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Abstract
Head detection-based crowd counting is of great importance and serves as a preprocessing step in many visual applications,
for example, counting, tracking, and crowd dynamics understanding. Despite significant importance, limited amount of work
is reported in the literature to detect human heads in high-density crowds. The problem of detecting heads in crowded scenes
is challenging due to significant scale variations in the scene. In this paper, we tackle this problem by exploiting contextual
constraints offer by the crowded scenes. For this purpose, we propose two networks, i.e., sparse-scale convolutional neural
network (SS-CNN) and dense-scale convolutional neural network (DS-CNN). SS-CNN detects human heads with coarse
information about the scales in the image. DS-CNN utilizes detection obtained from SS-CNN and generates dense scalemap
by globally reasoning the coarse scales of detections obtained from SS-CNN via Markov Random Field (MRF). The dense
scalemap has unique property that it captures all scale variations in image and provides an aid in generating scale-aware
proposals. We evaluated our framework on three challenging state-of-the-art datasets, i.e., UCF-QNRF, WorldExpo’10, and
UCF_CC_50. Experiment results show that proposed framework outperforms existing state-of-the-art methods.

Keywords Crowd counting · Head detection · High-density crowds · Crowd analysis

1 Introduction

Ensuring crowd safety and providing security to the partic-
ipants of mass events is challenging problem and receiving
great attention from the scientific community.With the grow-
ing population and increasing urbanization, mass events like
marathons, sports, religious festivals, concerts, and carnivals
organized frequently. In order to ensure crowd safety and
security at these mass events, adequate safety measures must
be adopted by the event organizers and security personnel.
Crowd disasters still occur frequently, for example, during
Love Parade [1] and Hajj [2], despite all safety measures.
Crowd disasters usually attribute to critically high densi-
ties in a constrained environment. To avoid crowd disasters
and in order to ensure crowd safety, it is important to ana-
lyze crowd dynamics. Understanding crowd dynamics has
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numerous applications, for example, anomaly detection [3–
6], congestion detection [7], crowd counting, tracking [8,9]
and many others. Among these applications, crowd counting
has achieved tremendous attention from the computer vision
community during recent years [10–14]

The goal of crowd counting is to estimate total number
of pedestrians in the scene. Crowd counting has numerous
applications in video surveillance, traffic monitoring [15],
public space design and event planning. With precise crowd
count and localization of pedestrians in the environment can
substantially reduce the cost. However, crowd counting is
challenging due to non-uniform and complex distribution
of the people in the environment. Significant variations in
human head scales have further made the counting problem
challenging. Several strides have been made during recent
years to tackle these challenges. Most of traditional crowd
counting methods use different regression techniques like
linear regressor [16], support vector regressor (SVM) [17],
Gaussian process regression (GPR) [18], K-nearest neigh-
bor (KNN) [19] and neural network (NN) [20] to estimate
the crowd count. With the recent advancement in com-
puter vision technology, and with success of Convolutional
neural networks (CNNs), recent crowd counting methods
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employ various CNNs methods to estimate crowd count by
employing regression on the density maps [13,14,21–23].
Regression-based models work well in high-density situa-
tions since these models capture the global and generalized
density information. However, these methods over estimate
the count in low-density situations. Moreover, these methods
are blind and cannot estimate the location of individuals in
the scene which provide crucial information for crowd man-
agers. On contrary, detection-based crowd counting methods
detect individuals in the scene by training an object detec-
tor. In detection base approaches, crowd count is the number
of detection in image. These methods extract discriminating
features that best describe the human body.

The performance of detection-based crowd counting
methods in low-density crowds is high as compared to high-
density situations. In high-density crowds, due to limited
space, pedestrians stand very close to each other. Most
parts of human body are not visible due to occlusion and
it is challenging for a detector to precisely detect pedestri-
ans. In high-density crowd, as large part of human body is
occluded, human head is reliable part. Although few steps
have been made in detecting human heads in high-density
crowds [11,12,24,25], head detection in high-density crowds
is challenging job and there is still room for improvement.

Variations in intra-class scales, appearances and poses of
heads have further worsen the problem to detect human head
in cluttered scenes. Thanks to the translation invariance prop-
erty of CNNs which has enabled large capacity networks to
efficiently handle the problem of pose and appearance varia-
tions in the scene. However, the problem of intra-class scale
variance is still an open issue.

From empirical analysis, we observe that scale variations
is naturally caused by perspective distortions in images. The
perspective distortion is imposed by camera view point [26]
due to which scale of the object changes from near to far end
in an image. Perspective information embeds the distance
between the object and camera and provides better estimate
of the different scales in the scene. In high-density crowd
scenes, traditional CNN models with a single scale can not
detect human heads with significant scale variations.

In order to handle scale variations, Zhang et al. [27]
propose multi-column CNN (MC-CNN) that uses multiple
branches, where each branch corresponds to a CNNwith dif-
ferent receptive field. MC-CNN consider only limited scales
and cannot handle the significant scales variations in high-
density crowded scenes. Moreover, MCNN is hard to train
due to multi-column architecture and computational com-
plexity increases with the increase in the number of columns.
Sam et al. [15] propose Switch-CNN using same intuition
of multiple branches but instead of concatenating features
from multiple branches, Switch-CNN predict a scale class
of an input image. The predicted scale class is then used
to select one of the branches and used its features to esti-

mate density. Similarly, Liu et al. [24] introduce DecideNet
that operates in two modes: (1) regression mode and (2)
detection mode. The network switch between the modes for
different location of image based on the real density. Both
Switch-CNNandDecideNet uses binary decision in selecting
a mode based on classifier’s output. This kind of hard deci-
sion may cause wrong selection of mode that will ultimately
lead to incorrect results. In order to solve this problem, Hos-
sain et al. [28] propose scale attention network that “softly”
selects the scales based on the density. Zhang et al. [23]
propose multi-resolution attention CNN (MCA-CNN) that
generate a score map, where high response in score map
represents high probability of head that will guide the net-
work to focus on head areas. Li et al. [29] proposes CSRNet
that uses dilated convolutions with fixed receptive fields. The
model cannot handle high scale variations in the scene due to
fixed receptive field sizes. It is observed that CSRNet works
well for medium size scales while performance degrades
at smaller and larger scales. Basalamah et al. [12] propose
SD-CNN and achieved state-of-the-art performance by tack-
ling the scale variations by encoding perspective information
in scalemap. However, estimating scalemap requires human
efforts to manually annotate human heads for each input
image. Recently, Deepak et al. [30] propose multi-column
model (LSC-CNN) that fuses top-down features and pro-
duces detection at multiple resolutions. Yancheng et al. [31]
proposed a model (Tiny Face) that generates high-resolution
faces from low-resolution and blurry one by employing gen-
erative adversarial network.

