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Abstract
Energy being a precious resource needs to be mindfully utilized, so that efficiency is achieved and its wastage is curbed.
Globally, multi-storeyed buildings are the biggest energy consumers. A large portion of energy within a building is consumed
to maintain the desired temperature for the comfort of occupants. For this purpose, heating load and cooling load requirements
of the building need to be met. These requirements should be minimized to reduce energy consumption and optimize energy
usage. Some characteristics of buildings greatly affect the heating load and cooling load requirements. This paper presented
a systematic approach for analysing various factors of a building playing a vital role in energy consumption, followed by the
algorithmic approaches of traditional machine learning and modern ensemble learning for energy consumption prediction
in residential buildings. The results revealed that ensemble techniques outperform machine learning techniques with an
appreciable margin. The accuracy of predicting heating load and cooling load, respectively, with multiple linear regression
was 88.59% and 85.26%, with support vector regression was 82.38% and 89.32%, with K-nearest neighbours was 91.91%
and 94.47%. The accuracy achieved with ensemble techniques was comparatively better—99.74% and 94.79% with random
forests, 99.73% and 96.22% with gradient boosting machines, 99.75% and 95.94% with extreme gradient boosting.

Keywords Machine learning · Energy optimization · Random forests · Multiple linear regression · Gradient boosting
machines · Extreme gradient boosting · K-nearest neighbours · Support vector regression · Feature selection

1 Introduction

While designing smart buildings, optimalmeasures should be
taken so that energy is used efficiently to safeguard the envi-
ronment [1]. Studies done by researchers all over the world
show that the highest percentage of energy is consumed by
the multi-storey buildings [2–5]. Buildings consume about
40% of the total energy consumed in the world. After build-
ings, the second major energy consumer is industry which is
reported for 32%energy consumption. The thirdmajor area is
transport with 28% energy consumption. These studies moti-
vated to devise solutions for energy optimization in buildings.
Further studies show that within buildings, heating, ventila-
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tion and air conditioning (HVAC) system is one of the major
energy consumers [6, 7]. HVAC consumes energy to main-
tain the desired temperature within a building and control
humidity. It is responsible for meeting the heating load and
cooling load of a building. Heating load can be defined as
the amount of heat energy that is required to be added to a
certain space for maintaining a desired temperature. Cooling
load, on the other hand, is the amount of heat energy to be
removed from a certain space to keep the temperature within
desired limits. These two are related to the thermal load of
the building. When the building is cold, the thermal load is
converted into heating load and when the building is hot, the
thermal load is converted into cooling load [8]. The heating
and cooling loads of a building directly affect its energy per-
formance. It requires analysis of factors that affect the heating
and cooling loads. Studies reveal that various characteristics
of a building and its structure affect heating and cooling loads
to a major extent [9, 10]. Predicting energy consumption in
buildings gives insight on the future demand of energy, and
if more energy is being consumed than expected, appropriate
measures can be adopted to stabilize energy use.
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This paper focusses on several important features of
buildings for, e.g. relative compactness, surface area, wall
area, roof area, overall height, orientation, glazing area and
glazing area distribution. The feature selections techniques
were employed to derive the relevant features for predicting
the heating load and cooling load. Further, three machine
learning algorithms namely—multiple linear regression, K-
nearest neighbours and support vector regression, and three
ensemble learning algorithms namely random forests, gra-
dient boosting machines, extreme gradient boosting were
used for creating models. Additionally, these models have
been evaluated using various performance measures for, e.g.
RMSE, MSE, MAE, R squared and accuracy.

The organization structure of the paper is as follows:
Sect. 1 introduces the problem.

Literature review is presented in Sect. 2. Section 3
describes the state-of-the-art machine learning techniques
and ensemble techniques. The methodology adopted for the
work is described in Sect. 4. The experiments performed and
the results obtained are presented in Sect. 5. Finally, conclu-
sions revealed in this research are mentioned in Sect. 6.

2 Literature Survey

Several researchers worldwide worked in the field of energy
consumption and optimization in buildings. An important
aspect in this domain is the analysis of energy performance
gap. In this context, a study on German households [11]
introduces prebound effect, in which the occupants actually
consume 30% less energy than as calculated in the standard
ratings. This gap can be due to incorrect assumptions made
during energy ratings. In another study [12], common usages
of the term rebound effect have been reviewed. Rebound
effect is used in the context where actual energy consump-
tion exceeds the calculated ratings. Some of the important
researches in the field of energy using various individual
machine learning and ensemble techniques are analysed and
shown in Table 1.

