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Abstract
Multivariate time series (MTS) forecasting is a research field that is gaining more and more importance as time series
data generators proliferate in the growing era of Internet of Things. Deep learning architecture for MTS data has been and
still a very active research area as there is no comprehensive comparative study of the different architectures, let alone a
perfect architecture that can solve all types of time series modeling problem. In this paper, we start by highlighting time
series analysis requirements, to propose a new model for conditional multivariate time series forecasting based on the lately
introduced WaveNet architecture. Our model is composed of stacked residual causal dilated convolutions that provide large
scope in time series history and foster learning of long-term dependencies. Parameterized skip connections allow catching
early trends and properties while conditioning enables modeling the associations that exist betweenmultivariate data.We used
group normalization for its stability and independence from the batch size. We present a deep comparison of the structure,
flexibility, flow control, memory consumption, robustness and stability capacities of our new model against those of recurrent
neural networks state-of-the-art approaches—long-short-term-memory (LSTM) and gated recurrent unit (GRU). To assess
the performances of our model, we conduct extensive experimental testing on the task of urban air quality prediction in
Marrakesh city using six real-world multi-sensor and multivariate time series datasets. We compare the results of our model
against the results of LSTM and GRU. Our experiments revealed that our proposed WaveNet-temporal-CNN outperform
recurrent models ability to learn long-term dependencies in a time-efficient way.

Keywords Deep learning · Temporal convolutional neural network · WaveNet · Causal and dilated convolutions · Residual
connections · Skip connections · Conditional multivariate time series · Group normalization · Recurrent neural network ·
LSTM · GRU · Forecasting · Air quality prediction

1 Introduction

Prediction activities are attached to human existence since the
dawn time, and the reason why forecasting is so important
is that prediction of future events is a crucial information
for many planning or decision-making activities ranging
frommanufacturing operations and inventory control in retail
stores to public sectors activities such as demography con-
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trol and city management [1]. Forecasting is equally much
needed in pollution as the latter has a detrimental effect on
human health. Particulate matter (PM) is invisible material
released via vehicle exhaust emissions and ends up sus-
pended in the atmosphere. A recent study led by College
University of London showed a tight correlation between air
quality and suicide and depression rates [2].

Quantitative forecastingmethods predict future data based
on historical data and make use of different types of algo-
rithms that can have different optimization strategies and
whose quality is measured by the number of errors or by the
total distance between the predicted and the observed/real
values [3–5]. Neural networks (NN) or deep neural networks
are machine learning techniques that have lately surpassed
other classical methods as they allow the super calculator to
learn how to learn the correlations and dependencies between
different types of data. Deep neural networks (DNN) do not
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need humans to do data features engineering, as this is nec-
essary with classical methods, thus alleviating humans’ tasks
and making the learning process quicker and more flexi-
ble. DNN have been successfully used for different tasks
where pattern recognition is needed, ranging from images
classification or object localization with convolutional neu-
ral networks (CNN), to generating new data instances based
on phenomenons studying in order to predict and forecast
future data or to generate pieces of art [6]. DNN architec-
tures and topologies development are a very active area of
research as new ones are constantly composed to solve dif-
ferent problems [7]. Van Veen have highlighted the diversity
of NN by listing twenty nine different architectures in 2016
[8], while Brunton and Kutz [9] have enumerated eighteen
of the most considered architectures in the literature. Many
researchers have explored and experimented different types
ofDNNmodels and architectures trying to discoverwhat best
suits a given type of task in a given application domain; some
attempts to consider a unifiedmodel for multi-task resolution
have been proposed [10].

In this paper, we are interested in multivariate time
series data modeling DNN architectures, particularly gener-
ative auto-encoder models such as recurrent neural networks
(RNN) and convolutional neural networks (CNN) [11]. A
time series denotes for a chronologically ordered set of values
of one studied variable [12]. Time series data are involved in
most forecasting problems as they offer a simple and efficient
technique to predict the future. Starting with the autoregres-
sive integrated moving average models (ARIMA) [13] and
getting to new regression models that made an important
advance, many of the models used in time series forecast-
ing have been explored for many decades but lately had
to elapse in favor of machine learning techniques. RNN
showed to be promising for capturing time dependencies
over sequence of variable-sizedvector input. Long short-term
memory (LSTM) and gated recurrent unit (GRU) (variant of
LSTM introduced in 2014) are the two improved versions of
RNN, the most used and encountered in the literature. LSTM
and GRU are called gated RNN as they both rely on differ-
ent types of gates to regulate the data flow inside their units.
Multiple empirical research studies have been conducted in
the last few years trying to compare the performances of
these twoarchitectures regardingmachine translation, speech
recognition, traffic flow prediction, health monitoring, video
segmentation, emotion classification, etc. The most promi-
nent empirical evaluation was led by Greff et al. on several
LSTM variants and concluded that the result performances
were very comparable [7, 14–16]. While CNN have being
applied to multi-dimensional data for video segmentation
and images classification, one-dimensional CNN are suit-
able for time series data analysis; however, one-dimensional
CNN cannot capture long-term time-dependencies with non-
fixed length data as RNN do. Temporal convolutional neural

networks (TCNN) are a new family of CNN architecture that
can hold past data along the network as RNN do [17]. Recent
research demonstrates that TCNN and RNN deliver compet-
itive results performances in diverse applications including
audio processing [18], text classification [19] and time series
forecasting [11], (mainly with one-dimensional temporal
data), while TCNN surpass RNN’s performances in trans-
lation tasks [20].

A multivariate time series (MTS) consists of a collection
of interdependent time series variables,where each variable’s
future value rely on its own past values as well as the past
values of other variables; hence, the difficulty of multivari-
ate time series analysis which surpasses that of univariate
time series [21]. The need for MTS analysis is exhorted by
big data and Internet of Things (IoT) technologies which
enable mixing data from various and disparate sources, MTS
collection and processing potentially being realized in real-
time using parallel computing. This presents challenges such
as handling multiple parameters within high dimensionality
[22]. Many models were proposed in the literature to tackle
this issue:multi-channel deepCNN [23, 24], time-CNN [25],
residual network or ResNets [26] and encoder [27], to name
just a few. However, none of these architectures could out-
perform the others even though ResNet stands out for its
flexibility compared to the rest of the models [11]. In 2016,
Google search team introducedWaveNet architecture, a stack
of dilated convolutions with residual and skip connections
for text-to-speech generation [28]. The authors demonstrated
that WaveNet architecture is very promising for sequence-
based tasks with long-term dependencies. WaveNet indeed
surpasses other CNN by its capacity to build deep networks
while gradually expanding the receptive field and adding con-
ditioning to better ‘see’ the long-term dependencies, while
preserving network complexity.

Through a literature review, we noticed that WaveNet for
MTS forecasting has not been explored as it should be. We
believe that WaveNet is a revolutionary step and a unique
type of CNN architectures as it brings together many inter-
esting concepts. Being aware of the complexity of MTS
forecasting task and having considered all the requirements
and challenges, we propose in this paper a new temporal
CNN architecture for MTS forecasting through an adapta-
tion of WaveNet model. Our model is unique and draws its
strength from a pre-study of MTS requirements as well as
a comparison of LSTM, GRU and WaveNet models’ theo-
retical basis. These pre-studies drive our choices and ensure
our model’s supremacy. We assess the performance of the
proposed model using urban air quality multi-dimensional
time series datasets collected by multi-sensors in Marrakesh
city. Our work is innovative since it presents a new model
coupled with a solid methodology that performs theoretical
and experimental studies which both confirm that WaveNet
is the future of MTS forecasting.
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The main contributions of this paper are as follows:

1. Listing time series analysis requirements and compara-
tively showing how each of the studied models (LSTM,
GRU and temporal CNN) can meet these requirements.

2. Introducing a new TCNN architecture for MTS forecast-
ing, which is an adapted WaveNet architecture that best
suits MTS analysis requirements addressed in point 1.
Ourmodel is a dilated residual temporal CNN that enjoys
highly parameterized and well situated skip connections,
variables’ conditioning, as well as the recently proposed
group normalization.

3. Presenting a deep theoretical comparison of LSTM,
GRU and our model by their structures, flexibility, flow
control, memory consumption, robustness and stability
capacities, and highlighting the reasons of our model’s
supremacy over LSTM and GRU, through an in-depth
analysis of the internal structure and mathematical logic
of the three models.

4. Delivering empirical evaluation results using real
datasets, which show that our model outperforms LSTM
and GRU in accuracy and speed. Our model is able to
learn long-term dependencies and complex correlations
among MTS in real-world datasets.

This paper is organized as follows: Sect. 2.1 formalizes
the multivariate sequence problem description. Section 2.2
discusses relatedwork andwhat distinguishes our paper com-
pared to previous work. Section 2.3 presents LSTM and
GRU, and Sect. 2.4 lists the optimization techniques used in
this paper. Section 3 explains our new WaveNet-based Tem-
poralCNN(WTCNN)model and itsmain concepts. Section4
provides an in-depth comparison of the structure, flexibility,
flow control, memory consumption, robustness and stability
capacities of LSTM, GRU andWTCNN, based on their type
of internal structure and logic. Section 5 is devoted to experi-
ments and assessment of early assumptions. Discussions are
included in Sect. 6. Finally, Sect. 7 concludes this paper and
provides limitations and future work.