In this paper, we proposed a framework that handles
significant scale variations by predicting dense scales in
an image. Generally, our framework follows the following
pipeline.

1. At first stage, our Sparse-Scale CNN (SS-CNN) takes
whole image as input and outputs multiple feature maps
corresponding to each sparse scale. Our SS-CNN is
similar to MC-CNN, yet we change receptive fields of
branches by changing the number of filters andfilter sizes
to capture as much scales of heads as possible in images.
We then apply non-maximum suppression method to
each feature map that suppresses low confidence pixels
and detects human heads. We then accumulate detection
from multiple branches. The obtained detection pro-
vides coarser information about the location and scale
of human heads in the scene.

2. In the second stage, we use detection obtained from the
first stage and generate dense scalemap by globally rea-
soning via Markov Random Field that captures the scale
of head at each pixel of the image.
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3. In the third stage, a uniform gird of points is initialized
over dense scalemap. Taking grid point as a center, we
then extract perspective-aware patches (proposals).

4. In the fourth stage, we classify each input proposal into
head/background and obtain a responsemap. Finally, we
apply non-maximum suppression on resultant response
map and final detection are obtained. The detection
performance of proposed method compare to related
methods is shown in Fig. 1.

Our framework has the following contribution in compar-
ison to other state-of-the-art methods:

– Proposed framework introduces a paradigm shift in
crowdcountingmethods and replaces prevalent regression-
basedmethods by detecting human heads in high-density
crowds.

– We introduce a method of dense scale prediction (at each
pixel of image) by exploiting information from locally
consistent sparse scales.

– With precise detection in high-density crowds, our frame-
work provides the distribution of people in the environ-
ment.

– Proposed framework achieves state-of-the-art perfor-
mance on existing challenging benchmark datasets, i.e.,
UCF-QNRF [34],WorldExpo’10 [35],UCF_CC_50 [32]

2 RelatedWork

Many methods are reported in the literature for crowd count-
ing and density estimation. Generally, we categories the
literature in two major classes, i.e., Regression methods and
Detection methods.

Fig. 1 Sample frame from UCF_CC_50 [32] shows the significance of
our proposed method compare to most recent methods. Sample frame
has 1046 annotated human heads. a LSC-CNN [30] (1st image) under-
estimates the count and detects 873 heads. bTiny Face [33] (2nd image)
trained on face dataset [31] over estimates the count and detects 1537

heads and produces many false positives. c Our proposed framework
(3rd image), on the other hand, detects 1029 (close to ground truth
count) heads and also precisely detects bounding boxes (best view in
zoom)
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Regression-based methods, for example, support vec-
tor regressor [17], linear regression [16], K-nearest neigh-
bor [19] Gaussian Process Regression(GPR) [18], and neural
network [20] predict the count by performing regression
between features of image and count. For example, GPR is
employed in [18] using edge and texture features to estimate
the count in an image. Crowd density is estimated in [20]
by employing self-organizingmap. Correspondence between
crowd count and foreground pixels is learned by neural net-
work in [36]. Neural network is trained on histograms of
edges and blob size to find crowd count [37]. Support vector
regressor is trained in [38] to estimate the count by using
SURF features.

With the tremendous success of deep learning in classifi-
cation and segmentation problems, several CNN models are
proposed to estimate the crowd count. In CNN-based mod-
els, densitymap is generated by learning hierarchical features
from the raw image, and count is obtained by integrating the
count from patches of the image. A Multi-column Convo-
lutional Neural Network (MCNN) [27] estimates the crowd
count by using three branches with different filter sizes to
compensate perspective distortions. CNN-based switching
architecture is proposed that efficiently switches regressors
for a particular crowd patch based on density level. Scale
Aggregation Network (SANet) [13] is proposed for estimat-
ing high-resolution density maps.

Detection-based methods detect pedestrians in crowds
and final count is the sum of detection. We further divide
these methods into two categories, i.e., hand-crafted fea-
tures [39–42] and hierarchical features [43–47]. The first
category trains a classifier based on hand-crafted features,
for example, edges, texture, and shape. The performance
of these methods is relatively low in complex scenes, since
hand-crafted features provide weak representation of human
body. Deformable Part Model (DPM) is proposed [48] to
model more generic representation and learn different poses
and parts of humans. DPM is efficient and robust to complex
scenes; however, learning parameters cannot be optimized to
improve performance.

In second category, hierarchical features are learned from
the raw images using CNN. The first step in this direction
is taken in [49]. Although the network achieved success in
early years, it lost its popularity in the following years due
its dependence on Selective Search strategy [50] for object
proposals generation. In order to overcome this limitation,
Faster-RCNN proposed two-stage pipeline that uses Region
Proposal Network (RPN) for object proposal generation.
You-Only-Look-Once (YOLO) [51], instead of generating
object proposals, use regression model to classify bound-
ing boxes of different sizes and scales. Single shot detector
(SSD) [52] uses Fully Convolutional network to produce
limited number of bounding boxes. Class probabilities are
assigned to each bounding box. Non-maximum suppression

method (NMS) is then applied to suppress low confidence
bounding boxes and final detection are obtained.

To summarize the shortcomings of the existing methods,
we argue that above mentioned regression-based methods
are blind and cannot detect/localize humans in the scene. On
the other hand, detection base methods cannot effectively
handle the scale and small object detection problem. Previ-
ous approaches adopt different way to solve the multi-scale
and small object detection problem. For example, Faster-
RCNN fails to detect small objects. It attributes to the fact
that Faster-RCNNuses featuremap of the high level layer for
object detection. These high level layers have large receptive
fields sizes and do not contain information about the small
objects. Therefore, Faster-RCNN misses heads during infer-
ence stage. SSD [35] on the other hand uses feature maps
of top and shallow to tackle scale in variance problem. Fea-
tures maps from the top layers have small resolution that lack
details of small objects. Moreover, the resolution of shal-
low layers is large, however, have less discriminating power
that ultimately leads to significant amount of false posi-
tives.YOLOfollows anchor box-based network structure and
uses bounding box regression. YOLO performs well in gen-
eral object detection tasks; however, in crowded scenes, the
size and shape of heads change significantly as compared to
generic large objects, it requires much more complex design
of anchor boxes to capture wide range of scales. Therefore,
YOLO (anchor box-basedmethod) is inefficient in such case.
Moreover, YOLO has difficulty in detecting objects that are
small and close to each other due to only two anchor boxes
in a grid predicting only one class of object. Furthermore,
we observed from our experiments that the performance of
YOLO is lower than traditional Faster RCNN and signifi-
cantly lower than our proposed framework.

