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Abstract
The simple and robust construction, less weight, wide operating speed range, and higher fault tolerance capability of switched
reluctance (SR) motor make it a viable contender for the conventional dc and ac machines. The faults at the rotor, winding,
stator converters, and sensors lead to overcurrent, increase torque ripples, and sudden breakdown of the system. Thus, it is
an urgent requirement to recognize and classify the faults that exist in switched reluctance motors, thereby the reliability,
robustness, and widespread utilization of SR motors can be increased. The phases of the SR Motor are excited by using an
asymmetric bridgeless resonance converter. This paper proposes an automatic diagnosis and classification of faults using radial
basis function neural network (RBFNN). A mathematical model of the SR motor is established to determine the state of the
art of fault condition of SR motors. The speed data of SR motor are utilized by RBFNN to generate fault information. Gabor
filter is used for preprocessing the input data, and segmentation is achieved using high accurate DCT-DOST transformation. A
gray-level co-occurrence matrix optimized with a genetic algorithm is used to extract the features in the speed signal of the
motor. A test setup was developed in MATLAB to measure the performances of the RBFNN classifier in real-time. The
effectiveness of the simulated fault classification model is verified by comparing the results of the conventional PI controller
with several optimized algorithm-based tuned PI controllers.

Keywords SR motor · Fault classification · Speed control · RBFNN · BR converter · Genetic algorithm

1 Introduction

Switched reluctance motor (SRM) with a large number of
promising features like simple construction, less weight,
robust, higher torque to inertia ratio, less maintenance
requirement, low cost, and wide range of operating speed
is a potential candidate for variable speed applications. The
salient poles of the stator and rotor of the SR motor are
made of steel lamination. The windings are connected in
each phase (opposite poles) of the stator with no windings
on the rotor. The proper excitation of the current with respect
to the position of the rotor decides the performance of SRM.
When a current flows in any one of the phases, the torque
gets generated due to the rotor movement so as to line up
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with the energized stator pole. The direction of the generated
torque changes due to the rotor motion in accordance with
the excited phase and is not a function of the current direction
passing in the phase windings. Torque can be generated by
synchronizing the excitation of every phase with the position
of the rotor. The power electronic devices control the excita-
tion current in the motor winding. The performance and the
estimation of the motor drive are determined by the type of
converter used.Among the available converter topologies (C-
dump, C-dumpwith a freewheeling transistor, and bridgeless
resonance (BR) converters) of SR motor, the bridgeless res-
onance (asymmetric) power converter is considered in this
paper as it offers a much faster rate of fall for the phase
current, which enables the motor to work at higher speeds
compared to other type of converters.

The electrically isolated phase winding (between stator
and rotor) of SR motor provides continuous operation even
in fault conditions with decreased output power. Thus, SR
motor can provide higher fault tolerance when compared
with traditional DC and AC motors. However, SRMs are not
free from fault, and therefore if it exists, it becomes critical
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in some reliability concerned applications where the pro-
ductivity and cost should be minimized. Various diagnostic
methods have been proposed by researchers to classify the
electrical faults (open circuit fault and short circuit fault).
The recent development in signal processing methods paved
the way for different fault diagnosis methods.

Analysis of the literature in this article proceeded from the
paper proposedby the authors in [1–3]where the authors have
classified all the faults in SRmotor and suggested some theo-
retical remedies. The solution for short circuit problemworks
only when the motor is at full load and operates at low speed.
For the open circuit problem, the authors suggested us to
operate themotor with an open diode. However, the proposed
solutions are not effective when compared with the conven-
tional method of disabling the affected phase approach. The
authors of [4–7] investigated the automatic fault classifica-
tion of SR motor using an HMM-based statistical approach.
The modeling complexity of SR motors is decreased using
the proposed method as it performs well in any operating
mode. Also, the loading of the motor is not restricted to ana-
lyze the fault classification. The experimental study shows
the superiority of the proposed method. This response time
of the classifier is slow due to large set of training database.

Xiao et al. [8] made a qualitative analysis of the windings
short circuit issue of SR motor. The authors have used FFT
analysis to reconstruct the fundamental and harmonic fre-
quency component of the winding current so as to obtain the
positive and negative values of current. These current magni-
tudes are used to extract the fault features (short circuit fault)
of SRmotors. The effectiveness of this method against exist-
ing methods is verified using simulation and experimental
setup. In [9–12], a compact model of the power converter
for SR motor drive is introduced. The proposed bridgeless
PFC converter integrates SR motor with a battery charger.
Thus, bilinear functioning of the SR motor is realized. The
FEA is used to analyze the current flowing through the wind-
ings. The mechanical losses arise because of swinging. The
effectiveness of the proposed method is verified with simula-
tion outcomes. Using [13–17] has improved the fault-tolerant
capacity of the system using sensor-less square wave posi-
tion edge identification for SR motor drives. The sensors are
placed for all the poles of the rotor to enhance the fault detec-
tion in all the directions. A reliable fault classification is thus
realized by integrating the inductance slope control approach
with the proposed method to diagnose extreme failures.
The computational complexity and hardware requirement
are minimum. The simulated results are verified with the
prototype model. In [18], the fastest fault diagnosis method-
ology to identify the faults in power converter transistors
using the digital control method is proposed. The faults like
over-current, voltage, and heating of transistors aremeasured
to find the deterioration of power devices. This method uses
two sensors to monitor the chopping, excitation, and free-

