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Abstract
This article studies the peristaltic transport of a compressible Jeffrey fluid with compliant wall over a porous medium with
effect of magnetic field. The fluid flows in a two-dimensional symmetric channel. The fluid flows due to sinusoidal travelling
waves. Perturbation technique is used for finding the solution. For various values of parameters, the net axial velocity is
computed up to second-order calculations. The effects of various parameters including parameters of compliant wall on
perturbation function, velocity distribution at boundaries, reversal flow and axial velocity are discussed graphically.

Keywords Peristaltic flow · Compressible fluid · Compliant wall · Microchannel

1 Introduction

Peristaltic flow is produced due to contraction and expansion
of wall channel. Blood inside the small blood vessels can
transfer through peristaltic flow. The idea of peristaltic flow
was firstly given by Latham [1] in his PhD studies. Srinivas
et al. [2, 3] presented the result of peristaltic motion of a Jef-
frey fluid in the presence of magnetic field through a porous
medium [4] and investigated the peristaltic flow of magneto-
hydrodynamic. For cylindrical tubes, the peristaltic motion
for micropolar fluid is discussed by Muthu et al. [5]. Other
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researchers examined the effect of magnetic field through a
porousmedium [6–9]. Tsiklauri and Beresnev [10] examined
the peristaltic motion of compressible Maxwell fluid. They
examined viscoelastic effect on the fluid dynamics by study-
ing about compressibility of the liquid for Maxwell fluid in
a circular tube. They set up that for non-Newtonian regime,
on the tube wall the fluid might flow in opposite direction to
the direction of the movement of waves. Nadeem and Akram
[11] discussed the peristaltic transport of a Williamson in
an asymmetric channel. For Maxwell fluid, peristaltic flow
in the presence of effect of magnetic field and Hall effect
over a porous medium was observed by Elkoumy et al. [12].
After their research, they concluded that for mean velocity
distribution, relaxation time shows the decreasing effect.

The study of electrically conducting fluid with mag-
netic properties is known as magnetohydrodynamics.
Many researchers examinedmagnetohydrodynamics (MHD)
motion for an electrically conducting and viscous fluid.
Existence of pressure gradient for magnetohydrodynamics
bounded sheets is discussed by Gribben [13]. In porous
medium, flow of compressible fluid along peristaltic mech-
anism is given by Aarts and Ooms [14]. They found that
on the net flow rate influence of compressibility of liquid is
strong and for compressible liquid Reynolds number plays
an important role than for an incompressible liquid.

The term compliant wall means that flexible walls have
elastic quality due to which deformation and motion for the
fluid occur, which can cause change in behavior. A study on
stability of compliant walls and their impact on Couette flow
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over a spring plate was conducted by Shankar and Kumaran
[15]. There are several applications aboutwall collapsing and
their results on fluid flow. For nanofluid, Abbas et al. [16]
examined the compliant wall effect for peristaltic motion of
a fluid in the presence of peristaltic flow and entropy and
its impact over a channel. Wall properties show decrease in
entropy and temperature by increasing wall stiffness and ten-
sion. Over a porous medium, flowing of a fluid is a focus
of common attention and has appeared as a distinct field
of examination. Flow for a porous medium is defined by
Darcy’s law. Compliantwall is excited by themuscles, whose
tension controls its deformation. Set of equations ruled the
action of these muscles which can be related for movement
of compliant walls in terms of variables. In a microchan-
nel, Abdel-Wahab and Mekheimer [17] studied the effects
of compressible viscous fluid flow that was made by surface
acoustic wave with compliant wall. Nadeem et al. [18] deal
with the effect of compliant wall for peristaltic motion of
fluid. Most of the researchers observed the peristaltic motion
for effect of wall compliance, and most of these discussed
about interaction of fluid and walls, which is essential in
peristaltic flow [19–21].

In past, researchers examined the compressible fluid for
distinct parameters [14, 15, 22] and mostly they worked
for incompressible peristaltic fluids flow. Also, homotopy
perturbation method (HPM) was used by many researchers
to obtain the solutions. And some researchers applied the
extended homotopy perturbation method. Our goal is to
study the effect occurred on the microchannel due to porous
medium, magnetic field under symmetric boundary condi-
tion with compliant wall effect. In a microchannel, flow is
generated due to wavy movement of a compressible Jeffrey
fluid in the presence of constant magnetic field. We assume
that, in microchannel, originally the fluid is stationary, (i.e.,
the zeroth-order pressure gradient is ignored at the begin-
ning). This article is the extension of [17] from compressible
viscous fluid to compressible Jeffrey fluid in addition tomag-
netic field and wall properties which are taken into account.

The main objective of this article is to examine the wavy
motion of a compressible Jeffrey fluid in the presence ofmag-
netic field with compliant walls effect over a porous medium
and also to check the effects of various parameters on fluid.
Assume that channel contains stationary fluid in it. To obtain
the solution of the problem, we use the perturbation method.