We address above shortcomings by proposing head detec-
tion base crowd counting framework that detect heads in
low as well as in high-density crowds. Proposed framework
addresses multi-scale and small object detection problem by
generating dense scale map that captures wide range of scale
variations in input image. We then exploit dense scale map
to generate scale-aware proposals that are classified by DS-
CNN.

3 ProposedMethodology

In this section, we discuss the methodology of proposed
framework. The pipeline of proposed framework is shown
in Fig. 2. The framework has two main networks. (1) Sparse
Scale Convolutional Neural Network (SS-CNN) and (2)
Dense Scale Convolutional Neural Network (DS-CNN). The
architecture of SS-CNN is different than DS-CNN. SS-CNN
is a multi-branch architecture that detects human heads in
limited range of scales. SS-CNN cannot detect all heads in
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Fig. 2 Pipeline of proposed framework. An arbitrary size image is pro-
vided as input to sparse scale convolutional neural network (SS-CNN)
that generates sparse detections. SS-CNN due to sparse nature missed
many detection and accumulated false positives. These sparse detection

are then utilized by dense scale generator that generates dense scale
map. The dense scale map is then utilized by dense scale convolutional
neural network to generate scale-aware proposals by exploiting dense
scale map and obtain refined detection as final output

the image since the network cannot capture wide range of
scales of human heads. To capture wide range of scales of
humanheads (dense scale),we utilized the detection obtained
by SS-CNN and generate dense scale map by globally rea-
soning the coarse scales of detections obtained fromSS-CNN
via Markov Random Field (MRF). The dense scale map
is then utilized by DS-CNN to generate scale-aware object
proposal which are then classified by into two classes, i.e.,
head/background and obtain a response map. Finally, we
apply non-maximum suppression on resultant response map
and obtain final detections.

3.1 Sparse-Scale Convolutional Neural Network

In high-density situations, as discussed in Sect. 1, head is
most reliable and visible part. Due to perspective distortions,
there is significant variations in scales of people heads. Scale
is defined as the size of the image patch (corresponds to head)
in the original image, corresponds to the pixel in feature
map of the last convolutional layer of the network. Con-
ventionally, scale problem is handled by using multi-scale
pyramid. Multi-scale pyramid has been extensively used to
handle the scale problem in object detection tasks. However,
in high-density crowd images, processing multi-scale image
pyramid incurs huge computation cost. Furthermore, infor-
mation about the smaller heads is lost due to image re-sizing
to a smaller scale. On the other hand, convolutional neural
network with fixed strides and filter sizes unable to handle
scale variations at large extent. With the smaller scale, the
network have small receptive field and more susceptible to
smaller heads in the image. On the other hand, larger scale
will focus on large heads and skip smaller heads.

To address this problem, we propose Sparse-Scale Convo-
lutional Neural Network (SS-CNN) which consists of three

branches. Each branch consists of convolutional layers with
different filter sizes and strides to capture the different charac-
teristics of crowd at different scales. Our SS-CNN is similar
to [53],whichwas basically proposed for image classification
task. In our case, we modify the network in a way to handle
detection problem. The overall architecture of our network is
shown in Fig. 3. We keep the same network structure for all
branches but filter sizes and strides are changed to enable the
network to capture different sizes of heads. We then adopt a
fusion strategy to combine featuremaps from three branches.

The feature maps of the last convolutional layer from dif-
ferent braches of SS-CNN are of different in sizes; however,
the number of channels is same. Due to unique pattern in
sizes of convolutional layers of three branches of SS-CNN,
the size of feature map of 1st branch (Feature map 1) is half
of the size of feature map of feature map (Feature map 2)
from 2nd branch layer. Similarly, the size of feature map of
3rd branch is half of feature map of 2nd branch. In order to
fuse these feature maps together, we need to bring all of three
featuremaps to the same size. For this purpose,we up-sample
feature maps of 2nd and 3rd branches to match the size of
feature maps of 1st branch. For up-sampling, we use decon-
volution layer which adopts a top-down approach and makes
the feature semantically stronger for detecting small objects.
In order to make feature map of 2nd and 3rd branch equal to
the feature map size of 1st branch, we apply one 2×2 decon-
volution with 512 channels to feature map of 2nd branch and
two 2 × 2 deconvolution layers (one after the other) to fea-
ture map of 3rd branch. After applying these operations, the
feature maps from different layers are summarized point to
point with equivalent weights. We then employ 1 × 1 con-
volution layer to further suppress aliasing and generate the
final fusion map. The final fusion map contains both seman-
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Fig. 3 SS-CNN: sparse scale convolutional neural network for detecting human head in sparse scales. Branches of the network having different
receptive fields are encoded with different colors

tic knowledge from higher layers and fine-grained details of
small objects.

We optimize loss function by computing the Euclidean
distance between the estimated merged feature map and
ground truth. We define the loss function as follows

L(�) = 1

2K

K∑

j=1

||M(I j : �) − Mj || (1)

where K is the number of training images, � is the learnable
weights of SS-CNN, I j is the input image, M(I j : �) is the
estimated stacked feature map for image I j and Mj is the
ground truth density map.

For training the network, we follow the process adopted
in [54]. We train each single CNN (corresponds to branch)
of the SS-CNN separately and use these pre-trained CNNs
to initialize all the branches of SS-CNN and then fine-tuned
all the parameters simultaneously. The branched structure
makes SS-CNN more efficient to model the characteristics
of crowd density with different head sizes. This model once
trained on large dataset (contains millions of heads of dif-
ferent sizes) can easily be adapted to another dataset which
contains human heads of the different sizes.

For localization of human heads, we post-process the
estimated stacked feature map and find the local peaks by
employing non-maximal suppression method. Due to the
sparse configuration (three branches) of the SS-CNN, the

network has following limitations, (1) predicts human heads
in limited range of scales, (2) cannot provide accurate local-
ization, (3) misses heads with different scales. For example,
the receptive field of first branch of SS-CNN is 28. Each
pixel in output feature map of first branch covers a window
of region of fixed size (28). Similarly, the receptive field sizes
of other two branches are 56 and 112, respectively. With this
arrangement, SS-CNN cannot detect heads with a scale less
than 28 and more than 112. Therefore, SS-CNN cannot han-
dle dense scale variations in real-life high-density crowded
images. To handle dense scale variations, intuitive solution is
to increase the number of branches; however increasing the
number of branches will incur high computational complex-
ity during training and testing phase.