2 Background and RelatedWork

In this section, the MTS problem is formulated. We then
present the current state of research in deep learning for
MTS forecasting. The deep learning architectures used in
our comparative study are introduced afterward: LSTM and
GRU; finally, are presented the used optimization techniques
(hyperparameter tuning, walk-forward cross-validation and
error metrics).

2.1 Multivariate Sequence Problem Description

The air quality prediction we tackle in this paper is multi-
variate and multi-output forecasting problem. From a set of
features that describe the current state of the study environ-
ment at a moment t, we want to predict the future values of a
set of five air pollutants based on their own previous values
and previous values of the other features.

In a more formal way, this is a sequence to sequence time
series prediction problem, where given an m-dimensional
input at a time t, X � (xt1, x

t
2, . . . , x

t
m) with xtj ∈ R

n , we

calculate the output vector Y � (xt+11 , xt+12 , . . . , xt+1p ) at a

time t + 1, where p < m, and each xt+1j depends on its own
previous value as well as on the previous values of other
features. The aim of this sequence data modeling is to find a
mapping function f that produces a prediction vector Y from
a historical vector X:

(xt+11 , xt+12 , . . . , xt+1p ) � f (xt1, x
t
2, . . . , x

t
m) (1)

2.2 RelatedWork

Various approaches have been proposed to solve time series
forecasting problem; however, less studies have ventured into
the field ofMTS classification due to the curse of dimension-
ality [29]. Yet, over the past decades, a great deal of attention
has been devoted to MTS analysis. Deep learning models
have particularly stood out as they are not based on hand-
crafted features, as well as for their ability to handle high
degree of compositional and hierarchical functions, repre-
senting input–output mapping through multiple composed
transformations [30].

RNN, specifically LSTM and GRU, have been consid-
ered as the default choice for sequence-based task modeling
in general and time series analysis in particular. Che et al.
developed a GRU-based model for MTS classification with
missing observations [31]. Filonov et al. used a LSTM-
based approach to detect industrial faults in MTS data [32].
However, back propagation through time (BPTT) is compu-
tationally costly andRNN’s training is reported to be difficult
[33].

Inspired by convolutional models success in image pro-
cessing tasks, researchers started recently using CNN-based
models to classify MTS data. Multi-channel deep CNN
(MCD-CNN) approach [23, 24] was originally proposed for
MTS classification; MCD-CNN is a traditional deep CNN
which applies filters separately (in parallel) to each individ-
ual dimension. The authors used two convolutional layers
where all dimensions’ outputs are concatenated, followed by
a fully connected (FC) layer and a softmax classifier. The
model is assessed on two MTS datasets, but no comparative
analysis with similar models was drawn up. Time-CNN [25]
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was also originally proposed for MTS classification; sim-
ilar to MCD-CNN, Time CNN is a traditional deep CNN
that consists of two convolutional layers followed by a FC
layer with sigmoid function; the FC being the output layer.
Time-CNN differs, however, by the use of mean squared
error as an alternative of the traditional categorical cross-
entropy loss function, as well as the use of average pooling
instead of max pooling. Hybrid deep learning models com-
bining RNN and CNN have equally surfaced; Fazle et al.’s
work explored a LSTM-fully CNN combination-based solu-
tion with a squeeze-and-excitation block [34].

However, deep CNN tend to overfit easily due to big set
of parameters to compute. Residual Networks or ResNets
[26] add residual connections which allow building very
deep networks. Residual connections are shortcuts that lock
the network’s complexity while stacking additional layers.
According to Ismail Fawaz et al. [11], ResNets have outper-
formed all the time series classification models due to their
ability to build powerful deep layers without suffering from
low performances caused by vanishing or exploding gradi-
ent. Particularly,Wang et al. have joined a fully convolutional
neural network to a residual network (ResNet) to build a three
blockmodel, ended with a global average pooling layer and a
softmax classifier [26]. On the other hand,Yazdanbakhsh and
Dick have used dilated convolutions for MTS classification
in human activity recognition task [35]; thanks to the recep-
tive field expansion, the network is able to access a broad
range of history for better classification.

Bringing together the benefits from residual connections
and dilated convolutions,WaveNetmodelwas originally pro-
posed by Google search team [28] for generating raw audio;
it has equally been able to provide promising results for time
series classification through capturing long-term dependen-
cies in a simpler and more efficient way than other types of
networks [36]. Inspired by WaveNet, Borovykh et al. pre-
sented in 2017 an adapted model for financial time series
forecasting using MTS datasets [37]. Authors used dilated
convolutions as core block and applied conditioning to the
multivariate dataset. Additionally, they augmented the origi-
nal architecturewith new types of parameterized connections
and usedRelu function instead of tanh and sigmoid functions.
Authors reported facing overfitting problem while trying to
increase the number of layers and filters, which prevent the
network from learning nonlinearities in variables’ relation-
ships. In addition, parameterized skip connections have been
placed solely in the first layer on the input and conditions,
and the use of Relu function intensifies the exploding gradi-
ent problem as it does not limit values. As the authors have
concluded their paper, there is scope for improvement, which
we try to explore in this paper.

Since we believe that WaveNet architecture holds unex-
plored potential forMTS forecasting,we present in this paper
a newWaveNet-based adapted architecture that applies struc-

tural changes to the original WaveNet model. More elements
of comparison between our proposed architecture and the
original one as well as that of Borovikh et al. are presented
in Sect. 3.2.

2.3 Background of Deep Learning Architectures
for Time Series Forecasting

2.3.1 Long Short-TermMemory

Long Short-Term Memory neural network is an artificial
recurrent neural network type of architecture that focuses on
modeling the sequential relationship between past, present
and future data. LSTM architecture was initially proposed
in 1997 by Hochreiter and Schmidhuber [38] as a remedy to
the vanishing or exploding gradient problem encountered in
classical old RNN architecture. LSTM introduces new ele-
ments called gates. The LSTM initial version did not include
forget gate, but only the input and output gates. In 1999,
Gers et al. introduced the forget gate allowing the LSTM
to decide whether to forget or to remember data [39], thus
enabling it to manage the data life time duration by hold-
ing its value as long as it is needed and forgetting it once it
is no longer required. A typical LSTM unit is composed of
three gates: input gate, forget gate and output gate. Figure 1
shows LSTMarchitecture with forget gate and peephole con-
nections. LSTM tries to mimic the human brain by learning
when to forget and when to remember. In 2000, Gers and
Schmidhuber added peephole connections into LSTM archi-
tecture [40]. Peephole connections link the cell to the gates in
order to allow the gates to see the cell state evenwhen the out-
put gate is closed; this allows more sophisticated data flow
control and greater accuracy in time dependencies retriev-
ing. Self-learned weights are established during the training
phase by means of specific equations (Eqs. 2 to 7 below).

LSTM showed their great results on language modeling
and phoneme classification [41], handwriting recognition
[42], speech recognition [43], reinforcement learning [44],
sentiment classification [45], human movement trajectories
[46], music improvisation [47] and others.

Let us define xt as the input at time t. The LSTM layer
parameters are:

• Wz , Wi , W f and Wo as the input weights
• Rz , Ri , R f and Ro as the recurrent weights
• pi , p f and po as the peephole weights
• bz , bi , b f and bo as the bias weights

The data flow is controlled by the following equations:
LSTM block input:

zt � tanh(Wzx
t + Rz y

t−1 + bz) (2)
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Fig. 1 LSTM with forget gate and peephole connections [14]

input gate:

i t � σ (Wi x
t + Ri y

t−1 + pi � ct−1 + bi ) (3)

forget gate:

f t � σ (W f x
t + R f y

t−1 + p f � ct−1 + b f ) (4)

cell:

ct � i t � zt + f t � ct−1) (5)

output gate:

ot � σ (Wox
t + Roy

t−1 + po � ct−1 + bo) (6)

LSTM block output:

yt � ot � tanh(ct ) (7)

where sigmoid σ (x) � 1
1+e−x and tanh(x) � 2

1+e−2x − 1 are
the network activation functions, � is the point-wise multi-
plication function.

2.3.2 Gated Recurrent Unit

2014 saw the appearance of the gated recurrent unit (GRU)
[48] which is a simplified LSTM variant. In fact, LSTM have
shown to be very effective with the vanishing or exploding
gradient problem; however, it is highly demanding in com-
putational memory due to the multiple memory cells in its
architecture. GRU architecture is similar to LSTM as they

Fig. 2 A gated recurrent unit [48]

both have gates that control the flow of data within the unit;
they are dissimilar asGRUhas fewer cells allowing less com-
putation and easier implementation. The Gated Recurrent
unit, presented in Fig. 2, is comprised of an update gate and
a reset gate; the update gate allows the model to determine
which information from the past needs to be passed along to
the future, whereas the rest gate specifies the information to
forget.

