task. The proposed algorithm is termed as a firefly algorithm—biogeography-based optimization
(FA-BBO). FA-BBO algorithm was employed for the optimization of benchmark SF problems for the validity in the case
of a new algorithm. The numerical outputs demonstrate that the new FA-BBO algorithm presents a better computational

performance in the comparison of the current algorithms.

Keywords Biogeography-based optimization - Firefly algorithm - Meta-heuristic - Optimization steel structures

1 Introduction

Design of the structures with minimum weight or mini-
mize an objective function value based on the minimal cost
of the structures, regarding the design criteria, is the main
purpose for structural optimization [1-5]. Mathematical pro-
gramming methods have widely been applied in solid and
structural optimization [6-9]. During the past few decades,
several optimization algorithms have been improved for dif-
ferent structural systems like truss and steel frame (SF)
structures [10-18]. As well as, the performance-based design
of SFs utilizing meta-heuristic optimization algorithms has
been developed by the researchers [19-21]. The meta-
heuristic algorithms have remarkable characteristics that vary
from the gradient-based methods. This class of optimiza-
tion methods not only demands no gradient computations
but also they are straightforward for computer programming.
Employing meta-heuristic algorithms allows exploration of
a further fraction of the design space in comparison with
gradient-based optimization methods. The meta-heuristics
illustrate the effectiveness of numerous optimized structural
issues like SFs or truss [22-26]. Many researchers employed
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popular meta-heuristics such as genetic algorithms (GA),
particle swarm optimization (PSO), ant colony optimization
(ACO) and harmony search (HS) for the optimization of
structural systems. In the present study, the firefly algorithm
(FA) [27], biogeography-based optimization (BBO) [28] and
their combination are focused.

FA is a recently developed nature-inspired meta-heuristic
based on the flashing patterns and behavior of fireflies. Addi-
tionally, FA is more efficient in comparison with other design
optimization strategies since requires a lower output of eval-
uations for function. Moreover, FA has certain defects, for
instance trapping to the local optimization results in the case
of a complex searching space as well as a disability to do
an excellent local search near the local optimum. The com-
mon knowledge that the BBO may carry out superior to the
other meta-heuristic optimization strategies through the ini-
tial iterations, but in the case of increasing the number of
iterations, it does not available competitive. BBO was encour-
aged based on biogeography, which refers to geographical
distribution. In the current work, an unused optimization
algorithm is represented by a combination of FA and BBO
for the optimization of SF structures. The optimization pro-
cedure is performed by BBO around the optimum alternative
found by FA to finely investigate the design space. As long
as the algorithm is a serial integration of FA and BBO it
is denoted as FA-BBO meta-heuristic. In this paper, the
design variables are areas for the cross section of the struc-
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tural elements and the design constraints are imposed on
the nodal displacements and element stresses. The numerical
output demonstrates the effectiveness and productiveness of
FA-BBO against the FA and BBO.

2 Optimization Problem Formulation

For optimal design of an SF including ne members accumu-
lated in ng design sets, the design variables of any design
set are usually chosen based on the standard profile list. In
this case, the optimization problem can be formulated in the
following way:

ng nm
Minimize: w(X) = Zp,-A,- ZLj (1)
i=1 j=1
Subject to: gr(X) <0, k=1,2,...,nc 2)
X:{xlxz...x,-...xng}T 3)

in this equations; xi presents an integer number to express
the sequence of steel cross sections for the ith group; w is
the frame weight, the weight per unit volume and area of the
cross sections are presented by p;, and A;, respectively, for the
ith group section; the number of the elements is presented by
nm that accumulated through the ith set; for the jth element
in the ith set L; presented as a length of the elements; the kth
behavioral constraint represented by gi.

The lateral inter-story drift ratio can be considered as fol-
lows:

6
gd,zz—l—1§0, I=1,...,ns 4)
Ry

where ¢ is the drift ratio for the inter-story; the inter-story
drift ratio index represented by R; authorized based on the
code of practice and ns is the overall number of stories.