In order to address dense scale problem, we use scale
and confidence of detection information obtained from SS-
CNN.We embed this information in discontinuity preserving
MarkovRandomField that estimates dense scales of an entire
input image.

3.2 Generation of Dense Scale Map

In high-density crowded scenes, head detection is a chal-
lenging task due to smaller head size and significant scale
variations. As discussed above, SS-CNN detects human
heads in limited range of scales. For accurate detection, we
need dense scales that provides full coverage of all scale
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variations in the image. In order to achieve this, we utilize
the scale and confidence information from the detection pro-
vided by SS-CNN and propose a strategy that predicts dense
scales of an entire image.

From empirical studies, we observe that scale of heads in
the neighborhood is same but different in different locations
of the image due to perspective distortions. However, this
change is gradual across the image. Scale of human head
in crowded scene provides a cue about immediate scales
in the neighborhood of associated detection. We utilize the
scale and confidence information of a particular detection and
transfer this knowledge to the surrounding neighborhood and
then to the entire image as in [55]. The pipeline of dense scale
prediction is shown in Fig. 4.

Let � = {ω1, ω2, . . . , ωn} is a set of detection obtained
from SS-CNN. Each detection ωi ∈ � is represented by
{xi , yi , si , ci }, where (xi , yi ) denotes the position of detec-
tion, si and ci represent the scale and confidence value,
respectively. Now, given a set of detection �, our goal is to
infer scales for each pixel of the input image. As discussed
above, each detection have similarity relationship in terms
of scales and confidence with its neighborhood; therefore
we define Relationship Function to capture this similarity.
It is observed that detections with larger scales effect the
neighborhood at large distance while smaller detections have
influence of limited range [55]. Since the scale consistency is
valid only in the neighborhood and detection with high con-
fidence values provide more reliable information, therefore,
ourRelationship Function depends on scales, confidence and
distance information. Given a set of detection�, we compute
dense scale map ϒ that has maximum value at any location
(x, y) and formulated as follows

ϒx,y(�) = n
arg max

i=1

(
ci . exp

(
−||x − xi ||2 + ||y − yi ||2

σ 2.(1 + si
max(w,h)

)2

))

(2)

where σ is the standard deviations along the x-axis and y-
axis and (w, h) represent the width and height of the input
image.

After obtaining scale map ϒ , we then employ Markov
Random Field to enforce smoothness across the image. This
step is important to incorporate perspective effects due to
which the scale of human heads gradually change from one
pixel to another. Human heads near to the camera appear
large as compared to far end. In order to enforce this consis-
tency, we treat scales as random variables and use Markov
Random Field to enforce smoothness across the image. Let
ν represents set of pixels in the input image and L represents
set of labels. We assign l p to each pixel p ∈ ν. Here, we
assume that labels should vary smoothly across the image.

We model this by using the following energy function [56]:

E(l) =
∑

p∈ν

Dp(l p) +
∑

(p,q)∈χ

Cx (l p, lq) (3)

where the first term Dp(l p) in equation represents the cost
of assigning label l p to pixel p. In the second term, χ shows
the edges of four-connected pixels of image in the graph and
Cx (l p, lq) is the cost of assigning labels l p and lq to two
neighboring pixels and calculated as Cx (l p, lq) = Cx (l p −
lq).

3.3 DS-CNN: Dense Scale Convolutional Neural
Network

In this section, we discuss our DS-CNN that classify pro-
posals into head/background. The pipeline of our DS-CNN
is shown in Fig. 5. As shown in the Figure, the first prepro-
cessing step is to generate scale friendly object proposals.
We utilize dense scalemap to generate scale-friendly propos-
als. Let G represents uniform grid of points overlaid over the
image. Let P = {p1, p2, . . . pn} is set of n points belong to
grid G, where pi = (x, y) represents location in the image.
We then generate n number of object proposals of sizeϒ(P).
Ideally, the resolutionof the girdG is sameas the input image;
however, it will incur high computation cost. We reduce the
resolution of the grid by a parameter λ with range of 0 <

λ ≤ 1. Let Ix , Iy represents the resolution of input image.
Let resolution of grid G = {gx , gy} is given by: gx = λIx ,
gy = λIy . We observe a trade-off in selecting the value of λ.
Higher values of λ, increase the number of proposals which
leads to high accuracy at the cost of computational complex-
ity. On contrary, lower values of λ result in lower recall rates
due to less number of proposals. From empirical evidences,
we found that 0.65 is the optimum choice, so we use λ = 0.65
in all our experiments.

We pre-process each object proposal before feeding to
the network using the following steps: (1) Crop image patch
corresponding to each proposal. (2) Re-size image patch
according to the size of input layer of the network. The net-
work then classifies each proposal by assigning a confidence
value. After feed-forwarding all proposal, we then gener-
ate response map (equal to size of input image), where each
pixel of the map represents the confidence value of the cor-
responding proposal. In order to precisely localize heads,
we employ non-maximal suppression method (NMS). NMS
finds local peaks using fixed threshold. For performance eval-
uation, we match predicted location with the ground truth
locations.

The backbone of the proposed framework is based on
Densenet-169 [57]and consists of 169 layers. The network
consists of four dense blocks. Each dense block consists
of set of convolutional layers densely connected together.
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Fig. 4 Computation of dense scales: a input sample image.bThe scales
from detections obtained using DSCNN. c The scale obtained using
Eq. 2 d Dense scale map obtained using Eq. 3. Heat maps in (b)–(d)

used to represent the size of heads, where larger heads are indicated by
red and small heads are represented by blue color

Fig. 5 DS-CNN: dense scale convolutional neural network for detecting human heads using dense scale map
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Each dense block receives the input from previous block
and outputs a feature map half of the size of feature map of
the previous dense block. This significant reuse of residuals
implements a deep supervision, since every layer receives
more supervision from the previous layer that results in a
powerful network that solves the problem of vanishing gra-
dient.

