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Abstract
Flow in porous channel or pipe has attained significant attention in biophysics, especially when the walls are contracting 
or expanding. The purpose of this work is to explore the effects of variable viscosity on the asymmetric laminar flow of 
Casson fluid (CF) with thermal radiation in an expanding/contracting channel having porous walls. The flow equations, by 
using appropriate transformations, are reduced to ordinary differential equations (ODEs). The method of homotopy analysis 
(HAM) is used to obtain the expressions for the velocity field along with the temperature profile. Graphs are portrayed for 
different parametric values and analyzed in detail for the consequent dynamic attributes, especially the viscosity-dependent 
parameter, CF parameter, and the expansion ratio. CF parameter escalates the velocity of the fluid near the lower wall, but 
after mid-way, it starts decreasing. The fluid velocity due to temperature-dependent (TD) viscosity parameter is more note-
worthy for Newtonian fluid (NF) relative to non-Newtonian (NN) fluid. As anticipated, the radiation parameter causes the 
fluid to heat up.

Keywords  Casson fluid · Asymmetric laminar stream · Variable viscosity · Expanding/contracting porous channel

List of Symbols
u, v	� Velocity components in the x- and y-directions 

[ms−1]
x, y	� Spatial coordinates [m]
t	� Time [s]
Tf	� Fluid temperature [K]
T0, Tw	� Fluid temperature at walls [K]
B0	� Magnetic field intensity,
p*	� Fluid pressure [kg m−1 s−2]
Pr	� Prandtl number [–]
eij	� (i,j)th components deformation rate
py	� Yield stress of Casson fluid
Cp	� Specific heat

q	� Dimensionless temperature
qr	� Radiative heat flux
K	� Thermal conductivity [Wm−1 K−1]
A0, A1	� Both wall permeabilities
A	� Ratio parameter [–]
l1, l2	� Linear operator
p	� Embedding parameter
K*	� Mean adsorption coefficient
Nr	� Radiation parameter [–]
b	� Half-width of the channel [m]
R0, R1	� Permeation Reynolds numbers
N1, N2	� Nonlinear operator

Greek Letters
�	� Wall expansion ratio
�
(
Tf
)
	� Temperature-dependent viscosity [= �0�(q)]

�	� Fluid density [kg m−3]
�	� Casson fluid parameter [–]
�	� Electric conductivity [sm−1]
�0	� Magnetic field intensity [T]
�0	� Plastic dynamic viscosity of the non-Newtonian 

fluid [kg m−1 s−1]
�	� Transformed coordinate
�	� Viscosity variation parameter [–]
�	� Expansion ratio
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�	� Product of the components of deformation rate 
with itself

�∗	� Stefan–Boltzmann constant
�c	� Critical value of this product

1  Introduction

In both scientific and biophysical flows, the flow within 
channels and pipes with permeable walls is very important. 
Examples include sodium cooling, soil mechanics, binary 
gas diffusion, ablation cooling, combustion of a solid rocket 
motor, blood circulation, artificial dialysis, cosmetics, food 
preservation and air modeling in the respiratory system. A 
significant number of theoretical studies on the continuous, 
incompressible, and laminar flow along injection/suction on 
the walls have been performed in recent decades. In a porous 
two-dimensional tube, the flow of viscous and incompress-
ible fluid was examined by several authors. Asghar et al. [1] 
applied the symmetry method to solve the viscous fluid flow 
problem inside the channel with porous plates. Makukula 
et al. [2] proposed a numerical technique to study incom-
pressible viscous fluid flow streaming through two moving 
porous plates. Xinhui Si et al. [3] studied the laminar flow 
of the micropolar fluid within an expanding/contracting 
channel having porous plates. Using the variation param-
eter method, Sobamowo [4] discussed laminar flow inside 
a porous channel. In order to solve the problem of viscous 
fluid flow inside a porous channel along with a slip boundary 
condition, Ashwini et al. [5] applied a computer-extended 
series method and HAM. This examination asserts that the 
suggested techniques converge to the solution for sufficiently 
large values of Reynolds number. Bhatti et al. [6] considered 
unsteady Stokes flow with periodic suction and injection on 
two parallel porous plates having slippage effects. Graphi-
cal findings uncovered that axial and radial velocity pro-
files were considerably affected by the slip parameter. If an 
adequate magnetic field is applied, the velocity distribution 
can be restricted. Such a conclusion was drawn by Farooq 
et al. [7] during the investigation of MHD fluid flow inside 
the non-uniform penetrable channel with slip phenomena.