The demand-capacity ratio (DCR) constraints of structural
elements exposed to axial load as well as flexural stresses are
computed in the following way [29]:

Ly Myx Myy . P,
DCR = [2¢an " (%Mm * ¢any)] if 5 < 0.2
Py 8 My My, . P,
|:¢CPn + §<¢anx + ¢bM‘:l\>:| if b Pa > 0.2
&)
gpcrRm =DCRy, =1 =0, m=1,...,ne (6)

in these equations P, presents the required strength; Py
presents the nominally axial compression or tension strength;
@, presents the resistance coefficient; M, and M, present
the essential flexural strengths through the x and y directions;
M, and M,y present the nominal flexural strengths through
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the x and y directions, and @y, = 0.9 is the reduction factor
of flexural resistance.

In the present work, the exterior penalty function method
(EPFM) [30] is used to handle the design constraints. Using
EPFM converts the main constrained optimization problem
into an unconstrained one. Therefore, the pseudo uncon-
strained objective function may be presented through the
following equation:

ns ne

w(X,r)=w(X) (1 +r Y (max{0, gg )* +r Y (max{0, gDCR,m}>2)
=1 m=1
(M

in this equation ¥ present, the pseudo-objective function and
r present a penalty parameter. For minimizing the above-
mentioned pseudo-objective function, several popular meta-
heuristics are employed in the present study. The theoretical
background of the meta-heuristics is explained in the next
section.

3 Meta-heuristic Algorithms

The main idea that supports designing the meta-heuristic
algorithms is to tackle complex optimization issues when
the other optimization methods have failed to be effective.
Meta-heuristics are applied to a very wide range of problems
and they mimic natural metaphors to solve complex opti-
mization problems. In this study, FA and BBO are utilized
for discovering the optimum design of SFs subject to static
loading.

3.1 Firefly Algorithm

The FA is a relatively new meta-heuristic optimization algo-
rithm that was proposed by Yang at Cambridge University
in 2008 according to the inspired by the flashing behavior
of fireflies [31]. Fireflies communicate, search for prey and
find mates employing bioluminescence with varied flashing
models [32]. By considering the previous investigations, it
may be considered that in almost all areas of engineering FA
can be employed as a powerful optimization tool [33-39].
To develop the FA, natural flashing specifications of fireflies
have been employed based on the following rules [27]:

a. The fireflies are unisex; consequently, one firefly will be
attracted to other fireflies irrespective of the sex.

b. The attractiveness of any firefly is proportional to its
brightness; therefore, for every two flashing fireflies,
the less brightness of the firefly will move toward the
brighter one. The attractiveness is proportional to the
brightness and by increasing the distance the brightness
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Fig. 1 The linear model of migration [44]

will decrease. It will move randomly when there is no
brighter firefly than the particular one.

c. The brightness for a firefly is obtained based on the
nature of the objective function.

Firefly attractiveness is obtained based on its brightness
or light intensity that is determined following the objective
function of the optimization problem. Nevertheless, 8 (the
attractiveness) that depends on the judgment of the beholder
defers based on the distance between two fireflies. B can be
presented in the following way [31]:

B=poe?" ®)

in this equation r is the distance between two fireflies, Bg
is the attractiveness for r = 0, and y is the light absorption
factor.

The distance between fireflies i and fireflies j at corre-
sponding X; and X; is obtained employing the following
equation:

rij = | Xi — X;| = \/ZZ—1 (i k—Xj k)? )

in this equation x;,; is the kth parameter of the spatial coor-
dinate x;.

In the FA, the firefly i movement toward a brighter firefly
Jj is obtained by the following equation:

Xi = X + foe 5 (X, — X;) +a(rand — 0.5) (10)

in this equation, the second term belongs to the attraction.
Additionally, the randomization parameter is represented by

o where the rand is a randomly generated number that dis-
tributed in the uniform condition in [0, 1].

