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Abstract
Over the past few decades, time series forecasting (TSF) has been predominantly performed using different artificial neural
network (ANN) models. However, the performance of ANN models in TSF has not yet been fully explored due to several
issues like the determination of near-optimal ANN architecture for a time series and the efficiency of training algorithm
used to determine the near-optimal weights of ANN. Motivated by this, we have proposed an adaptive differential evolution
(DE)-based modelling scheme to automatically determine the near-optimal architecture of ANN for a time series under study.
Additionally, we have proposed an adaptive differential evolution-based ANN training algorithm (ADE-ANNT) to determine
the near-optimal weights of ANN. To make the adaptive modelling scheme consistently effective, several comparisons
are made between different alternatives in the treatment of trend component and normalization techniques. Twenty-one
benchmark time series datasets are being considered to assess the comparative performance of the proposed method with
the established forecasting models, namely autoregressive integrated moving average, exponential smoothening with error,
trend and seasonality, deep belief network and multilayer perceptron + Levenberg–Marquardt (LM) method. To assess the
efficiency of the proposed ADE-ANNT training algorithm, comparisons are made with the ANN training algorithms based
on recently developed evolutionary algorithms, such as TLBO-ANNT, DE-CRO-HONNT and DE-ANNT+; and the most
popular LM training algorithm. Extensive statistical analysis on simulation results reveal the statistical superiority of the
proposed training algorithm and proposed method when compared with their counterparts for the datasets used.

Keywords Artificial neural network · Multilayer perceptron · Differential evolution · Evolutionary neural network · Time
series forecasting

1 Introduction

Future of most of the phenomena is a consequence of its past.
Therefore, future values of a phenomenon can be extrap-
olated by systematically analysing its past values. Such a
process of predicting the future values of a phenomenon by
analysing the past observations is known as time series fore-
casting (TSF).Accurate TSF plays a vital role in almost every
area of study including finance, economics, engineering
and management science. Conventionally, statistical models
like exponential smoothing, autoregressive integrated mov-
ing average (ARIMA) have been widely used in TSF [1].
These models work under the assumption of the linear corre-
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lation structure of time series data and often fail to provide a
satisfactory result when the time series possess nonlinear pat-
terns. To add to this owe, most of the real-world time series
is nonlinear and often suffered from the issues of tempo-
ral as well as spatial variability. Hence, traditional statistical
models cannot handle the nonlinear patterns equally well as
linear patterns. This is because linear models can’t handle
nonlinear patterns and vice versa [2]. Therefore, nonlinear
statistical models like autoregressive heteroskedastic models
(ARCH and GARCH family) have been applied in TSF to
capture the nonlinear patterns. However, the existence of dif-
ferent variations of these models [3, 4] imposes a burden in
choosing the suitable model, and thus limits its application
to a generalized forecasting problem.

In the past two decades, ANN models have gained popu-
larity in forecasting theory due to several advantages features.
First, unlike traditional models, ANNs are data-driven mod-
els, i.e. instead of modelling data by a pre-defined model;
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ANN employs the data to determine the parameters of the
model. Also, ANNs neither require any a priori assumption
on model nor on the characteristics of data to be modelled.
Second, ANNs are universal approximators, i.e. ANNs can
model any nonlinear or linear function to any desired level
of accuracy [5]. Finally, ANNs possess nonlinear modelling
ability, i.e. can learn and generalize any function [6]. Con-
sidering all these advantages of ANN, thousands of research
papers using different ANN models have been published
to solve various problems in TSF. Despite more than two
decades of research on ANN for TSF and some studies [7,
8] indicating the superior performance of ANN models than
statistical models, some studies [9, 10] have also indicated
inferior performance under certain datasets. This inconsis-
tent performance of ANNmodels across various studies was
due to several factors such as heuristic and ad hoc modelling
process [3], pre-processing (e.g. detrending and normaliza-
tion) of time series data [11–13] and the effectiveness of the
training algorithms used [3]. If these factors were suitably
optimized, ANNs would be established as a reliable tool for
TSF.

All the ANN-based forecastingmethods proposed to fore-
cast time series have used two approaches of ANN model
design. In the first approach [14–18], the architecture of
ANN (number of inputs, number of hidden layers, num-
ber of neurons in each hidden layer) is given, and the
remaining parameters (weights, learning rate, etc.) of ANN
are computed in the later part of the modelling process.
In this approach, neither optimal nor acceptable results
can be guaranteed. Contrasting to the first approach, the
second one [19–36] determines the architecture and other
parameters automatically using different techniques such as
pruning algorithm [19, 20], growing algorithm [29], cel-
lular automata [30] and evolutionary algorithms [21–28,
31–36]. The application of evolutionary algorithms to con-
struct the architecture of ANN dominated the literature. It is
mostly based upon genetic algorithm (GA) [21, 25, 26, 32],
estimation distribution algorithm (EDA) [24, 33], particle
swarm optimization (PSO) [27], grasshopper optimization
algorithm (GOA) [28] and differential evolution (DE) [24,
33]. The evolutionary algorithms used either direct encod-
ing schemes (DES) [24–28, 31–36] or indirect encoding
scheme (IES) [21–23]. In DES, the chromosomes contain
information about the learning parameters, architecture and
parameters of the topology. In contrast, in IES, the chromo-
somes contain necessary information so that a constructive
method can be used to delineate the architecture of ANN.
Although no study has been made relating to the compara-
tive performance of DES and IES, the DES has been used
predominantly due to its simplicity in implementation.

In this paper, an adaptive modelling scheme based on
DES for time series forecasting is developed. To make a
robust evaluation of the proposed modelling scheme, the

choice of the ANN model plays a vital role. To address this
issue, Makridakis et al. [37] conducted a comparative study
on different machine learning (ML) models for TSF and
suggested that multilayer perceptron (MLP) provides better
result than otherMLmodels including long short-termmem-
ory (LSTM). Therefore, in this paper, a single hidden layer
feedforward MLP is considered as the forecasting model.
The number of neurons in the output layer is fixed to one,
whereas the number of inputs and hidden neurons is automat-
ically determined using an adaptive evolutionary algorithm.
The DES is used to encode the architecture of ANN into
chromosomes; meanwhile, the fitness of each chromosome
is obtained after training with the proposed training algo-
rithm (ADE-ANNT). The major contributions of the paper
are as follows:

(i) An adaptive DE-based modelling scheme (DEMS) has
been developed to determine the near-optimal architec-
ture of ANN for a time series under study.