Sectionwise, this paper is elaborated as: Sect. 1 presents
the introduction; in Sect. 2, we discuss about mathematical
modeling of the problem. Solution is obtained in Sect. 3.
Graphical results of the solutions are discussed in Sect. 5.
Section 6 presents the conclusion of the article. For non-
Newtonian system, the fluid may flow in opposite direction
to the direction of the travelling wave.

Fig. 1 Geometry of the problem

2 Mathematical Modeling

A compressible, electrically conducting and Jeffrey fluid
in a two-dimensional symmetric network is considered as
depicted in Fig. 1.

Flow is due to sinusoidal wave of small-amplitude travel-
ling on the flexiblewalls of the channel, which are considered
compliant wall over a porous medium. Constant magnetic
field acting in y-direction is analyzed, and the induced mag-
netic field is neglected. Introducing the Cartesian coordinates
in which the x-axis is taken along the center line and the
y-axis is normal to it.

The relevant flow equations for compressible Jeffrey fluid
in general form are stated as:

∂ρ

∂t
+ (V∇ρ) + ρ(∇V ) � 0, (1)

ρ
∂V
∂t

+ ρ(V .∇)V � −∇ p + ∇.S + R + J × B +
μ

3
∇(∇.V ),

(2)

whereμ, ρ, pandt are the respective dynamic viscosity, den-
sity, pressure and time, whereas J , V and B examine the
electric current, velocity vector and magnetic vector.

For Jeffrey fluid, extra stress tensor S is expressed as [23]:

(
1 + λ1

∂

∂t

)
S � μ

(
1 + λ2

∂

∂t

)
A1, (3a)

where λ1 represents the relaxation time and λ2 is the retarda-
tion time; A1 denotes the first Rivlin–Ericksen tensor which
is defined as:

A1 � (gradV ) + (gradV )T , (3b)

Darcy’s resistance R is defined as

(
1 + λ1

∂

∂t

)
R � −μφ

K

(
1 + λ2

∂

∂t

)
V , (4)
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where 0 < φ < 1, K (>0). The conducting liquid is passed
over a uniform magnetic field B0. In case of small magnetic
Reynolds number, induced magnetic field b is neglected, and
in the presence of body force J × B � σ (V × B)× B, only
the magnetic field B is present and electric field is ignored,
so the current becomes J � σ (V × B) (σ is the conductivity
of electric field).

Characteristic response of fluid to a compression is given
by equation:

1

ρ

∂ρ

∂p
� kc. (5)

Here, compressibility of the fluid is represented by kc. The
solution of the above equation is

ρ � ρ0exp(kc(p − pc)), (6)

Here, ρ0 signifies the density and pc identifies the refer-
ence pressure.

In component form, continuity and momentum equations
for Jeffrey compressible fluid take the following form:

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ ρ

(
∂u

∂x
+

∂v

∂y

)
� 0, (7)

(8)

(
1 + λ1

∂

∂t

) [
ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)]

� −
(
1 + λ1

∂

∂t

)
∂p

∂x

+ μ

(
1 + λ2

∂

∂t

)[
∇2u +

1

3

∂

∂x

(
∂u

∂x
+

∂v

∂y

)]

− σ B2
0

(
1 + λ1

∂

∂t

)
u − μφ

k

(
1 + λ2

∂

∂t

)
u,

(9)

(
1 + λ1

∂

∂t

) [
ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)]

� −
(
1 + λ1

∂

∂t

)
∂p

∂y

+ μ

(
1 + λ2

∂

∂t

)[
∇2v +

1

3

∂

∂y

(
∂u

∂x
+

∂v

∂y

)]

− μφ

k

(
1 + λ2

∂

∂t

)
v,

The compliantwall ismodeled as spring-backed plate, and
their movement is directed vertically. Let η and−η represent
the vertical displacement of upper wall and lower wall, and
η(x, t) is given by:

η(x, t) � acos

[
2π

λ
(x − ct)

]
, (10)

where amplitude is denoted by a, wavelength by λ and speed
by c of the wave.

The flow equation for compliant wall may be expressed
as L(η) � p − p0, where L is the operator that shows the
motion of compliant wall:

L � −T
∂2

∂x2
+ m

∂2

∂t2
+ d

∂

∂t
+ B

∂4

∂x4
+ K ∗. (11)

The longitudinal tension per unit width is represented by
T, m is the mass per unit area, B shows the flexural rigidity,
d is the wall damping coefficient, and K ∗ is the spring stiff-
ness of the plate. Due to motion of the fluid, pressure p is
produced, and p0 is the pressure on the outer surface of the
wall. Assume that p0� 0. Thus, for no slip the appropriate
boundary conditions are

u(x,±d ± η, t) � 0, (12)

v(x,±d ± η, t) � ±∂η(x, t)

∂t
, (13)