3.2 Biogeography-Based Optimization

Simon represented the BBO algorithm in 2008 as a cer-
tain feature algorithm in common with other biology-based
algorithms [28]. In this algorithm, the main concept was
inspired based on the biogeography, that relates to the bio-
logical organisms in terms of time and space. As a reliable
approximation of many engineering issues, the BBO algo-
rithm has been employed [40-42]. The different islands,
centuries, lands, or even continents over decades, or millen-
nia are the case studies of these investigations. The different
ecosystems in terms of habitats or territories are evaluated
to figure out the relationships between various species (habi-
tants) in the case of immigration, emigration and mutation.
The progress in ecosystems to achieve a stable situation based
on the different types of predators and prey and the efficiency
of migration and mutation was the major inspiration in BBO
[28].

BBO employs several search agents called habitats. These
habitats are analogous to fireflies in FA. The BBO algorithm
assigns each habitat a vector of habitants suitability index
(HSI) defines the overall fitness of a habitat. The higher the
HSI, the more fit the habitat. The habitats evolve based on
three main rules in the following ways [43]:

1. The high HSI habitats living in habitants that are more
likely to emigrate to habitats by the low HSI.

2. The low HSI habitats more prone to attract new immi-
grant habitants from those with high HSI.

3. Regardless of their HSI values, the habitats might be fac-
ing the random changes in the habitants.

In nature, these concepts bring a balance between dif-
ferent ecosystems. In other words, nature tends to improve
the overall stability of different geographical regions. The
BBO algorithm utilizes these concepts to improve the HSI of
all habitats, which results in changing the primary random
solutions for particular problems. The employed BBO algo-
rithm starts with a random set of habitats. Each habitat has
ng different habitants that correspond to the design variables
number of a particular problem. Besides, each habitat has its
immigration, emigration and mutation rates. This mimics the
characteristic of various geographically separated locations
in nature.

The components of the biography model and their cor-
respondence based on the BBO algorithm in terms of the
optimization point of view represented in the following ways
[44]:
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Fig.2 General steps of the BBO algorithm
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Fig. 3 Flowchart of the proposed algorithm
e Habitat (H): Habitat presents a solution within the search as residences for biological species are with a high value

space of a d-dimensional numerical optimization problem. of HSI.
e Habitat Suitability Index (HSI): Throughout a biography = e Suitability Index Variables (SIV): The computation of the

pattern, the geographical areas, that are well investigated HST amount is affecting through the additional coefficients
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for instance rainfall, diversity of vegetation, land area as
well as temperature, that they called the SIVs.

e Immigration Rate: The criterion is devoted to control-
ling the immigration habitat. The maximum amount of
the immigration amount in a habitat is achieved when the
species are not inside of the habitat.

e Emigration Rate: The . criterion is controlling the habitat
emigration. The emigration will be null when there are
no species. By increasing the number of spaces, species
can leave their habitat to explore other residences. The
maximum emigration rate (E) is achieved through a habitat
in the case of containing the maximum amount of species
that can support it.

e Migration model: Based on the various mathematical pat-
terns for biogeography, different migration curves might
be utilized. A linear model is represented in Fig. 1. In
this figure, SO is the equilibrium number of species, by
consideration of an equal amount for the immigration and
emigration rates. The maximum possible immigration rate
represented by I, where the maximum possible emigration
rate is represented by E, and the greatest possible amount
of species that the habitat might support is represented by
Smax-

Emigration (ux) and immigration (1;) are formulated as
functions of the habitants number in the following way [43]:

up = 22 (1)
N

A = <1_">-1 (12)
N

in this equation, n is the current number of habitants, N is
the allowed maximum number of habitants.

These latter two rates are depicted in Fig. 2. It can be
inferred from this figure that a high number of habitants
coincides with a high probability of emigration and a low
probability of immigration [43].