(ii) An adaptive DE-based ANN training algorithm (ADE-
ANNT) has been proposed to determine the near-
optimal weights of ANN.

(iii) Tomake theDEMSconsistently effective, several com-
parisons are made between different alternatives in
pre-processing techniques such as treatment of trend
component and normalization techniques.

The rest of this paper is organized as follows. Section 2
provides an overview of ANN and DE algorithm. The pro-
posedADE-ANNT training algorithm is explained in Sect. 3.
Section 4 presents a detailed description of the proposed
methodology. In Sect. 5, the experimental set up is described,
and simulation results are analysed. Finally, the conclusions
are drawn in Sect. 6.

2 Preliminaries

2.1 Artificial Neural Network (ANN)

ANNs are data-driven, self-adaptive, flexiblemodels that can
approximate an enormous class of nonlinear functions to any
preferred degree of precision. Thus, different ANN models
(MLP [14], radial basis function (RBF) neural network [15],
LSTM [16], convolutional neural network (CNN) [17], func-
tional link ANN (FLANN) [18], deep belief network [27],
etc.) have been applied in a variety of TSF applications. Out
of different ANN models, feedforward MLP with a single
hidden layer is most popular in TSF [3, 37]. This is because
of its complex nonlinear mapping capability and universal
approximation capability [3]. The architecture (as in Fig. 1)
of such MLP consists of an input, hidden and output layer.
The neurons of adjacent layers are symmetrically connected
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by directed acyclic links. In TSF, the number of inputs and
hidden neurons is flexible,whereas the number of output neu-
rons is usually kept to one. Solving the TSF problem using
MLP can be considered as identifying the underlying rela-
tionship (as in Eq. 1) existing between the output yt and the
past k values of the series y � [y1, y2, . . . , yn]. Therefore,
the time series data are first transformed to n-k patterns, with
each pattern has k inputs yt−1, yt−2, . . . , yt−k and one target
yt . Generally, the patterns are partitioned into train, valida-
tion and test sets. The training algorithms like evolutionary
training algorithms [18, 38–44], Levenberg–Marquardt (LM)
algorithm, etc. use the train and validation sets to determine
the weights and other parameters of ANN. Then, the future
values on the test set are computed and used to evaluate the
performance of the model.

yt � f

⎛
⎝α0 +

q∑
j�1

α j g

(
β0 j +

k∑
i�1

βi j yt−1

)⎞
⎠ (1)

whereα j andβi j are the set ofweights between input–hidden
and hidden–output layers. β0 j and α0 are the bias unit of hid-
den and output neurons. Usually, binary sigmoid activation
function (as in Eq. 2) has been widely used in the neurons
of the hidden layer. In contrast, the linear activation function
has been used in the neurons of the output layer.

sigmoid(x) � 1

1 + e−x
(2)

2.2 Differential Evolution

In 1997, Storn et al. [45] proposed a simple yet efficient
evolutionary algorithm called differential evolution (DE).
Compared to other evolutionary algorithms, DE is straight-
forward and easier to implement. Even though PSO and
its variants are easy to code, DE variants outperformed the
PSOvariants and other evolutionary algorithms [46–48]. The
recent review paper [49] summarizes the superior perfor-
mance of DE than different evolutionary algorithms in CEC
competitions organized from 2005 to 2018. DE is a stochas-
tic search method, which starts with a set of chromosomes
(decision vectors), with each chromosome consisting of a set
of genes (decision variables). The chromosomes of a genera-
tion use mutation, crossover and greedy selection operations
repeatedly to move the population towards the next genera-
tions until a near-optimal solution is achieved.

All DE algorithm variants operate in the following steps:

1. Initialization of problem parameters, algorithm parame-
ters and initial population (consisting of a set of chromo-
somes).

2. Calculate the fitness of each chromosome/individual.

3. For each chromosome (target vector) of the current gen-
eration, apply step: 3.1 to step: 3.3 to generate the
chromosomes of next generation.

3.1 Apply mutation operator (anyone from Eqs. 3 to 7)
to generate the mutant (donor) vector

3.2 Generate the trial vector by applying crossover
(either Eqs. 8 or 9) between the target vector and
mutant vector.

3.3 Perform selection (Eq. 10) between target vector
and trial vector

4. If the termination criteria are satisfied, go to step-5 or
else go to step-3

5. Use the fittest individual of the final generation as the
solution to the problem.

Let the population of gth generation is

pg �
(
C1
g,C

2
g, . . .C

i
g . . .CPopSize

g

)
, with Ci

g �(
Wi1

g ,Wi2
g , . . .Wi j

g . . .WiD
g

)
for i � 1,2,3…..PopSize,

D � length of each chromosome,Wi j
g � jth gene

of the ith individual in gth generation. The muta-
tion for ith chromosome produces a mutant vector

Mi
g �

(
Mi1

g , Mi2
g , . . . Mi j

g . . . MiD
g

)
, which is used

in the crossover with the current chromosome Ci
g �(

Wi1
g ,Wi2

g , . . .Wi j
g . . .WiD

g

)
to produce a trial vector T i

g �(
T i1
g , T i2

g , . . . T i j
g . . . T iD

g

)

Since the inception of DE, it has been modified and
upgraded rigorously in recent years [49, 50]. However, the
variants of the DE algorithm mostly vary in the nature of
mutation and crossover scheme being used. Storn and Price
[51, 52] suggested different mutation schemes (as in Eqs. 3
to 7) for differential evolution to generate the mutant vec-
tor. Two crossover methods such as binomial (as in Eq. 8)
and exponential (as in Eq. 9) can be applied on any of the
mentioned mutation strategies to generate the trial vector.
Thus, a total of 2 × 5 � 10 different DE mutation strategies
can be used to generate a trial vector. Then, selection (as in
Eq. 10) operation is applied to select the better chromosome
between trial and target vector for the next generation.