3 Machine Learning

In this research, the applied machine learning techniques
belong to two different categories.

3.1 Traditional Machine Learning Techniques

Three traditional machine learning techniques have been
applied in our researchwork namely—multiple linear regres-
sion, K-nearest neighbours and support vector machines.

3.1.1 Multiple Linear Regression

It is although quite similar to linear regression but there is one
significant difference. In MLR model, one response variable
B is dependent upon multiple independent variables A1, A2,
A3 … An. The relationship between predictor variable and
response variable can be expressed in the form of conditional
expectation as shown in Eq. (1).

E(Y |X) � β0 + βi Xi (1)

βi is the slope that depicts the change in response variable Y
when the predictor variable j is varied by one unit and other
predictors are kept constant. The complexity of results inter-
pretation increases in this model as a result of the correlation
between different independent variables [5]. The concept of
MLR is graphically shown in Fig. 1 [35].

3.1.2 K-Nearest Neighbours

Also known as “Lazy Learner”, this technique takes into con-
sideration “k” number of closest instances in the training
dataset to predict the value of the unknown instance. These
k instances are found by applying a certain distance metric
such that they are the k-nearest neighbours of the unknown
instance [36]. The value returned is obtained after averaging
the values of k-nearest neighbours [37].

If D is a dataset consisting of xi training instances and
the value of an unknown instance p is to be predicted, the
distance between p and xi can be obtained with Eq. (2).

d(p, xi ) �
∑

f ∈F
w f δ

(
p f , xi f

)
(2)

where δ
(
p f , xi f

) � ∣∣p f − xi f
∣∣ for continuous attribute.

Graphical representation of KNN regression can be seen
in Fig. 2 [38]. In our experiments, the value of k is taken as
4.

3.1.3 Support Vector Regression

It aims at finding a function f (x) which allows deviation to a
certain extent ε from the obtained target values yi in training
data samples. It should also ensure maximum flatness. A
linear function [39] can be described as:

f (x) � w, x + b with w ∈ X , b ∈ R (3)

where X represents input pattern space such that X � R
d.

Figure 3 [40] shows the graphical representation of SVR.
The legend in the figure represents the results of various SVR
kernel functions applied on a sample dataset of 40 random
numbers. Values on x-axis represent data points, values on
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Table 1 Survey of literature

References ML model used Work done Results

Tsanas and Xifara [13] Iteratively regressive least squares,
random forests

A ML framework developed to
analyse the effect of different
building parameters on heating
load and cooling load

Results of random forests were better
at revealing relationships between
input and output variables

Fan et al. [14] MLR, ARIMA, SVR, BT, RF, MLP,
MARS, KNN

Ensemble models developed to
predict next-day energy demand in
buildings

Prediction accuracy of Ensemble
models higher than individual
models as evaluated by MAPE

Jain et al. [2] Support vector regression Developed a sensor-based model for
forecasting energy consumption in
multi-family residential buildings

Spatial granularity impact the
prediction power of the model
significantly

Wei et al. [15] MLP ensemble Model developed for HVAC energy
optimization

Energy savings were more when
internal air quality was taken into
consideration

Park et al. [16] Decision tree Developed a new energy benchmark
to improve the operational rating
system of office buildings

Proposed benchmark better than
conventional and baseline system

Candanedo et al. [17] MLR, SVM, RF, GBM Model developed for predicting
energy usage by appliances in
residential building

GBM outperformed other models;
atmospheric pressure is an
important predictor

Manjarres et al. [18] Random forest A framework developed to optimize
HVAC energy consumption

Energy consumption reduced by 48%
for heating and 39% for cooling

Peng et al. [19] K-nearest neighbour A model developed to optimize
energy consumption in building
space according to occupancy

Energy savings of 7–52% obtained

Gallagher et al. [20] LSR, DT, KNN, ANN, SVM ML algorithms used for
measurement and verification of
energy saved in industrial buildings

Error reduced by 51.09%

Deb et al. [21] MLR, ANN Prediction models developed for
energy savings in HVAC in office
buildings

ANN more accurate with MAPE of
14.8%

Nayak [22] ARIMA, RBFNN, MLP, SVM,
FLANN

Developed a new model which
linearly combined the five ML
models for better accuracy

Model developed was better in terms
of feasibility and performance

Sethi and Mittal [23] DT, Naïve Bayes, SVM, RF, LR,
stacking ensemble, voting
ensemble

ML techniques applied to predict
accurate air quality index

Ensemble techniques outperformed
others

Pallonetto et al. [24] M5P regression algorithm Demand response algorithms
deployed for controlling an
integrated heat pump and thermal
storage system in Residential
buildings