The third component in BBO, mutation, improves the
exploration of BBO as well as maintains habitats. The com-
ponent is illustrated in the following ways [43]:

1— P,
mn:M-( ) (13)

Pmax

in this equation, the initial value for mutation is M that is
defined by the user p, is the mutation probability belongs to
nth habitat, and pmax = argmax (p,), n=1,2, ..., N.

The global levels of the BBO algorithm are represented
within Fig. 3 as a flowchart. Figure 2 demonstrates that the
BBO algorithm initiates by random groups of habitats. Sub-
sequently of obtaining the HSI of any habitat, the emigration,
immigration and mutation ratios are upgraded. Based on
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Fig. 4 10-story steel frame

these ratios, the non-elite habitants are migrated and mutated.
For use as the next elites generation, a predefined amount of
the best habitats is rescued. Lastly, the algorithm of BBO is
concluded based on the satisfaction of a termination criterion.
The elitism prevents the best solutions out to become cor-
rupted with immigration. Therefore, some of the best habitats
at any iteration are retained. Consequently, if their HSI is
ruined based on the mutation, then the best solutions might
be covered [43].

3.3 FA-BBO Algorithm

One of the defects known in FA is that all fireflies in final
iterations converge to the more attractive firefly and therefore
the algorithm converges to local optima and this is a reason
that FA incapacitates for doing a proper local search. Con-
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Table 1 Optimal results of 10-story steel frame

Element groups Pezeshk et al. [45] Kaveh et al. [22]

Camp et al. [46] Present work

FA BBO FA-BBO
Beam 1-3S W33 x 118 W33 x 118 W30 x 108 W33 x 118 W33 x 118 W33 x 118
Beam 4-6S W30 x 90 W30 x 90 W30 x 90 W30 x 90 W30 x 99 W30 x 90
Beam 7-9S W27 x 84 W24 x 76 W27 x 54 W24 x 84 W27 x 84 W24 x 84
Beam 10S W24 x 55 W14 x 30 W21 x 44 W24 x 68 W24 x 62 W21 x 44
Column 1-2S W14 x 233 W14 x 233 W14 x 233 W14 x 233 W14 x 211 Wi4 x 211
Column 3-4S W14 x 176 W14 x 176 W14 x 176 W14 x 159 W14 x 159 W14 x 159
Column 5-6S W14 x 159 W14 x 145 W14 x 145 Wi4 x 132 Wi4 x 132 W14 x 145
Column 7-8S W14 x99 W14 x 90 W14 x99 W14 x 90 W14 x 90 W14 x 90
Column 9-10S W12 x79 W12 x 65 WI12 x 65 W14 x 61 Wi4 x 61 W14 x 61
Weight (KN) 289.72 274.99 278.48 275.44 272.95 269.75
Number of analyses 3690 2500 8300 4000 4000 4000
Fig.5 Convergence histories of 310
FA, BBO and FA-BBO for seessss BBO
10-story steel frame 305 - ==eFA
optimization 300 - FA-BBO
’é‘ 295
S 290 1
-
=
20 285
o
= 280
275 - .
\;.._.;.;.;.....“““““""
270 A e —— -
265 T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
Iteration

sidering the local search ability of FA is relatively poor and
the local search ability of BBO is appropriate in comparison
with FA. Therefore, FA and BBO are serially integrated to
overcome the aforementioned difficulty.

To resolve the problem for improving the performance of
the optimization process for finding a near-global solution,
FA and BBO are serially integrated and this results in an algo-
rithm termed an FA-BBO algorithm. The proposed FA-BBO
meta-heuristic is a two-stage algorithm. In the first stage, a
preliminary optimization is performed by FA to explore the
design space by performing a limited number of iterations
(say nl). The optimum solution found by FA is termed XFA.
In the second stage, a normal finer search is implemented
about the XFA by employing BBO again by performing a
limited number of iterations (say n2). The initial population
of the FA is randomly selected from all over the design space
while the optimal initial population of BBO is selected as
follows: Xga is directly transformed to the optimal initial

S @ Springer

population and the rests, say Xpngi, be chosen using the fol-
lowing equation:
X; =N(Xpa,yXp), j=12,...,(n =1 (14)
where the randomly normal distributed vector is represented
by N with a mean of Xpa with a standard deviation of y Xga.
The y coefficient has a critical role in the case of the
convergence of the algorithm. In the current study, different
values are investigated for y where the optimal performance
is achieved for the value of y = 0.1. The flowchart of the
proposed algorithm is represented in Fig. 3.