wheeling bus currents along with a single transistor. Still,
this method could not perform well if the fault occurred on
two transistors. It does not need any A/D converters, hence
no delay in conversion, and therefore, the quick response is
guaranteed. A novel approach is developed in [19] to detect
the fault in the rotor position using a position sensor and two
sensor-less methods. The position of the rotor is found at low
and high speed using current chopping control and current
gradient methods. An MLV (Maximum Likelihood Voting)
algorithm is also utilized with the above methods to increase
the reliability of SRmotor drive. The high-reliability attribute
makes them suitable for aerospace and automatic applica-
tions. Based on the above researches, a detailed survey of
fault diagnosis and controlmethods of SRmotor is conducted
in [20]. With the simple mathematical modeling-based diag-
nosis method, the advantages, drawbacks, fault types, and
their locations were compared with TE (Trial and Error) and
digitizing methods. The digital methods are efficient in rec-
ognizing faults, but they cannot find the fault position. But TE
methods are useful in finding the fault locations. The author
also suggested future directions for enhancing the fault detec-
tion performance of SR motor drives.

The literature surveys [3, 21] showa lack of fault diagnosis
and classification approaches that account for the perfor-
mance degradation of SR motor. Most of the authors just
described the behavior of SR motor under fault conditions
without applying the diagnosis methods, which provides the
precise classification results [22, 23]. As limited classifica-
tion algorithms [24–26] are concerned with this issue in the
literature, a statistical approach-based radial basis function
(RBFNN) is proposed to mitigate the issue of the SR motor
fault classifications.

The paper is structured into four parts. The proposed
RBFNN fault classification method is discussed in Sect. 2.
The results and discussion is given in Sect. 3, and the con-
clusion is presented in Sect. 4.

2 Proposed RBFNN Based Fault Classification
Method

The complete schematic of the proposed method is given in
Fig. 1. The input ac power is rectified using diode bridge
rectifier. Then, the rectified dc power is stored in a capaci-
tor bank. A unipolar switching sequence is provided by BR
converter where two switches (n + 1) and two diodes (n +
1) are placed in each phase (n) with independent controls.
So as to have a quick building up of excitation current, a
higher switching voltage is needed. Also, the rotor position
and current excitationmust be synchronized to get ripple-free
torque output. The upper switches of the converter perform
switching action while the lower switches provide commu-
tation. The optical encoder is used to sense the position and
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Fig. 1 Block diagram of SR
motor drive

speed of rotor. PI controller compares this speed with the
reference speed. The output of PI controller is the reference
phase current of SR motor. The hysteresis controller gen-
erates the PWM pulses of the converter by comparing the
reference phase current and actual current. The optimization
techniques such as cuckoo search algorithm (CSA), incre-
mental attribute learning optimization algorithm (IALOA),
and Monte Carlo simulated combined particle swarm opti-
mization (MCSPSO) are used for tuning the parameters of
PI controller.

2.1 Modeling of SRMotor

2.1.1 Electrical Equivalent Circuit

The electrical equivalent circuit of a phase ofSRmotor shown
in Fig. 2 consists of resistive and inductive impedances. The
influence of magnetic saturation, flux linkage, leakage flux,
and the mutual inductive coupling of phases is assumed to be
negligible so as to design a simple mathematical model. The
linearmodel of the SRmotor is described by three differential
equations, such as voltage equation, themotion equation, and
the EM torque equation.

2.1.2 Mathematical Equations

In SR motor, the electromagnetic torque is generated by uti-
lizing the rotor position-based magnetic reluctance linked

Fig. 2 Electrical equivalent circuit of SR motor phase

with every phase. When a particular phase is excited, the
torque is generated by which the rotor gets aligned with the
stator. The dynamic model of the SR motor consists of a set
of mathematical equations.