49% reduction in cost, 39%
reduction in carbon footprint

Pham et al. [25] RF, M5P, RT ML algorithms applied on five
building energy consumption
datasets to predict the short-term
energy consumption in buildings

RF was better at prediction accuracy
as compared to other investigated
algorithms. 49.21% better than RT
and 49.95% better than M5P in
terms of MAE

Walker et al. [26] Boosted tree, RF, SVM, ANN Algorithms employed on dataset
obtained from 47 buildings–both at
individual building level and
aggregated level to predict the
energy demand at hourly intervals

RF, boosted tree and ANN
performed better than SVM when
computation time and error metrics
were considered

Xu et al. [27] ANN Social network analysis was
integrated with ANN to predict
energy use in a group of 17
buildings

90.28% accuracy achieved with the
proposed method
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Table 1 continued

References ML model used Work done Results

Zhou et al. [28] MLP Two optimization techniques:
artificial bee colony and particle
swarm optimization were
combined with mlp to predict
heating load and cooling load of
residential buildings

Coefficient of determination
increased and MAE and RMSE
decreased significantly when MLP
combined with optimization
techniques

Gao et al. [29] EN, GPR, LMSR, MLR, MPR, MLP,
RBFR, SMOR, functions XNV,
Lazy K star, Lazy LWL, RDT, M5
Rules, AMT, DPC, RF

A correlation-based feature subset
selection technique was applied to
the original dataset consisting of 8
parameters that reduced it to 4
parameters. Then all ML
algorithms were applied on the
dataset

RF, Lazy K star, RDT, AMT
outperformed other ML techniques
in terms of reduction in RMSE and
MAE

Seyedzadeh et al. [30] ANN, SVM, GP, RF, GBRT Sensitivity analysis performed to
determine the importance of each
feature. ML models applied on two
datasets for predicting heating and
cooling loads

40% improved RMSE than results
obtained in previous studies

Roy et al. [31] DNN, GBM, GPR, MPMR Models compared for performance in
predicting heating and cooling
loads of residential buildings

Results obtained are 99.76% by
DNN and 99.84% by GPR in terms
of VAF

Iruela et al. [32] ANN A GPU-based parallel
implementation of NSGA-II to
train the ML model for predicting
energy consumption in buildings

Improved computation time and
errors

Das et al. [33] Different types of ANN: Elman
neural network, recurrent neural
network and backpropagation
network

The effect of various building
parameters on heating load and
cooling load of the building is
studied using different algorithms

Backpropagation neural network was
most accurate among all, with
MAE 0.1 for HL and 0.1254 for
CL prediction

Cozza et al. [34] LASSO regression Assessed the capability of existing
energy certificates in calculating
actual energy consumption and
savings to be achieved post
building retrofitting

An average of − 23% negative
energy performance gap and 2%
positive energy gap was found
before and after building retrofit
respectively

Fig. 1 Multiple linear regression

y-axis are target points. A radial basis function (RBF) kernel
can be described as:

K (X1, X2) � exp
(
−γ ||X1 − X2||2

)
(4)

Fig. 2 K-nearest neighbours [38]

where ||X1 − X2|| is the Euclidean distance between points
X1 and X2.
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Fig. 3 Support vector regression [40]

3.2 Ensemble Techniques

The basic Ensemble technique is to integrate the results of
individual machine learning models, such that the predic-
tion results exhibit improvement in terms of accuracy and
robustness. Bagging and Boosting are two popular ensem-
ble methods. The ensemble techniques used in this paper are
explained as follows.

3.2.1 Random Forests

It is a tree-based ensemble technique that can be applied for
both classification as well as regression. Some of the fea-
tures which make random forests appealing are: prediction
efficiency, suitability for highlymulti-dimensional problems,
missing values handling, outlier removal, etc. [41, 42].

In regression using random forests, to predict a continuous
variable, the trees are grown depending on θ in such amanner
that h (x, θ ) takes on numeric values.

Where θ : A random vector

h(x, θ) : Tree predictor

The values of the response variable are numeric, and it
is assumed that the training sample is drawn independently
from the distribution X of random vector Y.

The RF predictor is created by taking the mean over k of
the trees

{h(x, θk)} (5)

The mean square generalization error for a numeric pre-
dictor h(x) is given by

EX ,Y (Y − h(X))2 (6)

Fig. 4 Random forests

For infinite numbers of trees in the forest, the RF predictor
is defined as

EX ,Y (Y − avkh(X , θk))
2 → EX ,Y (Y − Eθh(X , θ))2 (7)

The schematic diagram of Random Forests is shown in
Fig. 4.