Some biophysical flux applications include expand-
ing–contracting channels, for instance, the respiratory system 
in blood and airflow, mock dialysis, filtration, and birth flux of 
the gas. For such applications, several researchers have looked 
at the Newtonian/non-Newtonian flow across expanding–con-
tracting channels for various types, such as using similarities 
of space and time and two disruptions named as permeation 
Reynolds number and ratio of expansion to walls. Raza et al. 
[8] examined the existence of multiple solutions for nano-
fluid flow inside the penetrable channel having expanding/
contracting walls. This research shows that the triple solution 
exists just for the suction case. Akinshilo [9] constructed the 

problem of nanofluid flow passing inside the channel with 
expanding/contracting penetrable walls and provided mean-
ingful information to control heat transfer and shear stress. 
Using the Buongiorno model, Ali et al. [10] examined the 
impact of heat transfer on expanding/contracting walls and 
observed that for expanding walls the Nusselt number promi-
nently increases with thermophoretic diffusion parameter as 
compared to the contracting walls.

In food preservation, instrumentation, lubrication, tribology, 
and viscometry, the investigation of Newtonian/non-Newtonian 
fluid flow using TD characteristics is of excellent significance. 
For example, the effect of viscosity as a function of temperature 
had been discussed by some authors [11, 12] for plane Poi-
seuille flow. In their analyses, the impact of variable viscosity 
on the constancy of flows inside the channel with permeable 
plates was studied when both plates of channels have different 
temperatures. In another analysis, Pinarbasi and Liakopoulos 
[13] held the channel walls fixed and restricted their attention 
to the role of viscosity as a function of temperature in a chan-
nel by examining stability. The effect of varying viscosity on 
the flow was analyzed by [14] inside the channel with porous 
walls having different temperatures. However, Sinah et al. [15] 
studied the variable viscosity effects with velocity slip and tem-
perature difference for MHD non-Newtonian fluid in an asym-
metric channel. By assuming the thermal conductivity along 
with variational viscosity, the flow of an incompressible NN 
fluid with nth-order chemical reaction was studied by Anima-
saun [16]. The study to investigate the effects of variational 
viscosity for steady natural convective fully developed flow in 
an annular micro-channel placed in a vertical direction in the 
company of wall having different temperatures and velocity 
slip was presented by [17]. An exact solution of the steady, 
incompressible, mixed convective flow of the viscous liquid 
was obtained via taking viscosity as a function of temperature 
in a vertical channel having heated walls [18].

While dealing and controlling NN fluid flows, heat transfer 
plays a very significant role. NN fluid flow dynamics is a spe-
cific challenge for mathematicians, engineers, and physicists. 
CF is one of the NN fluids that functions as an elastic solid, 
and there is a yield shear stress in its constitutive equation. 
Jam, toothpaste, soup, tomato pulp, and rich fruit nectars are 
considered as CF. Srinivas et al. [19] theoretically examined 
the phenomena of the CF flow containing chemically reac-
tive species in a channel. In the existence of thermal radia-
tion, they found that the CF parameter increases the veloc-
ity distribution. Kumam et al. [20] inspected the impact of 
entropy generation on CF inside rotating channels which was 
exposed to thermal radiation. Entropy generation escalated 
due to Reynolds number, while decreased with the magnetic 
parameter. Manjunatha et al. [21] observed that by consider-
ing variable viscosity, it is conceivable to escalated frictional 
force and peristaltic pumping efficiency while studying the 
impact of slip and heat transfer on CF inside an inclined tube 
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with variable viscosity. Alzahrani et al. [22] numerically dis-
cussed the entropy generation on CF flow in an enclosure with 
convection as well as with thermal radiation. CF parameter 
and thermal radiation raise the kinetic energy of the system.