The GRU activation function is modeled as:

ht � zt � ht−1 + (1 − zt ) � h̃t (8)

where zt � σ (Wr xt +Urht−1) value is updated as:

zt � σ (Wzxt +Uzht−1) (9)

whereW andU are the network weights. The candidate acti-
vation is computed as:

h̃t � tanh(Whxt +Uh(rt � ht−1)) (10)

where � represents the element-wise multiplication. rt is
computed similarly to zt :

rt � σ (Wr xt +Urht−1) (11)

Like LSTM, GRU are being explored and experimented
by the community of researchers working on sequence mod-
elling on various problems such as emotion classification
[49], time series data analysis [50], image analysis [51],
speech recognition and synthesis [52, 53], to name but a few.
Some elements of comparison between GRU and LSTM are
presented in Sect. 3 below.
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2.4 Neural Network Optimization

2.4.1 Hyperparameter Tuning

Neural network optimization is an important issue in deep
learning as the hyperparameters choice greatly impacts the
training and prediction abilities of the NN model [54]. For
hyperparameters optimization (number of layers and neu-
rons, filter size, dropout rate, gradient clipping, input length,
…), we use grid search techniques which creates a net-
work search space equal to the Cartesian product of all the
hyperparameters’s search space. For each hyperparameter,
the learning process is launched in a certain search space to
choose the best configuration.

2.4.2 Walk-forward Cross-validation

Cross-validation techniques are needed to assess how well
the results (weights values) obtained from the training phase
will generalize during the test phase. k-fold cross-validation
is the most used technique and consists of arbitrarily splitting
the training dataset into a number of k slices, each slice being
used exactly one time as a validation set, while the other (k
− 1) slices are used as training set; the total dataset is hence
trained k times. However, k-fold technique does not guar-
antee that the order of data records will be conserved when
splitting it, which makes it not suitable for time series data
validation.Walk-forward cross-validation is used instead and
consists of the following steps:

Walk-forward procedure:

1. Data are split into history h and future data. The model learns
the best parameters from h

2. The model proceeds to the prediction of the next time step value

3. The corresponding observed value is added to the history h for
predicting the next value

4. The difference between the predicted value and the observed one
is stored for the final assessment of the model

5. Repeat from step 1

2.4.3 Evaluation Metrics

To assess the three models, we used root mean squared error
(RMSE), root relative squared error (RRSE) and mean abso-
lute percentage error (MAPE), defined as:

RMSE �
√∑n

j�1 e
2
j

n
(12)

RRSE �

√√√√√√√√
n∑
j�1

e2j

n∑
j�1

(A j − A)2
(13)

MAPE � 100

n

n∑
j

∣∣e j ∣∣∣∣A j
∣∣ (14)

where e is the error or difference between the predicted value
and the observed or real one, A is the real value, and A is the
mean of the real value.

3 Proposal of a NewWaveNet-Based
Architecture

In this section, the proposed new WaveNet-based Temporal
CNN model is presented through its theoretical basis and
mathematical formulas. We start by presenting the blocks of
WaveNet architecture, which are firstly causal and dilated
convolutions, secondly skip and residual connections, and
thirdly local conditioning. Each block description is put in
the context of MTS forecasting requirements, thus explain-
ing the reason for using each block by our model. Section 3.2
describes, through a list of upgrades, how and why we made
changes and arrange the aforementioned blocks to build our
newWavenet-TCNNforMTS forecasting; ourmodel’s archi-
tecture, its mathematical equations as well as a description
of how our method performs are all revealed in this section.

3.1 Multivariate Temporal Dilated Residual
Convolutional Neural Network

CNN are a subclass of neural networks that have been widely
successful with image and video analysis. The main con-
cept of CNN is to apply a convolution function to an input
and a kernel, which are two matrices, in order to gener-
ate a feature map; this feature map is a transformation that
reduces the input dimension and creates new matrices that
describe the object features, ultimately achieving classifica-
tion [55]. Unlike CNN, TCNN have the ability to handle
sequences of data of non-fixed length and deliver sequence
with the same length. In order to process long-term time-
dependencies within data, TCNN are provided with two
mechanisms called causal (dilated) convolutions and residual
connectionswhose formalisms are presented in the following
subsections. Local conditioning enables capturing the corre-
lations between multivariate variables and is presented in
Sect. 3.1.3. Section 3.2 describes our new Wavenet-TCNN
(WTCNN) architecture and the analogy/dissimilarity with
WaveNet structure.
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3.1.1 Causal and Dilated Convolutions

Time series forecasting means that predicting future states
at time t should only rely on past values x (1), …, x (t−1),
x (t); this defines what is called the “causal” characteristic
that structures RNN. In the other hand, in order for CNN
to capture long-term time dependencies, a dilation opera-
tion is applied allowing to expand the receptive field of the
convolution and consisting of enlarging the kernel by intro-
ducing holes (trous hence the name of atrous convolutions)
or blank spaces between the kernel elements [56, 57]. The
dilation extent is determined by a hyperparameter d called
the dilation rate. Figure 3 depicts a convolution with differ-
ent dilation rates (3.a), as well as the gradual transformation
of the receptive field through layers on a multi-layer one-
dimensional dilated CNN, with a dilation rate equal 2 to the
power of layer index (3.b). Dilation differs from zero padding
in that the kernel size is augmented by the dilation, while in
zero padding the kernel is identical, but elements with zero
values are added around the input.

The dilated convolution function noted as ∗d is defined as
follow:

f (i) � (x ∗d w)(i) �
k−1∑
j�0

x(i − d. j)w( j) (15)

where d is the dilation rate, k is the kernel size,w is the kernel
∈ R

k , and x the input ∈ R
n .

3.1.2 Residual and Skip Connections

In order to learn long-term dependencies in time series data,
CNN need to stack a high number of layers. However, with
deeper networks, training becomes uneasy or even a hard
task; this is when the network performance starts to degrade.
This problem has been first highlighted by He et al. [58]
where the authors introduced the residual block that allows
the network to learn the identity function through what is
called the residual connection or identity shortcut shown in
Fig. 4. In fact, the authors demonstrated that while the net-
work goes deeper, the training error reaches a minimum for
a given number of layers n, then increases with the rest of
the pile. Allowing the network to take a shortcut equal to
the identity function enables it to keep the performance of n
layers or to enhance it. In other words, with the extra stacked
layers, the network will learn something or will do nothing.
Learning the identity function can be hard to achieve for
neural networks as nonlinear transformations are involved.
While a plain network tries to learn the output function H (x),
the layers in a residual block aim to learn the residual one:
F(x) � H (x)−x . Thereby, the network learns how to switch

Fig. 3 aConvolutionwith different dilation rate [56].bMulti-layer one-
dimensional dilated CNN. Dilation rate equal 2 to the power of layer
index

the layers weights to zero when it is needed, avoiding the
vanishing/exploding problem.

Skip connections are similar to residual connections as
they are both shortcuts added into the model architecture.
With skip connections, each residual block can also push its
output directly to the model’s last node, where it is combined
with the outputs from all the other levels as well as with the
single final output that passed through all the blocks transfor-
mations. Using skip connections with time series data allows
bringing earlier layers features to be considered with and
without the model nonlinear deformation, making the model
aware of all the data trends and seasonality, thus enhancing
the network convergence.
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Fig. 4 Residual connection [58]

3.1.3 Local Conditioning for Multivariate Variables

Local conditioning allows predicting the value of variable
xt+1i conditioned on the rest of dataset variables; that is to
say that the model uses xt+1i ’s own previous values as well
as the previous values of all the other variables noted yti , as
a MTS variable (example: if i � 1 then yi � {x2, . . . , xm}).
In our WTCNN architecture, detailed in Fig. 5, we split the
variable y into m variables; however, for sake of simplicity
in Eqs. (13) and (14), we keep it non-split. Equation (1) in
Sect. 2.1 becomes:

f t+1(xi |y i ) � f (xt+1i |x 0
i , . . . , x

t
i , y

0
i , . . . , y

t
i ) (16)

f (xi |yi ) �
T−1∏
t�0

f t (xi |yi ) (17)

with i ∈ {1, . . . , p}.

3.2 Our NewWTCNNModel’s Structure

The complete structure of our folded and unfolded WTCNN
architecture is represented in Fig. 5. Our new model is dis-
tinguished by the following improvements:

Upgrade 1: The gated activation unit in the initial
WaveNet architecture acts as the RNN’s gates and allows
the network to learn nonlinear dependencies. The drawback
of the ReLu function used in [37] is the exploding out-
put as it does not limit values, leading to the exploding
gradient problem. Using tanh and sigmoid help preventing
forecast deviation, while tanh calculate a transformed input
and sigmoid let the unit remember or forget the data. In our
architecture, we use a gated activation unit for the input and
conditions. The conditioning operates via Eq. (15) below.

Upgrade 2: As opposed to [37], we added skip connec-
tions that link the output of each layer directly to the last
node. Moreover, we parameterized these skip connections as
opposed to plain ones in the original Wavenet architecture
[28], by adding a sigmoid function in each one of them, thus
increasing our model’s capability to know if an early fea-
ture is useful as it is or it is more appropriate after nonlinear
transformation.

Upgrade 3: As mentioned above, the main goal of skip
connections is to push the input and conditions directly to the
network output, thus capturing early data properties; in order
to avoid further transformations inducedby1×1 convolution
weights updates, we placed the skip connection before the
1×1 convolution, leaving the latter only the role of feature
map size adjustment [see Eq. (19)].

Upgrade 4: Input and conditions’ normalization is an
important step as it helps speeding up the training. We use
Group normalization (GN) instead of batch normalization
used by [37]. GN was first introduced byWu and He in 2018
[59], having being distinguished by its results stability and
its independence from the batch size.