The input image is first passed through a convolutional
layer that has filter size of 7×7 and stride of 2, followed by a
max pooling layerwith size of 3×3 and stride of 2. The resul-
tant feature map is then passed through a first dense block.
The first dense block consists of six sets of two convolutional
layers. The filter size of the first convolutional layer is 1× 1
and filter size of the second convolutional layer is 3 × 3. In
this way, the first dense block consists of 6×2 = 12 convolu-
tional layers. In the same way, second dense block consist of
12×2 = 24 convolutional layers. Third dense block consists
of 32 × 2 = 64 convolutional layers and fourth dense block
consists of 32×2 = 64 layers. Each dense block is followed
by transition layer. Transition layer consists of one convolu-
tional layer of filter size 1× 1 and one average pooling layer
with filter size of 2 × 2 and stride of 2.

For training, we label bounding boxes (correspond to
patches of image) to head/background. We use intersection-
over-union (IoU) to decide the label of bounding box. IoU
represents the overlap ratio of candidate bounding box to
ground truth. We set threshold to 0.5 and label any bounding
box as “head” if the overlap ratio is greater than threshold.
The remaining bounding boxes are labeled as background.
We use Adam solver with step learning rate. We set initially
the learning rate to 0.001, and reduce it by a factor of 2 after
every 20 epoch. We trained the entire network for 100 epoch
with a batch size of 64.

4 Experiment Results

In this section, we evaluate and compare our proposed
with other state-of-the-art methods both in quantitative and
qualitative way. We use three publicly available bench-
mark datasets for crowd counting, UCF-QNRF [34], World-
Expo’10 [35], UCF_CC_50 [32].

UCF_CC_50 data is a challenging dataset and firstly
introduced by H. Idrees et al. [32]. This dataset contains 50
images collected from different sources with different reso-
lutions, viewpoints and varying densities. The density varies
from 94 people/image to 4543 people/image with total of
63,974 annotations in 50 images. In our experiments, we
follow the same fivefold cross-validation strategy proposed
by [32].

WorldExpo’10 was introduced by Zhang et al. [35]. The
dataset contains 225,216 head annotations collected from
3980 images. These images were captured from 108 cam-
eras with different viewpoints and sampled from 1132 video
sequences. For training, we use 3380 frameswhile remaining
images are used for testing.

UCF-QNRFdataset is themost recent and comprehensive
dataset introduced by H. Idrees et al. [34]. The dataset con-
sist of 1535 imageswith 1,251,642 head annotations. Dataset
has large number of high-density images with diverse set of
viewpoints, resolutions, and lighting variations. The images
were collected from three sources: Flickr, Web Search and
the Hajj videos. The resolution of images is large as com-
pared to other datasets which makes it more suitable for head
detection task in high-density crowds. The summary of these
datasets is given in Table 1.

For training, we also augment the training data and
cropped 9 patches from different locations of each image.
We keep size of each patch 1/4 of the original image. We use
all these patches for training our model.

For comprehensive evaluation and comparison, we split
experimental setup into two stages. In the first stage, we
discuss counting performance of the framework while we
evaluate and compare detection performance of our proposed
framework in the second stage.

4.1 Evaluations and Comparisons

In this section, we evaluate and compare the counting per-
formance of our proposed method with other state-of-the-art
methods. For crowd counting, we follow the same conven-
tion of existing methods and use absolute error (MAE) and
the mean squared error (MSE) as evaluation metrics defined

Table 1 Summary of the datasets. The second column shows that total
number of images per dataset, the third column shows total number
of annotations, fourth column shows the average count, CD represents

crowd density in fifth column, Res represents the average resolution,
and last column shows the total storage required by each dataset on hard
drive

Dataset No. of imgs No. of Ann Avg Cnt CD Res Memory

WorldExpo’10 [35] 3980 225,216 56 3.5 576 × 238 325MB

UCF-CC-50 [32] 50 63,974 1279 5.7 2101 × 2888 44MB

UCF-QNRF [34] 1535 1,251,642 815 4.9 2013 × 2902 4.33GB
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Table 2 Comparative analysis with other techniques on
UCF_CC_50 [32] dataset

Methods MAE MSE

Rodriguez et al. [58] 655.7 697.8

Idrees et al. [32] 419.5 590.3

Zhang et al. [35] 467.0 498.5

Liping et al. [59] 302.3 411.6

Lempitsky et al. [60] 493.4 487.1

MCNN [27] 377.6 509.1

SD-CNN [12] 235.7 345.6

MRA-CNN [23] 240.0 352.6

LSC-CNN [30] 243.1 374.8

Tiny face [33] 237.4 354.3

Proposed 229.4 325.6

as follows:

MAE = 1

K

K∑

k=1

|μk − Gk | (4)

MSE = 1

K

K∑

k=1

(μk − Gk)
2 (5)

where K is the total number of testing frames, μk is the
predicted count and Gk is ground-truth count of pedestrians
at frame k.

Using the above evaluation metric, we report the results
of our method and other existing related methods in Table 2
using UCF_CC_50 dataset.

Rodriguez et al. [58] leverage global structure of the scene
by estimating density map to improve the head detector per-
formance. Idrees et al. [32] fuses feature frommulti-sources,
includingSIFT, headdetection, andFourier to estimate crowd
count. Zhang et al. [35] proposed CNN model to estimate
crowd count. Lempitsky et al. [60] extracted SIFT features
from randomly selected patches and use MESA distance to
learn densitymap.MCNN [27] proposedmulti-columnCNN

to estimate density map. MRA-CNN [23] estimate crowd
density by adopting multi-resolution CNN to address the
problem of scale variations in image.

These state-of-the-art methods produce higher MAE and
MSE value compare to proposed framework. The lower
performance attributes to the following reasons. (1) These
methods exploit global texture information to capture gener-
alized crowd density information. These methods work well
in high-density crowds but overestimate the crowd count in
low-density situations. (2) Since these methods are regres-
sion based, therefore, thesemethods cannot precisely localize
human in the scene. On the other hand, SD-CNN [12] used
scale-aware proposal to detect heads in high-density crowd.
The method is based on generating perspective map that cap-
tures different scales in the image. Themethod performswell
in detecting heads in high- and low-density images; however,
the acquisition of perspective information required human
efforts. From Table 2, it is obvious that our proposed model
outperforms existing methods. It is due to reason that pro-
posed framework precisely detect human heads in both low
and high-density crowds, where the scale problem is effec-
tively handled by proposed framework using dense scale
map.