Heat transfer plays a significant role in the problems 
involving NN fluid flows. CF is a shear-thinning NN fluid 
that should get infinite viscosity at zero shear rate and no 
flow until yield stress is generated. Therefore, the intention 
of the present study is to explore how heat transfer affects 
the asymmetric, MHD flow of the non-Newtonian CF within 
channel having expanding–contracting walls. The transmis-
sion of heat varies point to point at a distance from the wall 
and also influenced by the thermal radiation. The channel 
walls have pores with dissimilar permeability, and fluid’s 
viscosity is taken as a function of temperature.

2 � Physical Formulation and Derivation

Consider the 2D, laminar, unsteady, and incompressible 
MHD flow of NN fluid (CF) with viscosity taken as a func-
tion of temperature. The flow is through a lengthened rec-
tangular channel with porous walls, unveiling appropriately 
large facet ratio of height “b”. We suppose that both the 
upper and lower walls are expanding or contracting uni-
formly with a time-dependent rate b′(t) having different per-
meabilities vl and vw. As shown in Fig. 1, flow configuration 
[23] is described by using the Cartesian coordinate system, 
in which the x-axis is along the center of the channel and 
axial velocity u is parallel to it, while normal velocity v is 
taken along the normal, i.e., y-direction.

Further, under the assumption of small electromagnetic 
force and electric conductivity, an exterior and normal mag-
netic field of uniform intensity is also taken into account 
over the flow. For incompressible CF model, the constitutive 
equation [24, 25] is given as

or

Here � = eijeij.

The velocity as well as temperature profile for the under-
consideration problem are

(1a)𝜏1∕2 = 𝜏1∕2
c

+
(
𝜇
(
Tf
))1∕2

𝛾1∕2 𝜏 > 𝜏c

(1b)𝜏ij =

⎧⎪⎨⎪⎩

2

�
𝜇
�
Tf
�
+ py∕

√
2𝜋

�
eij, 𝜋 > 𝜋c

2

�
𝜇
�
Tf
�
+ py∕

√
2𝜋c

�
eij, 𝜋 < 𝜋c

(2)� =
[
u(y, t), v(y, t), 0

]
, Tf = Tf (y, t).

Applying the above assumptions and utilizing Eqs. (1) 
and (2), the flow equations governing the flow with the 
dependence of viscosity on temperature are

Associated boundary conditions are

Here, vl, vw are the constant values of permeabilities at 
y = −b(t) and y = b(t) , respectively, A0 =

vl

b�(t)
 , A1 =

vw

b�(t)
 and 

T0 > Tw.
Throughout the literature, there is more than one math-

ematical model explaining the dynamics of TD viscosity. 
Here, we use the viscosity model by [26] to analyze the 
viscosity variation because of temperature and subsequently 
given by Prasad et al. [27]

Using the below parameters

(3)
�u

�x
+

�v

�y
= 0,

(4)

�u

�t
+ u

�u

�x
+ v

�u

�y
= −

1

�

�p∗

�x
+

1

�

(
1 +

1

�

)

[
�

�x

{
�
(
Tf
) �u
�x

}
+

�

�y

{
�
(
Tf
) �u
�y

}]
−

��2
0

�
u,

(5)

�v

�t
+ u

�v

�x
+ v

�v

�y
= −

1

�

�p∗

�y
+

1

�

(
1 +

1

�

)

[
�

�x

{
�
(
Tf
) �v
�x

}
+

�

�y

{
�
(
Tf
) �v
�y

}]
,

(6)

�Cp

(
�Tf

�t
+ u

�Tf

�x
+ .

