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Abstract
The Harris hawks optimization algorithm (HHO) is a novel swarm-based meta-heuristic algorithm. In this study, a modified
Harris hawks optimization algorithm (MHHO) is proposed to enhance the searching performance of the conventional HHO.
Past studies have revealed that different adjustment strategies of important variables in meta-heuristic algorithmwill evidently
affect the performance of the algorithm. Therefore, this study focuses on the escaping energy (E) of prey is an extremely,
which is a critical concept that determines the balance between the exploration and exploitation phases of the HHO. In nature,
the Harris hawks will take different the perch strategy and the chasing pattern according to E. For E, six different update
strategies are designed to model the real situation. To explore the differences between the six strategies mentioned above,
a comparative study through twenty representative benchmark functions is carried out by Experiment 1 (Sect. 4.2). The
results show that strategy 6 (the exponential decreasing strategy) outperforms other rivals; therefore, it is deployed into the
MHHO. To further demonstrate the superior search performance of MHHO, a similar comparative study between MHHO
and several well-established optimization technologies is carried out by Experiment 2 (Sect. 4.3). The results clearly exhibit
MHHO outperforms its rivals in most benchmark functions. In addition, compared with other well-known optimizers and
the conventional HHO, the competitive results obtained by MHHO on two engineering optimization problems also prove the
effectiveness and superiority of the proposed MHHO in solving constrained optimization problems.

Keywords Meta-heuristic · Global optimization · Harris hawks optimization algorithm · Evolutionary computation

1 Introduction

Ameta-heuristic algorithm (MHA) is a technique that obtains
approximate optimality under certain time and occasion con-
straints, which are favored for their simplicity, efficiency,
and low computational cost. The study of MHA began in
the 1980s; in 1983, Kirkpatrick et al. proposed the simulated
annealing algorithm (SA) [1] by combining the concepts of
thermodynamic annealing and the Monte Carlo algorithm.
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In 1992, the genetic algorithm (GA) [2] based on Darwin’s
theory of evolution was proposed by Holland. Then, the par-
ticle swarm optimization algorithm (PSO) [3] was proposed
by Kennedy et al. in 1995 and the ant colony optimiza-
tion algorithm (ACO) [4] was designed by Dorigo et al. in
1997. The wide application and extraordinary performance
of these technologies make MHA a research hotspot. Subse-
quently, many MHAs have sprung up like mushrooms. The
most widely recognized classifications of MHA are divided
into two sorts: single agent based and population based [5].
In research [6], these algorithms can be divided into many
categories because of different thinking principles including
stochastic, deterministic, iterative based, population based,
etc. In the literature [7], all MHA can be classified into three
groups depending on the different sources of inspiration: a)
swarm intelligence algorithms, b) non-swarm intelligence
algorithms, and c) physical and chemical algorithms.

It is well known that in addition to the public parame-
ters, maximum iterations, and population size, many MHA
also need to set special parameters. As the adequate set-
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ting of special parameters is quite difficult and will greatly
affect the searching performance of the algorithm, in this
study, we divided all MHA into two categories based on
whether these are present: special parameter meta-heuristic
algorithms (SPs) and free-special parameter meta-heuristic
algorithms (FPs). Main SPs include genetic algorithm (GA),
particle swarm optimization algorithm (PSO), ant colony
optimization algorithm (ACO), fireworks algorithm (FWA)
[8], gravitational search algorithm (GSA) [9], and harmony
search algorithm (HS) [10, 11]. Among them, FWA was
established bymimicking the process of firework explosions,
GSA was designed by applying Newton’s law of universal
gravitation, and HS was proposed based on the process of
musicians playing chords. In addition, more superior SPs
have been proposed in recent years, such asmonarch butterfly
optimization algorithm (MBO) [12], earthworm optimiza-
tion algorithm (EOA) [13], elephant herding optimization
algorithm (EHO) [14], whale optimization algorithm (WOA)
[15], bat algorithm (BA) [16], krill herd algorithm (KH) [17],
chemical reaction optimization algorithm (CRO) [18], water
wave optimization algorithm (WWO) [19],firefly algorithm
(FA) [20], chaotic bat algorithm (CBA) [21], enhanced fire-
fly algorithm (EFA) [22], salp swarm algorithm (SSA) [23],
hybrid salp swarm algorithm (HSSA) and hybrid salp swarm
algorithm with proportional selection operator (PHSSA)
[24], grasshopper optimization algorithm (GOA) [25], hybrid
ant lion optimization algorithm (HALO) [26], etc.

The main FPs are: Moth-flame optimization algorithm
(MFO) [27], Teaching–learning-based optimization algo-
rithm (TLBO) [28], grey wolf optimization algorithm
(GWO) [29] and cuckoo search algorithm (CS) [30]. Among
them, MFO was established by modeling behavior that the
moths rotate around the artificial light source, TLBO was
designed based the situation that a teacher teaches knowledge
to learners in a class, GWO was proposed by mimicking the
leadership hierarchy and hunting process of grey wolves, CS
was proposed based on the obligate brood parasitic behavior
and the Levy flight behavior of cuckoo species. Undoubtedly,
these algorithms have achieved favorable results in various
research fields and real problems. However, according to the
No Free Lunch (NFL) theorem [31], no algorithm is suit-
able for solving all optimization problems, especially in the
context of the “artificial intelligence” era where a lot of opti-
mization problems are emerging. Therefore, Heidari et al.
developed a newMHA in 2019, called the Harris hawks opti-
mization algorithm (HHO) [32].

HHO is a novel swarm intelligent optimization algorithm
with free-special parameters, inspired by the cooperative
hunting behavior and chasing styles of Harris hawks. It has
been proven that the HHO performs extraordinarily in han-
dling several optimization tasks,which are largely decided by
its good balance of exploration and exploitation properties.
Another commendable advantage is that multiple strategies

are introduced in the construction of HHO to make it more
intelligent.

Themain inspiration of this paper is as follows. In the field
of meta-heuristic algorithm, PSO is a classic and outstanding
technology. In the literature [33], a linearly decreasing inertia
weight parameter is introduced into the original PSO, which
significantly improves the performance of PSO. In the liter-
ature [34], an adaptive particle swarm optimization (APSO)
is proposed based on automatic control of inertia weight by
evolutionary factor and acceleration coefficients. In the paper
[35], a fuzzy system is implemented to dynamically adjust
the inertia weight to improve the performance of the PSO.
In the research [36], a new variant of PSO is proposed based
on a nonlinear inertia weight adjustment strategy. The exper-
imental results show that the nonlinear adjustment strategy
further enhances the search performance of PSO. In addition,
the results of literature [37] show that different adjustment
strategies of genetic mutation probability will greatly affect
the search performance of a novel global harmony search
algorithm (NGHS). Therefore, it is necessary to study the
adjustment strategy of key variables in meta-heuristic algo-
rithm.

In HHO, the escaping energy (E) is an important variable
to control the exploration and exploitation process of HHO,
and it uses a linear decreasing update strategy. However, the
main weakness of this strategy is that the value of E cannot
be larger than 1 in the second half of the iteration, which
means that the global search ability of the algorithm is lost
in this stage. For some optimization problems, this situa-
tion may lead to premature convergence, slow convergence
speed and fall into local optimum. In addition, for some opti-
mization tasks, the solution accuracy of the original HHO
still needs to be improved. Therefore, in this study, sufficient
research has been conducted for E to speed up the conver-
gence, improve the accuracy of the solution, and enhance the
local optimal avoidance. We provide six different updating
strategies of E with iteration. The experimental results on
twenty benchmark functions show that strategy 6 (i.e. the
exponential decreasing strategy) is the best strategy. There-
fore, a modified Harris hawks optimization algorithm called
MHHO based on strategy 6 is proposed. Subsequently, in
order to verify the searching performance of MHHO, it is
compared with several advanced optimization technologies
such as PSO, GA, HS, MFO, TLBO and conventional HHO.
The results show that MHHO is superior to other algorithms
in solution accuracy, local optimal avoidance and conver-
gence speed. Moreover, MHHO is used to solve two famous
engineering problems. Compared with the results of other
optimization techniques, MHHO also has better searching
performance in solving constrained optimization problems.

The goal of this paper is threefold. Firstly, according
to whether there are special parameters, all MHA can be
divided into two categories: SPs and FPs. The classification
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method is first proposed in this paper. Secondly, a new opti-
mization called MHHO is proposed. We design six different
update strategies for E in HHO. The most obvious differ-
ence between strategy 6 and other strategies is that its final
E value does not decay to 0. This is more consistent with
the actual situation of Harris hawks hunting. Thirdly, com-
parative experiments between MHHO and other advanced
optimizers are carried out. We compare and analyze the
differences between different algorithms by the numerical
results, statistical test of numerical results and convergence
curves.

The rest of this manuscript is organized as follows: Sect. 2
describes conventional HHO technology; Sect. 3 represents
the MHHO optimizer; and Sect. 4 lists the experimental
results and related analysis. Finally, the summary and some
associated revelations are presented in Sect. 5.

2 Hho

Harris hawks are mainly distributed in some parts of the
United States, such as New Mexico and Arizona. Related
research has concluded the Harris hawk to be as true a coop-
erative hunter as the raptor [38]. When Harris Hawks find
prey, they show different chasing behaviors depending on the
situation and the way the prey escapes. They are one of the
best predators in nature huntingwith high accuracy and rarely
missing their prey. Inspired byHarris hawk’s foraging behav-
ior, a novel population-based, gradient-free meta-heuristic
algorithm (known as HHO) was proposed by Heidari et al.
in 2019 [32]. HHO can be divided into two stages: “Seeking
prey” and “Hunting prey” according to the different strategies
at different stages that are taken by the hawks. The specific
implementation details of HHO are as follows.

2.1 Seeking Prey

In this stage, Harris hawk will search for quarry in a search
space. This stage is equivalent to the exploration process
of the HHO algorithm. Two location update strategies are
deployed at the “seeking prey” phase to simulate the wait-
ing, monitoring, observation, and reconnaissance action of
the Harris hawks before the prey appears. The two strategies
implemented are as equally as possible and can be repre-
sented as:

X (t + 1)

�
{
Xrand (t) − r1 |Xrand (t) − 2r2X (t)| q ≥ 0.5
(Xrabbit (t) − Xm (t)) − r3 (LB + r4 (UB − LB)) q < 0.5

(1)

where t is the current iteration number, X(t) is the current
position of hawks, X(t + 1) represents the position vector
of hawks at the next iteration. Xrand(t) is any individual in

the hawks during the iteration, Xm(t) is the average posi-
tion vector of all members in the present population, Xrabbit

(t) denotes the position of the prey, which is assumed to
be the position of the hawks with the best fitness value in
each iteration. LB and UB are the upper and lower bounds
of the decision variable for a specific problem, respectively.
r1, r2, r3andr4 are the uniform distribution between 0 and 1.

2.2 Transitional Phase

As time goes by, the possibility of prey appearing increases.
Therefore, the hawks need to change from searching for rab-
bit to capturing it. The HHO algorithm needs to be designed
to transition from exploration to exploitation. Therefore, a
new concept E was introduced, which refers to the rabbit’s
escape energy. E has a decreasing trend before termination
condition met, it is updated using the following Eq. (3).

E1 � 1 − t

T
(2)

E � 2E0 × E1 (3)

where E0 refers to the initial energy of the prey in each iter-
ation, which is an even distribution between -1 and 1; T is
the maximum number of iterations. In the HHO algorithm, if
|E | ≥ 1, the Harris hawk will adopt a global search strategy
to seek prey. Conversely, if |E|>1, the local search strategy
will be applied to hunt prey.