DE/best/1 : Mi
g � Cbest

g + F ×
(
Cr1
g − Cr2

g

)
(3)

DE/rand/1 : Mi
g � Cr1

g + F ×
(
Cr2
g − Cr3

g

)
(4)

DE/rand/2 : Mi
g � Cr1

g + F ×
(
Cr2
g − Cr3

g

)
+ F ×

(
Cr4
g − Cr5

g

)

(5)
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Fig. 1 Architecture of
three-layer ANN

DE/best/2 : Mi
g � Cbest

g + F ×
(
Cr1
g − Cr2

g

)
+ F ×

(
Cr3
g − Cr4

g

)

(6)

DE/target − to − best/1 : Mi
g � Ci

g + F ×
(
Cbest
g − Cr1

g

)

+ F ×
(
Cbest
g − Cr2

g

)

(7)

T ik
g �

{
Mik

g i f rand(0, 1) < Cr
Wik

g otherwise
for k � 1, 2, . . .D (8)

T ik
g �

{
Mik

g l ≤ k ≤ (l + t)
Wik

g otherwise
for k � 1, 2, . . .D (9)

Ci
g+1 �

{
T i
g Fi tness

(
T i
g

)
i s bet ter than Fi tness

(
Ci
g

)

Ci
g otherwi se

(10)

The notations used above are in the form DE/a/b, where
DE means differential evolution, a indicates the choice of
base vector used in mutation (it may be a randomly chosen
vector, target vector or the best vector), b indicates the num-
ber of difference vectors applied in mutation; Mi

g stands for
ith mutant vector in gth generation; Cbest

g for the best vector
of the population in gth generation;Cr

g for a randomly chosen
chromosome from the population of generation g; Ci

g is the
target (donor) vector;Cr is the crossover probability; F is the
scale factor; T ik

g kth gene of ith chromosome in gth genera-
tion; rand (0,1) represents a random number between 0 and
1; and the value l and k are chosen based on the crossover
probability in such manner that: 1 ≤ l ≤ (l + k) ≤ D with
D is the dimension of the chromosome. Note that, all the
chromosomes which are selected for any mutation scheme
must be distinct to each other.

3 Proposed ANN Training Algorithm
(ADE-ANNT)

In the proposed method, a large number of different ANN
architectures need to be trained to obtain the best archi-
tecture for TSF. This demands a robust training algorithm
that reaches a near-optimal solution in quick time. Con-
ventionally, gradient-based algorithms are widely used for
training ANN. However, the gradient-based methods have
several shortcomings such as unreliable [53], slow con-
vergence speed [54], chances to trapping to local optima
is high [55], performance is subjected to initial values of
algorithm parameters [54], etc. Therefore, recently, several
evolutionaryANN training algorithms [18, 38–44] have been
developed. Out of several evolutionary algorithms, the appli-
cations of DE to ANN training [38–41, 44] have dominated
the literature. Some authors [38–40, 44] have used traditional
DE variants forANN training, whereas Slowik [41] proposed
DE-ANNT + training algorithm with multiple trial vectors
concept. In DE-ANNT + algorithm, for each target vector,
multiple mutant vectors are generated. The mutant vector
having the best fitness is used in crossover to generate a trial
vector. Then, selection operation is carried out between the
trial vector and target vector to generate the chromosomes
for the next generation. The control parameters F and Cr
are obtained based on the rate of change of the best solu-
tion (Eq. 11), where TheBest represents the fitness of the
best chromosome. In Slowik [41], the population is said to
be stagnated when the value of R (Eq. 11) of the popula-
tion does not change by a certain percentage. DE-ANNT
+ has shown better performance than extended backpropa-
gation (EBP), EA-ANNT and DE-ANNT. Also, the results
are as good as the Levenberg–Marquardt algorithm. How-
ever, the major drawback of DE-ANNT + is that it suffers
from exploitation due to the generation of multiple mutant
vectors for each individual in every generation. Therefore,
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Fig. 2 Encoding weights of
ANN on a Chromosome

DE-ANNT + is not so suitable for the proposed self-adaptive
modelling scheme.

(11)

Rate of change of best solution (R)

� TheBesti ÷ TheBesti−1

To develop a robust DE-based training algorithm, the
choice of DE strategy plays a vital role. To address this issue,
Mezura-Montes et al. [56]made a comparative study on eight
differentDE schemes using 13 benchmark problems and sug-
gested that the DE/best/1/bin scheme provides robust result
irrespective of the problem in hand. However, the DE/best/1
scheme has the tendency of premature convergence, which
can be effectively avoided by generating multiple trial vec-
tors upon stagnation. Therefore, by integratingDE/best/1/bin
strategy with the concept of multiple trial vectors upon stag-
nation, an adaptive differential evolution with conditional
multiple trial vectors for ANN training (ADE-ANNT) is pro-
posed. In addition, the values of control parameters F andCr
are determined self-adaptively based on the problem in hand.

Algorithm 1 presents the pseudocode of ADE-ANNT. In
this algorithm, the trainable weight set of an ANN is encoded
into the chromosomes as a list of real numbers (as in Fig. 2)
with each gene representing a weight of ANN. Hence, the
length of each chromosome for an ANNwith k inputs, q hid-
den neurons and one output neuron with bias component is
q × (k + 2) + 1. The first generation of the population con-
sists of PopSize number of randomly selected chromosomes,
with each chromosome denoting the weights of ANN. The
fitness of each chromosome (weight set) is obtained by using
Eq. 12. Note that, when a chromosome has a lower root mean

square error (RMSE) (as in Eq. 13) than another chromo-
some, the chromosome having lower RMSE is considered
as better. Then, the next generations of the population are
repeatedly generated until the termination criteria are satis-
fied. The next generation of the population is generated by
applying mutation, crossover and greedy selection operators
on each chromosome of the current generation. DE/best/1
mutation scheme is applied to generate the mutant vector(s)
using the proposed parameter adaptation scheme. The num-
ber of mutant vectors depends on the stagnation criteria, i.e.
upon stagnation of the population, multiple mutant vectors
are generated by using multiple scale factors. Unlike DE-
ANNT + [41], all the mutant vectors are crossed over with
the target vector to generate multiple trial vectors (v >1) and
then the best trial vector is used for selection. If stagnation
does not occur, one scale factor is used to generate onemutant
vector, which consequently generates one trial vector. More-
over, motivated by [57, 58], the scale factor and crossover
probability are self-adaptively, and dynamically determined
considering the problem in hand.