For compliant wall at y � ±d ± η,
(
1 + λ1

∂

∂t

)
∂L

∂x

� −
(
1 + λ1

∂

∂t

)[
ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)]

+ μ

(
1 + λ2

∂

∂t

)[
∇2u +

1

3

∂

∂x

(
∂u

∂x
+

∂v

∂y

)]

− σ B2
0

(
1 + λ1

∂

∂t

)
u − μφ

k

(
1 + λ2

∂

∂t

)
u. (14)

Introducing non-dimensional variables and parameters,

∼
x � x

d
,

∼
y� y

d
,

∼
η� η

d
,
∼
u� u

c
,

∼
v� v

c
,

∼
ρ� ρ

ρ0
,

∼
t� ct

d
,

∼
λ1

� c

d
λ1,

∼
λ2� c

d
λ2,

∼
p� p

ρ0c2
,

∼
pc� pc

ρ0c2
,

∼
τ� cτ

d
.

The dimensionless parameters are

ε � a

d
, χ � kcρ0c

2, M � dσ

ρ0c
B2
0 , R � ρ0cd

μ
, α � 2πd

λ
.

These parameters represent the amplitude ratio, compress-
ibility parameter, magnetic parameter, Reynolds number and
wave number.

The dimensionless wall parameters are

∼
T� Tρ0d

μ2 ,
∼
d� d2

μ
,

∼
B� Bρ0d

μ
,

∼
m� m

dρ0
,

∼
K ∗� K ∗d3ρ0

μ2 .

By using these variables, the above equations become

ρ � exp(χ(p − pc)), (15)
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∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ ρ

(
∂u

∂x
+

∂v

∂y

)
� 0, (16)

(17)

(
1 + λ1

∂

∂t

) [
ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)]

� −
(
1 + λ1

∂

∂t

)
∂p

∂x

+
1

R

(
1 + λ2

∂

∂t

) [
∇2u +

1

3

∂

∂x

(
∂u

∂x
+

∂v

∂y

)]

− M

(
1 + λ1

∂

∂t

)
u − 1

K

(
1 + λ2

∂

∂t

)
u,

(18)

(
1 + λ1

∂

∂t

) [
ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)]

� −
(
1 + λ1

∂

∂t

)
∂p

∂y

+
1

R

(
1 + λ2

∂

∂t

) [
∇2v +

1

3

∂

∂y

(
∂u

∂x
+

∂v

∂y

)]

− 1

K

(
1 + λ2

∂

∂t

)
v,

η(x, t) � εcos(α(x − t)), (19)

u � 0, . . . at y � ±1 ± η (20)

v � ±∂η

∂t
, . . . at y � η (21)

(
1 + λ1

∂

∂t

)
∂

∂x
[− T

R2

∂2

∂x2
+ m

∂2

∂t2
+
d

R

∂

∂t
+

B

R2

∂4

∂x4
+
K ∗

R2 ]η

� −
(
1 + λ1

∂

∂t

)[
ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)]

+
1

R

(
1 + λ2

∂

∂t

)[
∇2u +

1

3

∂

∂x

(
∂u

∂x
+

∂v

∂y

)]

− M

(
1 + λ1

∂

∂t

)
u − 1

K

(
1 + λ2

∂

∂t

)
u,

. . . at y � ±1 ± η, (22)

For solving system of equation, we assume steady case
in which u � u0(y), v � 0, and taking pressure gradient
constant, i.e., ∂p

∂x � dp
dx � constant.

For this boundary value problem, exact solution is given
as:

u0(y) � R

δ2

dp

dx

(
coshδy − coshδ

coshδ

)
, (23)

where δ2 � MR + R
K ,

3 Perturbation Solution

To find the solution of the above nonlinear equations, we
use the regular perturbation method for that we define the
perturbed unknown quantities for small values of ε in the
following form:

p � p0 + εp1(x, y, t) + ε2 p2(x, y, t) + . . . ,

u � εu1(x, y, t) + ε2u2(x, y, t) + . . . ,

v � εv1(x, y, t) + ε2v2(x, y, t) + . . . ,

ρ � 1 + ερ1(x, y, t) + ε2ρ2(x, y, t) + . . . (24)

Equating the like powers of ε, we obtain (24):
For ε:

ρ1 � χp1, (25a)

∂ρ1

∂t
+

∂u1
∂x

+
∂v1

∂y
� 0, (25b)

(
1 + λ1

∂

∂t

)
∂u1
∂t

� −
(
1 + λ1

∂

∂t

)
∂p1
∂x

+
1

R

(
1 + λ2

∂

∂t

)[
∂2u1
∂x2

+
∂2u1
∂y2

+
1

3

∂

∂x

(
∂u1
∂x

+
∂v1

∂y

)]

− M

(
1 + λ1

∂

∂t

)
u1 − 1

K

(
1 + λ2

∂

∂t

)
u1, (25c)