The per phase voltage equation is expressed as

V � Rsi +
dλ(θ, i)

dt
(1)

where Rs is the resistance of a phase and λ is the flux linked
with a phase and it is related to inductance as

λ � L(θ, i)i (2)

where L is the inductance per phase whose magnitude
depends on the position of the rotor and current in a phase.
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On substituting Eq. (2) in Eq. (1), the per phase voltage
equation becomes

V � Rsi + L(θ, i)
di

dt
+
dL(θ, i)

dθ
iωm (3)

whereωm is angular velocity. The induced EMF is expressed
as

e � dL(θ, i)

dθ
iωm � iωmkb (4)

where kb is an EMF constant and is derived as

kb � dL(θ, i)

dθ
(5)

The torque per phase is given by

Te(θ, i) � 1

2
i2
dL(θ, i)

dθ
(6)

Assuming the motion of the magnetic field to be linear,
the torque equation is now expressed as

Ttotal(θ, i) �
∑

phases

1

2
i2
dL(θ, i)

dθ
(7)

the equivalent mechanical torque equation is

Ttotal − Tl � Jm
dωm

dt
+ Bmωm (8)

where T l is load torque, Jm is inertia moment, and Bm is the
frictional coefficient.

The expression for average torque is given by

Taverage � 1

T

T∫

0

Ttotal (9)

Torque ripple is measured as

Tripple � Ttotal (calculated) − Ttotal (measured)

Taverage
∗ 100% (10)

2.2 BR Converter for SRMotor Drive

In SR motor drives with BR converter, the phase windings
are in series with the switches of every phase. When a shoot-
through fault occurs, the winding inductance suppresses the
rising rate of current and gives enough time to start isolated
protection against the faults. The winding failure in a partic-
ular phase does not affect other phases as the phases of SR
motor are independent of each other. Thus, an uninterrupted
functioning of the motor is guaranteed with decreased output
power.

2.2.1 Circuit Diagram of BR Converter

The most commonly used converter in SR motor is the
asymmetric bridge converter. The phases of SR motor are
individually associated with the half-bridges (consisting of
two switches and two diodes) of asymmetric converter. The
circuit of the asymmetric bridge converter for an 8/6 SR
motor is illustrated in Fig. 3.

The total DC voltage is utilized for energizing and de-
energizing the phases during the hard-chopping stage. When
a switching pair is turned on, the winding phase gets energy
from theDCsupply.Whenboth the switches are switched off,
the commutation current flows to the diode from the switch,
now the voltage across the phase will be at a negative poten-
tial. These asymmetric half-bridges allow soft switching to
obtain a zero-voltage freewheeling condition; thus, the phase
is excited from the positive potential and commutated at zero
potential. There is no boundary present to stop exciting the
two phases at the same instant to achieve high torque. The
drawback of this converter is the increased number of power
electronic components in every half-bridge (two switching
devices and diodes).

2.3 PI Controller

In a closed loop system, a PI controller receives an error
signal to vary the controlling parameter and achieves the
required response from the system. The controlling variable
may be speed, torque, and flux or any measurable quantity.
The advantage of the PI controller is from the empirical
adjustment of one or more gain esteems; the change in
response of the system can be observed [9]. It is necessary
to use PI controller more frequently so as to get the proper
control of the system. The blunder signal is produced by
comparing the desired and measured value of the parame-
ter. The polarity of the error gives the directional change in
the input and results in a small steady-state error. The inte-
gration (I) term minimizes these steady-state errors. The ‘I’
term indicates the time required to run the controller. These
steady-state errors are accumulated into a large value with
respect to time. The obtained error signal is multiplied by ‘I’
factor.

2.3.1 PI Controller Tuning

API controller is introduced in process control firms. Various
functions using PI controller are realized to achieve specific
performance indices of system [13]. Usually, tuning is done
to determine the controller constants, and it depends on the
dynamics of the system. The basic block is shown below to
exhibit various tuning techniques where the blunder among
the expected and the measured yield is the controller input.
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Fig. 3 Asymmetric bridge converter

This error is processed to produce the required command
signal for the system and is expressed as,

U (s) � Kp(1 + 1/τi ) (11)

or in time domainU (t) � Kp[e(t) + (1/τi )
∫

edt] (12)

where Kp, proportional gain; τ i, integral time constant.
The optimization techniques such as cuckoo search algo-

rithm (CSA), incremental attribute learning optimization
algorithm (IALOA), and Monte Carlo simulated combined
particle swarm optimization (MCSPSO) are used for tuning
the parameters of PI controller.