Upgrade 5: We added a new filter component to clear
seasonality from time series which can affect the quality of
predictions.

1×1 convolutions are used in order to match the resid-
ual block input feature map to the output one as well as to
reduce the output dimensionality before passing it through a
dense layer with one final output node to compute a single
forecasted value.

To predict xt+1i , causality is equally applied to x and
y so that the receptive field contains only x0i , . . . , x

t
i and

y0i , . . . , y
t
i . For the conditions dilated convolutions, and as

in [37], we used 1×k convolution instead of 1×1 convolu-
tion used in the original WaveNet architecture. In fact, the
receptive field r is correlated with the filter size k such as:
r � 2L−1k, where L is the number of layers. Therefore, by
using 1×k convolution instead of 1×1 convolution, we help
the model learn dependencies faster and more efficiently.

The mathematics behind our model is explained by the
equations below.Table 1 lists the symbols used in ourmodel’s
equations.

To simplify the working process of our model, we would
say that in the first layer, the input and conditions are nor-
malized with GN before going through dilated convolutions
and nonlinear functions with tanh and sigmoid. The sum
(element-wise multiplication) of these two transformations
consists of the layer early property that is directly pushed to
the output through a skipped connection.The samevalue con-
tinue its journey within the residual layer; its size is adjusted
with a 1×1 convolution before meeting the input and con-
ditions through residual connections, which constitutes the
layer output. These operations are repeated for the other lay-
ers, until the final layer provide its output. This output is

123



Arabian Journal for Science and Engineering (2021) 46:3423–3442 3431

Fig. 5 Our folded (T ) and unfolded (L) WTCNN architecture

summed with the sigmoid transformation of all the layers
properties obtained earlier (after size adjustment to ensure
that they have the same number of channels). The result
passes through a dense layer to provide the final network
output: the forecasted time series variable.

Each residual layer has one input (except for the first layer
which has the input and conditions) which it uses twice—be-
fore and after nonlinear transformations—and two outputs,
one towards the next residual layer and the other to the final
output.

The number of dilated convolutions varies according to the
layer order. In the first layer, (2×(M+1)) dilated convolutions
are executed, M being the number of conditions. In the rest
of stacked layer, only two dilated convolutions are placed
before tanh and sigmoid function. In every layer, all dilated
convolutions are performed in parallel, which contribute to
speed up training.

At training time, the inputs/outputs of the multivariate
training dataset are fed into the model to set the weights’
values that minimize the cost function. At testing time, a
one-hour ahead forecasting x (t) is performed using its own
past values x (t−r ),…, x (t−1), and past values of the conditions
c(t−r )
i , …, c(t−1)

i , with r being the dilated convolution recep-
tive field. The output of the network is a vector of predicted
values X p � [

x1, . . . , xn
]
where n is the size of testing

dataset.
Finally, it is essential to note that nonlinear dependencies

in MTS can only be learned if both the filter width and the
number of layers is higher than 1. It is recommended to set
the number of filters low~1 in order to avoid an explosion
in the number of parameters [37]. The number of layers is
correlated with the receptive field as specified earlier.

For the first layer:
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Table 1 Symbols used in our model’s equations

∗ Convolution operator

� Element-wise multiplication operator

σ Sigmoid function

DC Dilated convolution

GN Group normalization

X Input

c j j thcondition

ol l thoutput of the gated activation unit of layer l

zl l thlayer output that goes as input of the next layer

C1x1 1×1 convolution

FC Fully connected or dense layer

w f ,l Dilated convolution weights of the lth layer’s input,
preceding tanh activation

wg,l Dilated convolution weights of the lthlayer’s input,
preceding sigmoid activation

v f j Dilated convolution weights of the first layer’s j thcondition,
preceding tanh activation function

vg j Dilated convolution weights of the first layer’s j thcondition,
preceding sigmoid activation function

o1 � tanh(w f ,1 ∗ GN (X )

+
∑
j

v f j ∗ GN (c j )) � σ (wg,1 ∗ GN (X ) +
∑
j

vg j ∗ GN (c j ))

(18)

z1 � C1x1o1 + X +
∑
j

c j (19)

For the other layers (l from 2 to L):

ol � tanh(w f ,l ∗ zl−1) � σ (wg,l ∗ zl−1) (20)

zl � C1x1ol + zl−1 (21)

For the network output:

o � FC(C1x1(
L∑

l�1

σ (ol )) + zL ) (22)

4 First Elements of Comparison

In this section, we present elements of our first analysis of
similarities and dissimilarities between the experimented and
proposed NN architectures based on their internal structure
and type of model. Table 2 lists the time series analysis
requirements and shows how each type of the studied NN
model addresses these requirements.

The similarity between LSTM and GRU is very notable
as the main role of their different gates is to help the model

Table 2 Time series analysis requirements

Time series
requirement/model

LSTM/GRU WTCNN

Using only past data
to predict future
data

Unidirectional
LSTM/GRU

Causal convolutions

Capturing long
term-
dependencies

Gating mechanism
+ Peephole
connections

Dilated
convolutions +
gated activation
unit

Catching time series
trends and
seasonality

– Skip connections
(parameterized in
our model)

Dealing with van-
ishing/exploding
gradient problem

Gating mechanism Residual blocks +
output limiting
activation function
such as tanh

determine which past information is to be remembered or
to be forgotten. This common feature allows keeping past
data values through time and thereby solving the vanishing
or exploding gradient problem. However, they differ in their
internal topology and the number of cells, and thus in the
data flow control:

• Memory state and hidden state: to transfer information,
LSTM is provided with separate types of cells: memory
or cell state c and hidden state h. The first allows remem-
bering information for a long time, while the latter is a
transformation of c that is combined with the next time
iteration input. In GRU, these two states are merged into
the hidden state. In total, each LSTM unit has three inputs
(xt , ct−1 and ht−1) and two outputs (ct and ht ), while GRU
has only two inputs (xt and ht−1) and one output (ht ).

• The state exposure: while LSTM unit defines how much
output data to expose through the output gate, GRU unit
pushes the whole state toward its gates without any filter.

From these first analysis elements, we conclude that GRU
networks are simpler and faster to train than LSTM, as they
use less cells, less training parameters and thus less com-
putation effort and time. However, GRU are not capable of
controlling data flow efficiently as LSTM do due to the elim-
ination of cells that keep track of intermediate data values.
Hence, state-of-the-art research comparison has not con-
cluded which one would deliver better results [7, 14–16].

With regard to WTCNN, they have the following advan-
tages:

• WTCNN require less memory as they do not need to store
intermediate results of cells as LSTM and GRU do with
their numerous gates. Moreover, as a variant of CNN,
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Table 3 LSTM-GRU-WTCNN comparison

LSTM GRU WTCNN

Structure Gated RNN (with 3 gates) Gated RNN (with 2 gates) Dilated causal CNN with residual and
skip connections

Flexibility Not flexible Not flexible Very flexible: Different dilation factors
and filter sizes, parameterized
residual and skip connections

Memory and computation requirement High Medium (less gates than LSTM) Low (no intermediate results storing
and parameter sharing)

Training process Sequential Sequential Parallel

Training and convergence speed Low Medium High (thanks to parallelism)

Data flow control High (through gates) Medium (through gates) High (through gated activation unit,
residual and skip connections)

Robustness to input transformation Low Low High

Stability Acceptable Acceptable High

Depth Limited Limited Not limited

WTCNN operate on the principle of parameters sharing
through one kernel sliding.

• WTCNN operations are processed in parallel by taking
advantage of the kernel sliding and parameter sharing char-
acteristics and are therefore faster than RNN.

• Thanks to the dilation mechanism, WTCNN have variable
output size depending on the dilation rate, thus adding
more flexibility to this type of architecture. Moreover, the
adjustable filter size allows better control of the model’s
structure.

• Residual connections allow constructing very deep net-
works without suffering from low performances (vanish-
ing/exploding gradient problem), making WTCNN more
stable and richer than RNN [60]. Skip connections add
more flexibility and increase the network convergence.

• WTCNN are robust to input distortion/transformation,
which is inherited from the CNN convolutional principal.

From these first elements of LSTM-GRU-WTCNN com-
parison, summarized in Table 3, we can state that WTCNN
are more promising for time series prediction problems as
they show more signs of success than LSTM or GRU. The
following fifth section aims at validating this assumption by
concrete experimental results.

5 Experiments

This section is dedicated to experimental results. Prior to the
empirical evaluation, a description of the used datasets is
presented hereafter.

5.1 Dataset

The goal of the study carried by this paper is to assess the
performances of our proposed WTCNN model leading to
the best air quality prediction capabilities, in order to later
on develop an air quality management system for the city of
Marrakesh. Marrakech–Tensift–El Haouz region is located
in the center of Morocco and covers an area of 31,160 km2.
Marrakech is a non-industrial area; however, vehicle exhaust
emissions produce excessive quantities of invisible polluting
gases.