Fitness � −1 × RMSE (12)

RMSE �
√√√√1

n

n∑
i�1

(Yi − Ti )2 (13)

where n represents the number of observations, Ti and Yi are
computed and actual values of ith observation.
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3.1 Parameter Adaption in ADE-ANNT

Algorithm 2 presents the pseudocode of the parameter adap-
tation used in the proposed ADE-ANNT training algorithm.
In every generation, the scale factor Fi and crossover proba-
bilityCri for each target vector is generated.When stagnation
occurs, more than one trial vectors (v) are generated. To
achieve this, v (>1) number of scale factors are used to gen-
erate vmutant vectors which after crossover generates v trial
vectors. If stagnation does not occur, one scale factor is used
to generate one mutant vector, which consequently generates
one trial vector.

Where rand(1,v) stands for v randomly generated num-
bers from a uniform distribution within the range (0, 1),
Cauchyrnd(Fm, 0.1) is a randomly generated number from a
Cauchy distribution having scale parameter 0.1 and location
parameter Fm, Gaussianrnd(Crm, 0.1) is a randomly gen-
erated number from a Gaussian distribution with standard
deviation 0.1 and mean Crm.

Initially, the location parameter Fm is set to 0.5 and is then
updated after each generation (using Eq. 14).

W f � 0.7 + 0.3 × rand(0, 1) (14)

Fm � W f × Fm +
(
1 − W f

) × mean(Fsuccess)

whereWF is the weight factor which varies between 0.8 and
1. Fsuccess is the set of successful scale factors using which
better trial vectors for the next generation are generated.

The mean of the Gaussian distribution Crm is initially
set to 0.5 and is then updated after each generation (using
Eq. 15).

Wcr � 0.7 + 0.3 × rand(0, 1) (15)

Crm � Wcr × Crm + (1 − Wcr ) × mean(Crsuccess)

where WCr is the weight factor varying within 0.8 and 1.
Crsuccess is the set of the successful crossover probabilities
generating better trial vectors in the current generation.

3.2 Explanation of Parameter Adaption

Upon stagnation, multiple scale factors are used to gener-
ate multiple mutant vectors. The multiple mutant vectors are
crossed over with the target vector to generate multiple trial
vectors. The generation of multiple trial vectors around the
existing solution assists in getting out of stagnation. This is

because (1) If the difference vectorCr1
g −Cr2

g becomes small,
i.e. when the vectors converge to a small domain, the larger
values of scale factor assists in getting out of the suboptimal
valleys/peaks causing stagnation; (2) If the difference vec-
tor Cr1

g − Cr2
g is large, the population may jump the global

minima due to larger difference vectors, but the use of scale
factors having smaller values assists in overcoming this prob-
lem. Thus, the generation of multiple scale factors from a
uniform distribution between (0–2) helps in performing both
local and global search.

When stagnation does not occur, only one scale factor is
randomly generated from a Cauchy distribution with scale
factor 0.1 and location parameter Fm. This is because the
location parameterFm ofCauchy distribution varies the value
of F more than the conventional normal distribution. More-
over, during the adjustment of Fm, the use of the arithmetic
mean guidesFm towards a higher valuewhich aids larger per-
turbation to the target vectors; hence, premature convergence
to local minima is avoided. Irrespective of stagnation crite-
ria, Fsuccess records the successful scale factors that generate
better trial vectors than target vector in the current genera-
tion. Thus, it increases the chances of generating better trial
vectors as the generations proceed further.

The crossover probability generated is independent of
stagnation the criterion, i.e. for both the cases, the crossover
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probability is randomly generated from a Gaussian dis-
tribution with standard deviation 0.1 and mean Crm. The
adaptation of Crm is also based on the memorization of
thriving crossover probabilities generating better trial vec-
tors. The use of arithmetic mean while adjusting the value of
Crm avoids the bias of Cr towards smaller values [41]. Here,
we have chosen Gaussian distribution because it glorifies the
chances to generate the majority of Cr values within unity
[41].

4 ProposedMethodology

This section presents the proposed DE-based modelling
scheme (DEMS) to automatically determine the most parsi-
monious ANN architecture for a time series under study. The
DEMS method (as in Fig. 3) follows the wrapper approach
of model selection. It uses the proposed ADE-ANNT train-
ing algorithm to determine the near-optimal weight set and
fitness of ANN architectures. Algorithm 3 presents the steps
of the proposed DEMS method which operates in four steps,
namely (a) Initialization, (b) Pre-processing, (c) ANN mod-
elling and (d) Forecast.
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Fig. 3 Graphical abstract of the proposed method

In the initialization step, the problem parameters like the
length of the train (ltr ), validation (lv) and test (lte) are ini-
tialized. The number of inputs of ANN is restricted to 1 to
kmax (computed using Eq. 16), and the number hidden layer

neurons of ANN is restricted to 1 to qmax (calculated using
Eq. 17).

kmax � 10 × log10(ltr + lv) (16)
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qmax � 2 × kmax (17)

In the pre-processing step, the time series is normalized to
a range between (0–1). To assess the sensitivity to different
normalization techniques, min–max (as in Eq. 18), decimal
scaling (as in Eq. 19) and vector (as in Eq. 20) normalization
techniques are considered. Also, the effect of treatment of
trend by taking the first difference of the series is tested. But
differencing is avoided due to deterioration in performance.
Let y � [

y1,y2,.............,yn
]T be the n-dimensional time series

vector and y′ �
[
y

′
1, y

′
2, . . . , y

′
n

]T
be the normalized series

vector with y
′
i is the ith normalized data of yi .