2.3 Hunting Prey

In the process of the algorithm exploitation, the hawks will
chase and eventually kill the rabbit. Real scenes are very
complicated and unpredictable. Therefore, according to the
different escapemodes of prey and the corresponding chasing
behaviors of the Harris hawk, four strategies are introduced
to imitate the actual situation as much as possible. In the
process, r conforms to a uniform distribution between 0 and
1, which is used to indicate the likelihood of a rabbit suc-
cessfully escaping before a surprise pounce. In the HHO, if
r ≥ 05, it indicates that the prey failed to escape; if r < 0.5,
it means the prey will escape successfully. In addition, the
energyE is an indicator of the siege style that will be selected
by the predator. In HHO, if |E | ≥ 0.5, the soft besiege will
be employed; if |E | < 0.5, the hard besiege will be executed.
The details of all four strategies are as follows.

2.3.1 Soft Besiege

When r ≥ 0.5 and |E | ≥ 0.5, the“soft besiege” takes effect.
At this time, the rabbit still has relatively high energy to
escape, and theHarris hawkwill exhaust the rabbit and imple-

123



10952 Arabian Journal for Science and Engineering (2020) 45:10949–10974

ment a surprise pounce by encircling it. The above process
can be clearly explained using the following formula:

�X(t) � X rabbit(t) − X(t) (4)

X(t + 1) � X(t) − E |JX rabbit(t) − X(t)| (5)

where J � 2(1 − r5) refers to the jumping strength of the
rabbit and r5 is a uniform distribution in the range of (0,1).

2.3.2 Hard Besiege

When r ≥ 0.5 and |E | < 0.5, the “Hard besiege”mechanism
is activated due to the lower escape energy of the rabbit. At
this time, it can be considered that the prey is exhausted. The
mathematical model can be described as follow:

X(t + 1) � Xrabbi t(t) − E |�X(t)| (6)

2.3.3 Soft BesiegeWith Progressive Rapid Dives

When r < 0.5 and |E | ≥ 0.5, the rabbit has enough energy
to successfully get rid of the hawk’s tracking. The prey in this
situation is easy to escape, so a “Soft besiegewith progressive
rapid dives” strategy is deployed. First, the hawk will predict
where they will arrive next using Eq. (7).

Y � Xrabbi t(t) − E |JXrabbi t(t) − X(t)| (7)

Then, if Y is a more competitive position, the hawk will
take this kind of dive. Otherwise, the concept of the levy
flight will be used for this subsection.

Various studies have shown that flight patterns of many
animals are in line with this levy flight (LF) [39, 40].
Similarly, the LF has been increasingly introduced by meta-
heuristic algorithms to improve the performance of the
algorithm. Related studies have also confirmed that the LF
is the best choice for predators in environments with many
uncertainties [41]. Yang et al. proposed a cuckoo search
algorithm by combining the obligate brood parasitic behav-
ior of some cuckoo species and the levy flight activity of
some birds [42]. In the literature [43], a new particle swarm
optimization algorithm combined with levy flight is built to
improve the performance of the original PSO. Heidari et al.
proposed an efficient modified grey wolf optimizer based on
levy flight and greedy selection strategies [44]. In the HHO,
LF is used to mimic the fast, abrupt, irregular movement of
hawks during hunting. The position update formula with LF
is as follows:

Z � Y + S × LF(d) (8)

Fig. 1 Different updating strategies of E1

where S is a random list of size 1× d and d is the number of
decision variables. LF is the levy flight function, which can
be expressed by mathematical Eq. (9).

LF(x) � 0.01 × u × σ

|v| 1β
, σ �

⎛
⎜⎝ Γ (1 + β) × sin

(
πβ
2

)

Γ
(
1+β
2

)
× β × 2

(
β−1
2

)
⎞
⎟⎠

1
β

(9)

where u and v are random values between 0 and 1, β is
a constant with a value equal to 1.5. Γ represents gamma
distribution.

In summary, at this stage, the Harris hawk location update
strategy can be defined by the following rules:

X(t + 1) �
{
Y if f (Y) < f (X(t))
Z if f (Z) < f (X(t))

(10)

where f is the fitness value function for the given example
of minimizing the problem.

2.3.4 Hard Besiege with Progressive Rapid Dives

When r < 0.5 and |E | < 0.5, the last strategy called “Hard
besiege with progressive rapid dives” is implemented. As the
rabbit is exhausted at this time, hawks can capture and kill it
almost without difficulty. To ensure that nothing is lost, the
hawks will try to reduce the average distance between them
and the prey, that is, narrow the encirclement. The above
behavior can be modeled by Eq. (11).

X(t + 1) �
{
Y if f (Y) < f (X(t))
Z if f (Z) < f (X(t))

(11)

Where

Y � Xrabbi t(t) − E |JXrabbi t(t) − Xm(t)| (12)

Z � Y + S × LF(d) (13)
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Fig. 2 Change of E under 6 strategies during two runs and 500 iterations
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3 Mhho

3.1 Description of MHHO

In past work [32], it has been proven that HHO outperforms
several state-of-the-art technologies and that it applies to
most optimization issues. However, to promote the search-
ing performance of the HHO to achieve faster convergence
speed, better solution accuracy and robustness, a novel modi-
fied Harris hawks Optimization (MHHO) is proposed in this
section. In HHO, the E of prey is an extremely significant
concept as it plays a vital role in the searching ability of
the HHO. It is not difficult to determine that changes in E
can make a significant difference in the experimental results.
Therefore, a new E updating strategy is deployed to MHHO
to promote the exploration and exploitation capabilities of
the HHO. The detailed modifications are as follows.

In general, two optimization strategies are implemented in
all meta-heuristic algorithms: exploration and exploitation.
Exploration refers to a global search in the search space;
exploitation refers to searching for the optimal solution
locally. Obviously, exploration and exploitation are contra-
dictory. The way to balance them is the most challenging
problem. In the Harris hawks optimization algorithm, E is
used to simulate the weaker physical strength of the rabbit
during the escape, calculated by Eq. (3) for each Harris hawk
per iteration. From an algorithmic perspective, E is a bridge
between exploration and exploitation. If |E | ≥ 1, the Harris
hawk will adopt a global search strategy to seek prey. Con-
versely, if |E | > 1, the local search strategy will be applied
to hunt the prey. Furthermore, if |E | < 0.5, “Hard besiege”
strategies “Hard besiege” strategies will be implemented; if
1 ≥ |E | ≥ 0.5, “Soft besiege” schemes will be selected by
the hawks. In Heming et al.’s work [45], the shortcomings of
the original E update strategy have been pointed out. When
the number of iterations reaches half of the maximum num-
ber of iterations, |E | can never be greater than 1. This fact
means that for some multi-peak, high-dimensional complex
problems, the population is likely to fall into local optima.

In the present work, the updating strategy of E was still
expressed by Eq. (20), but for E1, 6 different updating strate-
gies are proposed. The strategy 1 represents a straight linear
decreasing strategy while Eq. (14) is a linear function. It
should be noted that the strategy 1 is applied to the conven-
tional HHO algorithm. The strategy 2 and the strategy 3 are
power-based non-linear decreasing strategies. Among them,
Eq. (15) represents a power function that bends downward
whileEq. (16) represents a power function that bends upward.
The strategy 4 is a convex-concave sin strategy, and Eq. (17)
is a translation sine function. The strategy 5 is a concave-
convex sine strategy, and Eq. (18) is still a translation sine
function. The last strategy 6 is an exponential decreasing
strategy, therefore, Eq. (19) is an exponential function. The

Fig. 3 The flow chart of HHO and MHHO

differences among the renewalmodes of 30 in these six strate-
gies are shown intuitively in Fig. 1 below. The change of E
with iterations in all 6 strategies is exhibited in Fig. 2.

According to Fig. 1, only the final value of E1 under the
strategy 6 is not zero. In the strategy 6, we assume that even at
the end of the iteration, the prey should have energy to escape,
which can enhance the performance of the algorithm. More
information is displayed in Fig. 2. In the second half of the
iteration, | E | will never be greater than one in the strategies
1, 2, and 4. However, in the first half of the iteration, the
strategy 4 is highly exploratory, the strategy 1 follows, and
the strategy 2 is the last.

E1 � 1 − t

T
(14)
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Table 1 The parameter settings
Algorithm Population size Max Iterations Other parameters

PSO 30 500 vmax � 20, w1 � 0.9, w2 � 0.4, c1 � 1.2, c2 � 1.2

GA 30 500 pcrossover � 0.7, pmutation � 0.3

HS 7 15,000 HMCR � 0.9,PAR � 0.3,BW � 0.1

MFO 30 500 /

TLBO 30 500 /

HHO 30 500 /

MHHO 30 500 /

E1 �
(
1 − t

T

)2
(15)

E1 �
(
1 − t

T

) 1
2

(16)

E1 � 1

2
sin

(
2π × t

T

)
+

(
1 − t

T

)
(17)

E1 � 1

2
sin

(
π + 2π × t

T

)
+

(
1 − t

T

)
(18)

E1 � e− t
T (19)

E � 2E0 × E1 (20)

where E0 is a random number inside the interval (-1,1);sin
and cos represent the sine function and the cosine function,
respectively. The number of iterations is indicated by t and
T is the maximum number of iterations. e is the base number
of the exponential function, and the value is about 2.71828.

The improvement of this study has little impact on the
runtime of the algorithm because it does not involve the main
computational process. Themain time complexity ofMHHO
and HHO depends on three processes: random initialization,
fitness evaluation, and hawk updating. Therefore, they can
be expressed as follows:

O(MHHO) � O(random initialization) + O(fitness evaluation)

+ O(hawk updating)

� O(N ) + O(T × N ) + O(T × N × Dimension)

� O(N × (1 + T × (1 + Dimension)))

� O(HHO)

where N is the population size, T is the total number of
iterations andDimension is the number of decision variables.

3.2 Schematic Diagram of HHO andMHHO

In this subsection, the general pseudocode of HHO and
MHHO is presented in Algorithm 1. The sixth line in Algo-
rithm 1 shows the modifications made in this paper. A simple

schematic diagram based on the description of Algorithm 1
is shown in Fig. 3.