4 Numerical Results

For evaluation of the presented algorithm, three benchmarks,
SF optimization problems are represented and the outputs are
controlled based on the existing reports in the literature. W-
shaped (from the standard profile list) cross sections were
employed for all of the members. For each design example,
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25 independent optimization runs have been performed and
the best design is reported.

4.1 Example 1: 10-Story Planar SF

Figure 4 represents a 10-story SF, where the module of
elasticity is 200 GPa and the yield stress of the material
is 248.2 MPa. Moreover, the effective length factors of the
members are obtained as K, = 0 for a sway-permitted frame
and the out-of-plane effective length factor is specified as K,
= 1. Any of the columns is considered unbraced through the
length and one-fifth of the length of any span has been con-
sidered as unbraced length. The lateral inter-story drift ratio
is limited by A/300 (4 is the story height).

Fabrication conditions are required for the element con-
structions of the frame. The same cross section for beams
was employed for three beginning stories from the foun-
dation. Furthermore, the same cross section for columns is
employed for any two consecutive stories. Four cross sec-
tions for beams and five cross sections for columns resulting
in the element grouping in nine design variables. The cross
section for beam element sets is selected from the 267 W-
shaped cross sections. The column sections are restricted to
W14 and W12 (from the standard profile list). For all of the
applied meta-heuristics, the population size is 40 and the
upper limitation for iterations was 100. In the framework of
FA-BBO, the number of iterations for preliminary optimiza-
tion by FA and BBO is equal to 50 (i.e., nl = n2 = 50). The
outputs for the optimization are presented in Table 1.

The results show that FA-BBO outperforms the algo-
rithms applied in [46, 47]; moreover, the optimal solution
found by FA-BBO is 2.06% and 1.17% lighter than those of
FA and BBO. Figure 5 shows the convergence histories of FA,
BBO and FA-BBO indicating that the FA-BBO possesses a
better convergence rate compared with FA and BBO.

For the optimal solution found by FA-BBO, the drift ratio
for inter-story and element stress ratios are shown in Figs. 6
and 7, respectively. The outputs present a feasible solution.

4.2 Example 2: 24-Story Planar SF

A 24-story frame with a grouping of the details of the ele-
ments is considered and represented in Fig. 8. In this example,
E =205 GPa and Fy = 230.3 MPa. The factors for the effec-
tive length of the members are obtained as K, = 0 for a
sway-permitted frame and the out-of-plane effective length
factor is considered as K, = 1. All of the members in terms
of beams and columns are specified as unbraced elements
along the lengths.

A H/300 limitation was considered for the maximum lat-
eral displacement and h/300 was considered as a limitation of
the maximum inter-story drift ratio. In this formulations, the

Max Drift

10 - 0.4867 1.216 cm

Story

0

T T T

0 02 04 06 08 1 12 14
Inter-story Drift (cm)

Fig. 6 Inter-story drift profile for optimal 10-story steel frame based on
FA-BBO