(
1 + λ1

∂

∂t

)
∂v1

∂t

� −
(
1 + λ1

∂

∂t

)
∂p1
∂y

+
1

R

(
1 + λ2

∂

∂t

)[
∂2v1

∂x2
+

∂2v1

∂y2
+
1

3

∂

∂y

(
∂u1
∂x

+
∂v1

∂y

)]

− 1

K

(
1 + λ2

∂

∂t

)
v1, (25d)

For ε2 :

ρ2 � χp2 +
1

2
χ2 p21, (26a)

∂ρ2

∂t
+ u1

∂ρ1

∂x
+ v1

∂ρ1

∂y
+

∂u2
∂x

+
∂v2

∂y
+ ρ1

(
∂u1
∂x

+
∂v1

∂y

)
� 0,

(26b)(
1 + λ1

∂

∂t

)
(
∂u2
∂t

+ u1
∂u1
∂x

+ v1
∂u1
∂y

+ ρ1
∂u1
∂t

)

� −
(
1 + λ1

∂

∂t

)
∂p2
∂x

+
1

R

(
1 + λ2

∂

∂t

)[
∂2u2
∂x2

+
∂2u2
∂y2

+
1

3

∂

∂x

(
∂u2
∂x

+
∂v2

∂y

)]
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− M

(
1 + λ1

∂

∂t

)
u2 − 1

K

(
1 + λ2

∂

∂t

)
u2, (26c)

(
1 + λ1

∂

∂t

)
(
∂v2

∂t
+ u1

∂v1

∂x
+ v1

∂v1

∂y
+ ρ1

∂v1

∂t
)

� −
(
1 + λ1

∂

∂t

)
∂p2
∂y

+
1

R

(
1 + λ2

∂

∂t

)[
∂2v2

∂x2
+

∂2v2

∂y2
+
1

3

∂

∂y

(
∂u2
∂x

+
∂v2

∂y

)]

− 1

K

(
1 + λ2

∂

∂t

)
v2, (26d)

Equations (20)–(22) represent the boundary condition by
using Taylor expansion method about y � ±1 and also
use these expansions into boundary conditions, and by using
Eq. (24), we write sines and cosines in exponential powers:

For ε :

u1(x,±1, t) � 0, (27)

v1(x,±1, t) � ∓ ια

2

(
eια(x−t) − eια(x−t)

)
, (28)

− (1 − ιαλ1)
ια

2R2

[
− Tα2

(
eια(x−t) − eια(x−t)

)

+ mα2R2
(
eια(x−t) − eια(x−t)

)

− Bα4
(
eια(x−t) − eια(x−t)

)
− K ∗(eια(x−t) − eια(x−t)

)]

+ (1 − ιαλ1)
Dα2

2R

(
eια(x−t) + eια(x−t)

)

�
(
1 + λ1

∂

∂t

)
∂u1
∂t

+
1

R

(
1 + λ2

∂

∂t

)

×
[
∂2u1
∂x2

+
∂2u1
∂y2

+
1

3

∂

∂x

(
∂u1
∂x

+
∂v1

∂y

)]

− M

(
1 + λ1

∂

∂t

)
u1 − 1

K

(
1 + λ2

∂

∂t

)
u1,

After simplification, the above equation becomes

(1 − ιαλ1)
ι

2
δ1

(
eια(x−t) − e−ια(x−t)

)
+ (1 − ιαλ1)

1

2
δ2

(
eια(x−t) + e−ια(x−t)

)

� −
(
1 + λ1

∂

∂t

)
∂u1(x,±1, t)

∂t

+
1

R

(
1 + λ2

∂

∂t

)[
∂2u1(x,±1, t)

∂x2
+

∂2u1(x,±1, t)

∂y2

+
1

3

∂

∂x

(
∂u1(x,±1, t)

∂x
+

∂v1(x,±1, t)

∂y

)]

− M

(
1 + λ1

∂

∂t

)
u1(x,±1, t) − 1

K

(
1 + λ2

∂

∂t

)
u1(x,±1, t).

(29)

where

δ1 � α

R2

(
−α2T + α2R2m − α4B − K ∗),

δ2 � α2

R2 (dR).

For ε2 :

u2(x,±1, t) ± 1

2

(
eια(x−t) + e−ια(x−t)

)
u1y(x,±1, t) � 0,

(30)

v2(x,±1, t) ± 1

2

(
eια(x−t) + e−ια(x−t)

)
v1y(x,±1, t) � 0

(31)