In Table 3, we compare the results of state-of-the-art
methods with proposed method on WorldExpo’10 dataset
using MAE evaluation metric. Zhang et al. [35] extract local
features by cropping patches of different sizes from dif-
ferent parts of the image and train a model to estimate
crowd count and density. However, the model relies on
perspective information that generally is hardly available.
MCNN [27] estimates the density map by capturing multiple
scales of objects usingmulti-columnCNN. The performance
of MCNN is reduced in high-density crowd images as it
covers limited scales. Switching CNN [15] is the exten-
sion of MCNN that predicts the density map by choosing
appropriate regressor for input patch. ACSCP [14] proposed
patch-to-density prediction network by employing cross-
scale regularization scheme.CP-CNN[61] incorporates local
and global contexts by proposing contextual pyramid CNN.

Table 3 Comparative analysis
with other techniques on
WorldExpo’10 [35] dataset
using MAE metric

Methods S1 S2 S3 S4 S5 Average

Zhang et al. [35] 9.80 14.10 14.30 22.20 3.70 12.90

MCNN [27] 3.40 20.60 12.90 13.00 8.10 11.60

Switching CNN [15] 4.40 15.70 10.00 11.00 5.90 9.40

ACSCP [14] 2.80 14.05 9.60 8.10 2.90 7.50

CP-CNN [61] 2.90 14.70 10.50 10.40 5.80 8.90

Lingbo et al. [62] 2.60 11.80 10.30 10.40 3.70 7.76

SD-CNN [12] 2.90 10.80 10.10 9.40 3.90 7.42

LSC-CNN [30] 2.90 11.30 9.40 12.30 4.30 8.00

Proposed 2.10 10.47 8.78 9.14 3.54 6.83
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Table 4 Comparative analysis with other techniques on UCF-
QNRF [34] dataset

Methods MAE MSE

MCNN [27] 277 426

Switching CNN [15] 228 445

Zhang et al. [35] 227 426

Idrees et al. [34] 132 191

Idrees et al. [32] 315 508

LSC-CNN [30] 120.5 218.3

Tiny face [33] 336.8 741.6

Proposed 115.2 175.7

Lingbo et al. [62] produces densitymap by employing regres-
sion using recurrent spatial-aware network.

WorldExpo’10 is low dense dataset and state-of-the-art
regression-based methods over estimate the crowd count.
On contrary, proposed method achieves high performance
by precisely detecting the heads. Using dense scale map for
generating high-quality scale-aware proposals, the proposed
method also precisely localize human heads in low-density
scenes. SD-CNN [12] produces comparable results by cap-
turing dense scales in the input image using scale map;
however the generation of scale map is manual and requires
human efforts. To avoid generating scale map with human
efforts, proposedmethods utilize the information frommulti-
scale object detector, i.e., SS-CNN to automatically generate
dense scale map.

In Table 4, we compare our results with other methods
using UCF-QNRF [34] dataset. From the Table, it is obvious
that Tiny Face [33] performs comparatively lower than other
state-of-the-art methods. Tiny Face [33] is basically a face
detector trained on wide range of face samples. UCF-QNRF
contains images, where features of face are hardly visible
due to occlusion and severe clutter; therefore it is challeng-
ing for Tiny Face detector to detect faces. On the other hand,
our proposed method focus on head regions and out per-
forms other methods by precisely detecting heads in both
crowded and less dense images of UCF-QNRF dataset. We
also observed that state-of-the-art methods produce higher
MAE and MSE value compare to proposed framework. The
lower performance attributes to the following reasons. (1)
These methods exploit global texture information to capture
generalized crowd density information. These methods work
well in high-density crowds but overestimate the crowd count
in low-density situations. (2) Since these methods are regres-
sion based, therefore, thesemethods cannot precisely localize
human in the scene.

From above results, it is obvious that our dense prediction
module effectively provide coverage of various scales in both
high- and low-density crowded images.

We now evaluate the detection performance of ourmethod
and compare results with other state-of-the-art methods. For
detection performance, we follow the same convention used
in [34]. We compute precision and recall rates with various
threshold and compute area under the curve to quantify the
performance. We use the output of DS-CNN and employ
non-maximal suppression method with a fixed threshold.
For other methods, we directly use their models to generate
density map followed by non-maximal suppression method.
We report detection performance of each method in Table 5.
From the table, it is obvious that our proposed method out
performs other state-of-the-art methods. We also report the
visualization of qualitative results of different methods in
Fig. 6.

It is also to be noticed that the performance of detection is
based on threshold value. Different threshold values change
the detection performance and finding the optimal threshold
value is hard to find. Therefore, finding optimal strategy of
detection for the output of CNN is an important direction for
future research.

To evaluate the performance of proposed head detection
on other different CNN architectures, we performed experi-
ments on different CNN models in Table 6. Table 6 summa-
rizes the results of different CNNmodels, i.e., AlexNet [63],
ZFNet [64], VGGNet [65], ResNet [66] on three benchmark
datasets. From the experiment Table, it is obvious that all
CNNmodels performed comparatively lower thanDenseNet.
It attributes to the deep architecture of the DenseNet that
allows the reuse of residuals and enables smooth flow of gra-
dients throughout the network. This makes the network easy
to train with limited number of parameters and achieves high
precision rate. On the other hand, AlexNet, VGGNet, ZF are
shallow and have large number of parameters (due to FC lay-
ers). We observed that these CNNmodels accumulates many
false positives that results in lower precision rates.

We also analyze the computational complexity of our pro-
posed method using all three data sets. We observed that
our proposed framework incur computational cost. This is
due to reason that our framework processes large number
of proposals to generate response map. We found that our
framework takes 0.37 s (on average) to process a single
image from World-Expo10 dataset. However, the compu-
tational cost increase with increase in resolution of image.
UCF_CC_50 and UCF-QNRF contain images of high reso-
lutions and it takes 1.34 and 1.76 s (on average) to process
images from UCF_CC_50 and UCF-QNRF, respectively.