3.2.2 Gradient Boosting Machines

GBM is also an ensemble learning technique, whose under-
lying structure is a decision tree. InGBM, additive regression
models are created by iteratively fitting a simple base to cur-
rently updated pseudo residuals by calculating least squares
at every continuous iteration [43]. In gradient boosting a
function F*(x) is generated that maps x to y, so that when
the joint distribution of all (y, x) values is taken, the expected
value of �(y, F(x)) is minimized, where �(y, F(x)) is some
specified loss function. This relation is depicted in Eq. (8).

F∗(x) � argminEy,x�(y, F(x)) (8)

where y: The random output or response variable, x � {x1,
x2, …xn}: a set of random input variables.

Figure 5 shows the scheme behind gradient boosting
machines.

3.2.3 Extreme Gradient Boosting

Apart from performance and speed as its key features, this
technique has an added feature of Scalability. Several opti-
mizations have been performed on the basic algorithm to
ensure the scalability of the model [44]. Figure 6 shows the
schematic diagram of XGBoost.
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Fig. 5 Gradient boosting machines

Fig. 6 Extreme gradient boosting

4 Method and Data

This section explains the workflow approach followed in
this research. Figure 7 shows the steps of the methodology
employed. The methodology starts with the data collections
followed by data analysis and pre-processing, data partition-
ing and model constructions using various machine learning
and ensemble learning algorithms. Finally, models have been
evaluated on various parameters. Each phase in the process
has been explained below.

4.1 Data Set Collection and Preparation

The dataset used in this research is a standard dataset that
has been collected from the University of California, Irvine
(UCI) repository [45].

This dataset is related to energy efficiency in buildings and
consists of eight different characteristics of buildings which
act as input variables (X1,X2…X8) and heating load (Y1) and
cooling load (Y2) of buildings as two output variables.

The detailed description of the parameters of the data used
alongwith symbols and its respective type is given in Table 2.

Fig. 7 Research approach

Table 2 Dataset parameter description

Parameter Unit Symbol Type

Relative compactness – X1 Input

Surface area m2 X2 Input

Wall area m2 X3 Input

Roof area m2 X4 Input

Overall height m X5 Input

Orientation – X6 Input

Glazing area m2 X7 Input

Glazing area distribution – X8 Input

Heating load KWh/m2 Y1 Output

Cooling load KWh/m2 Y2 Output

4.2 Data Analysis and Pre-processing

Data pre-processing is a process that consists of checking the
dataset for missing values and filling them with appropriate
values, detecting and removing anyoutliers, converting it into
a particular form suitable for applying algorithm, attribute
selection, etc.
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Table 3 Parameter statistics

Statistic Parameter

X1 X2 X3 X4 X5 X6 X7 X8

Min 0.62 514.5 245 110.25 3.5 2 0 0

Max 0.98 808.5 416.5 220.5 7 5 0.4 5

Mean 0.76 671.7 318.5 176.6 5.25 3.5 0.23 2.8

SD 0.1 88 43.59 45.13 1.75 1.11 0.13 1.54

Variance 0.01 7749.06 1900.79 2037.3 3.06 1.25 0.01 2.40

Fig. 8 Probability density estimates [12]

4.2.1 Statistical Analysis

The statistics of input parameters like minimum value, max-
imum value, mean, standard deviation, and variance were
derived and are described in Table 3.

Probability distribution of all input variables, X1 to X8

and both the output variables, Y1 and Y2 using histograms is
shown in Fig. 8. The distribution graphs show that none of
the input and output variables follow Normal distribution.

4.2.2 Feature Selection

Feature selection is an important step in the process of
predicting results using machine learning because all the
features are generally not equally important for predicting
the response value. Some features carry more weights than
others for deriving a particular value and are thusmore impor-
tant, whereas some are very less or not at all important in
the derivation of results. Such irrelevant features need to be
excluded from the input to save training time and compu-
tation time. Additionally, applying the algorithm on only
important and relevant features may result in more accu-
rate prediction, reducing over fitting. In this research, feature
selection has been performed in the following two ways:

Filter Feature Selection It is a univariate method in which
statistical techniques are used to derive the relationship
between each input variable and the target variable. The fea-
tures which are strongly related to the response variable are
selected as input for algorithm application and the features
which areweakly related to the response variable can be elim-
inated. In our research, Spearman correlation coefficient was
calculated to derive the strength of the relationship of sev-
eral independent variables of the dataset with each of the
response variables. Spearman’s method for computing cor-
relation was employed as the distribution of dataset used is
non-Gaussian. A zero value for the correlation coefficient
means the variables are not correlated, i.e., they are inde-
pendent. A value closer to 1 indicates a high correlation
among variables [46]. High correlation among two variables
means one variable varies in accordancewith the other; if one
increases the other also increases. Similarly, reduction in one
variable tends to reduce the other. The values of correlation
coefficient between independent variables X1–X8 and Y1 are
represented in Fig. 9 and the same with Y2 are represented
in Fig. 10.