y′
i � yi − miny

maxy −miny
(18)

y′
i � yi

10log10(maxy)
(19)

y′
i � yi√∑n

j�1 y
2
j

(20)

In the ANN modelling step, the proposed adaptive DE
algorithm is used to search the most parsimonious ANN
architecture in the space of all possible architecture com-
binations. The DES is used to encode the ANN architectures
into the chromosomes. Initially, Psize number of chromo-
somes are randomly chosen between 0 and 2.5, with each
chromosome C j � {g1, g2, g3, g4, g5, g6, g7, g8} consist-
ing of 8 genes (4 are used for the number of inputs and four
are used for the number of hidden neurons). Then, the fitness
(i.e. the RMSE measure on train set) of each chromosome
is calculated. To calculate the fitness, the genotypes are first
converted to phenotypes (i.e. ANN architectures). The num-
ber of inputs (k) of ANN is calculated using Eq. 21 and the
number of neurons in the hidden layer (q) are computed using
Eq. 22.

k � kmax × (g1 + g2 + g3 + g4)

10
(21)

q � qmax × (g5 + g6 + g7 + g8)

10
(22)

Once the number of inputs of ANN is determined, the nor-
malized time series is converted to n − k patterns with each
pattern consisting of k inputs, one target. After the determi-
nation of k−q−1 ANN architecture and patterns, the fitness
of ANN architecture is obtained using the proposed ADE-
ANNT training algorithm. Then, the DEmutation, crossover
and selection operators are repeatedly applied till the termi-
nation criterion is satisfied, i.e. the error on the validation
set increases. When the termination criterion is satisfied, the

architecture having the best fitness is chosen as the near-
optimal ANN architecture for the time series under study.

In the Forecast step, the values for the test set are pre-
dicted using the obtained k-q-1 architecture and near-optimal
weight set. The predicted values are de-normalized to obtain
the actual forecasts, and then forecast accuracy is measured.

5 Experimental Setup and Results

In this section, the simulation results, along with the analysis
and discussions, are presented. ARIMA and ETS models are
a linear form ofmost popular neural networkMLP and hence
considered as an excellent benchmark to compare with ML
models [37]. Therefore, in this study, ARIMA and ETS are
considered as comparative models. The appropriate ARIMA
and ETS model for a time series is determined by using
the Forecast package of R [59]. In addition, to evaluate the
effectiveness of the proposed architecture selection DEMS
method, another architecture selection method using DBN
[27] is considered. Additionally, the MLP model trained
using the Levenberg–Marquardt (LM) algorithm (MLP +
LM) is used for comparison. The MLP + LM method is
implemented using the neural network toolbox ofMATLAB.
In the MLP + LM method, the number of output is fixed to
one, whereas the number of input is determined by analysing
the autocorrelation and partial autocorrelation function of
the time series. To avoid the inconsistencies arising due to
improper ANN architecture and to make a fair comparison
with the proposedDEMSmethod, the number of hidden neu-
rons in MLP + LM method is determined by altering the
neurons between 1 and 20 (as in [2, 60]) and the architec-
ture having the smallest mean SMAPE over 50 independent
simulations is considered. In all the MLP models, the binary
sigmoid activation function is used in the neurons of the hid-
den layer, and linear activation is used in the neuron of the
output layer.

Twenty-one time series datasets (described in Table 1)
from time series data library [61] are considered to eval-
uate the methods using root mean square error (RMSE as
in Eq. 12) and symmetric mean absolute percentage error
(SMAPEas inEq. 23). SMAPE is a scale-freemeasurewhich
can be used to evaluate the forecasting methods across one
or more time series datasets and hence used in the NN3 fore-
casting competition to assess the forecasting methods [13].
Therefore, in this paper, SMAPE measure is considered to
evaluate the forecasting methods. Additionally, since RMSE
is used to assess the fitness of the proposed ADE-ANNT
training algorithm, the RMSE measure is also considered
to evaluate the forecasting methods. In the proposed DEMS
method, the population size Psize of DE is fixed to 10, the
number of genes in each chromosome is fixed to 8. The genes
are initialized and bound in a range (0–2.5). To make a fair
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Table 1 Description of time series datasets

Time series Description Interval Duration

Accidental Death Accidental deaths in USA Monthly 1973–1978

Acres Burned Acres burned in forest fires in Canada Yearly 1918–1988

Car Sells Car sales in Quebec Monthly 1960–1968

Chickenpox Number of chickenpox reported in New York city Monthly 1931–1972

Colorado River Flows in Colorado River Lees Ferry Monthly 1911–1972

Gas Usage Residential gas usage in Iowa in cubic feet Monthly 1/1971–10/1979

Internet Traffic Internet traffic data (in bits) in the United Kingdom
academic network

Yearly 19/11/2004–26/01/2005

ITDUK Aggregate internet traffic data (in bits) of the United
Kingdom academic network

Hourly 19/11/2004, 09:30 to 27/01/2005, 11:11

Lake Lake Erie Levels Monthly 1921–1970

Lynx Number of lynx trapped in the Mackenzie River of
Northern Canada district

Yearly 1821-1934

Milk Milk production: pounds per cow Monthly 1962–1975

Mumps Number mumps cases reported in New York city Monthly 1928–1972

Passenger Airline passengers in thousands Monthly 01/1949–12/1960

Pollution Shipment of pollution equipment (in thousands) of
French francs

Monthly 01/1966–10/1976

Rainfall Rainfall in inches at London Yearly 1813–1912

Stock Common stock price, US Yearly 1871–1970

Sun Spot Wolf’s Sunspot Numbers Yearly 1700–1987

Tasty Cola Tasty Cola sales Monthly 2001–2003

Temperature Average monthly temperature of Nottingham Castle
city in Fahrenheit

Monthly 1920-1939

Traffic Traffic fatalities in Ontario Monthly 1960–1974

Unemployment Canadian total unemployment in thousands Monthly 1956–1975

comparison of the proposed DEMS method with DBN [27],
the number of particles in PSO is set to 10, early stopping is
used in backpropagation algorithm, and other experimental
parameters are kept same to that of DBN [27]. The parame-
ters used in the proposed ADE-ANNT training algorithm are
presented in Table 2. Table 3 presents the most parsimonious
ARIMA model, ETS model and ANN architecture obtained
and used in the simulations. With this experimental setup,
for each method, 50 independent simulations are carried out
on each time series dataset (as in Table 1). The analysis on
obtained results are presented in two sections: (a) Analysing
results using RMSE measure, (b) Analysing results using
SMAPE measure.