In this paper, we use sixmultivariate datasets that contains
the air quality data of three stations located inMarrakesh city
(Jamaa El Fna (JMF), Mhamid and Dawdiat; Table 4 details
the stations’ description), which were hourly collected from
June 1, 2009 to November 28, 2010 (JMF_1, Mhamid_1
and Dawdiat_1), and from June 18, 2015 to September 26,
2016 (JMF_2, Mhamid_2 and Dawdiat_2). The six datasets
contain nine hourly recorded dependent variables: five pollu-
tants (carbonmonoxide (CO), nitrogen dioxide (NO2), ozone
(O3), particulate matter (PM10) and sulfur dioxide (SO2)),
humidity ratio (HR), temperature Celsius (TC), wind speed
in m/s (WS) and solar radiation in W/m2 (SR). Our goal is
to predict the five pollutants’ (CO, NO2, O3, PM10 and SO2)
value of a time t based on their own precedent values and the
precedent values of the other 8 variables.

5.2 Experiments

5.2.1 Data Preparation and Experimental Choices

All the dataset has been split into training (75%) and testing
(25%) sets to perform the 1-h ahead forecasting using walk-
forward procedure (see Sect. 2.4.2). To impute missing data,
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Table 4 Stations description

Station Type Latitude Longitude

JMF Urban 31.620254 7.988897

Mhamid Urban 31.596289 8.043691

Dawdiat Urban 31.653676 7.995688

Part of the used data is available in the figshare repository, https://
figshare.com/s/6a8706f5f46adda9f5b5

values recorded 24 h ago have been used in order to preserve
the causality of data.

Neural networks in general learn data dependencies using
nonlinear activation functions, and therefore do not require
heavy transformations to make time series data stationary
like classic machine learning methods do. However, we did
start by normalizing our datasets by scaling the features to the
[0, 1] range; we also applied seasonal adjustment with differ-
encing by 24. Next, in order to make our time series data fit
a supervised learning use case, a transformation was needed
to create a list of tuples (xt−1

1 , xt−1
2 , . . . , xt−1

m , xtk, . . . , x
t
l ),

where m is 9 (for 9 variables), k is 1 and l is 5 (for 5
outputs to predict). The tuples are then split into input
(xt−1

1 , xt−1
2 , . . . , xt−1

m ) and output (xtk, . . . , x
t
l ) data. In addi-

tion, the models expect three-dimensional input data as
(samples, timesteps, features), where samples are the number
of tuples from the previous step.

For hyperparameters setting, we used grid search (see
Sect. 2.4.1) for some of the parameters, adopted the tuning
used in the previous literature work for some other parame-
ters and calculated some others using formulas. Section 3.2
explains the working process of our WTCNN model and
describes the correlation between some significant hyperpa-
rameters, which is an important introduction to this section
of hyperparameters setting.

The batch size value is 100; Adam [61] is the optimizer
used by our three models, with an initial learning rate equal
to 0.001 and a reduction factor of 0.25 each 10 epochs.

For LSTM/GRU models, the number of layers L is cho-
sen from [1, 3] range with neuron set N chosen from [50,
100, 150, 200] range via grid search. The final output layer
provides a vector of five elements that predicts the next hour
values of five pollutants (CO, NO2, O3, PM10 and SO2).
Dropout rate value is set from [0.1, 0.6] range. Gradient
clipping [62] technique is used as well to push training con-
vergence, with a clip norm value set from [0.2, 1] range.
Glorot’s uniform is chosen as the initialization method. As
shown in Table 5, the parameters are set to L � 3, N � [50,
100, 150], dropout rate � 0.2, clip value � 0.5.

For WTCNN model, the number of residual layers RL is
chosen from [6, 8] range and the kernel sizeK is set from [1×
2, …, 1×7] range via grid search. We use dilation factor d
related to the layer index i as d equal 2 to the power of i or 2i

Table 5 Models’ parameters values

Model LSTM/GRU WTCNN

No. of layers 3

No. of neurons [50, 100, 150]

No. of Residual
layer RL

6

kernel size 2 or 3

No. of filter/DC 1

Dilation factor 2i , i in [1..6]

No. DC/RL 18 for RL � 1, 2
for RL in [2..6]

Optimizer Adam

Loss function mse

Epochs 50

Batch 100

Learning rate 0.01

Decay/10 epochs 0.25

Dropout 0.2 N/A

Clip value 0.5 N/A

as used in [37] and [63]. As shown in Table 5, the parameters
are set to RL � 6, K � 1×2 or K � 1×3 (or simply 2 or 3),
Number of filter in the dilated convolutions f l � 1 for l �
[1,…, RL] (as mentioned earlier in Sect. 3.2, the number of
filter is kept low in order to avoid an explosion in the number
of parameters). N/A means not applied.

We used a training time series of length 24 to 250 (using
discrete values) while making sure that the WTCNN recep-
tive field and LSTM and GRU timesteps are the same. This
is important to give all the models the same past visibility.

For an input length (receptive filed or timesteps) r equal
to 24, and according to the formula in Sect. 3.2 (r � 2L−1k),
the number of layers in each dilated convolution can be cal-
culated as:

if K � 2 then 2L � r , L is ≈ to 5.
if K � 3 then 2L−1 � r/3, L is � to 4.

With bothK and L higher than 1 (a prerequisite mentioned
in Sect. 3.2), our model is therefore able to learn nonlinear
dependencies in MTS.

For the firstWTCNN residual layer, the number of parallel
dilated convolutions No. DC is equal to 18 ((2 × (M + 1)),
M being the number of conditions as specified in Sect. 3.2,
which is 8 in our use case); No. DC is equal to 2 for the rest
of the layers.

We conducted extensive experiments to test the impacts
of kernel size and timesteps on WTCNN performances. The
results can be found in Sect. 5.2.2.1.
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Table 6 Performances results
(RMSE, RRSE and MAPE) of
each model with six datasets

Dataset/model LSTM GRU WTCNN

RMSE RRSE MAPE RMSE RRSE MAPE RMSE RRSE MAPE

JMF_1 0.036 24.554 16.552 0.031 21.281 8.356 0.009 15.854 0.991

JMF_2 0.035 24.551 16.471 0.030 21.265 8.229 0.008 15.845 0.985

Mhamid_1 0.037 24.592 16.605 0.032 21.293 8.378 0.011 15.891 0.994

Mhamid_2 0.036 24.552 16.654 0.031 21.284 8.421 0.009 15.867 1.023

Dawdiate_1 0.036 24.549 16.542 0.031 21.289 8.312 0.009 15.866 0.986

Dawdiate_2 0.035 24.553 16.489 0.030 21.275 8.293 0.008 15.839 0.975

Table 7 Performances results summary (RMSE, RRSE and MAPE) of
each model

Model RMSE RRSE MAPE Accuracy

LSTM 0.036 24.554 16.552 83.5

GRU 0.031 21.281 8.356 91.7

WTCNN 0.009 15.854 0.991 99.0

We use Keras library running on Tensorflow as LSTM,
GRU and causal dilated convolutions are implemented in
this language. The experiments have been carried out on a
computer PC with intel® Core™ i7-6800k-6 cores-3.4 Ghz
with 16 GBRAM and GPU of NVIDIAGeForce GTX 1080.
The algorithms are implemented in Python 3. We recorded
and compared the best performances for each model.

Fig. 6 The forecasting results of LSTM
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Fig. 7 The forecasting results of GRU

5.2.2 Experimental Results

This section is dedicated to experimental results that relate
error metrics values, accuracy, forecasting results, conver-
gence, performances for different timesteps and different
filter size for WTCNN, and finally training speed. It is noted
that results and optimal values do not change much from one
dataset to another as the number of variables is the same and
sizes are approximately similar in all the datasets.

Tables 6 and 7 summarize the performance results on
RMSE, RRSE and MAPE with the six datasets and in sum-
mary, respectively—the lower value is better. For all datasets,
the three metrics recorded their best values forWTCNN, fol-
lowedbyGRU.Ourmodel lowersRMSE to 0.008 andMAPE
to 0.975. It is clearly noticeable that WTCNN outperform
LSTM and GRU by about 8–16%. GRU get better results
than LSTM. In fact, while WTCNN reaches 99% accuracy,
GRU and LSTM are capped at 91.7% and 83.5, respectively.

Figures 6, 7 and 8 show the forecasting curves of LSTM,
GRU and WTCNN, respectively, for the five pollutants: CO,
NO2, O3, PM10 and SO2, whereWTCNN shows better gen-
eralization ability than LSTM and GRU. LSTM and GRU
both got their best results for a history of length 24, while

WTCNN performances were independent of history length
(see Sect. 5.2.2.2 below).

Moreover, Fig. 9 depicts the convergence curve of LSTM,
GRU and WTCNN showing that our model converges bet-
ter and faster than the two RNN descendants. While TCNN
quickly stabilizes around 175 epochs with a very low loss
value—close to 0, GRU and LSTM curves seem to be slowly
varying until they stabilize around 300 and 400 epochs,
respectively, with higher loss value—0.004.

These experimental results confirm the analysis presented
earlier in Sect. 4 proving thatWTCNN is greater at capturing
time series long-term dependencies and catching trends and
seasonality.