4 Experiment and Analysis

In this section, a series of experiments are carried out. In
Experiment 1, the experimental results of 6 different E
update strategies are compared. The best strategy is chosen
to deploy MHHO. Subsequently, experiments are conducted
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Table 2 The benchmark functions

Benchmark function Class Dimensions Range Optima

f1(x) �∑n
i�1 x

2
i U 30,100,500 [− 100,100] 0

f2(x) �
n∑

i�1
|xi| +

n∏
i�1

|xi| U 30,100,500 [− 10,10] 0

f3(x) �∑n
i�1

(∑i
j−1 x j

)2
U 30,100,500 [− 100,100] 0

f4(x) � maxi{|xi|, 1 ≤ i ≤ n} U 30,100,500 [− 100,100] 0

f5(x) �
n−1∑
i�1

[
100
(
xi+1 − x2i

)2
+ (xi − 1)2

]
U 30,100,500 [− 30,30] 0

f6(x) �
n∑

i�1
([x + 0.5])2 U 30,100,500 [− 100,100] 0

f7(x) �
n∑

i�1
i x4i + random[0, 1] U 30,100,500 [− 128,128] 0

f8(x) � 418.9829n −
n∑

i�1
−xi sin

(√|xi |
)

M 30,100,500 [− 500,500] 0

f9(x) �
n∑

i�1

[
x2i − 10 cos(2πxi ) + 10

]
M 30,100,500 [− 5.12,5.12] 0

f10(x) � e + 20 − 20 exp

(
−0.2

√
1
n

n∑
i�1

x2i

)
−

exp

(
1
n

n∑
i�1

cos(2πxi )

)
M 30,100,500 [− 32,32] 0

f11(x) � 1
4000

n∑
i�1

x2i −
n∏

i�1
cos
(

xi√
i

)
+ 1 M 30,100,500 [− 600,600] 0

yi � 1 + xi+1
4 , u(xi , a, b, c) �

⎧⎨
⎩

b(xi − a)cxi > a
0 − a < xi < a

b(−xi − a)cxi < −a

⎫⎬
⎭

f12(x) � π

n

{
10 sin(πy1) +

n−1∑
i�1

(yi − 1)2

[
1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

)
+

n∑
i�1

u(xi , 10, 100, 4)

M 30,100,500 [− 50,50] 0

f13(x) � 0.1

{
sin2(3πx1) +

n∑
i�1

(xi − 1)2
[
1 + sin2(3πxi + 1)

]

+ (xn − 1)2[1 + sin(2πxn)] +
n∑

i�1

u(xi , 5, 100, 4)

M 30,100,500 [− 50,50] 0

f14(x) � ( 1
500 +

25∑
j�1

1
j+
∑2

i�1(xi−ai j )
6 )

−1 F 2 [− 65.53,65.53] 1

f15(x) �
11∑
i�1

(
ai − x1

(
b2i +bi x2

)
b2i +bi x3+x4

)2
F 4 [− 5,5] 0.00030

f16(x) � 4x21 − 2.1x41 + 1
3 x

6
1 + x1x2 − 4x22 + 4x42 F 2 [− 5,5] − 1.0316

f17(x) �
(
x2 − 5.1

4π2 x
2
1 + 5

π
x1 − 6

)2
+ 10

(
1 − 1

8π

)
cosx1 + 10 2 [− 5,5] 0.398

f18(x) �
[
1 + (x1 + x2 + 1)2 ×

(
19 − 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22

)]

×
[
30 + (2x1 − 3x2)

2 ×
(
18 − 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22

)] F 2 [− 2, 2] 3

f19(x) � −
4∑

i�1
ciexp

(
−

3∑
j�1

ai j
(
x j − pi j

))2
F 3 [− 1, 3] − 3.86

f20(x) � −
4∑

i�1
ciexp

(
−

6∑
j�1

ai j
(
x j − pi j

))2
F 6 [0, 1] − 3.32

123



Arabian Journal for Science and Engineering (2020) 45:10949–10974 10957

(a) Function F1 (b) Function F5 (c) Function F7

(d) Function F8 (e) Function F9 (f) Function F10

Fig. 4 Three dimensional plot of partial benchmark functions. a Function F1; b Function F5; c Function F7; d Function F8; e Function F9; f Function
F10

on a series of functions to assess the performance of the
proposed MHHO. All experimental results are recorded and
compared with several state-of-the-art competitors, mainly
with the Conventional HHO algorithm in Experiment 2. In
addition, two constrained engineering problems are used to
further verify the search performance of MHHO.

In Experiment 2, several well-established optimizers were
selected such as GA, PSO, TLBO, HS, MFO, and HHO. In
the present work, the total number of iterations in all algo-
rithms was set to 500 except for HS; the number of search
agents in the population is consistently set to 30. As for HS,
it is known in the literature [10] that the population size of
5-7 is the best choice. Too many search agents may reduce
the searching performance of HS, so the population size is
preset to 7. To ensure the same number of function evalua-
tions, 15,000 is the maximum number of rounds provided to
it. Detailed parameter settings are listed in Table 1.

As shown in Table 1, GA, PSO, and HS require pre-
set special parameters, while the remaining four only need
common parameters to be set. For PSO, vmax denotes the
maximum moving speed of the particle. The terms w1 and
w2 are the initial weight and the final weight, which are set to
0.9, 0.4 respectively. The terms c1, c2 represent the cognitive

and social parameters, respectively; theoretically, both are
set to 1.2. For GA, roulette wheel chromosome replication
strategies, uniform crossover strategy, and random selection
mutation are used to performexperiments. The term pcrossover
involves the probability of chromosome mating and pmutation

represents the probability of chromosomal mutation. For HS,
HMCR, PAR, and BW refer to the harmony memory consid-
ering rate, pitch adjusting rate, and bandwidth respectively.

All experiments are implemented under Python 3.7 on a
Windows 2010 operating system with Intel(R) CPU 3550 M
@2.30 GHz and 4.00 GB RAM.

4.1 Test Functions

In our experiments, twenty benchmark functions are used,
including seven unimodal functions (f1-f7), six multimodal
functions (f8-f13) and seven fixed-dimension benchmark
functions (f14-f20). These benchmark functions are a good
reflection of the searching performance of the optimization
algorithm. Among them, unimodal functions can be used to
test the convergence speed and solution accuracy of the algo-
rithm due to its relatively simple features. In other words,
they symbolize the algorithm exploration property. In con-
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Table 3 The comparison of six improvement strategies on benchmark functions (F1–F13) with 30 dimensions

Function Norm Strategy1 Strategy2 Strategy3 Strategy4 Strategy5 Strategy6

F1 Mean 4.65E−98 5.06E−81 1.72E−77 4.61E−59 1.40E−34 3.02E−124

Std 1.75E−97 2.45E−80 9.10E−77 1.72E−58 5.13E−34 1.63E−123

F2 Mean 7.02E−52 2.81E−43 8.80E−41 9.03E−33 5.64E−18 1.39E−62

Std 3.65E−51 1.31E−42 2.85E−40 2.58E−32 1.90E−17 7.07E−62

F3 Mean 2.32E−80 1.18E−62 1.54E−64 2.12E−32 2.04E−27 1.18E−107

Std 8.68E−80 6.38E−62 8.29E−64 1.13E−31 9.42E−27 5.23E−107

F4 Mean 5.81E−56 8.15E−43 3.92E−72 5.82E−40 1.38E−18 3.34E−77

Std 1.88E−55 4.30E−42 2.11E−71 3.04E−39 7.43E−18 1.80E−76

F5 Mean 3.79E−03 1.32E−02 3.11E−03 1.18E−05 1.64E−02 1.91E−03

Std 1.30E−02 2.73E−02 1.07E−02 4.19E−05 3.78E−02 6.78E−03

F6 Mean 7.52E−05 1.88E−04 3.00E−05 5.93E−05 6.01E−05 5.36E−05

Std 1.84E−04 2.67E−04 1.15E−04 1.99E−04 1.07E−04 1.99E−04

F7 Mean 3.82E−02 8.88E−02 3.77E−02 3.91E−02 3.60E−02 3.36E−02

Std 2.94E−02 3.98E−02 3.34E−02 3.06E−02 2.95E−02 3.41E−02

F8 Mean 1.09E−01 8.29E+01 3.16E−03 3.82E−04 1.72E+01 2.32E−02

Std 4.44E−01 3.60E+02 1.38E−02 9.34E−08 6.29E+01 7.36E−02

F9 Mean 0 0 0 0 0 0

Std 0 0 0 0 0 0

F10 Mean –4.44E−16 –4.44E−16 –4.44E−16 –4.44E−16 –3.30E−16 –4.44E−16

Std 0 0 0 0 6.38E−16 0

F11 Mean 0 0 0 0 0 0

Std 0 0 0 0 0 0

F12 Mean –9.93E−01 –9.73E−01 –9.96E−01 –9.69E−01 –1.01E+00 –9.86E−01

Std 2.30E−02 5.02E−02 2.12E−02 7.25E−02 1.27E−02 2.98E−02

F13 Mean 2.04E−05 1.28E−04 5.30E−06 3.69E−07 5.25E−05 1.98E−05

Std 4.26E−05 1.12E−04 1.92E−05 1.11E−06 8.06E−05 5.57E−05

trast, the multimodal function can be applied to detect the
local optimal avoidance ability of the algorithm. Therefore,
we can regard them as indicators of the meta-algorithm’s
exploration ability. Themathematical description of the func-
tions is shown in the following Table 2. In Table 2, “Class”
represents the classification of test functions, where “U” rep-
resents the unimodal benchmark functions, “M” represents
multimodal benchmark functions, and “F” represents fixed-
dimension benchmark functions. Three dimensional plot of
partial benchmark functions are shown in Fig. 4.

4.2 Experiment 1

In this subsection, we compare the 6 different energy-
updating methods designed in Sect. 3. A series of benchmark
functions (F1-F20) were selected for the experiment. The
test results of the low-dimensional (30 dimensions) and high-
dimensional (200 dimensions) functions (F1-F13) are shown

in Tables 3 and 4. The test results of the fixed-dimension
benchmark functions (F14-f20) are shown in Table 5. Bold-
face in the tables represents the optimal results. In Table 3,
the results show that the strategy 6 (3.02E−124) has a better
searching performance for function F1. As such, quantitative
results provide sufficient information.

Seen fromTables 3 and 4, the strategy 6 is better than other
competitors in all dimensions for functions F1, F2, F3 and
F4. For function F5, the strategy 4 is the best performer. The
strategies 4 and 5 are the most desirable choices for function
F6. For function F7, the results of the strategies 3 and 6 are
more competitive. For function F8, the strategy 4 defeated the
other opponents. The strategy 5 gains a slight advantage for
function F10. The strategies 4 and 5 achieved more favorable
results for function F12. The strategy 3, the strategy 4 and
the strategy 6 outperform the others for function F13. As for
functions F9 and F11, the global optimal solution is obtained
for all 6 strategies.
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Table 4 The comparison of six
improvement strategies on
benchmark functions (F1-F13)
with 200 dimensions

Function Norm Strategy1 Strategy2 Strategy3 Strategy4 Strategy5 Strategy6

F1 Mean 3.74E−96 3.76E−81 3.68E−79 3.43E−57 3.39E−34 4.69E−127

Std 1.95E−95 1.61E−80 1.13E−78 1.70E−56 1.27E−33 1.46E−126

F2 Mean 1.92E−49 5.26E−42 4.86E−40 3.34E−30 5.96E−17 1.92E−63

Std 9.77E−49 2.24E−41 1.90E−39 1.56E−29 2.03E−16 5.33E−63

F3 Mean 1.12E−61 1.58E−40 1.41E−52 2.21E−34 1.51E−24 3.06E−93

Std 6.01E−61 8.52E−40 7.60E−52 9.55E−34 7.18E−24 1.65E−92

F4 Mean 5.83E−58 1.40E−41 5.44E−47 8.77E−43 6.78E−36 9.03E−76

Std 2.88E−57 7.20E−41 2.93E−46 4.70E−42 3.47E−35 4.86E−75

F5 Mean 6.59E−02 3.10E−01 5.32E−03 3.65E−04 3.92E−02 1.79E−02

Std 1.76E−01 6.03E−01 2.65E−02 1.56E−03 6.28E−02 6.36E−02

F6 Mean 2.34E−04 2.02E−03 2.71E−04 9.44E−06 8.07E−04 1.91E−04

Std 9.33E−04 3.39E−03 6.94E−04 4.64E−05 1.70E−03 5.49E−04

F7 Mean 5.15E−02 9.70E−02 3.80E−02 6.11E−02 4.53E−02 4.39E−02

Std 2.83E−02 4.32E−02 3.38E−02 4.24E−02 3.40E−02 3.78E−02

F8 Mean 7.57E−01 8.69E+00 1.16E+00 2.76E−03 1.51E+01 2.11E−01

Std 2.27E+00 1.64E+01 6.13E+00 1.13E−03 7.63E+01 6.90E−01

F9 Mean 0 0 0 0 0 0

Std 0 0 0 0 0 0

F10 Mean –4.44E−16 –4.44E−16 –4.44E−16 –4.44E−16 –3.26E−16 –4.44E−16

Std 0 0 0 0 6.38E−16 0

F11 Mean 0 0 0 0 0 0

Std 0 0 0 0 0 0

F12 Mean –1.38E−01 –1.33E−01 –1.39E−01 –1.37E−01 –1.51E−01 –1.38E−01

Std 1.12E−02 1.38E−02 1.04E−02 1.35E−02 2.67E−03 1.49E−02

F13 Mean 1.70E−04 9.01E−04 1.58E−05 6.54E−05 2.64E−04 3.60E−05

Std 3.91E−04 1.41E−03 4.38E−05 3.52E−04 6.46E−04 7.72E−05

Seen from Table 5, the strategy 2 obtains the best results
due to the smallest standard deviation (STD) for functions
F14. For function F15, the strategy 4 outperforms other
competitors. For functions F16 and F17, the results of the
strategies 6 are more competitive. For functions F18, the
strategy 1 is the most desirable choice. For functions F19
and F20, the strategy 5 obtains the best numerical results
because the mean is closer to the theoretical optimal value.