We also demonstrate the performance of proposed frame-
work using images of different resolutions and the results
are reported in Fig. 7. From the Figure, it is obvious that
proposed framework precisely localize human heads in all
scenes.
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Table 5 Localization
performance of different
methods in terms of Average
Precision (Avg), Average Recall
(AvR) and Area Under Curve
(AUC). The values of AvP and
AvR are represented in
percentages

Methods WorldExpo’10 UCF-QNRF UCF_CC_50

AvP AvR AUC AvP AvR AUC AvP AvR AUC

MCNN [27] 55.24 52.28 0.51 59.93 63.50 0.59 33.27 35.64 0.31

Liping et al. [59] 65.72 47.91 0.58 71.73 68.68 0.72 34.28 31.19 0.31

SD-CNN [12] 69.46 67.65 0.69 71.27 67.29 0.73 45.67 40.12 0.45

Idrees et al. [34] – – – 75.5 59.75 0.71 – – –

Proposed 71.24 68.65 0.71 76.27 63.29 0.73 48.32 42.18 0.47

Fig. 6 Depicts qualitative comparison of proposed method with other
state-of-the-art methods. Column represents the prediction of different
methods. Rows shows samples frames of benchmark datasets. 1st row

shows the sample frame fromUCF_CC_50 dataset. 2nd shows the sam-
ple frame fromUCF-QNRF and 3rd row shows the sample frames from
WorldExpo’10 dataset
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Table 6 Summary of different CNN architecture and performance comparison on different datasets

CNN model Model details Avg Performance

# of Params(106 # of Conv Layer # of FC layer WorldExpo’10 UCF-QNRF UCF_CC_50

AlexNet 57 5 2 50.43 52.07 15.29

VGGNet 134 13 2 56.78 60.39 25.16

ZF 58 5 2 52.62 54.71 19.93

ResNet 23.4 49 1 64.19 67.46 39.70

DenseNet 18 169 1 71.24 76.27 48.32

Fig. 7 Shows the outputs of our proposed framework. a shows a sample frame of size 600×900 pixels from UCF-QNRF dataset. b shows a sample
frame of size 2304 × 3456 pixels from UCF_CC_50 dataset and c shows a sample frame of size 576 × 720 pixels from WorldExpo’10 dataset

5 Conclusion

In this paper, we proposed a framework to detect human
heads with significant large variance in high-density crowds.
From experimental results, we observed that our framework
shows a trade-off between the detection performance and
speed for head detection. The proposed framework uses
multibranch SS-CNN to obtain initial detection. We then
generate dense scalemap using the information obtained
from SS-CNN. The dense scalemap provides full cover-
age of significant scale variations in the image. Though we
utilize point annotations of human heads during training,
DS-CNN precisely predict the bounding boxes on human
heads. Experiments indicate that the proposedmodel not only
achieves better performance compared to regression meth-
ods but also precisely predict the location of human heads in
all benchmark datasets. We hope that the proposed method
will encourage research community to use detection base
approaches instead of regression base approaches.

Acknowledgements This work is supported by National University
of Science and Technology, Islamabad, Pakistan. We also gratefully
acknowledge the support of NVIDIA Corporation with the donation of
the Titan Xp GPU for this research.

References

1. Helbing,D.;Mukerji, P.: Crowddisasters as systemic failures: anal-
ysis of the love parade disaster. EPJ Data Sci. 1(1), 7 (2012)

2. Salamati, P.; Rahimi-Movaghar, V.: Hajj stampede in mina, 2015:
need for intervention. Arch. Trauma Res. 5(2), e36308 (2016)

3. Shine, L.; Edison, A.; Jiji, C.: A comparative study of faster R-
CNN models for anomaly detection in 2019 AI city challenge.
In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 306–314 (2019)

4. Mahadevan, V.; Li, W.; Bhalodia, V.; Vasconcelos, N.: Anomaly
detection in crowded scenes. In: 2010 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition,
pp. 1975–1981. IEEE (2010)

5. Ullah, H.; Altamimi, A.B.; Uzair, M.; Ullah, M.: Anomalous enti-
ties detection and localization in pedestrian flows.Neurocomputing
290, 74–86 (2018)

6. Sultani, W.; Chen, C.; Shah, M.: Real-world anomaly detection in
surveillance videos. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 6479–6488 (2018)

7. Khan, S.D.: Congestion detection in pedestrian crowds using oscil-
lation in motion trajectories. Eng. Appl. Artif. Intell. 85, 429–443
(2019)

8. Dehghan, A.; Shah, M.: Binary quadratic programing for online
tracking of hundreds of people in extremely crowded scenes. IEEE
Trans. Pattern Anal. Mach. Intell. 40(3), 568–581 (2017)

9. Idrees, H.; Warner, N.; Shah, M.: Tracking in dense crowds using
prominence and neighborhood motion concurrence. Image Vis.
Comput. 32(1), 14–26 (2014)

123



3064 Arabian Journal for Science and Engineering (2021) 46:3051–3065

10. Marsden, M.; McGuinness, K.; Little, S.; O’Connor, N.E.:
Resnetcrowd: a residual deep learning architecture for crowd
counting, violent behaviour detection and crowd density level
classification. In: 2017 14th IEEE International Conference on
Advanced Video and Signal Based Surveillance (AVSS), pp. 1–
7. IEEE (2017)

11. Khan, S.D.;Ullah,H.;Uzair,M.;Ullah,M.;Ullah,R.;Cheikh, F.A.:
DISAM: density independent and scale aware model for crowd
counting and localization. In: 2019 IEEE International Conference
on Image Processing (ICIP), pp. 4474–4478. IEEE (2019)

12. Basalamah, S.; Khan, S.D.; Ullah, H.: Scale driven convolutional
neural networkmodel for people counting and localization in crowd
scenes. In: IEEE Access (2019).

13. Cao, X.; Wang, Z.; Zhao, Y.; Su, F.: Scale aggregation network
for accurate and efficient crowd counting. In: Proceedings of the
European Conference on Computer Vision (ECCV), pp. 734–750
(2018).

14. Shen, Z.; Xu, Y.; Ni, B.; Wang, M.; Hu, J.; Yang, X.: Crowd count-
ing via adversarial cross-scale consistency pursuit. In: Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 5245–5254 (2018).

15. Sam, D.B.; Surya, S.; Babu, R.V.: Switching convolutional neu-
ral network for crowd counting. In: 2017 IEEE Conference on
ComputerVision andPatternRecognition (CVPR), pp. 4031–4039.
IEEE (2017).

16. Davies, A.C.; Yin, J.H.; Velastin, S.A.: Crowd monitoring using
image processing. Electron. Commun. Eng. J. 7(1), 37–47 (1995)

17. Wang, Y.; Lian, H.; Chen, P.; Lu, Z.: Counting people with sup-
port vector regression. In: 2014 10th International Conference on
Natural Computation (ICNC), pp. 139–143. IEEE (2014)

18. Chan, A.B.; Liang, Z.-S.J.; Vasconcelos, N.: Privacy preserving
crowdmonitoring: counting peoplewithout peoplemodels or track-
ing. In: 2008 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–7. IEEE (2008)

19. Zhang, J.; Tan, B.; Sha, F.; He, L.: Predicting pedestrian counts
in crowded scenes with rich and high-dimensional features. IEEE
Trans. Intell. Transp. Syst. 12(4), 1037–1046 (2011)

20. Marana, A.N.; Velastin, S.; Costa, L.; Lotufo, R.: Estimation of
crowd density using image processing (1997)

21. Arteta, C.; Lempitsky, V.; Zisserman, A.: Counting in the wild. In:
European Conference on Computer Vision, pp. 483–498. Springer
(2016).