Impacts of Timesteps and Kernel (or Filter) Size onWTCNN
Timesteps or input length The choice of past observations
size can highly impact forecasting performances. Across the
curves of accuracy regarding different timesteps plotted in
Fig. 10, we note a constant convergence of WTCNN for dif-
ferent timesteps, while LSTM and GRU significantly lose
precision as timesteps grow. LSTM accuracy reaches 5%
after 50 timesteps, while GRU accuracy reaches 15% after
100 timesteps.
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Fig. 8 The forecasting results of WTCNN. WTCNN outperform LSTM and GRU

Fig. 9 Convergence of LSTM, GRU and WTCNN. WTCNN outper-
form LSTM and GRU

These results denote WTCNN’s ability to successfully
consider a longer history than RNN models and thus indi-
cateWTCNN capacity of handling big number of parameters
without overfitting. This can be useful for phenomena whose

Fig. 10 Accuracy for different timesteps

understanding depends on very long history, such as some
specific medical studies.

Filter size The considered task highly impacts the filter
size choice; in fact, for image convolutions for example, large
context matters and makes larger filter size more efficient;
however, local context is more significant in language mod-
eling, whichmakes smaller filter sizemore effective [63]. For
MTS analysis, we found that small to medium filter sizes
work well and pushes fast convergence. Figure 11 depicts
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Fig. 11 WTCNN performances for different kernel sizes k. k � [2, 3,
4, 6, 7]

Table 8 Models speed comparison—s/epoch for each model

LSTM GRU WTCNN

First three datasets 19.6 12.4 5.3

Last three datasets 15.5 9.8 4.13

different WTCNN performances for different kernel sizes k
� [2, 3, 4, 6, 7]. A kernel size of 2 and 3 converges at 100
epochs, while a kernel size of 4, 6 and 7 converges at 170,
250 and 320, respectively.

Models Speed Table 8 shows the models speed compari-
son, which is represented by the time (in seconds) taken by
each model to complete an epoch training (denoted s/epoch).
“First three datasets” refers to the three stations hourly
records from June 1, 2009 toNovember 28, 2010,while “Last
three datasets” refers to the three stations hourly records from
June 18, 2015 to September 26, 2016. We grouped datasets
in two units as the number of variables and the size of time
series is the same in the datasets of the same group. For
both datasets groups, WTCNN shows the best results with
[5.3, 4.13] s/epochs, GRU takes second place with [12.4, 9.8]
s/epochs, while LSTM is found to be the slowest with [19.6,
15.5] s/epochs, thus confirming the analysis presented earlier
in this paper. These values are obtainedwith timesteps values,
kernel size and number of epochs that speed up convergence
as detailed in previous sections.

In summary, for air quality multivariate time series fore-
casting with six datasets and different empirical conditions,
our model delivered the best results. To validate these results,
Table 9 indicates the p values of Wilcoxon signed-rank test
between ourmodel andRNNmodels. It shows that ourmodel
is significantly different from both RNN models. With a p
value of 0.00025 for GRU and 0.00019 for LSTM, we can
reject the null-hypothesis that our model is from the same
distribution as GRU and LSTM. Moreover, we notice that
the difference between GRU and LSTM is not significant (p
� 0.075).

Table 9 The p values of Wilcoxon signed-rank test between our model
and RNN models

LSTM GRU WTCNN

LSTM / 0.075 0.00019

GRU 0.075 / 0.00025

WTCNN 0.00019 0.00025 /

6 Discussions

6.1 Overfitting, Generalization and Convergence
Speed

Overfitting is a common problem in neural networks that
use small datasets or/and large set of hyperparameters. In
our experiments, we used six datasets with more than nine
thousands records in each dataset, which allows for a good
generalization level. Through experiments, we noticed good
accuracy for WTCNN with almost 100%; far behind, the
RNN models record a significant deviation. In fact, LSTM
and GRU suffer from overfitting due to vanishing gradient
issue. As RNN models depth is very limited, hope is put
on regularization techniques to improve accuracy. Unfortu-
nately, the use of dropout and gradient clipping did not allow
RNNmodels to outperformWTCNN. InWTCNN, skip con-
nections, gated activation and inherited parallel processing
nature helped pushing the network toward rapid convergence
(see Fig. 9) and better generalization (see Figs. 6,7,8). As
noted in Sect. 3.2, tanh and sigmoid functions helped pre-
venting forecast deviation. Another important feature of our
model iswe added parameterized skip connections from each
layer’s output directly to the network last node, which we
placed before the 1×1 convolution, thus capturing early data
properties and greatly increasing the model efficiency. The
parameterization allowed each skip connection to decide the
level of importance of the property which has flowed through
it, thereby providing the model with more processing intelli-
gence. In otherwords, if a particular property is not of help for
the forecast, themodel can simply assign it a lowweight. Fur-
thermore, while expanding the receptive field of each layer,
dilated convolutions fostered generalization with less need
for parameters, computation and memory consumption.

WTCNN best accuracy was also due to its robustness to
input transformation—as a CNN descendant. In fact, dif-
ferent starting time can be considered as a translation of
time series; hence, the WTCNN best results when proceed-
ing from training to testing. Besides, we encourage more
examination of WTCNN for time series frequency variation.

Moreover, high data flow control in WTCNN with gated
activation, parameterized skip and residual connections, as
well as low computation and memory consumption, allowed
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handling long data history, called time steps (see Fig. 10),
and thus more accuracy in catching long-term dependencies.

6.2 HowDeep Are Deep Neural Networks?

Since their first appearance, DNN have aroused a lot of inter-
est and challenges as deepermeansmore capacity of features’
discovery. However, DNN should not only refer to the num-
ber of hidden layers but also to their capacity of capturing
abstract knowledge in more complex context and data corre-
lation [64], at the risk of making them shallow deep DNN.

For TS analysis, ResNet is the deepest architecture with
11 layers [26]. For MTS forecasting, our 6 residual layers
model enjoys shortcut connections—skip and residual con-
nections—that makes the gradient directly reach the model’s
last node, thus minimizing the network loss induced by
deep stacked layers’ complexity. Moreover, as we placed
parameterized skip connections before 1×1 convolution, the
model’s last node was delivered with plain early data prop-
erties without further transformations, which alleviates the
model from weights updates’ complexity.

In the other hand, dilated convolutions are not to be
outdone when improving accuracy of DNN. In fact, while
the network deepens, non-dilated convolutions coupled with
pooling tend to reduce information representation in feature
maps. Dilated convolutions are able to expand the receptive
field without information loss, thus preserving a large tem-
poral range as much as possible. In our experiments, we used
1×k convolutionswhich helped further enlarge the receptive
field (see Sect. 3.2).

Furthermore, deep networks are faced with overfitting,
demanding more regularization. We provide an element
of solution to this problem by normalizing the input and
conditions. Our model draws its strength from incorporat-
ing normalization into the architecture while using batch
size-independent Group Normalization, which increases the
model’s stability.

It is worth noting that our datasets holds numerical val-
ues from not so many disparate sources. For more complex
datasets, we shall use deeper networks with more regulariza-
tion techniques.

7 Conclusion

Multivariate time series (MTS) data modeling has known
great progress in recent years thanks to neural network
use explosion. Highly accurate MTS forecasting can make
decision-making process quicker and more effective for
industrial and scientific fields. Consumers’ habits analysis
using MTS from multiples information sources in a sales
department, real-time and multidimensional data processing
for predictive maintenance service in a complex environ-

ment such as factory 4.0, or strongly correlated financial time
series data forecasting are examples where MTS analysis is
needed as part of a global business intelligence system. New
challenges arise as more studies attempt to improve results
delivered by univariate models.

In this paper, we have proposed a newmultivariate tempo-
ral dilated residual convolutional neural networks structure
adapted from the recent WaveNet architecture, to best suit
MTS analysis requirements addressed as well in this paper.
Our model aims to be a tailor-made solution to TS chal-
lenges addressed in Table 2, which are restricting analysis to
past chronological data, capturing long-term dependencies,
catching time series trends and seasonality, and finally deal-
ing with vanishing/exploding gradient problem. Our mod-
el—WTCNN—consists of stacked residual causal dilated
convolutions augmented with parameterized skip connec-
tions and group normalization that allow learning long-term
dependencies and catching time series trends and seasonal-
ity; we have added conditioning to the model’s first layer in
order to retrieve multivariate data associations. We then have
presented an in-depth comparison of three deep learning neu-
ral networks for MTS analysis: LSTM and GRU which are
recurrent neural network model, along with WTCNN. First
elements of comparison have been supported by the exper-
imentation we have conducted on six real multi-sensor and
MTS datasets for the task of urban air quality prediction
in Marrakesh city. Results demonstrated WTCNN’s higher
performances and better capacities in handling long-term
dependencies. Sections 4 and 5 have put forward elements to
answer the following raised question:Why doWTCNNwork
better than LSTM/GRU? In fact, we can emphasize that:

• WTCNNand convolutional networks in general offermas-
sive parallelism, which allow them to be faster than the
sequential LSTM/GRU processes.