SMAPE � 1

n

n∑
j�1

∣∣Y j − Tj
∣∣

(∣∣Y j
∣∣ + ∣∣Tj

∣∣)/2 (23)

where n represents the number of observations, Ti and Yi are
computed and actual values of ith observation.

Table 2 Simulated parameters in ADE-ANNT

Parameters Value

Population Size (Psize) 50

Bound of genes of chromosomes [0–1]

Stagnation criterion R ≤ 0.95

Number of trial vectors (v) 5 if stagnation

1 otherwise

5.1 Analysing Results Using RMSEMeasure

Table 4 presents the mean RMSE over 50 independent simu-
lations for each time series. However, to make a comparative
statistical analysis of the proposed DEMSmethod with other
methods, the Wilcoxon signed-rank test [62] is applied.
Table 5 presents the individual hypothesis test results. It can
be observed from Tables 4 and 5 that the DEMS method
provides the best RMSE on 13 time series datasets (Acres
Burned, Accidental Death, Internet Traffic, GasUsage, Lake,
Lynx, Milk, Mumps, Tasty Cola, Rainfall, Passenger, Tem-
perature, Unemployment) with 11 statistical significant (as
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Table 3 Most parsimonious models
identified and used in the simulation Time series ARIMA ETS MLP architecture obtained

using proposed DEMS

Accidental death ARIMA(2,0,2) ETS(A,N,N) 7–4–1

Acres burned ARIMA(0,0,0) ETS(A,N,N) 2–1–1

Car sells ARIMA(2,1,3) ETS(A,N,N) 12–1–1

Chickenpox ARIMA(4,0,2) ETS(A,Ad,N) 2–4–1

Colorado river ARIMA(3,1,3) ETS(A,N,N) 5–1–1

Gas usage ARIMA(1,0,1) ETS(A,N,N) 3–5–1

Internet traffic ARIMA(2,1,0) ETS(A,N,N) 6–4–1

Internet traffic UK ARIMA(1,1,2) ETS(A,Ad,N) 21–8–1

Lake ARIMA(5,1,1) ETS(A,N,N) 25–1–1

Lynx ARIMA(2,0,2) ETS(A,N,N) 2–3–1

Milk ARIMA(1,1,3) ETS(A,N,N) 19–1–1

Mumps ARIMA(2,0,2) ETS(A,Ad,N) 23–6–1

Passenger ARIMA(2,1,3) ETS(A,N,N) 12–3–1

Pollution ARIMA(2,1,0) ETS(A,A,N) 13–1–1

Rainfall ARIMA(0,0,0) ETS(A,N,N) 5–1–1

Stock ARIMA(2,1,1) ETS(A,N,N) 12–6–1

Sun Spot ARIMA(2,0,1) ETS(A,N,N) 4–8–1

Tasty Cola ARIMA(2,0,1) ETS(A,N,N) 13–1–1

Temperature ARIMA(5,0,1) ETS(A,N,N) 12–1–1

Traffic ARIMA(0,1,0) ETS(A,N,N) 10–3–1

Unemployment ARIMA(2,0,3) ETS(A,N,N) 12–3–1

Table 4 RMSE for each dataset
(best values are presented in bold
face)

Time Series ETS ARIMA MLP + LM DBN [27] Proposed DEMS

Accidental Death 685.21 584.06 569.76 579.37 447.45

Acres Burned 2,891,782.4 2,993,543.9 3,210,620.97 2,879,300 2,840,956.0

Car Sells 3636.61 2851.18 2172.89 4142.9 2892.41

Chickenpox 171.39 233.75 164.37 182.75 181.43

Colorado River 0.50 0.47 0.59 0.59 0.53

Gas Usage 45.94 39.36 19.00 20.09 15.75

Internet Traffic 184,862.83 148,542.44 156,735.15 221,330.02 127,679.82

ITDUK 4030.9 3933.60 1976.22 7902.7 2011.53

Lake 0.51 0.36 0.39 0.82 0.35

Lynx 967.75 806.64 1259.20 1039.3 727.37

Milk 26.78 23.27 15.44 113.42 11.73

Mumps 108.15 109.99 104.59 90.53 84.11

Passenger 52.43 37.38 50.42 162.59 30.05

Pollution 872.96 771.91 1917.67 1810.9 1094.80

Rainfall 4.09 4.22 4.38 4.22 3.88

Stock 6.97 8.6 44.42 52.63 20.83

Sun Spot 31.88 21.56 31.71 31.269 23.94

Tasty Cola 277.96 209.25 267.17 559.12 171.67

Temperature 5.14 2.69 2.71 2.74 2.67

Traffic 31.74 31.36 28.71 34.23 32.99

Unemployment 51.29 54.27 46.70 186.03 36.08

in Table 5). Additionally, it provides better RMSE than ETS
in 16 cases, ARIMA in 15 cases (14 statistically signifi-

cant), MLP + LM in 16 cases and DBN [27] in 21 cases
(18 statistically significant). It provides inferior RMSE than
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Table 5 Individual hypothesis test results using RMSE indicating the
superior (+), inferior (−) or equivalent (≈) method with respect to the
proposed DEMS method

Time Series ETS ARIMA MLP + LM DBN [27]

Accidental Death − − − −
Acres Burned − − − ≈
Car Sells − ≈ + −
Chickenpox + − + ≈
Colorado River + + − −
Gas Usage − − − −
Internet Traffic − − − −
ITDUK − − + −
Lake − − − −
Lynx − − − −
Milk − − − −
Mumps − − − −
Passenger − − − −
Pollution + + − −
Rainfall − − − −
Stock + + − −
Sun Spot − + − −
Tasty Cola − − − −
Temperature − ≈ ≈ ≈
Traffic ≈ ≈ + −
Unemployment − − − −

ETS, ARIMA and MLP + LM in only 4, 5 and 4 time series
datasets, respectively, and for other cases, it provides statis-
tically equivalent RMSE.