2.4 Fault Classification Using RBFNN

Our proposed system shown in Fig. 4 focuses on the area
of the fault and to detect the types of faults by making
use of speed-based fault analysis. This paper describes an
application of DCT-based DOST transform with an adaptive
threshold for fault determination by making use of recorded
signals from the trained dataset. A Gabor filter filters the
noisy distortion which is existing in the speed waveform.
It helps to preserve the information of speed waveform.
After removing the noise, the signal gets partitioned into
its constituent parts (i.e., 256 samples), and the amplitude
is computed to analogize with trained data. It is computed
to detect the types of fault. Variations in the amplitude and
duration of the speed sample help for the analysis of fault. A
total of 1000 samples were taken for analysis. The sampling
frequency is 100 hertz, and it is split up into five inter-
vals to detect the fault. In feature extraction, the mean and
average value is evaluated. A genetic algorithm is imple-
mented for extracting the feature. Currently, there has been
a boom in applying hereditary calculations for minimizing
the multi-target enhancement issue. In a vast arrangement
space and high advancement execution, it offers considerable
preferences in these types of faults in the SR motor. In this
algorithm, among the available classes, an appropriate mar-
gin was selected, and then, highlights are labeled depending
on the class combined with a specific class. The significant

one that needed to be done is the features that are extracted
must be screened clearly to avoid the issue of redundancy
and irrelevancy. By applying this algorithm, the faults were
found out, and the segment length (mean value of fault wave-
form cycle) and the average have been identified, and finally,
RBFNN classifier is used for analogizing with the trained
data. The classifier network is trainedwithmotor speed under
different fault occurrence and normal conditions. As the clas-
sifier is enabledwith artificial intelligence, the system detects
the types of a fault occurring the SR motor. The analogy is
performed in the ratio 1:6. The output of the proposed work
is evaluated quantitatively and qualitatively for testing the
performance of the algorithm. The accuracy achieved in this
proposed work is 98.5%. While analogizing with existing
works, it achieves the best result and high accuracy.

2.4.1 Preprocessing

Preprocessing of speed signal is the first and foremost step
to be performed for the enhancement of the image data that
suppresses the noisy distortions or enhances the feature of the
image for post-processing. The number of specimens taken
for analysis has been elaborated to 1000 samples.

2.4.2 GABOR Filter

It is a type of linear filter whose impulse response is char-
acterized as a coherence function combined with a Gaussian
function. The response of Gabor filter is working well in
techniques such as texture segmentation and iris pattern
recognition. The significance of using this filter in our pro-
posed work is as per the uncertainty principle, and they
persuade theminimumspace bandwidth product. Gabor filter
was implemented for signal representation in terms of both
time and recurrence from the SR motor speed signal. The
unpredictable theory to describe the product of the propa-
gation of a signal in the time and recurrence domain must
exceed or equals the fixed constant.

�t� f � c (13)
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Fig. 4 SR motor speed-based fault analysis block diagram

Fig. 5 Time and frequency domain

where c is a constant, Δt and Δf is the measure of the time
and recurrence space.

In 2D form shown in Fig. 5, the variable of time t, is
superseded by (x, y) coordinates in the spatial space and the
variables of frequency f are superseded by variable (u, v) in
the recurrence space. 2D Gabor filters are widely utilized in
most of the picture processing techniques to extract features
and speed analysis. The 2D Gabor function is evaluated as,

g(x, y) � 1

2πσ 2
g
e

[
−x2 + y2

2σ 2
g

]
exp( j2π f (x cos θ + y sin θ))

(14)

In the frequency domain,

g(u, v) � e

{
−1

2

[
(u − w)2

σ 2
u

+
v2

σ 2
v

]}
(15)

where σu � 1
2πσ x and σv � 1

2πσ y ,
while σ x and σ y are the standard deviation of the ellip-

tical Gaussian in the x-axis and y-axis. The DC esteems
of two-dimensional Gabor filter were taken to suppress the
higher-order reaction for exact amplitude esteems. The filter
parameter is computed by using the formulas,

a �
(
uh
ul

)− 1
s−1

(16)

UO� Un
a(s−m)

(17)

and σu is computed by using the equation,

σ
u� (a−1)U0

(a+1)
√
2ln2

(18)
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σv evaluated by using,

σv � tan
( π

2k

)[
Un−2 ln

[
σu2

Uh

]][
2 ln 2 − (2 ln 2)2σ 2

u

U 2
h

] 1
2

(19)

where S represents the overall number of stages and the value
of m ranges from 0, 1, …, S − 1, and σu and σv are the
standard deviation of the elliptical Gaussian in the frequency
domain.

By applying the Gabor filter on the binary image, the
computation becomes too simple, and it generates a per-
fect improved result. Comparing with simple filters, multi-
resolution filters are time-consuming.

2.4.3 Segmentation

The segmentation procedure partitions the input image into
constituent parts or objects. In digital image processing, it is
a challenging task in autonomous segmentation. A cragged
segmentation procedure brings the process a longway toward
the best solution of imaging problems that require an object to
be detected individually. In this proposedwork, segmentation
is performed by using DCT-based DOST. It helps to partition
an image into 256 samples.