• WTCNN needs for memory is lower than LSTM/GRU
needs as the former do not store intermediate results; this
allows for fast training as less data storing means less time
consumption

• Residual networks inWTCNNmake it possible to develop
and deepen the network without impairing its perfor-
mances due to easy learning of the identity function. This
ability allows for fast convergence and thus easy and effi-
cient training

• Residual connections coupled with skip connection mech-
anism used by WTCNN in order to avoid vanish-
ing/exploding gradient problem, compared with gating
mechanism used by LSTM/GRU, is much more efficient
with memory saving as it does not consume any addi-
tional cells.Moreover, skip connections allowconstructing
very deep neural networks and accessing broad range of
history without having to deal with the problem of van-
ishing/exploding gradient, while LSTM/GRU architecture
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capacity to handle very long sequences is limited, which
make WTCNN more efficient

• TCNN offer more flexible structure; dilation mechanism
factor and filter size are keys to long-term time dependen-
cies learning. In fact, while LSTM/GRU units are rigid
boxes, WTCNN can use different dilation factors and fil-
ter sizes allowing for more flexibility and adaptation of the
model, as well as increasing its performances.

From the study led in this paper, we can conclude that
parallel processing of residual dilation mechanism coupled
with parameterized skip convolutions is more efficient that
gating mechanism for multivariate time series forecasting.
However, more issues need to be addressed in future work;
first, different multivariate datasets should be experimented
in order to study how our proposed architecture interacts
with different dataset’s characteristics. In fact, the problem’s
domain, sample size, time series length, training size, vari-
ables’ varying frequency and existence of missing values can
greatly affect a neural network’s performances [11]. In amore
complex big data applications context, the model’s scalabil-
ity will be put to the test; multivariate datasets having a large
number of observed variables require dimension reduction,
selection optimization or variables’ hierarchization in order
to exclude the less significant variables and minimize the
problem complexity [65].

Second, the model’s training and testing time becomes its
Achilles’ heel in a dynamic approachwith great data velocity
requiring high frequency modeling. To speed up a network
processing, Mathieu et al. used fast Fourier transform-based
convolutions [66], Ramachandran et al. proposed a fast gen-
eration method for WaveNet model which cache internal
network states [67], whileWinograd algorithm was explored
by Lavin and Gray [68]. In our future work, more attention
will be dedicated to this challenge by exploring these meth-
ods.

Third, as normalization is known to highly impact DNNs’
learning convergence, especially to solve the problem of
internal covariate shift [69], we usedGroupNormalization to
normalize the network inputs. Other types of normalization
exist such as z-normalization, layer normalization or instance
normalization, which should be carefully explored.

Finally, multi-step time series forecasting, which involves
predicting multiple future values, can pose additional chal-
lenges and is more difficult than single-step forecasting. In
our futurework,we aim to study and respond to the aforemen-
tioned limitations by performingmore in-depth experiments.

References

1. Makridakis, S.; Wheel Wright, S.; Hyndman, R.J.: Forecasting:
Methods and Applications, 3rd edn Wiley, New York (1998)

2. Braithwaite, I.; Zhang, S.; Kirkbride, J.B.; Osborn, D.P.J.; Hayes,
J.F.: Air pollution (particulate matter) exposure and associations
with depression, anxiety, bipolar, psychosis and suicide risk: a sys-
tematic review and meta-analysis. Environ. Health Perspect. J.,
2019. https://doi.org/10.1289/EHP4595

3. Vovk, V.G.: Universal forcasting algorithms. Inf. Comput. 96,
245–277, 1992

4. Ma, J.; Ma, X.: A review of forecasting algorithms and energy
management strategies formicrogrids. Syst. Sci. Control Eng.Open
Access J. 6, 237–248, 2018

5. Makridakis, S.; Spiliotis, E.; Assimakopoulos, V.: Statistical and
machine learning forecastingmethods: concerns andways forward.
PLoS ONE 13(3), 1–26, 2018

6. Gatys, L.; Ecker, A.; Bethge, M.: A neural algorithm of artistic
style. arXiv:1508.06576. Accessed 10 Mar 2020 (2015)

7. Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.;
Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.; Asari,
V.K.: A state-of-the-art survey on deep learning theory and archi-
tectures. Electronics 8(3), 292, 2019

8. VanVeen, F.: Theneural network zoo. https://www.asimovinstitute.
org/neural-network-zoo/. Accessed 27 Oct 2019 (2016)

9. Brunton, S.; Kutz, J.: Data-Driven Science and Engineering:
Machine Learning, Dynamical Systems, and Control. Cambridge
University Press, Cambridge (2019)

10. Kaiser, L.; Gomez, A.N.; Shazeer, N.; Vaswani, A.; Parmar, N.;
Jones, L.; Uszkoreit, J.: One model to learn them all. arXiv:1706.
05137. Accessed 10 Mar 2020 (2017)

11. Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller,
P.-A.: Deep learning for time series classification: a review. arXiv:
1809.04356. Accessed 10 Mar 2020 (2018)

12. Montgomery, D.C.; Jennings, C.L.; Kulahc, M.: Introduction to
Time Series Analysis and Forecasting. Wiley Series in Probability
and Statistics. Wiley, Hoboken (2015)

13. Box, G.E.P.; Jenkins, G.I.: Series Analysis: Forecasting and Con-
trol, 5th edn Holden-Day, San Francisco (1976)

14. Greff,K.; Srivastava,R.K.;Koutnık, J.; Steunebrink,B.R.; Schmid-
huber, J.: LSTM: a search space odyssey. CoRR. arXiv:1503.0406
9. Accessed 10 Mar 2020 (2015)

15. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y.: Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv:1
412.3555. Accessed 10 Mar 2020 (2014)

16. Salehinejad,H.;Baarbe, J.; Sankar, S.;Barfett, J.; Colak,E.;Valaee,
S.: Recent advances in recurrent neural networks. CoRR. arXiv:1
801.01078 (2018)

17. Lea, C.; Flynn, M.D.; Vidal, R.; Reiter, A.; Hager, G.D.: Temporal
convolutional networks for action segmentation and detection. In:
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1003–1012, Hawai, USA, June (2017)

18. Chang, S.Y.; Li, B.; Simko, G.; Sainath, T.N.; Tripathi, A.; van
den Oord, A.; Vinyals, O.: Temporal modeling using dilated
convolution and gating for voice-activity-detection. In: IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5549–5553, Calgary, Canada, April (2018)

19. Kalchbrenner, N.; Grefenstette, E.; Blunsom, P.: A convolu-
tional neural network for modelling sentences. arXiv:1404.2188.
Accessed 10 Mar 2020 (2014)

20. Kalchbrenner, N.; Espeholt, L.; Simonyan, K.; van den Oord, A.;
Graves, A.; Kavukcuoglu, K.: Neural machine translation in linear
time. arXiv:1610.10099v2. Accessed 10 Mar 2020 (2017)

21. Tsay, R.S.: Multivariate Time Series Analysis: With R and Finan-
cial Applications. Wiley, Chichester (2014)

22. Zhou, P.-Y.; Chan, K.C.: A feature extractionmethod for multivari-
ate time series classification using temporal patterns. In: Advances
in KnowledgeDiscovery andDataMining, vol. 9078, pp. 409–421.
Springer, Berlin (2015)

123

https://doi.org/10.1289/EHP4595
http://arxiv.org/abs/1508.06576
https://www.asimovinstitute.org/neural-network-zoo/
https://arxiv.org/abs/1706.05137
https://arxiv.org/abs/1809.04356
https://arxiv.org/abs/1503.04069
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1801.01078
https://arxiv.org/abs/1404.2188
https://arxiv.org/abs/1610.10099v2


Arabian Journal for Science and Engineering (2021) 46:3423–3442 3441

23. Zheng, Y.; Liu, Q.; Chen, E.; Ge, Y.; Zhao, J.L.: Time series classi-
fication using multi-channels deep convolutional neural networks.
Web Age Inf. Manag. 8485, 298–310, 2014

24. Zheng, Y.; Liu, Q.; Chen, E.; Ge, Y.; Zhao, J.L.: Exploiting multi-
channels deep convolutional neural networks for multivariate time
series classification. Front. Comput. Sci. 10(1), 96–112, 2016

25. Zhao, R.; Wang, D.; Yan, R.; Mao, K.; Shen, F.; Wang, J.: Machine
health monitoring using local feature-based gated recurrent unit
networks. IEEE Trans. Ind. Electron. 65(2), 1539–1548, 2017

26. Wang,Z.;Yan,W.;Oates, T.: Time series classification fromscratch
with deep neural networks: a strong baseline. In: International Joint
Conference on Neural Networks, pp. 1578–1585, Alaska, USA,
May (2017)

27. Serrà, J.; Pascual, S.; Karatzoglou, A.: Towards a universal neural
network encoder for time series. arXiv:1805.0390. Accessed 10
Mar 2020 (2018)

28. van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals,
O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K.:
WaveNet: A Generative Model for Raw Audio. arXiv:1609.0349
9. Accessed 10 Mar 2020 (2016)

29. Keogh, E.; Mueen, A.: Curse of dimensionality. In: Encyclopedia
of Machine Learning and Data Mining, pp. 314–315. Springer,
Boston (2017)

30. Poggio, T.; Mhaskar, H.; Rosasco, L.; Miranda, B.; Liao, Q.: Why
and when can deep-but not shallow-networks avoid the curse of
dimensionality: a review. Int. J. Autom. Comput. 14(5), 503–519,
2017

31. Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y.: Recurrent
neural networks for multivariate time series with missing values.
Sci. Rep. 8(1), 6085, 2018

32. Filonov, P.; Lavrentyev, A.; Vorontsov, A.: Multivariate industrial
time series with cyber-attack simulation: fault detection using an
LSTM-based predictive data model. In: NIPS Time Series Work-
shop. arXiv:1612.06676. Accessed 1 Jul 2020 (2016)