The above results indicate that the different strategies are
suitable for solving different problems, which is consistent
with the meta-heuristic algorithm’s No Free Lunch (NFL)
theorem. However, there are some advantages and disadvan-
tages to these six strategies. For a quantitative comparison,
we scored the performance of each strategy on each bench-
mark function. The scoring rules are as follows: in addition
to function F9 and function F11, each function was scored.
The numerical results ranked the first record with 6 points
(the highest score) and the last record with 1 point (the lowest
score). The final total score is recorded in Table 6. In Table 6,

we can see that the strategy 1 used in the original HHO ranks
second and the scores of the strategy 1, the strategy 3 and
the strategy 4 are very close. The No. 1 strategy 6 scored
significantly better than other E update methods. Therefore,
strategy 6 should be deployed for MHHO as our best option.

4.3 Experiment 2

In this subsection, other prestigious optimizers are selected
for comparisonwith theMHHOalgorithm. The experimental
results prove that MHHO is a powerful optimization tech-
nique. Subsequently, the convergence curve gives a more
evident description. MHHO balances the exploration and
exploitation processes very well and greatly enhances the
performance of HHO.

Considering the robustness of the results, all experiments
in the selected four dimensions (including 10-dimensional,
50-dimensional, 100-dimensional, and 300-dimensional)
were run independently 30 times. The best, worst, mean
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Table 5 The comparison of six
improvement strategies on
benchmark functions (F14-20)

Function Norm Strategy1 Strategy2 Strategy3 Strategy4 Strategy5 Strategy6

F14 Best 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980

Mean 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980

Std 6.44E−12 2.49E−14 5.83E−11 3.85E−12 3.50E−06 5.97E−10

F15 Best 3.24E−04 3.24E−04 3.24E−04 3.24E−04 3.24E−04 3.24E−04

Mean 3.27E−04 3.58E−04 5.18E−04 3.26E−04 3.93E−04 3.98E−04

Std 3.74E−06 1.77E−04 5.42E−04 1.39E−06 3.47E−04 3.12E−04

F16 Best –1.0316 –1.0316 –1.0316 –1.0316 –1.0316 –1.0316

Mean –1.0316 –1.0316 –1.0316 –1.0316 –1.0316 –1.0316

Std 1.47E−08 6.61E−09 8.26E−08 2.51E−07 2.07E−06 1.02E−09

F17 Best 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979

Mean 0.3979 0.3979 0.4004 0.3988 0.3940 0.3980

Std 6.09E−07 4.57E−08 1.30E−02 2.43E−03 3.22E−04 6.52E−04

F18 Best 3.00 3.00 3.00 3.00 3.00 3.00

Mean 5.70 10.20 6.60 9.30 11.10 6.60

Std 8.10 11.9 9.18 11.42 12.37 9.18

F19 Best –3.86 –3.86 –3.86 –3.86 –3.86 –3.86

Mean –3.82 –3.81 –3.79 –3.78 –3.83 –3.78

Std 4.49E−02 1.36E−01 7.02E−02 1.91E−01 3.81E−02 6.82E−02

F20 Best –3.32 –3.32 –3.32 –3.32 –3.32 –3.32

Mean –3.27 –3.26 –3.27 –3.28 –3.29 –3.28

Std 8.90E−02 9.64E−02 5.20E−02 7.02E−02 5.54E−02 5.80E−02

Table 6 The scores and ranking
Strategy1 Strategy2 Strategy3 Strategy4 Strategy5 Strategy6

Score 108 76 101 103 62 135

Rank 2 5 4 3 6 1

and variance of the 30 independent runs were recorded
and compared as criteria for algorithm performance. All
low-dimensional and high-dimensional benchmark functions
(F1-F13) numerical results are presented in detail in Tables 7,
8, 9 and 10. The numerical results of the fixed-dimension
benchmark functions (F14-f20) are shown in Table 11. Bold-
face in the tables indicates the best results.

It is observed from the results that theMHHOpresents out-
standing performance onmost benchmark functions.MHHO
has achieved an overwhelming victory over other competi-
tors on all four selected dimensions for functions F1, F2, F4,
and F5. For function F6, when the dimension is 10, MFO is
the most successful competitor (2.25E−08). However, in the
remaining three dimensions (50, 100, and 300 dimensions),
the numerical results of MHHO (7.58E−05, 1.21E−04 and
2.17E−04, respectively) are better than those of other opti-
mizers for function F6. Whether low or high dimensional,
TLBO demonstrates the best performance over other tech-

nologies for function F7, followed by MHHO. In Tables 7
and 8, the results ofMHHO(1.70E−111 and 4.82E−110) are
better than other algorithms for functionF3.When the dimen-
sions take 100 and300,TLBOoutperformedother optimizers
for F3. Nevertheless, MHHO is still better than the original
HHO.

For function F8, MHHO (7.32E−02, 1.32E−02,
2.45E−01 and 5.53E−01, respectively) has the best perfor-
mance in all 10, 50, 100, and 300 dimensions. According to
the four tables, there are three optimizers (MHHO,HHO, and
TLBO) on the functions F9 and F11 that reach the theoret-
ical optimal value (0). For function F10, MHHO and HHO
show competitive results comparedwith other selectedmeth-
ods. From Table 7, we know that GA (-7.57E−01) is the best
technique for function F12when the dimension is equal to 10
and TLBO (2.66E−01) performed best when the dimension
is equal to 50. HHO performs better in the remaining two
dimensions for F12, followed by MHHO. For function F13,
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Table 7 The numerical results of 10-dimensional benchmark functions (F1-f13) on all algorithms