2.4.4 DCT Based DOST

To effectively portray the speed signal in time-recurrence
space, discrete cosine-based DOST is applied. Furthermore,
the data are registered and linked to the morphological list of
capabilities to comprise the last best highlights set, which is
used for classification by using RBFNN. In the past decades,
they used FT, STFT, etc. These transforms faced a problem
of selecting the wavelet and the sampling frequency. It leads
to misleading information. To conquer the restriction of gen-
erally utilized old style signal preparing methods like FT,
STFT, and WT, a novel methodology is introduced in this
study. This methodology utilizes the DCT-DOST scheme. It
examines the time-recurrence dissemination of the speed sig-
nal and distinguishes the fault naturally. In DOST, the source
sign is mentioned occasionally in DFT. During coefficients
truncation, the sign will, in general, lose its structure in the
event of DOST. However, with DCT, it withstands more dur-
ing truncation of coefficients. DCT is genuinely esteemed,
and it does exclude any negative recurrences to limit the
unpredictability. The benefits of DCT in DOST combines the
vitality and indicates the important coefficients at the lower
recurrences.

DOST transformation:

The S transform is said to be linear to build the space
between FT and wavelet. The S transfer for any info sign
h(t) is given by,

s(τ , f ) � | f |
2π

−α∫

α

h(t)e − (t−t)2 f 2

2 e−i2π f tdt (20)

Width of the window is indicated as,

σ( f ) � T � 1

| f | (21)

δ(τ , f0) shows the 1-D time function for a fixed recurrence
f 0, and it shows how the amplitude and frequency change
over time. The DOST of h(KT) is expressed as,

H
[
jT ,

n

NT

]
�

N−1∑

m�0

H
[m + n

NT

]
G(m, n)e

i2πmj
N (22)

where

G(m, n) � e− 2π2m2n2

n2

where n ranges from 1, 2, …, N − 1.
It contains only positive frequencies, and it takes no

symmetry in the coefficients. As an outcome, to adjust a
frequency space while partitioning, higher frequencies are
required. Since the DCT-DOST contains no negative fre-
quency, the width of the frequency for any info signal of
length 2N is indicated as below,

Ni � 1 for i < 2

Ni � 2i−2 for 2 ≤ i ≤ N − 1

The proposed algorithm for DCT-DOST is as follows,

Y � dct(y);

z � 0

Forcyin[1, 2, 3, . . .];

Y [z; z + (z − 1)]; idct(y[z; z + cz − 1]);

end

return y

The architecture of theDCT-DOSTsegmentation is shown
in Fig. 6.

The reverse DCT is computed as follows,

x(n) �
√

1

N
X(0) +

√
2

N

N−1∑

k�1

x(k) cos

(
π(2n + 1)k

2N

)
(22)

where n ranges from 0, 1, … N − 1.
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Fig. 6 DCT-DOST ARCHITECTURE

β denotes the length of the recurrence range, t indicates
the time parameter, and vi is the frequency variable.

To ensure orthogonality, some conditions needed to be
followed,

(1) t � 1, 2, … β − 1

Selection of width of the frequency band β and frequency
variable V i which is to be used only once.

These awry time-recurrence coefficients are determined
for all the speed signals which are used for additional exam-
ination.

2.5 Feature Extraction

The morphological highlights which were taken contain
maximum and minimum points of each sample of the sig-
nal. It is estimated by using the equation,

f (t) � f (t) − min(t)

max(t)
− min(t) (23)

The next phase is to reduce the feature. To perform this
operation, a genetic algorithm is applied. The features which
were taken were fed into the four different neural networks
for training, and then, it is tested by applying various test
files. For each neural network, accuracy is computed.

The next phase needed to be performed is feature reduc-
tion. It is performed by using genetic algorithm shown in
Fig. 7. Recently, there has been a boom in applying a genetic
algorithm for minimizing the enhancement issues. In highly
complicated execution and in a massive set of arrangements,

Fig. 7 Structure of the genetic algorithm

this algorithm is applied. It was used to optimize the features
and neural network for Speed signal identification. It helps
to extract the best features, and it is included in the next gen-
eration. The next generation picks out favorable conditions,
and the rest will be omitted. It initially repeats and develops
a population by generating a new population at each step by
the process of

(1) Selection,
(2) Crossover and
(3) Mutation.

And finally, it applies a fitness function; fitness value is
computed by using the equation,

f . f � 1

n

n∑

i�1

(t − out) (24)

N represents the number of outputs, and t indicates the
target output, and out denotes the actual output. The fitness
function which was taken may contain positive and negative
values. So we cannot make use of fitness value directly. The
working of three operators is as follows. The selection opera-
tor is applied to figure out the best features which are present
with the best fitness score and transfer it to the next gener-
ation. To generate the offspring chromosome, the crossover
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operator performs swapping between the selected individu-
als.