33. Pascanu, R.; Mikolov, T.; Bengio, Y.: On the difficulty of train-
ing recurrent neural networks. IN: International Conference on
Machine Learning, pp. 1310–1318, Atlanta, USA, June (2013)

34. Fazle, K.; Somshubra, M.; Houshang, D.; Samuel, H.: Multivari-
ate LSTM-FCNs for time series classification. arXiv:1801.04503.
Accessed 1 Jul 2020 (2018)

35. Yazdanbakhsh, O.; Dick, S.: Multivariate time series classifica-
tion using dilated convolutional neural network. arXiv:1905.0169
7. Accessed 1 Jul 2020 (2019)

36. Kechyn, G.; Yu, L.; Zang, Y.; Kechyn, S.: Sales forecasting using
WaveNet within the framework of the Kaggle competition. arXiv:
1803.04037. Accessed 1 Jul 2020 (2018)

37. Borovykh, A.; Bohte, S.; Oosterlee, C.W.: Dilated convolutional
neural networks for time series forecasting. J. Comput. Finance
22(4), 73–101, 2017

38. Hochreiter, S.; Schmidhuber, J.: Long short-term memory. Neural
Comput. 9(8), 1735–1780, 1997

39. Gers, F.; Schmidhuber, J.; Cummins, F.: Learning to forget: con-
tinual prediction with LSTM. Neural Comput. 12(10), 2451–2471,
2000

40. Gers, F.A.; Schmidhuber, J.: Recurrent nets that time and count.
In: Neural Networks. IEEE-INNS-ENNS International Joint Con-
ference on Neural Networks (IJCNN), pp. 189–194, July (2000)

41. Sundermeyer,M.; Schluter, R.; Ney, H.: LSTMneural networks for
language modeling. In: INTERSPEECH, pp. 194–197, Portland,
USA, September (2012)

42. Doetsch, P.; Kozielski, M.; Ney, H.: Fast and robust training of
recurrent neural networks for offline handwriting recognition. In:
14th International Conference on Frontiers in Handwriting Recog-
nition (ICFHR), pp. 279–284, Crete, Greece, September (2014)

43. Graves, A.; Jaitly, N.; Mohamed, A.-R.: Hybrid speech recognition
with deep bidirectional LSTM. In: IEEE Workshop on Automatic

Speech Recognition and Understanding (ASRU), pp. 273–278
(2013)

44. Bakker, B.: Reinforcement learning with long short-term memory.
Adv. Neural. Inf. Process. Syst. 14, 1475–1482, 2002

45. Wang,Y.;Huang,M.; Zhu,X.; Zhao, L.:Attention-basedLSTMfor
aspect-level sentiment classification. In: Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 606–615,
Austin, Texas, USA, September (2016)

46. Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Fei-Fei, L.;
Savarese, S.: Social LSTM:human trajectory prediction in crowded
spaces. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 961–971, Nevada, USA, June (2016)

47. Eck, D.; Schmidhuber, J.: Finding temporal structure in music:
blues improvisation with LSTM recurrent networks. In: IEEE
Workshop onNeural Networks for Signal Processing, pp. 747–756,
New York, USA, September (2002)

48. Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y.: On
the properties of neural machine translation: encoder–decoder
approaches. arXiv:1409.1259. Accessed 10 Mar 2020 (2014)

49. Rana, R.: Gated recurrent unit (GRU) for emotion classification
from noisy speech. arXiv:1612.07778. Accessed 10 Mar 2020
(2016)

50. Zhao, B.; Lu, H.; Chen, S.; Liu, J.; Wu, D.: Convolutional neural
networks for time series classification. Syst. Eng. Electron. 28(1),
162–169, 2017

51. Andermatt, S.; Pezold, S.; Cattin, P.: Multi-dimensional gated
recurrent units for the segmentation of biomedical 3D-data. In:
InternationalWorkshop on Deep Learning inMedical Image Anal-
ysis (DLMIA), pp. 142–151, Athens, Greece, October (2016)

52. Ravanelli, M.; Brakel, P.; Omologo, M.; Bengio, Y.: Light gated
recurrent units for speech recognition. arXiv:1803.10225 (2018)

53. Wu, Z.; King, S.: Investigating gated recurrent neural networks for
speech synthesis. In: IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 5140–5144, Shang-
hai, China, March (2016)

54. Nielsen, M.: Neural networks and deep learning. Free book. http://
neuralnetworksanddeeplearning.com. Accessed 10 Mar 2020
(2018)

55. Dumoulin, V.; Visin, F.: A guide to convolution arithmetic for deep
learning. arXiv:1603.07285. Accessed 10 Mar 2020 (2016)

56. Yu, F.; Koltun, V.: Multi-scale context aggregation by dilated con-
volutions. arXiv:1511.07122 (2015)

57. Chen,L.C.; Papandreou,G.;Kokkinos, I.;Murphy,K.;Yuille,A.L.:
Semantic image segmentation with deep convolutional nets and
fully connected CRFs. arXiv:1412.7062 (2015)

58. He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for
image recognition. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR, Las Vegas, NV, USA, pp. 770–778,
27–30 June (2016)

59. Wu, Y.; He, K.: Group normalization. arXiv:1803.08494 (2018)
60. Gasparin, A.; Lukovic, S.; Alippi, C.: Deep learning for time series

forecasting: the electric load case. arXiv:1907.09207 (2019)
61. Kingma, D.; Adam, J.B.: A method for stochastic optimization.

arXiv:1412.6980 (2014)
62. Pascanu, R.; Mikolov, T.; Bengio, T.: On the difficulty of train-

ing recurrent neural networks. In: 30th International Conference
on Machine Learning, ICML, Atlanta, GA, USA, pp. 1310–1318,
16–21 June (2013)

63. Bai, S.; Kolter, J.; Koltun, V.: An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling.
arXiv:1803.01271. Accessed 10 Mar 2020 (2018)

64. Marcus, G.: Deep learning: a critical appraisal. arXiv:1801.00631.
Accessed 1 Jul 2020 (2018)

65. Hmamouche, Y.; Przymus, P.M.; Alouaoui, H.; Casali, A.; Lakhal,
L.: Large multivariate time series forecasting: survey on methods

123

https://arxiv.org/abs/1805.0390.
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1612.06676
https://arxiv.org/abs/1801.04503
https://arxiv.org/abs/1905.01697
https://arxiv.org/abs/1803.04037
https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/1612.07778
https://arxiv.org/abs/1803.10225
http://neuralnetworksanddeeplearning.com
https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1511.07122
https://arxiv.org/abs/1412.7062
https://arxiv.org/abs/1803.08494
https://arxiv.org/abs/1907.09207
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1803.01271
https://arxiv.org/abs/1801.00631


3442 Arabian Journal for Science and Engineering (2021) 46:3423–3442

and scalability. Utilizing big data paradigms for business intelli-
gence, pp. 170–197. IGI Global (2019)

66. Mathieu, M.; Henaff, M.; LeCun, Y.: Fast training of convolu-
tional networks through ffts. arXiv:1312.5851.Accessed 1 Jul 2020
(2013)

67. Ramachandran, P.; Le Paine, T.; Khorrami, P.; Babaeizadeh, M.;
Chang, S.; Zhang, Y.; Hasegawa-Johnson, M.A.; Campbell, R.;
Huang, T.: Fast generation for convolutional autoregressive mod-
els. arXiv:1704.06001. Accessed 1 Jul 2020 (2017)

68. Lavin, A.; Gray, S.: Fast algorithms for convolutional neural net-
works. arXiv:1509.09308. Accessed 1 Jul 2020 (2015)

69. Ioffe, S.; Szegedy, C.: Batch normalization: accelerating deep net-
work training by reducing internal covariate shift. In: International
Conference on Machine Learning, vol. 37, pp. 448–456, Lille,
France, July (2015)

123

https://arxiv.org/abs/1312.5851
https://arxiv.org/abs/1704.06001
https://arxiv.org/abs/1509.09308

	Multivariate Time Series Forecasting with Dilated Residual Convolutional Neural Networks for Urban Air Quality Prediction
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Multivariate Sequence Problem Description
	2.2 Related Work
	2.3 Background of Deep Learning Architectures for Time Series Forecasting
	2.3.1 Long Short-Term Memory
	2.3.2 Gated Recurrent Unit

	2.4 Neural Network Optimization
	2.4.1 Hyperparameter Tuning
	2.4.2 Walk-forward Cross-validation
	2.4.3 Evaluation Metrics


	3 Proposal of a New WaveNet-Based Architecture
	3.1 Multivariate Temporal Dilated Residual Convolutional Neural Network
	3.1.1 Causal and Dilated Convolutions
	3.1.2 Residual and Skip Connections
	3.1.3 Local Conditioning for Multivariate Variables

	3.2 Our New WTCNN Model’s Structure

	4 First Elements of Comparison
	5 Experiments
	5.1 Dataset
	5.2 Experiments
	5.2.1 Data Preparation and Experimental Choices
	5.2.2 Experimental Results


	6 Discussions
	6.1 Overfitting, Generalization and Convergence Speed
	6.2 How Deep Are Deep Neural Networks?

	7 Conclusion
	References 