height of the building represented by H and the height of one
story represents by A. Fabrication conditions are imposing
the construction of the 168-element frame demands the same
cross section of the beam utilized through the first as well as
the third bay on any floors (exclude the roofs), resulting in the
scope of four groups of beams. The exterior columns team-
ing up into one group at the beginning of the foundation,
where the interior columns teaming up in another set over
three consecutive stories. 16 cross sections for columns and
4 cross sections for beams (20 design variables overall) were
the groupings for the results. W-shaped cross sections for the
beam element groups are chosen, where the cross section of
columns groups is limited to W14 (from the standard profile
list). The population size and the upper limitation for the iter-
ations are considered to be 40 and 150, respectively. In the
framework of FA-BBO, the number of iterations for prelim-
inary and final optimization processes is equal to 75 (i.e., nl
= n2 =175). Table 2 presents the results of the optimization.
The results indicate that the optimal solution found based
on the FA-BBO is better than those found in [27-29]. The
weight of the optimal structure found by FA-BBO is 4.31%
and 3.34% lighter than those of FA and BBO, respectively.
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Fig.7 Element group stress 1
ratios for optimal 10-story steel
frame based on FA-BBO
0.8 A
2
§ 0.6 -
@
§ 0.4
0.2 -
O T T T T T T
1 3 4 5 6 7 9
Element Groups
Table 2 Optimal results of 24-story steel frame
Element groups Camp et al. [46] Kaveh et al. [22] Degertekin [47] Present work
FA BBO FA-BBO
1 W30 x 90 W30 x 99 W30 x 90 W30 x 99 W30 x 90 W30 x 90
2 W8 x 18 W16 x 26 W10 x 22 W8 x 21 W14 x 22 WI2 x 14
3 W24 x 55 W18 x 35 WI8 x 40 WI8 x 46 WI18 x 35 W21 x 48
4 W8 x 21 W14 x 22 WI2x 16 W6 %9 W8 x 21 W6 x9
5 W14 x 145 W14 x 145 W14 x 176 W14 x 145 W14 x 145 W14 x 145
6 W14 x 132 W14 x 132 W14 x 176 W14 x 120 W14 x 132 W14 x 120
7 W14 x 132 W14 x 120 W14 x 132 W14 x 109 W14 x 132 W14 x 120
8 W14 x 132 W14 x 109 W14 x 109 W14 x 82 W14 x 132 W14 x 74
9 W14 x 68 W14 x 48 W14 x 82 W14 x 74 W14 x 68 W14 x 68
10 W14 x 53 W14 x 48 W14 x 74 W14 x 61 W14 x 53 W14 x 53
11 W14 x 43 W14 x 34 W14 x 34 W14 x 34 W14 x 38 W14 x 38
12 W14 x 43 W14 x 30 W14 x 22 W14 x 26 W14 x 30 W14 x 22
13 W14 x 145 W14 x 159 W14 x 145 W14 x 109 W14 x 132 W14 x 109
14 W14 x 145 W14 x 120 W14 x 132 W14 x 99 W14 x 132 W14 x 109
15 W14 x 120 W14 x 109 W14 x 109 W14 x 109 W14 x 120 W14 x 109
16 W14 x 90 W14 x99 W14 x 82 W14 x 90 W14 x 90 W14 x 90
17 W14 x 90 W14 x 82 W14 x 61 W14 x 74 W14 x 74 W14 x 74
18 W14 x 61 W14 x 53 W14 x 48 W14 x 53 W14 x 61 W14 x 68
19 W14 x 30 W14 x 38 W14 x 30 W14 x 34 W14 x 30 W14 x 30
20 W14 x 26 W14 x 26 W14 x 22 W14 x 22 W14 x 22 W14 x 22
Weight (KN) 980.63 967.33 955.74 943.60 934.13 902.92
Number of analyses 30,000 3500 13,924 6000 6000 6000

For the optimal solution found by FA-BBO, the drift ratio
for inter-story and element stress ratios are shown in Figs. 9
and 10, respectively. Similarly, in this example, the outputs

present a feasible solution.