Chromosome i reproduce � f (xi)
∑1

k�0 f (xk)
(25)

Then, the final operator is applied to alert the bit, which is
in the chromosome. The probability is computed that chro-
mosome in the nth place will be evaluated by using,

Pn � N − N + 1
∑N

i�1 i
(26)

This algorithm helps in optimizing the outcome of the
neural network, and it performs well to get a good prediction
accuracy, sensitivity, and specificity. It gives its output for
better classification. The RBFNN classifier is used for better
classification performance.

2.6 RBFNN Classifier

It is a special class of function involved in predicting the time
series, classification, and function approximation. It can be
applied to any sort of models such as linear and nonlinear
and in any network. The three layers of RBFNN shown in
Fig. 8 are the input layer, hidden layer, and output layer. The
hidden layer provides a nonlinear conversion of the input to
the hidden layer. The output layer combines in a linear way
the activation of the hidden layer. The input layer can be
modeled as a vector of actual numbers x ε Rn. The outcome
of the network: Rn →R, given by,

ϕ(x) �
N∑

i�1

ai x(||x − ci ||) (27)

where N represents the neurons quantity, which is present in
the hidden layer,Ci denotes the center vector, and ai indicates
the weight of the neuron. The parameters ai, ci and β i help
to optimize the fit between ϕ and the data.

The first layer involved is the input layer. A typical radial
function of the scalar input vector is expressed as,

h(x) � e

(
− (x − c)2

r2

)
(28)

The generated input may be normalized and in de-
normalized form. If it is found in a de-normalized state. It is
computed by using the equation,

ϕ(x) �
∑N

i�1 aiρ(||x − ci ||)∑N
i�1 ρ(||x − ci ||)

(29)

where

u(||x − ci ||) � ρ(||x − ci ||)∑N
j�1 ρ

(∣∣∣∣x − c j
∣∣∣∣)

It is known as the normalized basis function. In the nor-
malized and de-normalized case, higher-order linear terms
are also possible.

This result can be written as,

ϕ(x) �
2N∑

i�1

n∑

j�1

ei jvi j (x − ci ) (30)

where

ei j �
{
ai , if i ∈ [1, N ]
bi j , if i ∈ [N + 1, 2N ]

and

vi j (x − ci ) �
{

δi jρ(||x−ci ||), if i ∈ [1, N ](
xi j − ci j

)
ρ(||x − ci ||), if ∈ [N + 1, 2N ]

In the de-normalized case and

vi j (x − ci ) �
{

δi j u(||x − ci ||) if i ∈ [1, N ](
xi j − ci j

)
u(||x − ci ||) if ∈ [N + 1, 2N ]

In the normalized case

δi j �
{
1, if i � j
0, if i �� j

The probability density function is computed between the
input and the output space by using,

p(x) �
∫

p(xΛy)dy � 1

N

N∑

i�1

ρ(||x − ci ||) (31)

The expectation of y given an input x is

ϕ(x) � E(y|x) �
∫

yP(y|x)dy (32)

where
P (y|x) is the conditional probability of y given x.
RBFNN is especially used for classification. For perform-

ing classification, trained and test set data are needed. The
data are retrieved from a trained database. It contains both
normal and pathological dataset. Nearly 60% of data have
been taken for training, and the rest 40%was taken for testing.
The training set in which there are n pairs. It is represented
in the form of

T � {(xi , yi )}pi�1 (33)
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Fig. 8 RBFNN network

Yi indicates the output value of a trained set and then time
prediction is concerned about estimating the next esteem and
features of a sequence such as

. . . , yt − 3, yt − 2, yt − 1, . . .

Time prediction is difficult when compared to straight
regression or classification. RBFNN classifier works well in
classification, and to obtain the answer of actualmultivariable
interpolation issue, a radial basis functionwas introduced.An
unpredictable sample grouping issue cast in a high dimen-
sional space nonlinearly is bound to be straightly distinct than
in a low-dimensional space. This leads to consider the multi-
variable interpolation problem in high-dimensional space. It
helps in achieving all these problems and the accuracy (acc)
is measured by using,

acc � TP + TN

TP + TN + FP + FN
× 100% (34)

Sensitivity is measured by using,

Se � TP

TP + TN
× 100% (35)

Specificity is measured by,

Sp � TN

TP + TN
× 100% (36)

where TP, TN, FP, and FN indicate the true positive, true
negative, false positive, and false-negative. NT indicates the
number of correctly classified speed signal. It achieved a high
accuracy of 98.75% obtained by RBFNN filter.