Feature Importance As mentioned earlier, features play a
very important role in prediction and some features tend
to be more important than others. In this context, feature
importance graphs were generated to obtain the degree of
effectiveness of each of the independent parameters, so that
the contribution of each feature in prediction can be known
and accordingly selection can be made. Figures 11 and 12
show the feature importance graph generated using random
forests and gradient boosting machines, respectively. These
techniques showed similar importance of features for both
response variables, Y1 and Y2. According to random forests,
overall height hasmaximum importance, followedby relative
compactness, then surface area, wall area, glazing area, roof
area, glazing area distribution and orientation. The sequence
of features as derived by gradient boosting machines in the
decreasing order of importance is—relative compactness,
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Fig. 9 Correlation of input variables with Y1

Fig. 10 Correlation of input variables with Y2

Surface area, roof area, overall height, glazing area,wall area,
orientation and glazing area distribution.

Figures 13 and 14 represent the graphs generated by
applying LASSO technique for feature importance for Y1

and Y2, respectively. According to LASSO, relative com-
pactness, overall height, glazing area and glazing area
distribution are more important for predicting the heating
load of a building. Furthermore, for predicting cooling load,
the parameters—relative compactness, surface area, over-
all height, orientation and glazing area—are more important
than others. Therefore, for performing experiments, X1, X5,
X7 andX8 have been selected as input parameters for predict-
ing Y1. Likewise, X1, X2, X5, X6 and X7 have been selected
for the prediction of Y2.

Fig. 11 Feature importance using RF

Fig. 12 Feature importance using GBM

Fig. 13 Feature importance for Y1 using LASSO

4.3 Data Analysis and Pre-processing

Dataset was partitioned according to 70–30% rule into two
subsets: training dataset and testing dataset. For partitioning,
random sampling without replacement was applied which
resulted in 70% training data, on which the algorithms were
applied, and the remaining 30%was used for testing the algo-
rithms.
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Fig. 14 Feature importance for Y2 using LASSO

4.4 Model Construction

The model was constructed by applying three machine
learning techniques namely—multiple linear regression, K-
nearest neighbours and support vector regression. Three
ensemble techniques were applied namely—random forests,
gradient boosting machines, and extreme gradient boosting.
The models were applied on the training dataset and tested
using the testing dataset.

4.5 Model Evaluation

The evaluation of the results obtained after applying algo-
rithms was done using five well-known performance mea-
sures namely rootmean square error,mean square error,mean
absolute error, R squared and accuracy. These measures can
be calculated by applying following formulae, where Yi: is
the observed value for the ith observation, Ŷi : is the predicted
value, N : is sample size.

The original dataset consisting of 768 instances has been
partitioned into two subsets—70% training dataset and 30%
testing dataset, by random sampling. So N � 538 for model
construction on training dataset and N � 230 for testing pur-
pose.

Root mean square error Following equation defines the
formula for RMSE:

RMSE � 2

√√√√√
N∑

i�1

(
Ŷi − Yi

)2

N
(9)

Mean square error Following equation defines the for-
mula for MSE:

MSE � 1

N

N∑

i�1

(
Yi − Ŷi

)2
(10)

Table 4 Results of ML algorithms

Performance metric ML algorithms

MLR KNN SVR

Y1 Y2 Y1 Y2 Y1 Y2

RMSE 3.4 3.68 2.86 2.25 4.22 3.13

MSE 11.56 13.54 8.2 5.07 17.85 9.8

MAE 2.61 2.62 1.96 1.54 3.19 2.25

R Squared 0.87 0.83 0.90 0.94 0.76 0.84

Accuracy (%) 88.59 85.26 91.91 94.47 82.38 89.32

Meanabsolute errorMAEcan be defined by the following
equation:

MAE �
N∑

i�1

∣∣∣Yi − Ŷi
∣∣∣

N
(11)

RSquaredR squared can be defined by the following equa-
tion:

R2 � 1 −
∑(

Yi − Ŷi
)2

∑(
Yi − Ȳ

)2 (12)

AccuracyAccuracy of amodel can be calculated using the
following formula:

Accuracy � |VA − VO|
VA

∗ 100 (13)

where VA: actual value, VO: obtained value.
Sample calculations performed on the dataset using the

above equations are shown in “Appendix”.