�Tf

�y

)
= K

(
�2Tf

�x2
+

�2Tf

�y2

)
−

�qr

�y
.

(7)

u = 0, v = −vl = −A0b
�(t), Tf = T0 at y = −b(t),

u = 0, v = −vw = −A1b
�(t), Tf = Tw at y = b(t).

}

(8)�(q) = 1 + �(1 − q),

Fig. 1   Flow model of the study
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Here, temperature Tf at a distance � from the wall can be 
expressed as [28]

where m is the power-law index.
Roseland approximation for radiation [29, 30] is given by

Taylor series is used for the expansion of about T∞ due to 
the difference in temperature during flow, while terms having 
higher-order might be neglected.

Invoking Eqs. (8)–(12) in Eqs. (4)–(6) and removing pres-
sure term, we obtain the following dimensionless form: 

and Eq. (7) becomes

Here � =
b(t)b�(t)

�
, R1 =

vwb

�
 and R0 =

vlb

�
 . R1 and R0 are nega-

tive for suction and positive for injection.
Following Uchida and Aoki [31] and assuming R1F = f  

and al = x with � as constant and F = F(�), Eqs. (13) and 
(14) become

(9)� =
�x

b(t)
f (�, t), � =

y

b(t)
, q(�) =

Tf − Tw

To − Tw
.

(10)Tf = Tw +
∑

Cmq(�)

(
x

b(t)

)m

,

(11)qr = −
4�∗

3K∗

�T4

f

�y
.

(12)T4

f
= T∞

(
4T2

∞
Tf − 3T3

∞

)
.

(13)

(
1 +

1

�

)(
(1 + �(1 − q))f����
−�f��q�� − 2�f���q�

)
+ �

(
�f��� + 3f��

)

+ ff��� − f��f� − b2�−1f��t −M2f�� = 0,

(14)(1 + Nr)q�� + Pr
[
�
(
mq + �q�

)
− mf �q + fq�

]
= 0,

(15)
f (−1) = R0, f�(−1) = 0, q(−1) = 1,

f (1) = R1, f�(1) = 0, q(1) = 0.

}

(16)

(
1 +

1

�

)(
(1 + �(1 − q))F

����

−�F
��

q�� − 2�F
���

q�

)
+ �

(
�F

���

+ 3F��
)

+ R
(
FF

���

− F�F
��)

−M2F
��

= 0,

(17)
(1 + Nr)q�� + Pr

[
�
(
mq + �q�

)
+ R

(
Fq� − mF�q

)]
= 0.

and Eq. (15) becomes

where A = vl∕vw.

3 � Method of the Solution by HAM

For the HAM solution of Eqs. (16)–(18), base functions 
followed by [32] because of symmetric properties of chan-
nel and upright power series convergence in � ∈ [−1, 1] are 
given by 

{
�2k||k ≥ 0

}
 in the form of

and initial guesses of F(�) and q(�) are expressed as [33, 34]

while auxiliary linear operators used in this work are

which satisfy

where Ci (i = 1 to 6) are constants.

and

(18)
F = A,F� = 0, q = 1 on � = −1,

F = 1,F� = 0, q = 0 on � = 1,

}

(19)F(�) =

∞∑
n=1

ak�
2k, q(�) =

∞∑
n=1

bk�
2k

(20)F0(�) =
A − 1

4
�3 +

3 − 3A

4
� +

A + 1

2
,

(21)q0(�) =
1

2
(1 − �),

(22)l1(F) = F
����

,

(23)l2(q) = q��,

(24)l1
(
C1�

3 + C2�
2 + C3� + C4

)
= 0,

(25)l2
(
C5� + C6

)
= 0,

(26)l1
(
F(�, p) − F0(�)

)
(1 − p) = phN1(F(�, p)),

(27)l2
(
q(�, p) − q0(�)

)
(1 − p) = phN2(q(�, p)),

(28)
F(1, p) = 1, F(−1, p) = A,

F�(1, p) = 0,F
�

(−1, p) = 0,

q(1, p) = 0, q(−1, p) = 1.