Third boundary condition is not needed for this order.
The solutions of the above systems can be obtained with

the help of the following supposed form of solutions for all
the systems:

u1(x, y, t) � U1(y)e
ια(x−t)+

−
U1 (y)e−ια(x−t),

v1(x, y, t) � V1(y)e
ια(x−t)+

−
V1 (y)e−ια(x−t),

p1(x, y, t) � P1(y)e
ια(x−t)+

−
P1 (y)e−ια(x−t),

ρ1(x, y, t) � χ P1(y)e
ια(x−t) + χ

−
P1 (y)e−ια(x−t), (32)

u2(x, y, t) � U20(y) +U2(y)e
2ια(x−t)+

−
U2 (y)e−2ια(x−t),

v2(x, y, t) � V20(y) + V2(y)e
2ια(x−t)+

−
V2 (y)e−2ια(x−t)

p2(x, y, t) � P20(y) + P2(y)e
2ια(x−t)+

−
P2 (y)e−2ια(x−t),

ρ2(x, y, t) � D20(y) + D2(y)e
2ια(x−t)+

−
D2 (y)e−2ια(x−t),

(33)

Here, overbar denotes the complex conjugate.
With the help of these solutions, the above boundary value

problems take the form:

V
′
1 + ιαU1 � ιαχ P1,

−ιαγ ∗U1 � −ιαγ ∗P1 +
1

R

[
U "
1 −

(
α2 +

R

K
+MRγ ∗

)
U1

]

+
ια

3R

(
V

′
1 + ιαU1

)
,

−ιαγ ∗V1 � −γ ∗P1
′
+

1

R

[
V "
1 −

(
α2 +

R

K

)
V1

]

+
1

3R

d

dy

(
V

′
1 + ιαU1

)
,

U1(±1) � 0,

V1(±1) � ∓ ια

2
,
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(34)

U
′ ′
1 (±1) �

(
α2 +

R

K
+ MRγ ∗ − ιαγ ∗R − α2

3

)
U1 (±1)

− ια

3
V

′
1 (±1) + γ ∗Rω.

D20 � χ P20 + χ2P1
−
P1,

V
′
20 � −χ

(
V1

−
P1

′

+
−
V1 P

′
1 + V1

′ −
P1 +

−
V1

′

P1

)
,

1

R
U "
20 −

(
1

K
+ M

)
U20 � ιαχ P1

−
U1 −ιαχ

−
P1 U1

+
−
V1 U

′
1 + V1

−
U1

′

,

U20(±1) ± 1

2

( −
U

′
1 (±1) +U

′
1(±1)

)
� 0,

V20(±1) ± 1

2

[
−
V1

′

(±1) + V
′
1(±1)

]
� 0. (35)

Here, complex parameters are

γ1 � 1 − ιαλ1,γ2 � 1 − ιαλ2,

γ ∗ � γ1

γ2
.

Aarts and Ooms [14] presented the procedure for the solu-
tion of equations, and Mekheimer [24] also followed the
respective techniques.

Thus, by omitting the lengthy calculations solution of first-
order equations for velocity and pressure, one has

V1(y) � C1sinha1y + C2sinha2y,

U1(y) � b1C1cosha1y + b2C2cosha2y + C3χ, (36)

And solution of second-order Eq. (35) is:

V20 � −χ

(
V1

−
P1 +P1

−
V1

)
+ D1,

U20(y) � D2coshδy + D3sinhδy + E(y),

P20(y) � D4 − 4χ

3R
H(y) − 1

K

∫ y

−1
V20(r)dr −

∫ y

−1
F(r )dr

(37)

Net axial velocity is defined as:

< g >� 1

T

∫ T

0
g(x, y, t)dt, (38)

T � 2π

α
,

Mean axial velocity is:

< u >� ε2U20(y). (39)

4 Appendix

Variable and parameters for the first-order solution are:

γ � γ ∗R − ιαχ

3
, β2 � α2 − ιαγ ∗R +

R

K
+ MRγ ∗,

β2
1 � α2 − ιαγ ∗R +

R

K
,

a21 �
(
β2 + ν2

)
+

√(
β2 + ν2

)2 − 4β2
1ν

2
1

2
,

a22 �
(
β2 + ν2

) −
√(

β2 + ν2
)2 − 4β2

1ν
2
1

2
,

b1 � χ
(a21 − β2

1 )

γ a1
+

ιa1
α

, b2 � χ
(a22 − β2

1 )

γ a2
+

ιa2
α

,

C1 � γ ∗Rω
sinha2
G

+
ια

2
a2(b2a2 +

ια

3
)
cosha2

G
,

C2 � −γ ∗Rω
sinha1
G

− ια

2

1

sinha2
[1 + (a22b2 +

ια

2
a2)

cosha2sinha1
G

],

C3 � 0,

ω � − ια
2R2 (−α2T + α2R2m+ιαRd − α4B − K ∗),

ν2 � − 4ι
3 α3χ + α2γ ∗R(1 − χ) − ιαχR

K

Rγ ∗ − 4ιαχ
3

,

ν2 � − 4ι
3 α3χ + α2γ ∗R(1 − χ) − ιαχR(Mγ ∗ + 1

K )