Function Norm PSO GA HS MFO TLBO HHO MHHO

F1 Best 4.31E−39 3.08E−01 2.44E−07 2.70E−15 9.85E−111 0 2.58E−165

Worst 8.29E+03 7.23E+00 6.27E−06 1.73E−10 1.27E−103 6.94E−99 4.84E−121

Mean 2.76E+02 2.39E+00 1.85E−06 1.39E−11 4.44E−105 3.87E−100 1.62E−122

Std 1.49E+03 1.56E+00 1.29E−06 3.38E−11 2.28E−104 1.33E−99 8.69E−122

F2 Best 1.17E−02 1.76E−01 6.10E−04 3.85E−10 3.12E−55 7.28E−151 9.20E−73

Worst 8.87E+03 7.15E−01 1.98E−03 1.00E+01 9.71E−52 2.56E−49 1.72E−63

Mean 1.09E+03 3.48E−01 1.08E−03 2.00E+00 6.58E−53 8.76E−51 6.85E−65

Std 2.05E+03 1.20E−01 3.02E−04 4.00E+00 1.75E−52 4.58E−50 3.08E−64

F3 Best 1.03E−08 1.36E+02 4.98E+01 2.09E−03 8.25E−112 1.87E−108 1.56E−136

Worst 2.05E+04 3.01E+03 6.01E+02 1.00E+04 6.63E−106 1.56E−86 5.08E−110

Mean 2.64E+03 1.22E+03 2.57E+02 2.28E+03 4.13E−107 1.21E−87 1.70E−111

Std 5.44E+03 5.99E+02 1.35E+02 2.93E+03 1.33E−106 3.73E−87 9.12E−111

F4 Best 2.93E−09 1.17E+00 4.92E−01 7.38E−03 4.53E−52 5.05E−181 7.19E−88

Worst 6.76E+01 5.61E+00 2.46E+00 2.53E−01 7.40E−49 1.03E−52 3.32E−66

Mean 7.53E+00 3.42E+00 1.48E+00 8.45E−02 5.63E−50 3.78E−54 1.41E−67

Std 1.95E+01 1.13E+00 4.67E−01 7.76E−02 1.34E−49 1.85E−53 6.04E−67

F5 Best 3.23E−03 1.33E+01 1.73E−02 1.49E−01 8.77E+00 8.94E−12 2.14E−09

Worst 5.64E+07 3.35E+02 1.46E+03 9.00E+04 8.97E+00 1.31E−02 6.76E−03

Mean 1.15E+07 1.47E+02 1.02E+02 9.16E+03 8.89E+00 9.85E−04 7.50E−04

Std 1.69E+07 8.71E+01 2.70E+02 2.70E+04 4.81E−02 2.70E−03 1.68E−03

F6 Best 0 4.96E−01 3.38E−07 3.42E−14 8.37E−02 6.38E−12 3.26E−11

Worst 9.59E+03 1.31E+01 3.33E−06 6.72E−07 1.72E+00 2.11E−05 6.93E−05

Mean 4.74E+02 2.51E+00 1.36E−06 2.25E−08 5.60E−01 3.32E−06 5.59E−06

Std 1.88E+03 2.40E+00 7.07E−07 1.21E−07 4.53E−01 5.91E−05 1.35E−05

F7 Best 1.28E−02 3.13E−01 5.94E−02 3.71E−02 4.90E−05 2.35E−04 2.75E−04

Worst 3.16E+01 4.47E+02 1.42E+00 2.15E−01 7.21E−04 8.59E−02 1.22E−01

Mean 2.54E+00 3.83E+01 6.78E−01 1.15E−01 3.46E−04 3.15E−02 2.81E−02

Std 5.82E+00 8.18E+01 3.42E−01 5.49E−02 1.68E−04 2.55E−02 3.07E−02

F8 Best 9.87E+02 1.89E+00 1.29E−04 8.34E+02 1.25E+03 1.27E−04 1.27E−04

Worst 2.69E+03 1.94E+01 1.89E+00 2.03E+03 2.02E+03 2.18E+02 1.94E+00

Mean 1.75E+03 7.77E+00 4.32E−01 1.64E+03 1.65E+03 7.42E+00 7.32E−02

Std 4.15E+02 4.25E+00 5.63E−01 2.86E+02 2.17E+02 3.91E+01 3.48E−01

F9 Best 5.11E+01 2.57E−01 1.41E−05 8.95E+00 0 0 0

Worst 1.42E+02 2.43E+00 6.94E−04 5.48E+01 0 0 0

Mean 1.08E+02 1.30E+00 1.32E−04 3.06E+01 0 0 0

Std 2.31E+01 6.00E−01 1.41E−04 1.31E+01 0 0 0

F10 Best 4.22E−14 5.48E−01 4.36E−04 2.43E−07 3.11E−15 -4.44E−16 -4.44E−16

Worst 1.99E+01 2.94E+00 1.02E−02 2.00E+01 3.11E−15 -4.44E−16 -4.44E−16

Mean 6.87E+00 1.45E+00 1.68E−03 7.97E+00 3.11E−15 -4.44E−16 -4.44E−16

Std 6.94E+00 6.03E−01 1.82E−03 8.97E+00 0 0 0

F11 Best 1.11E−01 6.89E−01 4.92E−04 2.71E−02 0 0 0

Worst 455E−01 1.06E+00 8.36E−01 3.10E−01 0 0 0

Mean 2.74E−01 9.74E−01 1.60E−01 1.33E−01 0 0 0

Std 9.62E−02 9.82E−02 1.45E−01 7.53E−02 0 0 0

F12 Best -3.06E+00 2.05E−02 -3.06E+00 3.73E−02 -1.48E+00 −2.55E+00 −2.87E+00

Worst 5.14E+07 -1.78E+00 -3.06E+00 −3.06E+00 −3.05E+00 −3.06E+00 −3.06E+00

Mean 3.45E+06 -7.57E−01 -3.06E+00 −2.38E+00 −2.85E+00 −3.01E+00 −3.02E+00

123



10962 Arabian Journal for Science and Engineering (2020) 45:10949–10974

Table 7 continued

Function Norm PSO GA HS MFO TLBO HHO MHHO

Std 1.24E+07 5.32E−01 4.43E−08 8.84E−01 2.90E−01 9.59E−02 4.88E−02

F13 Best 4.03E−31 4.52E−02 1.29E−07 7.18E−14 3.82E−02 1.69E−10 3.20E−11

Worst 9.40E+07 2.89E−01 6.61E−02 1.90E−02 9.39E−01 4.73E−05 2.39E−05

Mean 1.19E+07 1.29E−01 1.56E−02 6.05E−03 4.34E−01 6.35E−06 1.96E−06

Std 2.56E+07 6.42E−02 1.73E−02 8.56E−03 2.25E−01 1.05E−05 5.24E−06

MHHO (1.96E−06, 4.75E−05, 1.61E−05 and 2.37E−05,
respectively) still achieves the most prominent performance
in all dimensions. All in all, the performance of the MHHO
proposed in this paper has achieved quite competitive results
compared to other algorithms. MHHO is considerably better
than the original HHO on all benchmark functions except for
F12.

Seen from Table 11,MHHOfinds the global optimal solu-
tion on all functions (F14-F20). For functions F14, HS and
TLBO obtained the best results due to the smallest standard
deviation (STD). For function F15, HHO appears to be the
most competitive, followed by MHHO. For functions F16,
the results of MFO are more competitive. For functions F17,
GA is the most desirable choice, followed by MHHO. For
functions F18 and F19, TLBO performed better than the
others. For functions F20, HS achieves better search per-
formance than other optimization techniques, followed by
MHHO.

In addition, to further explore the significant difference in
the searching performance of the MHHO and other compar-
ison algorithms, the two-tailed t test as shown in Tables 12,
13, 14, 15 and 16 is implemented based on all numerical
results. In Tables 12, 13, 14, 15 and 16, results with sta-
tistical significance (i.e. p-values less than 0.05) are bold.
The “NaN” means “Not a Number” returned by the test and
it means that the results of the comparison algorithms are
almost the same. The p-values show that MHHO is signif-
icantly better than PSO, GA, HS, MFO and TLBO in most
test functions, and better than HHO in some test functions.
Although MHHO is not better than HHO in some problems
under 5% significant test results, this is because the accu-
racy of HHO solution is already quite high. The following
convergence curvewill further demonstrate the advantages of
MHHO.Here, we take the statistical test results of Table 3 for
instance. In Table 15, MHHO Significantly better than GA
and HS for functions F1-F13 and TLBO in functions F2, F4,
F5, F6, F7, F8, F10, F12 and F13. Compared with PSO and
MFO, MHHO also has significant advantages, except for F2
(P-value � 3.21E−01 and 3.21E−01, respectively). MHHO

achieves significant advantages in functions F7 (2.20E−03)
and F12 (2.85E−02), compared with HHO. Combined with
all the statistical test results, MHHO outperforms other com-
parison algorithms for most functions.

The convergence curves of all 13 functions (F1-F13) on
all 6 algorithms are shown in Figs. 5 and 6. The MHHO
algorithm has performed very well on most functions, and
its convergence speed is far better than other competitors
and the basic HHO. In addition, TLBO has achieved a high
speed in solving many functions, but its accuracy is much
weaker than that of HHO andMHHO. From the convergence
curves of functions F5, F6, F8, and F13, it could be seen
that TLBO is ineffective in solving complex problems and
is likely to fall into local optimum. It could be seen that the
newly proposed MHHO is far superior to the original HHO
on some functions, as it achieves a particularly high solution
accuracy and solution speed. These curves further illustrate
the effectiveness of our proposed MHHO algorithm.

4.4 Engineering Benchmark Optimization Sets

In this subsection, two well-known benchmark engineering
optimization problems are used to further verify the search-
ing performance of the proposed MHHO. What’s more, we
compare the differences between the HHO and other opti-
mization techniques proposed in previous works in solving
constrained optimization problems. In all cases, the MHHO
and the HHO are applied based on 30 search agents and 500
iterations.

4.4.1 Tension/Compression Spring Design Problem

The tension/compression spring problem is a classical engi-
neering optimization problemwith four constraints, in which
the objective is get the minimization of the weight of a spring
with three structural variables: wire diameter (d), mean coil
diameter (D), and the number of active coils (N). In the pro-
cess of solving, four constraints about shear stress, surge
frequency, and minimum deflection must be satisfied. This
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Table 8 The numerical results of 50-dimensional benchmark functions (F1-f13) on all algorithms

Function Norm PSO GA HS MFO TLBO HHO MHHO

F1 Best 5.16E+01 3.33E+02 1.67E+03 6.81E+02 6.45E−110 0 1.15E−168

Worst 1.07E+04 1.02E+03 2.94E+03 4.07E+04 1.28E−104 8.48E−97 8.29E−127

Mean 6.62E+02 5.60E+02 2.38E+03 1.52E+04 9.59E−106 8.40E−98 3.76E−128

Std 1.87E+03 1.61E+02 3.34E+02 9.51E+03 2.75E−105 2.41E−97 1.56E−127

F2 Best 1.38E+02 8.53E+00 1.51E+01 2.33E+01 1.78E−55 4.28E−59 4.63E−72

Worst 2.78E+24 1.40E+01 2.38E+01 1.80E+02 3.07E−52 6.46E−49 4.39E−61

Mean 8.40E+22 1.12E+01 1.91E+01 1.03E+02 2.71E−53 3.35E−50 1.78E−62

Std 3.42E+23 1.16E+00 2.35E+00 3.80E+01 6.32E−53 1.16E−49 7.95E−62

F3 Best 1.59E+04 3.93E+04 3.55E+04 4.82E+04 7.31E−111 5.24E−107 3.22E−164

Worst 3.21E+05 8.58E+04 7.11E+04 1.85E+05 3.16E−104 4.20E−77 7.50E−109

Mean 7.42E+04 5.98E+04 4.97E+04 1.16E+05 2.48E−105 3.03E−78 4.82E−110

Std 8.97E+04 1.07E+04 1.08E+04 3.06E+04 7.20E−105 1.04E−77 1.54E−109

F4 Best 2.23E+01 3.34E+01 2.82E+01 6.70E+01 4.36E−54 6.25E−168 1.45E−90

Worst 9.45E+01 6.08E+01 3.88E+01 9.26E+01 1.85E−49 1.43E−55 1.22E−75

Mean 3.80E+01 4.66E+01 3.42E+01 8.30E+01 9.57E−51 9.35E−57 5.44E−77

Std 1.93E+01 5.08E+00 2.66E+00 6.48E+00 3.32E−50 2.97E−56 2.25E−76

F5 Best 3.98E+05 9.82E+03 1.46E+05 4.21E+05 4.88E+01 5.58E−09 1.35E−07

Worst 3.99E+08 9.28E+04 7.59E+05 8.34E+07 4.90E+01 5.21E−02 1.25E−02

Mean 8.41E+07 3.05E+04 4.32E+05 2.01E+07 4.89E+01 4.79E−03 8.83E−04

Std 8.34E+07 1.85E+04 1.56E+05 3.39E+07 3.79E−02 1.07E−02 2.33E−03

F6 Best 5.94E+01 3.07E+02 1.49E+03 4.52E+02 8.00E+00 1.29E−08 1.59E−10

Worst 7.77E+02 1.14E+03 3.11E+03 5.83E+04 1.20E+01 1.56E−03 1.25E−03

Mean 3.84E+02 5.99E+02 2.37E+03 1.53E+04 1.07E+01 1.59E−04 7.58E−05

Std 2.17E+02 1.76E+02 3.73E+02 1.34E+04 9.05E−01 4.07E−04 2.31E−04

F7 Best 5.06E+03 4.61E+05 1.29E+07 2.48E+08 1.08E−04 7.24E−03 3.41E−04

Worst 1.23E+06 3.21E+06 4.32E+07 1.09E+10 1.32E−03 1.11E−01 1.75E−01

Mean 2.69E+05 1.49E+06 2.82E+07 3.53E+09 3.98E−04 4.80E−02 3.83E−02

Std 2.55E+05 8.33E+05 8.09E+06 2.79E+09 2.46E−04 2.72E−02 4.50E−02

F8 Best 6.08E+03 7.76E+02 1.75E+03 6.92E+03 1.29E+04 6.36E−04 6.36E−04

Worst 1.25E+04 1.97E+03 2.87E+03 1.03E+04 1.63E+04 1.25E+01 1.41E+00

Mean 1.04E+04 1.40E+03 2.10E+03 8.83E+03 1.46E+04 1.14E+00 1.32E−01

Std 1.78E+03 2.94E+02 2.81E+02 8.46E+02 7.77E+02 2.99E+00 3.21E−01

F9 Best 2.84E+02 3.97E+01 6.70E+01 2.72E+02 0 0 0

Worst 8.18E+02 7.40E+01 9.85E+01 4.63E+02 0 0 0

Mean 5.93E+02 5.69E+01 8.32E+01 3.79E+02 0 0 0

Std 1.84E+02 8.05E+00 9.23E+00 4.61E+01 0 0 0

F10 Best 1.70E+01 4.97E+00 7.68E+00 1.70E+01 3.11E−15 -4.44E−16 -4.44E−16

Worst 1.99E+01 7.31E+00 1.01E+01 2.00E+01 6.66E−15 -4.44E−16 -4.44E−16

Mean 1.88E+01 5.89E+00 8.74E+00 1.98E+01 3.46E−15 -4.44E−16 -4.44E−16

Std 6.64E−01 5.89E−01 5.38E−01 5.63E−01 1.07E−15 0 0

F11 Best 6.11E−01 3.38E+00 1.12E+01 4.85E+00 0 0 0

Worst 1.14E+00 1.02E+01 2.98E+01 2.79E+02 0 0 0

Mean 1.03E+00 6.00E+00 2.22E+01 1.14E+02 0 0 0

Std 1.24E−01 1.58E+00 4.07E+00 9.26E+01 0 0 0

F12 Best 1.26E+01 9.11E−01 2.27E+01 4.11E+04 −1.12E−01 −6.13E−01 −6.13E−01

Worst 9.60E+08 3.59E+00 3.69E+03 2.57E+08 5.09E−01 −5.40E−01 5.60E−01

Mean 1.01E+08 1.87E+00 4.10E+02 3.50E+07 2.66E−01 −5.88E−01 −5.97E−01
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Table 8 continued