22. Onoro-Rubio D.; López-Sastre, R.J.: Towards perspective-free
object counting with deep learning. In: European Conference on
Computer Vision, pp. 615–629. Springer (2016).

23. Zhang, Y.; Zhou, C.; Chang, F.; Kot, A.C.: Multi-resolution
attention convolutional neural network for crowd counting. Neu-
rocomputing 329, 144–152 (2019)

24. Liu, J.; Gao, C.; Meng, D.; Hauptmann, A.G.: Decidenet: count-
ing varying density crowds through attention guided detection and
density estimation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5197–5206 (2018)

25. Shami,M.;Maqbool, S.; Sajid, H.; Ayaz, Y.; Cheung, S.-C.S.: Peo-
ple counting in dense crowd images using sparse head detections.
IEEE Trans. Circuits Syst. Video Technol. 29, 2627–2636 (2018)

26. Gao, X.-S.; Hou, X.-R.; Tang, J.; Cheng, H.-F.: Complete solution
classification for the perspective-three-point problem. IEEE Trans.
Pattern Anal. Mach. Intell. 25(8), 930–943 (2003)

27. Zhang,Y.; Zhou,D.; Chen, S.; Gao, S.;Ma,Y.: Single-image crowd
counting via multi-column convolutional neural network. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 589–597 (2016).

28. Hossain, M.; Hosseinzadeh, M.; Chanda, O.; Wang, Y.: Crowd
counting using scale-aware attention networks. In: 2019 IEEE
Winter Conference on Applications of Computer Vision (WACV),
pp. 1280–1288. IEEE (2019).

29. Li, Y.; Zhang,X.; Chen,D.: CSRNET:Dilated convolutional neural
networks for understanding the highly congested scenes. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1091–1100 (2018).

30. Sam, D.B.; Peri, S.V.; Kamath, A.; Babu, R.V.; et al.: Locate, size
and count: accurately resolving people in dense crowds via detec-
tion. arXiv preprint arXiv:1906.07538 (2019).

31. Yang, S.; Luo, P.; Loy, C.-C.; Tang, X.:Wider face: a face detection
benchmark. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5525–5533 (2016).

32. Idrees, H.; Saleemi, I.; Seibert, C.; Shah, M.: Multi-source multi-
scale counting in extremely dense crowd images. In: Proceedings of
the IEEEConference onComputerVision and PatternRecognition,
pp. 2547–2554 (2013).

33. Bai, Y.; Zhang, Y.; Ding, M.; Ghanem, B.: Finding tiny faces in the
wild with generative adversarial network. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 21–30 (2018).

34. Idrees, H.; Tayyab, M.; Athrey, K.; Zhang, D.; Al-Maadeed, S.;
Rajpoot, N.; Shah, M.: Composition loss for counting, density map
estimation and localization in dense crowds. In: Proceedings of the
European Conference on Computer Vision (ECCV), pp. 532–546
(2018).

35. Zhang, C.; Li, H.; Wang, X.; Yang, X.: Cross-scene crowd count-
ing via deep convolutional neural networks. In: Proceedings of
the IEEE conference on computer vision and pattern recognition,
pp. 833–841 (2015).

36. Hou, Y.-l.; Pang, G.K.: Automated people counting at a mass site.
In: 2008 IEEE International Conference on Automation and Logis-
tics, pp. 464–469. IEEE (2008).

37. Kong, D.; Gray, D.; Tao, H.: A viewpoint invariant approach
for crowd counting. In: 18th International Conference on Pattern
Recognition (ICPR’06), 3, pp. 1187–1190. IEEE (2006).

38. Conte, D.; Foggia, P.; Percannella, G.; Tufano, F.; Vento, M.: A
method for counting moving people in video surveillance videos.
EURASIP J. Adv. Signal Process. 2010(1), 231240 (2010)

39. Dalal, N., Triggs, B.: Histograms of oriented gradients for human
detection (2005).

40. Dollár, P.; Appel, R.; Belongie, S.; Perona, P.: Fast feature pyramids
for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8),
1532–1545 (2014)

41. Wang, X.; Han, T.X.; Yan, S.: An HOG-LBP human detector with
partial occlusion handling. In: 2009 IEEE 12th International Con-
ference on Computer Vision, pp. 32–39. IEEE (2009).

42. Zhang, S.; Bauckhage, C.; Cremers, A.B.: Informed haar-like fea-
tures improve pedestrian detection. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 947–
954 (2014).

43. Hu, Q.; Wang, P.; Shen, C.; van den Hengel, A.; Porikli, F.: Push-
ing the limits of deep cnns for pedestrian detection. IEEE Trans.
Circuits Syst. Video Technol. 28(6), 1358–1368 (2017)

44. Huang, S.; Ramanan, D.: Expecting the unexpected: training
detectors for unusual pedestrians with adversarial imposters. In:
Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 2243–2252 (2017).

45. Luo, P.; Tian, Y.; Wang, X.; Tang, X.: Switchable deep network for
pedestrian detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 899–906 (2014).

46. Mao, J.; Xiao, T.; Jiang, Y.; Cao, Z.: What can help pedestrian
detection? In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3127–3136 (2017).

47. Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z.: Occlusion-aware
R-CNN: detecting pedestrians in a crowd. In: Proceedings of the
European Conference on Computer Vision (ECCV), pp. 637–653,
(2018).

123

http://arxiv.org/abs/1906.07538


Arabian Journal for Science and Engineering (2021) 46:3051–3065 3065

48. Lin, Z.; Davis, L.S.: Shape-based human detection and segmenta-
tion via hierarchical part-template matching. IEEE Trans. Pattern
Anal. Mach. Intell. 32(4), 604–618 (2010)

49. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J.: Rich feature hier-
archies for accurate object detection and semantic segmentation.
In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 580–587 (2014).

50. Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W.:
Selective search for object recognition. Int. J. Comput. Vis. 104(2),
154–171 (2013)

51. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A.: You only look
once: unified, real-time object detection. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 779–788 (2016).

52. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-
Y.; Berg, A.C.: SSD: single shot multibox detector. In: European
Conference on Computer Vision, pp. 21–37. Springer (2016).
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