Rγ ∗ − 4ιαχ
3

,

g1 � a1cosha1g2 � a2cosha2

g3 � a1sinha2cosha1 − a2cosha2sinha1,

W � α2 +
R

K
+ MRγ ∗ − ιαγ ∗R − α2

3
,

G � b1a1g1sinha2 − b2a2g2sinha1 +
ια

3
g3,

123



Arabian Journal for Science and Engineering (2021) 46:801–812 807

Fig. 2 a The velocity perturbation function G(y) for: α � 0.5, χ �
0.1, λ1 � 0.7, λ2 � 0.4, R � 10, T � 10, K � 0.5, B � 50, d �
0.1,m � 0.5, K ∗ � 3.3. b The velocity perturbation functionG(y) for:
α � 0.5, χ � 0.1, λ1 � 0.7, λ2 � 0.4, R � 10, T � 10, M �
1.5, B � 50, d � 0.1,m � 0.5, K ∗ � 1.3. c The velocity perturbation
function G(y) for: α � 0.5, Kn � 0.1, χ � 0.01, λ2 � 0.6, R �
100, M � 0, K � 1, T � 30, B � 2,m � 0.01K ∗ � 1, d �
0.05. d The velocity perturbation function G(y) for: α � 0.5, χ �
0.01, λ2 � 0.6, R � 100, M � 2, K � 0.5, T � 30, B � 2,m �
0.01K ∗ � 1, d � 0.05. e The velocity perturbation function G(y) for:
α � 0.5, Kn � 0.15, χ � 0.4, λ1 � 0.7, R � 10, M � 0, K �

0.5, T � 30, B � 2,m � 0.01K ∗ � 1.5, d � 0.05. f The velocity
perturbation function G(y) for: α � 0.5, χ � 0.01, λ1 � 0.8, R �
100, M � 2.0, K � 1, T � 30, B � 2,m � 0.1K ∗ � 1, d �
0.05. g The velocity perturbation function G(y) for: α � 0.5, λ1 �
0.7, λ2 � 0.5, R � 10, M � 0.4, K � 1, T � 30, B � 2,m �
0.1K ∗ � 1.3, d � 0.5. h The velocity perturbation function G(y) for:
α � 0.5, χ � 0.15, λ1 � 1.2, λ2 � 0.7, R � 100, M � 2.0, K �
1, T � 30, B � 2,m � 0.01K ∗ � 1.3. i The velocity perturbation
function G(y) for: α � 0.5, χ � 0.01, λ1 � 1.2, λ2 � 0.7, R �
100, M � 2.0, K � 1, B � 2,m � 0.01K ∗ � 1.3, d � 0.05.
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Fig. 2 continued

By using boundary conditions, the complex constants for
the second-order solutions are:

D1 � 0,

D4 � P20(−1) +
4χ

3R
H(−1),

D2 � −1

2(coshδ)
[β2 + β3 + E(1) + E(−1)],

D3 � −1

2(sinhδ)
[β2 − β3 + E(1) − E(−1)],

F � ιαχ P1
−
V1 −ιαχ

−
P1 V1 + V1

−
V1

′

+V
′
1

−
V1 −ιαU1

−
V 1 + ια

−
U1 V1,

H � d

dy

(
P1

−
V1 +

−
P1 V1

)
,

β2 � 1

2

(
U

′
1(1)+

−
U

′
1 (1)

)
, β3 � −1

2

(
U

′
1(−1)+

−
U

′
1 (−1)

)
,

E(y) � R

⎧⎪⎨
⎪⎩

j1(
a1+

−
a1

)2 − δ2
cosh

(
a1+

−
a1

)
y +

j11(
a1− −

a1
)2 − δ2

cosh
(
a1− −

a1
)
y +

j2(
a1+

−
a2

)2 − δ2

cosh
(
a1+

−
a2

)
y +

j22(
a1− −

a2
)2 − δ2

cosh
(
a1− −

a2
)
y +

j3(
a2+

−
a1

)2 − δ2
cosh

(
a2+

−
a1

)
y

+
j33(

a2− −
a1

)2 − δ2
cosh

(
a2− −

a1
)
y +

j4(
a2+

−
a2

)2 − δ2

cosh
(
a2+

−
a2

)
y +

j44(
a2− −

a2
)2 − δ2

cosh
(
a2− −

a2
)
y

⎫⎪⎬
⎪⎭,

j1 � 1

2

(
a1C1

−
b1

−
C1 +

−
a1

−
C1 b1C1+

−
a1

−
b1

−
C1 C1 + a1b1C1

−
C1

)
,

j2 � 1

2

(
a1C1

−
b2

−
C2 +

−
a2

−
C2 b1C1+

−
a2

−
b2

−
C2 C1 + a1b1C1

−
C2

)
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Fig. 3 a The variation mean-axial velocity for: α � 0.5, , χ �
0.05, λ1 � 1.2, λ2 � 0.5, R � 1, K � 1, T � 10, B � 2,m �
0.05, K ∗ � 3.3, d � 0.01. b The variation mean-axial velocity for:
α � 0.5, Kn � 0.15, M � 0.05, χ � 0.05, λ2 � 0.5, R � 1, K �
1.3, T � 20, B � 20,m � 0.01, K ∗ � 3.3, d � 0.5. c The variation
mean-axial velocity for: α � 0.5, χ � 0.3, λ1 � 0.7, R � 10, K �
3.3, T � 20, B � 20,m � 0.01, M � 0.05, K ∗ � 3.3, d � 0.5.
d The variation mean-axial velocity for: α � 0.5, λ1 � 1.2, λ2 �

0.5, R � 20, K � 3.3, T � 10000, B � 2,m � 0.01, d �
0.5, K ∗ � 3.3, M � 0.01. e The variation mean-axial velocity for:
α � 0.9, χ � 0.5, λ1 � 0.4, λ2 � 0.7, R � 5, T � 20, B � 20,m �
0.01, M � 0.2, K ∗ � 3.3, d � 0.1. f The variation mean-axial veloc-
ity for: α � 0.5, χ � 0.5, λ1 � 0.4, λ2 � 0.7, R � 10, K � 1, T �
200, B � 20,m � 0.01, K ∗ � 0.1, M � 0.2.g The variation mean-
axial velocity for:α � 0.5, χ � 0.2, λ1 � 1.2, λ2 � 0.5, R � 20, K �
1, B � 2,m � 0.01, K ∗ � 3.3, d � 0.5M � 2.
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Fig. 3 continued

j3 � 1

2

(
a2C2

−
b1

−
C1 +

−
a1

−
C1 b2C2+

−
a1

−
b1

−
C1 C2 + a2b2C2

−
C1

)
,

j4 � 1

2

(
a2C2

−
b2

−
C2 +

−
a2

−
C2 b2C2+

−
a2

−
b2

−
C2 C2 + a2b2C2

−
C2

)
,

j11 � 1

2

(
a1C1

−
b1

−
C1 +

−
a1

−
C1 b1C1− −

a1
−
b1

−
C1 C1 − a1b1C1

−
C1

)
,

j22 � 1

2

(
a1C1

−
b2

−
C2 +

−
a2

−
C2 b1C1− −

a2
−
b2

−
C2 C1 − a1b1C1

−
C2

)
,

j33 � 1

2

(
a2C2

−
b1

−
C1 +

−
a1

−
C1 b2C2− −

a1
−
b1

−
C1 C2 − a2b2C2

−
C1

)
,

j44 � 1

2

(
a2C2

−
b2

−
C2 +

−
a2

−
C2 b2C2− −

a2
−
b2

−
C2 C2 − a2b2C2

−
C2

)
.

5 Graphical Results and Discussion

This section shows the graphical results in order to dis-
cuss the impact of different parameters on the mean velocity
at the boundaries Dwall , the perturbation function, and the
mean velocity and reversal flow at the boundaries. Pertur-
bation method is used with amplitude ratio (ε) treated as a
parameter, so set the small parameter (ε < 1). The graphs
also show the state at which backward flow occurs. Various
parameters are used to show their graphical effects on veloc-
ity distribution and at wall boundaries, in which longitudinal
tension, wall damping, compressibility parameter, relaxation
and retardation time are included.

FungandYih [25] define theperturbation functionofmean
velocity G(y) as

G(y) � −200

α2R2 [E(y) − E(1)]. (40)

Figure 2a–i shows different results in conduct of G(y)
for different values of M, K, relaxation time λ1, retardation
time λ2, compressibility parameter χ and compliant wall
parameter d and T. For MHD perturbation function, different

values ofM are discussed. Figure 2a shows that graph ofG(y)
reduces when magnetic field increases. Figure 2b shows the
decreasing effect of K on perturbation function G(y), i.e., by
increasing K the velocity perturbation G(y) decreases. Fig-
ure 2c, d shows results on velocity perturbation for relaxation
time λ1 in the absence and presence of M. Figure 2c depicts
that perturbation function decreases by increasing λ1 in the
absence ofM (i.e.,M� 0). Also in Fig. 2d, perturbation func-
tion G(y) shows same decreasing result for relaxation time
λ1 when M � 2. Figure 2e, f exhibits the influence of λ2 and
M on velocity perturbation function. Figure 2e shows that
in the absence of M, retardation time λ2 shows decreasing
result on G(y), whereas forM � 2, the graph of perturbation
function in Fig. 2f gives the increasing result for increas-
ing value of λ2. In Fig. 2g, the compressibility parameter
χ shows decreasing effect on perturbed velocity G(y) in the
presence of magnetic field (M � 0.4). Figure 2h, i represents
the result for compliant wall parameter d and T. In Fig. 2h,
wall damping coefficient d has increasing result on G(y) and
also T shows same response, i.e., by increasing T graph of
perturbation function G(y) increases (Fig. 2i).