S @ Springer

4.3 Example 3: 20-Story 3D Steel Braced Frame

A 20-story 3D braced SF (see Fig. 11) with 1040 elements
are selected based on the study of Hasancebi et al. [48]. In
this study, the columns are classified into three-member sets
in a story; a corner, interior columns and exterior columns.
Additionally, the beams are classified into two sets; interior
beams and exterior beams.
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Fig.9 Inter-story drift profile for optimal 24-story steel frame based on
FA-BBO

The corner, interior and exterior columns as well as inte-
rior and exterior beams, and bracings are categorized with the
same cross section through the two adjacent stories. There-
fore, 60 distinct member sets are in the example. ASD-AISC
[49] specification is used to control the stress constraints.
Additionally, the displacements in x and y directions at joints
are limited to 18.29 cm where the maximum amount of
inter-story drifts ratio is considered as 0.91 cm. The elastic

modulus was considered as 2.039 x 10'? kg/m? and the yield
stress was considered as 2.531 x 107 kg/m? for the used steel.
The applied dead and live loads considered from the first
to 19th floors are considered 2.88 kN/m? and 2.39 kN/m?2,
respectively. In the case of the roof, a dead load of 2.88 kN/m?
and a snow load of 1.20 kN/m? were considered. The gravita-
tional loads are utilized as distributed uniform loads through
the beams based on the distribution formulations improved
for slabs [48]. The wind loads for design are calculated based
on ASCE 7-05 [50] as follows [48]:

Pw = (0.613KZKZ,KdV21>(GCp) (15)

in this equation the design wind pressure is represented by py,
in terms of kN/m?, the velocity exposure coefficient is rep-
resented by K, the topographic factor represented by K,
the direction factor of wind reprinted by K4, the basic speed
for wind represented by V, the gust factor represented by G
and the coefficient for external pressure represented by Cj,.
Based on the parameters that have been used by Hasancebi
et al. [48], the buildings are considered in a flat terrain loca-
tion with V = 46.94 m/s and exposure category B and the
following values: K,; = 1.0, K4 =0.85,1 = 1.0, G = 0.85
and C}, = 0.8 for windward facing and 0.5 for leeward facing.
After the calculation of the wind loads, the load is acting in
the uniform condition at each level of the floors. A combi-
nation of the gravity and wind loads is considered into two
types of loading conditions based on the wind loads acting
along the x-axis or the y-axis [48].

To implement the optimization process, the population
size is chosen to be 50 and the maximum number of iterations
is limited to 400. For FA-BBO meta-heuristic, the number of
iterations for each of FA and BBO meta-heuristics is limited
t0 200 (i.e., nl =n2 = 200). Table 3 presents the optimization
results.
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Fig. 10 Element group stress ratios for optimal 24-story steel frame based on FA-BBO
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Fig. 11 20-story 3D steel frame

The optimum solution for the weight based on FA-BBO
is 406.13 ton performing 20000 analyses, which is lighter
than 412.91 ton reported in [48] conducting 60,000 analyses.
Moreover, the results show that FA-BBO finds a solution
which is 6.17% and 5.1% lighter than the solutions found by
FA and BBO, respectively. Figures 12 and 13 depict the inter-
story drift ratio profile as well as the element stress ratios for
the optimal solution of FA-BBO, respectively. These results
demonstrate the feasibility of the optimal solution.
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Fig. 12 Inter-story drift profile for optimal 20-story 3D steel frame
based on FA-BBO

5 Conclusions

In the present study, a combined meta-heuristic algorithm
is represented for the design optimization of SF structures.
In this case, the main characteristics of FA and BBO opti-
mization algorithms are combined and the resulted algorithm
is termed as FA-BBO meta-heuristic. In this algorithm, FA
acts as an explorer while the exploitation task is achieved by
BBO. In other words, BBO performs a finer search around
the solution found by FA. Three SF optimization examples
are represented to demonstrate the computational superior-
ity of the presented meta-heuristic algorithm. In each design
examples, the results of FA-BBO are compared with other
algorithms proposed in other studies. In all examples, the
weight of the optimal structure found by FA-BBO is lighter
compared with those of the other algorithms. Furthermore,
the rate for the convergence of the FA-BBO is better than
those of FA and BBO. Finally, it can be carried out that
FA-BBO is an efficient meta-heuristic algorithm for the opti-
mization of SF structures.

@ Springer
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Fig. 13 Element group stress ratios for optimal 20-story 3D steel frame based on FA-BBO
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