5 Results

All the experiments of the research were performed using
Python programming language. Three machine learning
algorithms namely MLR, KNN and SVR and three ensem-
ble techniques namely, RF, GBM, and XGBoost have been
experimented on the collected dataset. The results of the ML
and Ensemble experiments are described in Tables 4 and 5
respectively.

5.1 Results of Classical ML Techniques

The results obtained after applying all the three aforemen-
tioned classical machine learning algorithms on the dataset
are summarized in Table 4. These results are based on the
performance measures. The values of RMSE range between
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Table 5 Results of ensemble algorithms

Performance metric Ensemble algorithms

RF GBM XGBoost

Y1 Y2 Y1 Y2 Y1 Y2

RMSE 0.50 2.18 0.52 1.86 0.50 1.93

MSE 0.25 4.78 0.27 3.47 0.25 3.72

MAE 0.36 1.39 0.38 1.25 0.37 1.27

R Squared 0.99 0.94 0.99 0.96 0.99 0.95

Accuracy (%) 99.74 94.79 99.73 96.22 99.75 95.94

3.13 and 4.22 for both output variables Y1 and Y2 after apply-
ing MLR and SVR, whereas it is lower, 2.86 for Y1 and 2.25
for Y2 when KNN is applied. Correspondingly MSE values
for KNN are also lower thanMLR and SVR. Similarly,MAE
values range between 2.25 and 3.19 using MLR and SVR,
and the values are 1.96 and 1.54 using KNN. R Squared val-
ues are better in KNN (0.90 and 0.94), as compared to MLR
(0.87 and 0.83) and SVR (0.76 and 0.84). KNN results are
better than the other two algorithms in terms of accuracy also.

5.2 Results of Ensemble Techniques

Table 5 summarizes the results of the experiments performed
by applying Ensemble techniques. As per the results, RMSE
is 0.50 for output variable Y1 for RF and XGBoost and 0.52
for GBM. Y2 value varies slightly, 2.18 for RF, 1.86 for GBM
and 1.93 for XGBoost. Correspondingly MSE value is also
same 0.25 for Y1 with RF and XGBoost and 0.27 with GBM.
For Y2, the values of MSE are 4.78, 3.47 and 3.72 with RF,
GBM and XGBoost, respectively. MAE value varies slightly
forY1 in the range 0.36–0.38 for all three algorithms,whereas
the range for Y2 is 1.25–1.39. R Squared values for Y1 for all
three algorithms are same, 0.99 and for Y2; they vary from
0.94 to 0.96. Accuracy is also same, above 99% for Y1 with
all three algorithms, whereas accuracy percentage for Y2 is
94.79%, 96.22% and 95.94% when RF, GBM and XGBoost
are applied, respectively.

Figures 15 and 16 show the graphs plotted for results
obtained in Table 4 forML algorithms and Table 5 for ensem-
ble algorithms, respectively. Figure 17 represents combined
results for all six algorithms (ML and Ensemble) for both
response variables Y1 and Y2.

5.3 Comparative Analysis of Machine Learning
and Ensemble Learning Algorithms

In this section, the results of experiments are represented
graphically based on various performance measures used for
results evaluation. The graphs for RMSE, MAE, R squared

Fig. 15 Graphical representation of Table 4 results

Fig. 16 Graphical representation of Table 5 results

Fig. 17 Combined graph for all six algorithm results

and accuracy are shown in Figs. 18, 19, 20 and 21, respec-
tively.

It can be observed from Fig. 18 that the RMSE value is
high (more than 3.0) for SVR and MLR algorithms for both
the output variablesY1 andY2, comparatively lower (approx-
imately 2.0) for KNN,whereas the error values are extremely
low (below0.5)with all ensemble algorithms—RF,GBMand
XGBoost for Y1 and between 1.8 and 1.9 for Y2.

Similar pattern can be observed from Fig. 19 for
MAE. The values for MLR and SVR algorithms range
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Fig. 18 Graph for RMSE for Y1 and Y2

Fig. 19 Graph for MAE for Y1 and Y2

Fig. 20 Graph for R squared for Y1 and Y2

Fig. 21 Graph for accuracy for Y1 and Y2

between 2.32 and 2.63 for both Y1 and Y2. The val-
ues are lower when KNN is applied, 1.50 for Y1

and 1.35 for Y2. The results are better with ensem-
ble algorithms with MAE between 1.19 and 1.27 for
Y2 and even lower values (0.35–0.36) are obtained for
Y1.