Function Norm PSO GA HS MFO TLBO HHO MHHO

Std 2.27E+08 6.95E−01 9.35E+02 8.69E+07 1.56E−01 2.21E−02 1.52E−02

F13 Best 9.37E+01 9.22E+00 1.04E+04 4.53E+05 4.96E+00 1.60E−11 8.09E−11

Worst 8.20E+08 3.57E+03 2.96E+05 4.13E+08 6.52E+00 9.80E−04 9.20E−04

Mean 1.78E+08 1.90E+02 1.12E+05 9.37E+07 5.91E+00 9.31E−05 4.75E−05

Std 2.52E+08 6.52E+02 7.53E+04 1.64E+08 4.65E−01 2.18E−05 1.65E−04

Table 9 The numerical results of 100-dimensional benchmark functions (F1-f13) on all algorithms

Function Norm PSO GA HS MFO TLBO HHO MHHO

F1 Best 2.46E+03 4.01E+03 2.33E+04 4.45E+04 6.62E−111 0 2.71E−169

Worst 2.63E+04 8.33E+03 3.42E+04 9.76E+04 1.01E−104 9.61E−96 1.76E−125

Mean 9.07E+03 6.34E+03 2.91E+04 7.05E+04 4.21E−106 3.21E−97 5.89E−127

Std 6.81E+03 1.12E+03 3.09E+03 1.29E+04 1.82E−105 1.72E−96 3.16E−126

F2 Best 3.86E+02 4.12E+01 7.59E+01 2.03E+02 2.19E−56 3.60E−61 6.50E−81

Worst 1.04E+49 5.83E+01 9.91E+01 4.26E+02 3.00E−52 1.38E−49 4.06E−60

Mean 6.19E+47 4.98E+01 8.74E+01 2.82E+02 4.71E−53 6.04E−51 1.38E−61

Std 2.10E+48 4.51E+00 6.21E+00 5.77E+01 8.10E−53 2.47E−50 7.29E−61

F3 Best 6.66E+04 1.57E+05 2.31E+05 2.85E+05 2.70E−110 2.24E−102 7.03E−161

Worst 1.32E+06 3.24E+05 4.35E+05 5.57E+05 1.93E−102 7.78E−69 1.16E−93

Mean 3.33E+05 2.20E+05 3.02E+05 4.40E+05 1.60E−104 2.59E−70 3.86E−95

Std 3.76E+05 3.87E+04 4.41E+04 6.44E+04 7.03E−104 1.40E−69 2.08E−94

F4 Best 4.77E+01 6.41E+01 5.56E+01 8.84E+01 2.41E−54 1.12E−168 1.62E−87

Worst 9.66E+01 8.26E+01 6.28E+01 9.73E+01 2.25E−50 3.61E−52 5.51E−76

Mean 6.52E+01 7.57E+01 5.94E+01 9.34E+01 2.36E−52 1.21E−53 2.70E−77

Std 1.48E+01 3.87E+00 1.84E+00 2.14E+00 4.67E−51 6.49E−53 1.01E−76

F5 Best 1.83E+07 4.27E+05 2.17E+07 5.68E+07 9.88E+01 1.81E−12 6.80E−10

Worst 4.94E+08 3.46E+06 4.50E+07 3.87E+08 9.90E+01 3.53E−01 2.05E−01

Mean 2.25E+08 1.09E+06 3.30E+07 1.85E+08 9.89E+01 1.87E−02 1.20E−02

Std 1.07E+08 5.87E+05 5.48E+06 8.14E+07 3.89E−02 6.35E−02 4.04E−02

F6 Best 1.91E+03 3.95E+03 2.04E+04 3.22E+04 1.96E+01 3.75E−12 1.61E−09

Worst 2.47E+04 8.68E+03 3.15E+04 1.01E+05 2.46E+01 7.04E−03 2.86E−03

Mean 8.62E+03 6.35E+03 2.71E+04 6.82E+04 2.31E+01 2.69E−04 1.21E−04

Std 6.77E+03 1.20E+03 2.66E+03 1.66E+04 1.08E+00 1.30E−03 5.12E−04

F7 Best 2.02E+07 6.63E+07 2.89E+09 1.61E+10 3.05E−05 5.14E−03 1.48E−03

Worst 1.37E+09 7.27E+08 5.44E+09 8.02E+10 7.96E−04 1.66E−01 8.95E−02

Mean 1.77E+08 1.80E+08 4.10E+09 3.14E+10 4.13E−04 6.00E−02 4.00E−02

Std 3.12E+08 1.21E+08 6.67E+08 1.34E+10 1.98E−04 3.90E−02 2.60E−02

F8 Best 1.69E+04 5.29E+03 7.71E+03 1.79E+04 3.09E+04 1.27E−03 1.27E−03

Worst 3.76E+04 8.24E+03 1.08E+04 2.42E+04 3.46E+04 5.98E+00 4.18E+00

Mean 2.18E+04 6.82E+03 9.06E+03 2.15E+04 3.31E+04 5.05E−01 2.45E−01

Std 3.76E+03 8.38E+02 8.11E+02 1.42E+03 8.44E+02 1.21E+00 8.45E−01

F9 Best 8.91E+02 1.95E+02 3.29E+02 7.50E+02 0 0 0

Worst 1.73E+03 2.85E+02 4.47E+02 1.06E+03 0 0 0

Mean 1.21E+03 2.41E+02 3.80E+02 9.07E+02 0 0 0

Std 2.69E+02 2.01E+01 2.55E+01 8.02E+01 0 0 0
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Table 9 continued

Function Norm PSO GA HS MFO TLBO HHO MHHO

F10 Best 1.85E+01 8.44E+00 1.39E+01 2.00E+01 3.11E−15 -4.44E−16 -4.44E−16

Worst 2.00E+01 1.10E+01 1.57E+01 2.00E+01 3.11E−15 -4.44E−16 -4.44E−16

Mean 1.93E+01 9.90E+00 1.49E+01 2.00E+01 3.11E−15 -4.44E−16 -4.44E−16

Std 3.17E−01 6.25E−01 4.22E−01 1.61E−03 0 0 0

F11 Best 1.66E+00 3.73E+01 2.05E+02 3.33E+02 0 0 0

Worst 2.67E+00 7.70E+01 3.18E+02 9.19E+02 0 0 0

Mean 2.15E+00 5.63E+01 2.55E+02 5.89E+02 0 0 0

Std 2.83E−01 8.93E+00 2.14E+01 1.40E+02 0 0 0

F12 Best 1.61E+05 9.14E+00 1.12E+07 6.16E+07 5.33E−01 −3.05E−01 −3.06E−01

Worst 7.70E+08 2.08E+06 2.93E+07 1.13E+09 8.90E−01 −2.34E−01 −2.63E−01

Mean 2.85E+08 1.07E+05 1.88E+07 3.57E+08 7.17E−01 −2.84E−01 −2.92E−01

Std 2.32E+08 3.90E+05 4.56E+06 2.43E+08 8.97E−02 2.13E−02 1.21E−03

F13 Best 9.08E+06 3.77E+04 5.55E+07 1.84E+08 1.14E+01 3.74E−10 4.36E−10

Worst 1.65E+09 3.08E+06 1.16E+08 1.48E+09 1.38E+01 1.27E−03 2.20E−04

Mean 6.61E+08 5.70E+05 8.08E+07 7.25E+08 1.30E+01 1.16E−04 1.61E−05

Std 4.49E+08 6.61E+05 1.65E+07 3.36E+08 5.14E−01 2.79E−04 4.34E−05

problem is shown in Fig. 7 and can be described mathemat-
ically as follows:

Consider x � [x1, x2, x3] � [d, D, N ],

Minimize f (x) � (x3 + 2)x2x
2
1 ,

Subject to

g1(x) � 1 − x32 x3
71785x41

≤ 0,

g2(x) � 4x22 − x1x2
12566

(
x2x31 − x41

) + 1

5108x21
− 1 ≤ 0,

g3(x) � 1 − 140.45x1
x22 x3

≤ 0,

g4(x) � x1 + x2
1.5

− 1 ≤ 0,

Structural variables range

0.05 ≤ x1 ≤ 2.00, 0.25 ≤ x2 ≤ 1.30, 2.00 ≤ x3 ≤ 15.00

The results of HHO are compared with those of several
state-of-the-art technologies from previous literature, such
as PSO [46], GA [47], HS [10], MFO [27], GSA [15], WOA
[15], BA [48], RO [49], ES [50], MPM [51], CEPSO [52],
CEDE [53] and the conventional HHO. Table 17 shows the
detailed results of the numerical comparison. Seen from
Table 17, the results show that the optimal weight obtained

by MHHO (0.01266619) is better than other comparative
algorithms, which proves the superiority and effectiveness
of HHO in solving these types of engineering problems.

4.4.2 Welded Beam Design Problem

The welded beam design problem is a well-known mechan-
ical engineering problem, in which the objective is to
minimize the fabrication cost of a welded beam with four
design variables: thickness of weld (h), length of attached
part of bar (l), height of the bar (t), and thickness of the bar
(b). In this case, there are seven constraints about shear stress
(τ ) and bending stress in the beam (θ ), buckling load on the
bar (Pc), end deflection of the beam (δ) [15]. The schematic
plot of welded beam is shown in Fig. 8. The mathematical
formulation of this test is as follows:

Consider x � [x1, x2, x3, x4] � [h, l, t, b],

Minimize f (x) � 1.10471x21x2 + 0.04811x3x4(14.0 + x2),

Subject to

g1(x) � τ(x) − τmax ≤ 0,

g2(x) � σ(x) − σmax ≤ 0,

g3(x) � δ(x) − δmax ≤ 0,

g4(x) � x1 − x4 ≤ 0,

g5(x) � P − Pc(x) ≤ 0,
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Table 10 The numerical results of 300-dimensional benchmark functions (F1-f13) on all algorithms