⎫⎪⎬⎪⎭
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The nonlinear operators N1 and N2 are defined as

Equations (26) and (27) have resulting solutions for p = 0 
and p = 1

Therefore, one can write through the usage of Taylor’s 
theorem,

and

A strong convergence can be obtained by depending upon 
h. We assume that h is selected to be convergent at p = 1. 
Therefore, we have

For obtaining the nth-order deformation problem, 
Eqs. (25) and (26) can be differentiated n times with respect 
to p and finally dividing them by n!, by putting p = 0, we 
have

(29)
N1(F(�, p)) =

(
1 +

1

�

)[
(1 + �(1 − q(�, p)))

�4F(�, p)

��4
− �

�2F(�, p)

��2

�2q(�, p)

��2
− 2�

�3F(�, p)

��3

�q(�, p)

��

]

+ �

(
�
�3F(�, p)

��3
+

�2F(�, p)

��2

)
+ R

(
F(�, p)

�3F(�, p)

��3
−

�F(�, p)

��

�2F(�, p)

��2

)
−M2

�2F(�, p)

��2
,

(30)

N2(q(�, p)) = (1 + Nr)
�2q(�, p)

��2

+ Pr

[(
�q(�, p) + m

�q(�, p)

��

)
− F(�, p)

�q(�, p)

��
+

�F(�, p)

��

�q(�, p)

��

]
.

(31)F(�, 0) = F0(�),F(�, 1) = F(�)

(32)q(�, 0) = q0(�), q(�, 1) = q(�),

(33)
F(�, p) = F0(�) +

∞∑
n=1

Fn(�)p
n

Fn(�) =
1

n!

�nF(�,p)

��n

���p=0

⎫⎪⎬⎪⎭
,

(34)
q(�, p) = q0(�) +

∞∑
n=1

qn(�)p
n

qn(�) =
1

n!

�nq(�,p)

��n

���p=0

⎫⎪⎬⎪⎭
.

(35)F = Fo(�) +

∞∑
n=1

Fn(�),

(36)q = qo(�) +

∞∑
n=1

qn(�).

(37)l1
(
F(�) − xnFn−1(�)

)
= h�F

n
(�),

(38)l2
(
q(�) − xnqn−1(�)

)
= h�q

n
(�),

and

Here,

where

In this fashion, the linear non-homogenous Eqs. (37) 
and (38) can easily be solved for n = 1, 2,… in the order. 
Further, it is supposed that F∗

n
(�) and q∗

n
(�) are taken as 

the special solutions of Eqs. (26) and (27) and then the 
expressions for general solutions are given by

where Ci, (i = to 6) can be determined by using Eqs. (38) 
and (39) as

(39)F(−1) = 0,Fn(1) = 0,Fn� (−1) = 0,Fn� (1) = 0,

(40)q(−1) = 0, q(1) = 0.

(41)

�F
n
(�) =

(
1 +

1

�

)[
(1 + �)F

����

n−1

]
+ �

(
�F

���

n−1
+ 3F

��

n−1

)
−M2F

��

n−1

+

n−1∑
k=0

qn−k−1F
����

k
− �q

��

n−k−1
F

��

k

+ 2�q
�

n−k−1
F

���

k
+ R(Fn−k−1F

���

k
) − F

�

n−k−1
F

��

k
,

(42)

�q
n
(�) = (1 + Nr)�

��

n−1
+ Pr

(
m�n−1 + ��

��

n−1

)

− Pr

n−1∑
k=0

(
mqkF

�

n−k−1
− q

�

n−k−1
Fk

)
,

(43)xn =

{
0, n ≤ 1,

1 n > 1.