For R squared (Fig. 20), higher values, i.e., the values
approaching 1 are considered better. In this context, again
ensemble techniques have outperformed traditionalML tech-
niques. The lowest values forR squared are obtained for SVR,
0.82 and 0.79 for Y1 and Y2, respectively. Slightly higher val-
ues are obtained for MLR, 0.88 and 0.83, and even higher
for KNNwith 0.94 and 0.96. R Squared results obtained with
ensemble algorithms are significantly better than traditional
algorithms with values ranging from 0.94 and going up to
0.99.

In Fig. 21, the plot for accuracy score also concludes that
ensemble techniques perform significantly better than tra-
ditional algorithms with accuracy ranging between 96 and
99.76%. Among classical ML techniques, KNN performs
better with an accuracy score of 95.12% and 96.47%, while
the accuracy score for MLR and SVR ranges between 85.75
and 89.63%.

Ensemble techniques became popular from last two
decades in the area of classification and prediction. The idea
behind ensemble methods is that it can be compared to sit-
uations in real life, such as when critical decisions has to
be taken, often opinions of several experts are taken into
account rather than relying on a single judgment. Ensem-
bles have shown to be more accurate in many cases than
the individual models. Ideal ensembles consist of models
with high accuracy which differ as much as possible. If
each model makes different mistakes, then the total error
will be reduced, if the models are identical, then a com-
bination is useless since the results remain unchanged.
It is evident from the survey of literature performed in
Table 1 [13, 14, 17, 18, 23, 25, 26, 29] that ensemble tech-
niques are far better in terms of performance prediction as
compared to traditional machine learning algorithms. On
similar terms, the results of experiments performed in this
research also conclude that the predictions done by Ensem-
ble models resulted in much lower error values RMSE,
MSE and MAE, better R squared values and improved accu-
racy as compared to the traditional machine learning models
used.

6 Conclusion and Future Scope

The issue of energy consumption at a fast pace and in
large amounts demands solutions in this area, which can
help in using the energy efficiently. Globally, buildings
are the largest energy consumers, accounting for nearly
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40% energy consumption. Therefore, the analysis of var-
ious energy-consuming components of a building reveal
that the HVAC system consumes a large percentage of
the building’s total energy. HVAC needs energy for opera-
tion so that it can meet the heating load and cooling load
requirements of the building. Heating and cooling loads are
largely affected by various attributes of a building. This
research shows that relative compactness, surface area, over-
all height, orientation and glazing area are more important
in predicting heating load and cooling load of the buildings.
Furthermore, the results of experiments prove that ensemble
techniques perform better than traditional machine learning
techniques.

In this research, only one dataset is used. In future, we can
apply experiments on multiple datasets with large number
of instances to better prove the accuracy of models. Apart
from the models applied in this research, more advanced
models like stacking and voting can be applied for better
analysis.
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Appendix

Sample Calculations for Model Evaluation

The sample calculations using formulae in Eqs. 9–13 are
described here. Table 6 contains the predicted values,
observed values of response variables Y1 and Y2 from the
dataset and predicted values after applying KNN algorithms.
The calculations for model evaluation on the basis of val-
ues given in Table 6 have been performed manually on 20
and 100 sample size, respectively, which has been selected
in respective order from 1–10 and 1–100.

Referring toEqs. 9–13, applying the formulae on observed
values and values predicted using KNN, For Y1 calculated
results for samples of initial 20 records,

RMSE � 12.01

MSE � 144.29

MAE � 10.2

R Squared � −5.2

Accuracy � 43.82%

Referring toEqs. 9–13, applying the formulae on observed
values and values predicted using KNN, For Y1 calculated
results for samples of initial 100 records,

Table 6 Sample dataset showing all predictor values and predicted values using KNN

X1 X2 X3 X4 X5 X6 X7 X8 Y1 (observed) Y1 (predicted using
KNN)

Y2 (observed) Y2 (predicted using
KNN)