Function Norm PSO GA HS MFO TLBO HHO MHHO

F1 Best 7.33E+04 1.19E+05 2.32E+05 4.94E+05 2.66E−111 3.94E−284 1.70E−167

Worst 1.72E+05 1.78E+05 2.85E+05 6.26E+05 2.40E−103 2.02E−93 1.33E−120

Mean 1.06E+05 1.46E+05 2.64E+05 5.75E+05 1.07E−104 6.72E−95 4.53E−120

Std 2.31E+04 1.43E+04 1.21E+04 3.01E+04 4.42E−104 3.62E−94 2.38E−119

F2 Best 9.72E+53 3.37E+02 5.41E+02 1.38E+03 2.77E−55 3.21E−57 1.04E−81

Worst 5.07E+151 3.90E+02 6.24E+02 1.43E+32 1.36E−51 3.10E−48 2.36E−62

Mean 1.69E+150 3.63E+02 5.93E+02 4.77E+30 1.64E−52 1.12E−49 1.74E−63

Std 9.11E+150 1.27E+01 1.64E+01 2.57E+31 3.42E−52 5.56E−49 5.60E−63

F3 Best 6.84E+05 1.39E+06 2.37E+06 1.87E+06 1.12E−108 1.34E−99 2.11E−127

Worst 1.37E+07 2.60E+06 3.73E+06 4.42E+06 4.59E−102 6.04E−58 3.38E−78

Mean 2.45E+06 1.75E+06 2.91E+06 3.34E+06 2.99E−103 2.01E−59 1.13E−79

Std 3.34E+06 2.62E+05 3.45E+05 5.76E+05 9.62E−103 1.09E−58 6.06E−79

F4 Best 7.98E+01 9.23E+01 8.36E+01 9.74E+01 1.59E−53 2.88E−176 1.47E−87

Worst 9.86E+01 9.81E+01 8.70E+01 9.91E+01 1.03E−50 7.44E−57 1.02E−73

Mean 8.71E+01 9.55E+01 8.51E+01 9.84E+01 9.05E−52 3.21E−58 3.38E−75

Std 4.23E+00 1.25E+00 7.53E−01 5.13E−01 2.01E−51 1.38E−57 1.82E−74

F5 Best 6.13E+08 1.28E+08 5.44E+08 2.13E+09 2.99E+02 7.30E−09 2.29E−09

Worst 1.36E+09 2.81E+08 7.59E+08 2.74E+09 2.99E+02 1.33E−01 9.18E−02

Mean 9.80E+08 1.91E+08 7.08E+08 2.40E+09 2.99E+02 1.80E−02 3.98E−03

Std 1.90E+08 3.98E+07 4.47E+07 1.52E+08 3.21E−02 3.03E−02 1.64E−02

F6 Best 7.54E+04 1.20E+05 2.37E+05 4.87E+05 7.02E+01 2.86E−10 8.83E−09

Worst 1.55E+05 1.63E+05 2.89E+05 6.27E+05 7.44E+01 3.66E−03 1.94E−03

Mean 1.08E+05 1.42E+05 2.63E+05 5.72E+05 7.31E+01 4.38E−04 2.17E−04

Std 2.14E+04 1.02E+04 1.34E+04 3.26E+04 1.02E+00 9.35E−04 4.71E−04

F7 Best 9.92E+09 6.37E+10 2.36E+11 8.17E+11 7.39E−05 1.15E−02 4.23E−03

Worst 1.42E+11 1.24E+11 3.57E+11 1.23E+12 9.31E−04 2.04E−01 1.25E−01

Mean 2.83E+10 8.45E+10 3.04E+11 1.07E+12 4.36E−04 7.53E−02 3.85E−02

Std 2.72E+10 1.45E+10 2.43E+10 1.06E+11 2.27E−04 5.40E−02 3.03E−02

F8 Best 6.31E+04 5.05E+04 5.81E+04 7.44E+04 1.06E+05 3.82E−03 3.82E−03

Worst 1.19E+05 5.58E+04 6.38E+04 8.75E+04 1.14E+05 8.71E+00 9.87E+00

Mean 8.07E+04 5.36E+04 6.05E+04 8.21E+04 1.10E+05 7.36E−01 5.53E−01

Std 1.13E+04 1.34E+03 1.48E+03 3.76E+03 1.64E+03 1.88E+00 1.78E+00

F9 Best 3.56E+03 1.84E+03 2.29E+03 3.35E+03 0 0 0

Worst 4.32E+03 2.16E+03 2.58E+03 4.05E+03 0 0 0

Mean 3.92E+03 1.98E+03 2.43E+03 3.65E+03 0 0 0

Std 1.58E+02 8.62E+01 6.90E+01 1.50E+02 0 0 0

F10 Best 1.94E+01 1.65E+01 1.84E+01 2.00E+01 3.11E−15 -4.44E−16 -4.44E−16

Worst 2.03E+01 1.77E+01 1.89E+01 2.00E+01 6.66E−15 -4.44E−16 -4.44E−16

Mean 2.01E+01 1.71E+01 1.87E+01 2.00E+01 3.58E−15 -4.44E−16 -4.44E−16

Std 1.70E−01 2.81E−01 1.52E−01 2.86E−02 1.21E−15 0 0

F11 Best 2.61E+01 1.10E+03 1.93E+03 4.71E+03 0 0 0

Worst 4.32E+01 1.52E+03 2.55E+03 5.78E+03 0 0 0

Mean 3.39E+01 1.28E+03 2.37E+03 5.22E+03 0 0 0

Std 3.40E+00 1.09E+02 1.17E+02 2.46E+02 0 0 0

F12 Best 3.83E+08 4.47E+07 9.33E+08 4.45E+09 8.67E−01 −1.01E−01 −1.02E−01

Worst 2.58E+09 3.39E+08 1.46E+09 6.40E+09 1.07E+00 −6.67E−02 −7.31E−02
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Table 10 continued

Function Norm PSO GA HS MFO TLBO HHO MHHO

Mean 1.20E+09 1.82E+08 1.19E+09 5.42E+09 1.02E+00 -8.86E−02 −9.38E−02

Std 4.73E+08 6.00E+07 1.35E+07 4.90E+08 4.17E−02 1.02E−02 7.22E−03

F13 Best 1.22E+09 3.61E+08 2.29E+09 7.71E+09 4.06E+01 3.36E−12 1.05E−08

Worst 6.28E+09 7.48E+08 3.20E+09 1.19E+10 4.35E+01 1.19E−03 2.88E−04

Mean 2.75E+09 5.33E+08 2.68E+09 1.02E+10 4.24E+01 8.78E−05 2.37E−05

Std 9.86E+08 9.39E+07 1.88E+08 8.78E+08 7.78E−01 2.36E−04 6.92E−05

Table 11 The numerical results
of fixed-dimension benchmark
functions (F14-F20) on all
algorithms

F Norm PSO GA HS MFO TLBO HHO MHHO

F14 Best 0.998 0.998 0.998 0.998 0.998 0.998 0.998

Worst 4.98E+02 0.998 0.998 0.998 0.998 0.998 0.998

Mean 1.05E+02 0.998 0.998 0.998 0.998 0.998 0.998

Std 1.90E+02 2.14E−06 1.11E−16 1.60E−16 1.11E−16 6.44E−12 5.97E−10

F15 Best 1.47E−03 7.62E−04 3.64E−04 6.38E−04 3.24E−04 3.24E−04 3.24E−04

Worst 1.24 2.53E−02 2.04E−02 2.04E−02 1.47E−03 3.43E−04 2.08E−03

Mean 0.11 9.82E−03 8.01E−03 2.02E−03 5.19E−04 3.27E−04 3.98E−04

Std 0.27 8.84E−03 9.10E−03 3.67E−03 3.13E−04 3.74E−06 3.12E−04

F16 Best –1.0316 –1.0314 –1.0316 –1.0316 –1.0316 –1.0316 –1.0316

Worst 2.39 3.57E−03 –1.0316 –1.0316 –1.0316 –1.0316 –1.0316

Mean –0.2202 –0.9077 –1.0316 –1.0316 –1.0316 –1.0316 –1.0316

Std 0.92 0.20 5.56E−11 2.63E−16 3.78E−16 1.47E−08 1.02E−08

F17 Best 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979

Worst 7.4889 0.3983 0.3979 0.3979 0.3979 0.3979 0.4015

Mean 1.3438 0.3980 0.3979 0.3979 0.3979 0.3979 0.3980

Std 1.4363 9.30E−05 6.06E−11 0 0 6.09E−07 6.52E−04

F18 Best 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Worst 91.82 85.78 30.00 3.00 3.00 30.00 30.00

Mean 35.62 13.87 5.70 3.00 3.00 5.70 6.60

Std 32.12 21.80 8.10 1.50E−15 1.37E−15 8.10 9.18

F19 Best –3.86 –2.92 –3.86 –3.86 –3.86 –3.86 –3.86

Worst –2.53 –0.52 –3.86 –3.86 –3.86 –3.73 –3.63

Mean –3.50 –1.49 –3.79 –3.86 –3.86 –3.82 –3.78

Std 0.359 0.70 2.15E−09 1.06E−15 7.69E−16 4.49E−02 6.82E−02

F20 Best –3.32 –8.6E−02 –3.33 –3.33 –3.33 –3.32 –3.32

Worst –0.49 –1.3E−04 –3.20 –3.05 –3.07 –3.04 –3.11

Mean –1.87 –2.2E−02 –3.30 –3.24 –3.27 –3.27 –3.28

Std 0.80 2.00E−02 4.90E−02 9.05E−02 7.32E−02 8.90E−02 5.80E−02

g6(x) � 0.125 − x1 ≤ 0,

g7(x) � 1.10471x21 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0

Design variables range

0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10,

0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2,

where

τ(x) �
√

(τ ′)2 + 2τ ′τ ′′
( x2
2R

)
+ (τ ′′)2,

τ ′ � P√
2x1x2

, τ ′′ � MR

J
, M � P

(
L +

x2
2

)
,

J � 2

{√
2x1x2

[
x22
4

+
( x1 + x3

2

)2]}
,

σ (x) � 6PL

x23 x4
, δ(x) � 6PL3

Ex33 x4
,
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Table 12 Comparisons of
P-values of the T-test with 5%
significance between MHHO
and other technologies for
F1–F13 with 10 dimensions

Function PSO
Vs. MHHO

GA
Vs. MHHO

HS
Vs. MHHO

MFO
Vs. MHHO

TLBO
Vs. MHHO

HHO
Vs. MHHO

F1 3.21E−01 2.44E−11 1.81E−10 3.04E−02 2.99E−01 1.23E−01

F2 5.81E−03 2.04E−22 1.23E−26 9.25E−03 4.72E−02 3.08E−01

F3 1.01E−02 8.54E−16 1.25E−14 9.83E−05 9.99E−02 8.61E−02

F4 4.15E−02 2.33E−23 2.65E−24 2.27E−07 2.73E−02 2.76E−01

F5 5.36E−04 8.40E−13 4.74E−02 7.23E−02 2.00E−124 6.92E−01

F6 1.81E−01 5.69E−07 9.75E−02 3.03E−02 4.54E−09 4.10E−01

F7 2.40E−02 1.45E−02 1.54E−14 6.12E−10 8.84E−06 6.51E−01

F8 2.34E−23 1.26E−01 1.01E−01 8.25E−26 6.60E−28 1.60E−01

F9 6.84E−33 8.19E−17 4.60E−06 3.77E−18 NaN NaN

F10 1.69E−06 8.61E−19 6.79E−06 1.21E−05 NaN NaN

F11 4.20E−22 4.92E−51 1.64E−07 2.12E−13 NaN NaN

F12 1.39E−01 1.08E−30 2.51E−05 2.66E−04 2.22E−03 4.20E−01

F13 1.50E−02 1.44E−15 9.42E−06 3.53E−04 7.45E−15 1.18E−01

Table 13 Comparisons of
P-values of the T-test with 5%
significance between MHHO
and other technologies for
F1–F13 with 50 dimensions

Function PSO
Vs. MHHO

GA
Vs. MHHO

HS
Vs. MHHO

MFO
Vs. MHHO

TLBO
Vs. MHHO

HHO
Vs. MHHO

F1 6.22E−02 2.91E−26 6.85E−43 6.57E−12 6.57E−02 6.51E−02

F2 5.56E−02 2.26E−50 3.74E−46 3.85E−21 2.45E−02 2.79E−01

F3 3.91E−05 4.81E−37 1.68E−32 3.87E−28 6.89E−02 1.20E−02

F4 3.54E−15 4.49E−49 2.05E−57 2.19E−57 1.26E−01 9.52E−02

F5 1.16E−06 2.23E−12 1.54E−21 2.34E−03 2.00E−173 5.86E−02

F6 1.90E−13 7.57E−26 4.32E−40 8.85E−08 2.20E−55 3.40E−01

F7 4.50E−07 1.15E−13 2.62E−26 5.61E−09 3.00E−05 3.24E−01

F8 3.70E−38 2.29E−33 4.02E−44 2.68E−52 6.00E−67 7.74E−02

F9 1.35E−24 1.03E−42 1.18E−48 2.06E−46 NaN NaN

F10 3.52E−77 3.38E−51 2.70E−63 1.09E−82 2.00E−27 NaN

F11 1.21E−46 3.52E−28 1.55E−36 1.35E−08 NaN NaN

F12 2.05E−02 1.04E−26 2.12E−02 3.42E−02 8.30E−37 7.73E−02

F13 3.59E−04 1.21E−01 6.84E−11 3.24E−03 3.50E−57 3.73E−01

Table 14 Comparisons of
P-values of the T-test with 5%
significance between MHHO
and other technologies for
F1–F13 with 100 dimensions