Figure 3a–g examines the change in mean axial veloc-
ity with respect to y for several values of M, χ , relaxation
and retardation time λ1 and λ2, permeability parameter and
coefficient of wall damping d and wall tension T. Figure 3a
shows that backward flow of velocity is obtained when mag-
netic number increases for R � 1. Due to magnetic field,
there occurs deceleration in action of reversal flow till the
effect of M is about to vanish in the center line of the chan-
nel. Figure 3b illustrates that by increasing relaxation time
λ1 there occurs increase in mean velocity and decrease in
reversal flow of velocity, and opposite result is obtained for
retardation time λ2 (Fig. 3c). Figure 3d describes the behav-
ior of mean axial flow with compressibility parameterχ . It
is to be noted that by increasing compressibility parameter
reversal flow decreases. Figure 3e depicts that by increas-
ing the permeability parameter K velocity distribution also
increases, and reason is thatmore fluid passes through perme-
ability parameter and decrease in reversal flow is observed.
Figure 3f, g shows the change in mean axial velocity and
reversal flow of velocity for parameters of compliant wall
d and T. Figure 3f shows that there is a possibility that by
increasing value of d mean flow increases and also reversal
flow decreases about center line but increases about bound-
aries. It is observed in Fig. 3g thatT shows a small variation in
the reversal flow, i.e., backward flow decreases. This means
that by increasing value of T reversal flow becomes fast.

Figure 4a–f shows the change in Dwall (� U20(1)) with
the wave number α for various values of χ the compress-
ibility parameter, coefficient of wall damping d, magnetic
field, wall tension T, relaxation time λ1 and retardation time
λ2. Figure 4a shows that for increase in magnetic parameter
graph shows decreasing effect. Figure 4b shows that velocity
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Fig. 4 a Change in Dwall with wave number α for: R � 10, K �
1, λ1 � 0.7, λ2 � 0.4, Kn � 0.15, K ∗ � 3.3, d � 0.5, T � 30, χ �
0.001,m � 0.01, B � 2.b Change in Dwall with wave number α

for: M � 2, R � 10, Kn � 0.1, K � 1, λ1 � 0.7, λ2 � 0.4, T �
30, K ∗ � 1.3, B � 2,m � 0.01, d � 0.5. c Change in Dwall with
wave number α for: R � 15, K � 1, λ1 � 1.2, λ2 � 0.5, Kn �
0.1, K ∗ � 3.3, M � 0, T � 30, χ � 0.001,m � 0.01, B � 2.

d Change in Dwall with wave number α for: R � 100, K � 3.5, M �
2, λ2 � 1.2, Kn � 0.1, K ∗ � 1.3, d � 0.5, T � 30, χ � 0.001,m �
0.01, B � 200. e Change in Dwall with wave number α for: R �
10, M � 1.5, K � 1.5, λ1 � 0.8, Kn � 0.1, K ∗ � 1.3, d � 0.5, T �
30, χ � 0.001,m � 0.01, B � 2. f Change in Dwall with wave num-
ber α for: R � 15, K � 20, λ1 � 1.2, λ2 � 0.5, Kn � 0.1, K ∗ �
3.3, d � 0.5, , χ � 0.001,m � 0.01, B � 200.
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flow at the Dwall boundary increases by increasing com-
pressibility parameter χ for any value of wave number α.
Figure 4c shows the increasing effect on boundaries of mean
velocity by increasing thewall damping d. Figure 4d, e shows
the effect on Dwall with wave number α for different values
of relaxation and retardation time. Figure 4d shows that λ1
has an increasing effect on Dwall . By increasing compliant
wall parameter d, Dwall with wave number α shows increas-
ing response in Fig. 4c. In Fig. 4e, graph shows the same
result as for relaxation time, i.e., effect on Dwall increases
by increasing value of retardation time λ2. Figure 4f shows
that variation of mean velocity analogous to Dwall boundary
decreases when the wall tension T increases.

6 Conclusion

In study of peristaltic transport of MHD, compressible,
Jeffrey fluid over a porous medium with effect of compli-
ant walls is analyzed, and this article shows the results of
combined effect of wall parameters, relaxation and retarda-
tion time, compressibility and permeability parameter in the
absence and presence of magnetic effect. The main points of
the problem are:

• The Dwall increases when compliant wall coefficient d
increases, whereas opposite result is obtained for T.

• The Dwall increases for relaxation and retardation time.
• The magnetic field shows decreasing result for perturba-
tion function G(y), and for mean velocity, backward flow
occurs.

• Effect of permeability on perturbed function is decreasing,
while on velocity distribution K has an increasing effect.

• The compressibility parameter χ gives decreasing effect
on perturbation function and increasing effect for mean
velocity flow.

• Compliant wall parameter T has an increasing effect for
perturbed function and mean axial flow, while d has
decreasing effect for G(y) and shows increasing graph for
velocity distribution.
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