0.98 514.5 294 110.25 7 2 0 0 15.55 13.325 21.33 14.595

0.98 514.5 294 110.25 7 3 0 0 15.55 29.1475 21.33 31.155

0.98 514.5 294 110.25 7 4 0 0 15.55 34.46 21.33 35.505

0.98 514.5 294 110.25 7 5 0 0 15.55 39.0375 21.33 41.9675

0.9 563.5 318.5 122.5 7 2 0 0 20.84 32.55 28.28 37.0325

0.9 563.5 318.5 122.5 7 3 0 0 21.46 16.4125 25.38 19.75

0.9 563.5 318.5 122.5 7 4 0 0 20.71 16.635 25.16 19.99

0.9 563.5 318.5 122.5 7 5 0 0 19.68 28.4525 29.6 29.7375

0.86 588 294 147 7 2 0 0 19.5 13.63 27.3 16.3875

0.86 588 294 147 7 3 0 0 19.95 24.61 21.97 30.33

0.86 588 294 147 7 4 0 0 19.34 13.1225 23.49 16.095

0.86 588 294 147 7 5 0 0 18.31 31.775 27.87 32.715

0.82 612.5 318.5 147 7 2 0 0 17.05 25.4975 23.77 28.755

0.82 612.5 318.5 147 7 3 0 0 17.41 14.505 21.46 17.6525

0.82 612.5 318.5 147 7 4 0 0 16.95 12.265 21.16 15.03

0.82 612.5 318.5 147 7 5 0 0 15.98 38.89 24.93 45.29

0.79 637 343 147 7 2 0 0 28.52 36.775 37.73 39.5125

0.79 637 343 147 7 3 0 0 29.9 13.65 31.27 16.8475

0.79 637 343 147 7 4 0 0 29.63 13.9125 30.93 14.63

0.79 637 343 147 7 5 0 0 28.75 35.7175 39.44 36.4425
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Table 7 Sample dataset showing all predictor values and predicted values using XGBoost

X1 X2 X3 X4 X5 X6 X7 X8 Y1 (observed) Y1 (predicted using
XGBoost)

Y2 (observed) Y2 (predicted using
XGBoost)

0.98 514.5 294 110.25 7 2 0 0 15.55 12.8211 21.33 14.1680

0.98 514.5 294 110.25 7 3 0 0 15.55 29.0209 21.33 31.4201

0.98 514.5 294 110.25 7 4 0 0 15.55 35.6678 21.33 35.8985

0.98 514.5 294 110.25 7 5 0 0 15.55 39.0577 21.33 39.6939

0.9 563.5 318.5 122.5 7 2 0 0 20.84 35.3105 28.28 36.2770

0.9 563.5 318.5 122.5 7 3 0 0 21.46 16.6586 25.38 19.9970

0.9 563.5 318.5 122.5 7 4 0 0 20.71 15.2877 25.16 19.2294

0.9 563.5 318.5 122.5 7 5 0 0 19.68 28.5264 29.6 29.7966

0.86 588 294 147 7 2 0 0 19.5 14.4582 27.3 17.7255

0.86 588 294 147 7 3 0 0 19.95 26.1724 21.97 28.9496

0.86 588 294 147 7 4 0 0 19.34 14.6530 23.49 17.1983

0.86 588 294 147 7 5 0 0 18.31 32.4698 27.87 34.1773

0.82 612.5 318.5 147 7 2 0 0 17.05 26.0209 23.77 28.6788

0.82 612.5 318.5 147 7 3 0 0 17.41 15.1882 21.46 17.9761

0.82 612.5 318.5 147 7 4 0 0 16.95 12.6591 21.16 15.8440

0.82 612.5 318.5 147 7 5 0 0 15.98 38.9452 24.93 40.7834

0.79 637 343 147 7 2 0 0 28.52 28.8261 37.73 32.9217

0.79 637 343 147 7 3 0 0 29.9 14.9532 31.27 17.8712

0.79 637 343 147 7 4 0 0 29.63 14.5771 30.93 15.2797

RMSE � 14.02

MSE � 196.6

MAE � 10.9

R Squared � −1.55

Accuracy � 48.46%

The sample calculations using formulae in Eqs. 9–13
are described here. Table 7 contains the predicted values,
observed values of response variables Y1 and Y2 from the
dataset, and predicted values after applying XGBoost algo-
rithms. The calculations for model evaluation on the basis of
values given in Table 7 have been performed manually on 20
and 100 sample size, respectively, which has been selected
in respective order from 1–20 and 1–100.

Applying the formulae on the values predicted using
XGBoost, For Y1 the calculated results for samples of initial
20 records,

RMSE � 11.98

MSE � 143.59

MAE � 9.82

R Squared � −5.17

Accuracy � 40.68

Applying the formulae on the values predicted using
XGBoost, For Y1 the calculated results for samples of initial
100 records,

RMSE � 14.25

MSE � 203.1

MAE � 11.13

R Squared � −1.63

Accuracy � 49.57
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