Function PSO
Vs. MHHO

GA
Vs. MHHO

HS
Vs. MHHO

MFO
Vs. MHHO

TLBO
Vs. MHHO

HHO
Vs. MHHO

F1 1.49E−09 2.19E−37 9.42E−50 1.52E−36 2.17E−01 3.21E−01

F2 1.17E−01 1.15E−53 7.25E−60 5.81E−34 2.72E−03 1.92E−01

F3 1.29E−05 1.48E−37 5.40E−42 6.43E−42 3.21E−01 3.21E−01

F4 1.66E−31 6.21E−68 1.69E−80 3.72E−88 8.94E−03 3.21E−01

F5 3.12E−16 4.01E−14 7.88E−39 1.03E−17 2.79E−190 1.79E−01

F6 4.20E−09 8.17E−36 1.18E−51 6.98E−30 3.31E−70 5.60E−01

F7 3.32E−03 6.38E−11 2.32E−39 2.51E−18 2.96E−11 2.50E−02

F8 5.70E−38 3.67E−46 5.70E−54 1.59E−61 1.92E−85 3.46E−01

F9 4.90E−32 1.20E−55 3.80E−61 2.82E−54 NaN NaN

F10 1.61E−96 1.20E−62 9.96E−83 2.20E−230 NaN NaN

F11 1.72E−44 5.54E−40 1.46E−55 1.71E−30 NaN NaN

F12 1.25E−08 1.44E−01 4.81E−30 8.81E−11 6.49E−54 7.75E−02

F13 7.86E−11 2.02E−05 4.84E−34 8.74E−17 8.74E−74 6.25E−02
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Table 15 Comparisons of
P-values of the T-test with 5%
significance between MHHO
and other technologies for
F1–F13 with 300 dimensions

Function PSO
Vs. MHHO

GA
Vs. MHHO

HS
Vs. MHHO

MFO
Vs. MHHO

TLBO
Vs. MHHO

HHO
Vs. MHHO

F1 2.20E−32 1.02E−51 1.12E−70 2.29E−67 1.97E−01 3.21E−01

F2 3.21E−01 2.05E−77 2.10E−83 3.21E−01 1.23E−02 2.84E−01

F3 2.16E−04 2.31E−41 5.50E−47 5.73E−38 3.21E−01 3.21E−01

F4 3.24E−69 3.90E−102 4.43E−112 2.06E−125 1.84E−02 2.14E−01

F5 3.58E−35 1.39E−33 1.11E−62 1.53E−62 5.53E−188 2.11E−01

F6 1.12E−34 2.48E−59 4.37E−68 3.57E−65 1.07E−100 2.60E−01

F7 6.08E−07 4.99E−38 8.86E−57 2.62E−51 7.08E−09 2.20E−03

F8 7.31E−43 5.55E−86 1.95E−86 1.11E−70 4.93E−99 7.06E−01

F9 5.70E−74 5.96E−72 9.73E−83 1.84E−73 NaN NaN

F10 4.23E−113 2.01E−96 3.40E−114 5.31E−158 2.33E−25 NaN

F11 3.95E−51 2.73E−55 7.92E−69 5.24E−70 NaN NaN

F12 9.50E−20 2.45E−23 4.57E−48 1.06E−53 1.89E−75 2.85E−02

F13 1.14E−21 1.88E−37 4.58E−60 5.34E−55 1.05E−93 6.71E−01

Table 16 Comparisons of
P-values of the T-test with 5%
significance between MHHO
and other technology for
F14–F20

Function PSO
Vs. MHHO

GA
Vs. MHHO

HS
Vs. MHHO

MFO
Vs. MHHO

TLBO
Vs. MHHO

HHO
Vs. MHHO

F14 4.41E−03 1.66E−02 7.09E−03 7.09E−03 7.09E−03 1.01E−02

F15 3.95E−02 3.76E−07 3.30E−05 2.10E−02 1.45E−01 2.26E−01

F16 1.35E−05 1.83E−03 2.22E−02 2.07E−02 2.07E−02 6.29E−01

F17 7.81E−04 8.14E−01 3.07E−01 3.07E−01 3.07E−01 3.08E−01

F18 1.78E−05 1.03E−01 6.94E−01 6.94E−01 3.90E−02 6.94E−01

F19 8.40E−05 8.10E−25 7.09E−08 7.09E−08 7.09E−08 3.75E−02

F20 3.91E−13 6.92E−93 9.83E−03 3.50E−01 7.78E−01 8.65E−03

Table 17 Comparison of results
for tension/compression spring
design problem

Algorithm Optimum variables Optimum weight

d D N

PSO [46] 0.05172800 0.357644000 11.24454300 0.01267470

GA [47] 0.05148000 0.351661000 11.63220100 0.01270480

HS [10] 0.05115400 0.349871000 12.07643200 0.01267060

MFO [27] 0.05199446 0.364109320 10.86842186 0.01266690

GSA [15] 0.05027600 0.323680000 13.52541000 0.01270220

WOA [15] 0.05120700 0.345215000 12.00403200 0.01267630

BA [48] 0.05169000 0.356720000 11.28850000 0.01267000

RO [49] 0.05137000 0.349096000 11.76279000 0.01267880

ES [50] 0.05164300 0.355360000 11.39792600 0.01269800

MPM [51] 0.05000000 0.315900000 14.25000000 0.01283340

CEPSO [52] 0.05172800 0.357644000 11.24454300 0.01267400

CEDE [53] 0.05160900 0.354714000 11.41083100 0.0126702

HHO 0.05197639 0.363669510 10.89275181 0.01266674

MHHO 0.05165487 0.355881658 11.33883300 0.01266619
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(a) Function F1 (b) Function F2 (c) Function F3

(d) Function F4 (e) Function F5 (f) Function F6

(g) Function F7

Fig. 5 Typical convergence graph of six different algorithms for functions 1 to 13 (D � 100). a Function F1; b Function F2; c Function F3;
d Function F4; e Function F5; f Function F6; g Function F7

Pc(x) � 4.013E
√

x23 x
6
4

36

L2

(
1 − x3

2L

√
E

4G

)
,

P � 6000lb, L � 14in., δmax � 0.25in., E � 30 × 106 psi,

G � 12 × 106 psi, τmax � 13600psi, σmax � 30000psi .
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(a) Function F8 (b) Function F9 (c) Function F10

(d) Function F11 (e) Function F12 (f) Function F13

Fig. 6 Typical convergence graph of six different algorithms for functions 8 to 13 (D � 100). a Function F8; b Function F9; c Function F10;
d Function F11; e Function F12; f Function F13

N

d
D

N

Fig. 7 Tension/compression spring design problem

This problem is solved with TLBO, HHO and MHHO
and the optimal results are compared to those of PSO [46],
GA [47], GA2 [54], ABC [55], HS [10], GSA [15], WOA
[15], GWO [29], BA [48], RO [49], ES [50], RAGSDELL
[56], DAVID [56], APPROX [56], RANDOM [56] and SIM-
PLEX [56]. Table 18 shows the optimal design variables and
corresponding minimum cost obtained by each algorithm.

l L b

t

h

Fig. 8 Welded beam design problem

The results of Table 18 show that MHHO provides a
very competitive minimum fabrication cost (1.724564883)
compared with other optimization techniques. In addi-
tion, the numerical results of ABC, GWO and TLBO are
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Table 18 Comparison of results
for Welded beam design
problem

Algorithm Optimum variables Optimum
cost

h l t b

PSO [46] 0.20236900 3.54421400 9.04821000 0.20572300 1.728024000

GA [47] 0.20598600 3.47132800 9.02022400 0.20648000 1.728226000

GA2 [54] 0.20880000 3.42050000 8.99750000 0.21000000 1.748310000

ABC [55] 0.20573000 3.47048900 9.03662400 0.20573000 1.724852000

HS [10] 0.24420000 6.22310000 8.29150000 0.24430000 2.380700000

GSA [15] 0.18212900 3.85697900 10.0000000 0.20237600 1.879947030

WOA [15] 0.20539600 3.48429300 9.03742600 0.20627600 1.730499000

GWO [29] 0.20567600 3.47837700 9.0368100 0.20577800 1.726240000

BA [48] 0.20150000 3.56200000 9.04140000 0.20570000 1.731200000

RO [49] 0.20368700 3.52846700 9.00423300 0.20724100 1.735345600

ES [50] 0.19974200 3.61206000 9.03750000 0.20608200 1.737297310

RAGSDELL [56] 0.24550000 6.196000000 8.27300000 0.24550000 2.385940000

DAVID [56] 0.24340000 6.255200000 8.29150000 0.24440000 2.384110000

APPROX [56] 0.24440000 6.218900000 8.29150000 0.24440000 2.381540000

RANDOM [56] 0.45750000 4.731300000 5.08530000 0.66000000 4.118560000

SIMPLEX [56] 0.27920000 5.625600000 7.75120000 0.27960000 2.530730000

TLBO 0.20572964 3.470488666 9.03662391 0.20572964 1.724852309

HHO 0.16643948 4.680909374 9.005576863 0.207150606 1.819855257

MHHO 0.20608633 3.483212417 8.979613177 0.206563782 1.724564883

1.724852000, 1.726240000 and 1.724852309 respectively,
which are very close to those of MHHO.

5 Conclusions and FutureWorks

In this study, a novel MHHO algorithm based on a modifi-
cation for the HHO algorithm is proposed. In HHO, the E of
prey is an extremely important link, which is key to control-
ling the process of exploration and exploitation. Therefore,
we designed 6 different update strategies for E. A series
of benchmark functions were used to evaluate the perfor-
mance of 6 strategies. In Experiment 1, two dimensions (30
dimension and 200 dimension)were selected for comparative
experiments. The results revealed that strategy 1, deployed
in the original HHO, did not perform well. Subsequently,
the scores and ranking results revealed that strategy 6 is
far superior to the other competitors. The energy updating
method in strategy 6 improves the accuracy, convergence
speed, and local optimal avoidance of the algorithm. It should
be noted that the most obvious difference between strategy
6 and other strategies is that the value of E will not even-
tually decrease to 0 under strategy 6. This may be more
realistic because Harris hawks are highly efficient hunters in
nature. In this situation, they often hunt successfully before
the prey is exhausted. In addition, in the second half of the
iteration, strategy 6 is more likely to implement a “Soft
besiege with progressive rapid dives” strategy than others.

We found that the proportion of “Soft besiege with pro-
gressive rapid dives” should be higher than that of “Hard
besiege with progressive rapid dives”, because the former
provides enough search neighborhoods to accelerate con-
vergence and local optimal avoidance. Therefore, strategy
6 should be used as the best choice for subsequent experi-
ments. Furthermore, we compared it with several of the most
popular meta-heuristic algorithms in experiment 2. Consid-
ering the numerical results, p-values of t test and convergence
curve, it can be concluded that MHHO shows extraordinary
performance compared to other rivals. In particularly, it out-
performedHHObecause of itswell-balanced exploration and
exploitation capabilities. Therefore, MHHO with the latest
update style of E is a powerful optimization technique.

Moreover, to further illustrate the search performance of
the proposed MHHO, we apply it to two well-known engi-
neeringoptimizationproblems.The comparisonof the results
between MHHO and other optimization techniques reveals
its remarkable performance in solving constrained optimiza-
tion problems.

In future works, ourMHHOwill be applied to real life and
multi-target issues. Additionally, a binary version of MHHO
will be implemented. Moreover, a future research direction
that could be further explored is the jumping strength (J) of
prey.
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