(44)

Fn(�) = F∗
n
(�) + C1�

3 + C2�
2 + C3� + C4,

qn(�) = q∗
n
(�) + C5� + C6

C1 = −
1

4

[
F∗
n
(−1) − F∗

n
(1) − F

�∗
n
(−1) − F

�∗
n
(1)

]
,

C2 =
1

4

[
F

�∗
n
(−1) − F

�∗
n
(1)

]

C3 = −
1

2

[
F∗
n
(−1) − F∗

n
(1)

]
− C1,C4 = −

1

2

[
F∗
n
(−1) + F∗

n
(1)

]
− C2

C5 =
1

2

[
q∗
n
(−1) − q∗

n
(1)

]
,C6 = −

1

2

[
q∗
n
(−1) + q∗

n
(1)

]
.
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4 � Results and Discussion

An analysis of the axisymmetric MHD flow of a NN Cas-
son fluid with the assumption of TD viscosity within a 
porous channel has been carried out analytically using 
HAM. The flow is caused by pressure variation within 
the channel.

Applying HAM, h-curves are plotted in Fig. 2 to estab-
lish the convergence area for various estimations. Admi-
rable approximation range of h changes as the value of A 
varies. The velocity profile ranges −0.7 ≤ h ≤ −0.1 when 
A = −0.2 and −0.55 ≤ h ≤ −0.1 when A = −0.6 , while for 
temperature profile the range is −0.65 ≤ h ≤ −0.2 when 
A = −0.2 and −0.5 ≤ h ≤ 0.0 when A = −0.6. The suitable 
value of h = −0.3 results in the variation and influence of 
R and � on velocity profile F(�),F�(�) and heat profile q(�).

The NN parameter � displays complex rheological charac-
teristics that are helpful to predict the flow of the NN fluids 
coming across in nature and industrial purposes especially 

when the viscosity is taken as a function of temperature. The 
varying response of the flow field with the CF parameter � is 
presented in Fig. 3 when an injection is applied at the upper 
wall. The flow becomes asymmetric with increasing � and 
attains the maximum velocity for NF (� → ∞).

In Fig. 4, the change in the velocity with different val-
ues of wall expansion/contraction ratio is graphically pre-
sented. The behavior shows that an increase in wall expan-
sion (𝛼 > 0) augments the maximum velocity, whereas the 
wall contraction (𝛼 < 0) results in the reduction in maximum 
velocity.

Figure 5 presents the increasing behavior of F�(�) with an 
increase in A when the walls are expanding, and injection 
takes place at the upper wall. Also, the flow becomes sym-
metric for larger values of A. The effects of Lorentz force 
on the CF velocity while keeping viscosity as a function of 
temperature is shown in Fig. 6. The Lorentz force associated 

Fig. 2   Convergence of problem

Fig. 3   Velocity behavior for variation of parameter �

Fig. 4   Velocity behavior for variation of parameter �

Fig. 5   Velocity behavior for variation of parameter A 
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with the M is a resistive force that hinders the flow and hence 
results in the reduction in fluid velocity which can be seen 
in this figure.

The temperature variation with the change in different 
parameters A, m, � , Pr, and Nr is shown in Figs. 7, 8, 9, 10, 
and 11 in the presence of TD viscosity parameter � . Moreo-
ver, in this article temperature is defined in the form of sum-
mation with respect to the wall depending on the power-law 
index m. Here, in all cases, m > 1 is for shear thickening, 
m < 1 for shear-thinning, and m = 1 for Newtonian, viscous 
behavior. From Figs. 7 and 8, it can be seen that the tem-
perature of CF experiences a decrement with the increase in 
both A and m. It is also clear from Fig. 8 that shear thinning 
decreases with the increase in power-law index 0 < m < 1 
and the same for the shear thickness. The impact of the wall 
expansion/contraction ratio is drawn graphically in Fig. 9, 
indicating a temperature rise due to wall expansion while a 
decline in temperature with the decrement contraction ratio 
� . An increase in the amount of Prandtl number induces 
a temperature decrease as shown in Fig. 10, suggesting a 
decline in thermal boundary layer thickness, and hence 
lower surface temperature within the boundary layer is 
observed. An increased thermal emission with higher heat 
intensity results in the disconnection of fluid particles and 
subsequently fluid temperature changes as shown in Fig. 11. 
With the rise in thermal radiation, the temperature is rising 
in this graph.