5.2 Analysing Results Using SMAPEMeasure

In this subsection, the results are analysed using the scale-
free SMAPE performance measure. Therefore, the results
are analysed considering each time series individually and
all time series at a time. For evaluating the methods dataset
wise, the mean SMAPE over 50 independent simulations is
calculated and presented in Table 6. To statistically compare
the proposed DEMS method with other methods, Wilcoxon
signed-rank test [62] is applied, and the test results are pre-
sented in Table 7. It can be observed from Table 6 that the
DEMS method provides the best SMAPE in 11 time series
datasets (Accidental Death, Chickenpox, Internet Traffic,
ITDUK, Lake, Milk, Passenger, Sun Spot, Tasty Cola, Tem-
perature, Unemployment) with statistical significance in 8
cases (as in Table 7). In addition to this, it provides bet-
ter SMAPE than ETS in 15 time series datasets, ARIMA
in 15 time series datasets, MLP + LM in 16 time series
datasets andDBN [27] in 17 (16 statistically significant) time
series datasets. It provides inferior SMAPE than ETS in 4,
ARIMA in 5, MLP + LM in 2 and DBN [27] in 1 time series
datasets and for other cases, it provides statistically equiva-
lent SMAPE.

Table 6 SMAPE for each dataset
(best values are presented in bold
face)

Time Series ETS ARIMA MLP + LM DBN [27] Proposed DEMS

Accidental Death 7.04 5.42 5.52 5.61 4.07

Acres Burned 62.45 53.77 58.48 51.56 52.33

Car Sells 15.84 12.66 10.79 17.65 13.58

Chickenpox 54.30 54.43 39.65 43.14 35.61

Colorado River 28.82 37.02 41.94 42.45 38.91

Gas Usage 31.56 26.99 22.44 16.53 18.73

Internet Traffic 10.55 10.16 10.87 16.70 8.54

ITDUK 4.91 4.84 3.94 11.89 3.02

Lake 2.81 1.78 1.87 4.01 1.71

Lynx 48.78 50.71 68.15 63.06 49.13

Milk 2.08 1.96 1.45 12.37 1.20

Mumps 29.11 31.33 27.53 22.83 23.38

Passenger 9.99 6.88 9.30 37.12 5.12

Pollution 21.33 19.30 47.09 57.82 30.15

Rainfall 10.97 12.68 13.31 11.19 11.21

Stock 9.92 11.81 69.99 113.52 34.08

Sun Spot 49.04 37.14 46.25 40.55 34.16

Tasty Cola 26.69 20.32 32.97 68.41 18.15

Temperature 8.37 4.81 4.59 4.88 4.49

Traffic 18.14 17.67 14.58 18.62 18.71

Unemployment 6.59 7.31 6.15 29.84 4.66
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Table 7 Individual hypothesis test results using SMAPE indicating the
superior (+), inferior (−) or equivalent (≈) method with respect to the
proposed DEMS method

Time Series ETS ARIMA MLP + LM DBN [27]

Accidental Death − − − −
Acres Burned − − − ≈
Car Sells − + + −
Chickenpox − − − −
Colorado River + + − −
Gas Usage − − − +

Internet Traffic − − − −
ITDUK − − ≈ −
Lake − − − −
Lynx ≈ ≈ − −
Milk − − ≈ −
Mumps − − − ≈
Passenger − − − −
Pollution + + − −
Rainfall ≈ − − ≈
Stock + + − −
Sun Spot − − − −
Tasty Cola − − − −
Temperature − − ≈ −
Traffic + + + ≈
Unemployment − − − −

Fig. 4 Ranks of forecastingmethods usingSMAPE (p�0.0 andCritical
Distance � 1.3)

To determine the best method considering all the time
series datasets, Friedman and Nemenyi hypothesis test [62,
63] is applied on the SMAPEs of all time series datasets. The
test results presented in Fig. 4 indicates the superiority of the
DEMSmethod as it has the lowest mean rank (69.69) among
all the methods employed in this study. In addition, since the
mean rank of DEMS method is lower than other methods
with at least an absolute difference of critical distance (1.3),
the DEMSmethod is statistically superior to other methods.

To make the proposed DEMS method consistently effec-
tive, several comparisons between different designs are
performed. The design strategies are intended to evaluate the
effect of treatment of trend component, sensitivity to different
normalization techniques and effectiveness of the proposed
ADE-ANNT training algorithm.

For this, the design configuration (i.e. the full design
parameter) used in the proposedmethod usingmin–max nor-
malization technique and ADE-ANNT training algorithm is
treated as the baseline. To evaluate the effect of treatment
of trend component, a detrending step by taking the first
difference of time series data is added before the normal-
ization step. Here, the first difference is considered because
detrending data by making the first difference is the most
suitable method for building the ANN model for nonlinear
and stochastic time series [12]. To evaluate the sensitiv-
ity to different normalization techniques, min–max (as in
Eq. 18), decimal scaling (as in Eq. 19) and vector (as in
Eq. 20) normalization techniques are considered. To evaluate
the sensitivity to different training algorithms, the pro-
posed ADE-ANNT training algorithm, TLBO [64] for ANN
training (TLBO-ANNT), DE-ANNT + [41] (with five trial
vectors), DE-CRO-HONNT [43] and Levenberg–Marquardt
(LM) algorithm are considered. Additionally, to evaluate the
effectiveness of architecture selection using DEMS, results
fromMLP + LM (architecture selection using ACF & PACF
and trained with LM)method is compared with DEMS + LM
(architecture obtained using DEMSmethod and trained with
LM algorithm). In the comparison of architecture selection
methods, the DBN [27] method is not considered because
of its inferior statistical performance than the MLP + LM
method (as in Fig. 4). In addition, to avoid the bias of DEMS
method towards ADE-ANNT training algorithm (since the
architectures are selected using ADE-ANNT training algo-
rithm), the LM algorithm is used to train the models in
DEMS + LM method. By making these modifications, 50
independent simulations are conducted for each time series
dataset. To evaluate the sensitivity of the DEMSmethod con-
sidering different strategies, a one-way analysis of variance
(ANOVA) test is conducted on the obtained SMAPEs. The
test results are presented in Table 8. It indicates that the archi-
tectures selected using the DEMS method are statistically
insensitive (p-value>0.05) to different normalization tech-
niques. However, the chosen architectures using the DEMS
method are sensitive to detrending using the first differ-
ence of the series (p-value<0.05) and training algorithms
(p-value<0.05). Additionally, the performance of the ANN
model is sensitive to the architecture selection method (p-
value<0.05).