3 Results and Discussion

3.1 Normal Condition (Before Faults)

The SR motor is simulated at normal and fault conditions.
Initially, the SR motor is operated at a healthy state, and
the corresponding current, torque variation, speed, and flux
are measured. Then with the OC and SC faults, the same
parameters are obtained for the different phases.

The following responses shown in Fig. 9 are plotted
between flux (Wb) and time (s) for the parameter flux deter-
mination and current (A) and time (s) for the parameter
current determination and torque (N-m) and time (s) for the
parameter torque determination.

The response of motor speed and current for the same
torque–speed characteristics of 10 Nm-1500 rpm shown in
Fig. 10 has the effect of torque ripple on the speed because
of the low inertia of the motor.

DC supply voltage and current are 220 V and 5.4 A. The
Rotor position sensor is placed on the motor shaft. The turn-
on and turn-off angles of the converter aremaintained fixed at
30° and 45°. The switching angles can be used to control the
produced torque. Torque ripple is estimated using Eq. (10),
and the resultant torque ripple is 0.282.

3.2 1 Open Circuit Faults

The response of flux, current, and torque of SR motor under
1Φ open circuit fault for different optimization and PI con-
trollers are shown in Figs. 11, 12 and 13. In 1Φ open circuit
fault, phase A is open circuited in the time interval 0.1 s to
0.2 s. Hence, current will not flow in phase A alone. It is
noticed that the values of Tmax, Tmin, and mean torque are
7.68 Nm at a load of 3 Nm. The torque ripple is estimated
using Eq. (10), and the obtained torque ripple is 0.508.

123



Arabian Journal for Science and Engineering (2021) 46:1313–1332 1323

Fig. 9 Normal condition (before
faults)
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Fig. 10 Speed response in normal condition (before faults)

3.3 1 Short Circuit Faults

The response of flux, current, and torque of SR motor under
1Φ short circuit fault for different optimization and PI con-
trollers are shown in Figs. 14, 15 and 16. Now phase B is
short-circuited, and hence, the number of turns on this phase
is decreased. With this reduction, the mean torque of this
phase is also reduced. The values of Tmax, Tmin are observed
and the mean torque is 6.23 Nm at a loading of 3 Nm, and
the obtained torque ripple is 0.569.

3.4 Open Circuit Fault in Two Phases

The response of flux, current, and torque of SR motor under
double-phase open circuit fault for different optimization and
PI controllers are shown in Figs. 17, 18 and 19. The open
circuit fault occurred in any two phases at the time of 0.1 s
to 0.2 s for phase A and 0.15 s to 0.24 s for phase B. So, the
current will not flow in phase A and phase B. The values of
Tmax and Tmin are observed and mean torque is 7.15 Nm at
a loading of 3 Nm. The torque ripple is 0.412.

3.5 Short Circuit Fault AT Double Phase

The response of flux, current, and torque of SR motor under
double-phase short circuit fault for different optimization and
PI controllers are shown in Figs. 20, 21, and 22. The values
of Tmax and Tmin are observed, and the mean torque is 6.75
Nm at a loading of 3Nm. The obtained torque ripple is 1.230.

The speed control with torque ripple reduction of SR
motor is proposed in this paper. The PI controller is used
to control speed and the current. The performance param-
eters are obtained from simulation for improving the SR
motor drive. Speed response of various optimization is used
in this paper. The optimization techniques are CSA, IALOA,
MCSPSO (Tables 1, 2, 3, 4 shows the rise time (T r), peak
time (Tp), Settling time (T s) and steady-state error (Ess)).

At the time of fault condition, the speed response of SR
motor with conventional PI controller and by using various
optimization-based tuned PI controllers is shown in Figs. 23,
24, 25 and 26. The motor is working at the estimated speed
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Fig. 11 Flux linkage versus time
characteristics

Fig. 12 Current versus time
characteristics
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Fig. 13 Torque versus time
characteristics
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Fig. 14 Flux linkage versus time
characteristics
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Fig. 15 Current versus time
characteristics

Fig. 16 Torque versus time
characteristics
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Fig. 17 Flux linkage versus time
characteristics

Fig. 18 Current versus time
characteristics

Fig. 19 Torque versus time
characteristics
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Fig. 20 Flux linkage versus time
characteristics

Fig. 21 Current versus time
characteristics

Fig. 22 Torque versus time
characteristics
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Table 1 Comparison of optimization techniques under single-phase
open circuit fault condition

Controller type T r (s) Tp (s) T s (s) Ess (%)

CSA 0.09 0.28 0.50 2.67

IALOA 0.09 0.26 0.28 2.51

MCSPSO 0.09 0.25 0.28 1.26

Table 2 Comparison of optimization techniques under single-phase
short circuit fault condition