5 � Comparison of Results with the Existing 
Literature

The comparison of the results of the current study with 
the existing literature is presented to validate the study. 
A good comparison with the results of [23] is presented 
in Fig. 12 for NF � → ∞ , � = 0,M = 0 (bullet curve). The 

increase in the transport phenomena is due to the increase 
in temperature and can be restricted by reducing the vis-
cosity across the momentum boundary layer. Due to which 
the heat transfer rate at the wall is also affected. Conse-
quently, it is necessary that TD viscosity must be taken 
into account to predict the flow and heat transfer rates 
of the fluid, accurately. Therefore, a comparison of both 
Newtonian and NN fluids is also being discussed here by 
using graphical representation with reference to the TD 
viscosity parameter. The impact of TD viscosity parameter 
� on F�(�) within the channel for � → ∞ (NF) and � = 0.8 
(NN fluid) is also shown in Fig. 12 with the observation 
that fluid velocity for the NF is greater than NN fluid. Fig-
ure 13 also presents a good comparison with the results of 
[23] presented for NF � → ∞ , � = 0,M = 0 (bullet curve). 
To maintain the laminar flow, Reynolds number is one 
of the important factors to take into account and whose 
convergence is necessary to prevent the flow from viscous 
losses. The change in F�(�) with the Reynolds number R is 
also plotted in Fig. 13 where A and � are fixed. The flow 
field for the NF is asymmetric toward the upper wall, and 
for NN fluid it shifts toward the lower wall. The figure 
also shows that with an increment in the suction velocity 
(R < 0) at the upper wall, the asymmetry of the flow is 
toward the upper wall; however, it changes to the lower 
wall with the increasing values of injection velocity (R > 0) 
at the upper wall. Also, the maximum velocity is achieved 
near the lower wall for R > 0.

Figure  14 presents an admirable agreement for the 
comparison of results of [35, 36] and the present study 
for axial velocity in the case of nonconducting Newtonian 
fluid without dependence on TD viscosity, i.e., � → ∞ , 
� = 0,M = 0.

6 � Conclusions

The presented investigation deals with the flow of CF with 
TD viscosity within a porous channel with expansion/con-
traction in the presence of a velocity slip. The analysis of 
velocity in the presence of magnetic flux, viscosity as a func-
tion of temperature and heat transfer with thermal radiation 
is also performed. The outcomes from the present investiga-
tion are:

•	 Viscosity as a function of temperature affects the velocity 
of the fluid, while the velocity of the fluid is greater for 
NF as compared to NN fluid.

•	 Stream velocity of the fluid is greater for the case of NN 
fluid as compared to the NF, and due to the increment of 
Reynolds number the streamwise velocity seems to be 
shifted toward the wall.

Fig. 6   Velocity behavior for variation of parameter M 
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Fig. 7   Temperature behavior for variation of parameter A 

Fig. 8   Temperature behavior for variation of parameter m 

Fig. 9   Temperature behavior for variation of parameter �

Fig. 10   Temperature behavior for variation of parameter Pr 

Fig. 11   Temperature behavior for variation of parameter Nr 

Fig. 12   Velocity behavior for variation of parameter �
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•	 CF parameter affects the velocity, becomes gradually 
increasing and finally at its peak level for NF.

•	 The existence of the magnetic field increases the veloc-
ity near the lower wall and upper wall but decreases at 
almost mid of the channel.

•	 An increase in Pr causes a decrease in temperature, while 
the opposite trend is exhibited due to Nr.

•	 The expansion ratio due to the wall enhances the tem-
perature of the wall, while the power-law index decreases 
the temperature.
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