To identify the effect of treating the trend component by
using the first difference of the series, Friedman andNemenyi
hypothesis test [62, 63] is applied on the obtained SMAPEs,
and the test results are presented in Fig. 5. It can be observed
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Table 8 ANOVA results
considering different strategies df Sum of squares Mean square F value p value

Direct versus detrending using first difference 1 3,550,883.05 3,550,883.05 1271.45 0.00

Normalization technique 2 274.32 137.16 0.70 0.35

Training algorithm considering SMAPE 4 104,266.00 26,066.50 51.78 0.00

MLP + LM versus DEMS + LM 1 14,635.13 14,635.1 29.06 0.00

Fig. 5 Ranks of direct versus detrending using the first difference of the
series using SMAPE (p � 0.0 and Critical Distance � 0.4)

that the proposed method performs statistically better when
detrending using the first difference is avoided. Contrasting
to the claim of the superior performance ofANNmodelswith
detrending using the first difference by Qi and Zhang [12], in
this study, the performance of ANN model deteriorates sig-
nificantly when detrending using the first difference is used.
However, in Qi and Zhang [12] method, the architecture of
the ANN model is chosen in an ad hoc manner. In addition,
they suggested that the conclusions may change with differ-
ent parameters. From simulation results, it is claimed that
ANN with an appropriate architecture can effectively handle
the trend component of the time series. And in such a case,

detrending using the first difference deteriorates the perfor-
mance of the model significantly.

To identify the best training algorithm among all the
algorithms considered in this study, Friedman and Nemenyi
hypothesis test [62, 63] is applied to the obtained SMAPEs.
The test results shown in Fig. 6 indicate the clear superi-
ority of the proposed ADE-ANNT training algorithm. The
most competing algorithm with the proposed ADE-ANNT
algorithm is LM. However, the absolute difference in mean
rank (1.51) is more than the critical distance (CD) (1.3).
Hence, their difference is statistically significant. Moreover,
thememory consumption by the proposedADE-ANNTalgo-
rithm is always less than or equal to that of DE-ANNT +
[41], since, in ADE-ANNT algorithm, multiple trial vectors
are generated only upon stagnation. In the worst-case (i.e.
stagnation occurs at every generation, which is a rare case)
both the algorithmshave the samememory consumption. The
DE-ANNT+ [41] algorithm has lower memory consumption
than the LM algorithm. Thus, the ADE-ANNT algorithm
has lower memory consumption than LM algorithm as well.
In the proposed wrapper approach-based DEMS method, a
variety of ANN architectures need to be trained. Thus, con-
sidering the memory consumption and forecasting accuracy,
ADE-ANNT algorithm is more suited in the proposed mod-
elling scheme.

Table 8 indicates that the DEMS + LM and MLP + LM
methods provide statistically different overall forecasting
accuracy considering SMAPEmeasure. In both methods, the
LM training algorithm is used but on different architectures.

Fig. 6 Ranks of training
algorithms using SMAPE (p �
0.0 and Critical Distance � 1.3)
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Fig. 7 Ranks of DEMS + LM and MLP + LM method using SMAPE
(p � 0.0 and Critical Distance � 0.4)

In DEMS + LMmethod, the architectures are obtained using
the proposed DEMS (as in Table 3) method whereas, inMLP
+ LM method, the architectures are obtained using ACF and
PACF function of the series. To identify the better method,
Friedman and Nemenyi hypothesis test [62, 63] is applied
to the obtained SMAPEs, and the test results are shown in
Fig. 7. It indicates the superiority of the proposed architecture
selection DEMS method.

6 Conclusion

In this paper, a systematic investigation is made to explore
the full potential of multilayer feedforward ANN, espe-
cially single hidden layer MLP in TSF. For this, a DE-based
modelling scheme (DEMS) is developed to determine the
most parsimonious architecture of MLP for a time series
under study. In addition, an adaptive DE-based ANN train-
ing algorithm (ADE-ANNT) is proposed to determine the
near-optimal weight set of ANN. Extensive statistical anal-
yses on obtained results indicate the statistical superiority
of the proposed DEMS method than the established statis-
tical models ARIMA and ETS. The architectures selected
using the proposed DEMSmethod provide statistically supe-
rior result than the MLP + LM and DBN [27] methods. The
results also indicate the statistical superiority of ADE-ANNT
algorithm when compared with LM, DE-ANNT + [41], DE-
CRO-HONNT [43] and TLBO-ANNT [64]. In addition to
statically superior SMAPE, the ADE-ANNT algorithm has
lower memory consumption than DE-ANNT + [41] and the
most popular LM algorithm.

The experiments reveal that the ANN models are quite
capable of handling the trend component if the near-optimal
architecture for a time series is obtained and in such a case
detrending by taking the first difference of the series deteri-
orates the forecasting accuracy. Therefore, in the proposed
DEMS method, treatment of trend component is avoided. It

is also observed that in TSF, the ANNmodels are insensitive
to different normalization techniques.

The proposed DEMS method is fully automatic and can
be applied in various real-world time series with least human
intervention. The DEMS method is computationally expen-
sive because of the use of hierarchical DE algorithms for
simultaneous optimization of architecture and weight set of
ANN.However, it supports parallel implementation to reduce
computational time. In addition, the proposedDEMSmethod
can also be applied to optimize the architecture of other ANN
models like FLANN, Pi-Sigma neural network, RBF neural
network, etc.
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