Controller type T r (s) Tp (s) T s (s) Ess (%)

CSA 0.092 0.275 0.45 2.77

IALOA 0.092 0.245 0.27 2.82

MCSPSO 0.090 0.24 0.25 1.75

Table 3 Comparison of optimization techniques under double-phase
open circuit fault condition

Controller type T r (s) Tp (s) T s (s) Ess (%)

CSA 0.097 0.27 0.47 3.27

IALOA 0.094 0.24 0.25 2.81

MCSPSO 0.092 0.23 0.24 1.94

Table 4 Comparison of optimization techniques under double-phase
short circuit fault condition

Controller type T r (s) Tp (s) T s (s) Ess (%)

CSA 0.75 0.41 0.42 2.84

IALOA 0.85 0.23 0.23 2.73

MCSPSO 0.078 0.23 0.23 1.89

of 1500 rpm. At first, the external load torque is nil, and
the motor is generating only the frictional and winding
torques. Figure 27 shows the speed waveform of the SR
motor, but the speed waveform is highly oscillatory. This
speed waveform shown in Fig. 28 is taken as a test signal
for the proposed signal processing approach. The proposed
classifier then accurately gives the fault types (Figs. 29, 30,
31, 32, 33).

The performance of the proposed method is contrasted
with the existing classification terminologies (CNN and
SVM). For a varying number of test samples, our method
shows superior performance with a maximum accuracy of
98.3% as shown in Fig. 34. The reliability of the proposed
method is assured as the performance is consistently high
without any compromise (Table 5).

The sensitivity of the proposed method indicates the true
positive value of the SPEED classification. It is measured as
the proportion of the actual positive that are correctly clas-
sified. The sensitivity performance is more than the existing
method with a maximum value of 98%, whereas the maxi-

Fig. 23 Speed tracking performance with various algorithms for single-
phase open circuit

Fig. 24 Speed tracking performance with various algorithms for single-
phase short circuit

mum sensitivity of CNN and SVM are lies at 93% and 86%.
The sensitivity comparison is given in Fig. 35 (Tables 6 and
7 show the sensitivity and specificity comparison).

The specificity values of the proposed method are chang-
ing in a zigzagmanner as the number of test samples increases
with a maximum specificity of 98.2% for the proposed
method and 95.6%, 87% for CNN and SVM classifiers. The
specificity comparison is given in Fig. 36.

4 Conclusion

Soft computing-based radial basis function neural network
was presented for automatic diagnosis and classification of
faults in SRmotor. The proposed method is effective in iden-
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Fig. 25 Speed trackingperformancewith various algorithms for double-
phase open circuit

Fig. 26 Speed trackingperformancewith various algorithms for double-
phase short circuit

Fig. 27 Unhealthy motor speed waveform

Fig. 28 Speed signal for proposed approach

Fig. 29 Preprocessing Gabor filter output signal waveform

Fig. 30 DCT-DOST transform output waveform
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Fig. 31 Reconstruction result waveform

Fig. 32 Peak signal identification result waveform

Fig. 33 Classification result using proposed RBFNN classifier

tifying any types of faults under any operating mode. The
classifier algorithm is trained with numerous experimental
speed data that are different from the test speed data used by
the algorithm. This would allow the classifier to performwell
for any type ofmotors and faults. The ratio between the upper
and lower limit of speed is used as a fault feature to diagnose
open circuit and short circuit faults. The reliability of the

Fig. 34 Accuracy comparison of different methods

Table 5 Accuracy comparison between RBFNN, CNN and SVM

Accuracy comparison table

No. sample RBFNN (%) CNN (%) SVM (%)

20 95 91 84.5

40 95.5 91.5 84.1

60 95.8 91.4 85

80 97.5 91.8 85.5

100 98.3 92 86

Fig. 35 Sensitivity comparison

SR motor drives is improved because of the accurate and
rapid fault diagnosis under transient and steady states. The
classification performance of the proposed advanced intel-
ligent algorithm is measured in terms of accuracy (98.3%),
sensitivity (98%), and specificity (98.2%), which reveals the
effectiveness of RBFNN compared with CNN and SVM.
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Table 6 Sensitivity comparison between RBFNN, CNN, and SVM

Sensitivity comparison table

No. sample RBFNN (%) CNN (%) SVM (%)

20 96 91.5 84.5

40 95.3 91 83

60 96.2 90 84.2

80 97.4 92 85

100 98 93 86

Table 7 Specificity comparison between RBFNN, CNN, and SVM

Specificity comparison table

No. sample RBFNN (%) CNN (%) SVM (%)

20 96 91.5 86.5

40 98.3 93 87

60 97.2 90 87.2

80 99 95 88

100 98.2 95.6 87

Fig. 36 Comparison of specificity
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