
Arabian Journal for Science and Engineering (2020) 45:10261–10285
https://doi.org/10.1007/s13369-020-04662-9

RESEARCH ART ICLE -COMPUTER ENGINEER ING AND COMPUTER SC IENCE

A New Single-Image Super-Resolution Using Efficient Feature Fusion
and Patch Similarity in Non-Euclidean Space

Rajashree Nayak1 · Bunil Kumar Balabantaray2 · Dipti Patra3

Received: 7 September 2019 / Accepted: 24 May 2020 / Published online: 16 June 2020
© King Fahd University of Petroleum &Minerals 2020

Abstract
Efficient trade-off between the reconstruction qualities and the processing time of any single-image super-resolution recon-
struction (SISRR) approach is critically influenced by two major aspects. These aspects are (i) appropriate representation of
image patch in feature space and (ii) effective searching of candidate patches from the pool of training patches or learned
dictionary. This paper proposes a neighbor embedding-based SISRR method. Novelties of our work include integration of (i)
efficient feature mapping scheme which fuses multiple correlated features naturally, (ii) faster searching of candidate patches
by measuring the patch correlation in non-Euclidean space and (iii) adaptive selection of neighborhood size using patch
characteristic. Correlation among features is modeled via global covariance matrix, and the fusion process enables to preserve
sufficient structural, spatial correlation among patches. Distance functions based on notion of generalized eigenvalue are used
for measuring patch similarity which support faster searching of candidate patches. Performance analysis of the suggested
method is compared with some of the competent state-of-the-art methodologies. From the simulated result analysis, proposed
work is found to be outperforming in terms of sharpened image details with diminished effect of artifacts at a reasonable
computational burden.
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1 Introduction

Machine vision systems (MVSs) have a wide range of appli-
cations in various industry, academia, etc. Usually, MVSs
are assembled around the right camera resolution and utilize
sensors with well-specialized optics to capture high-quality
images. These images are further processed, analyzed and
measured by any other hardware or software techniques for
decision making. It can effortlessly inspect the image details
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that are hard to be seen by human eye. However, current
imaging system generates images with limited resolution
and needs to be enhanced for obtaining high resolution (HR)
images. Resolution of a digital image is defined as the detail
information contained in that image. HR images contain
high pixel density, encompass essential and critical image
details and hence offer enhanced visual perception. Thus,
HR images become essential in various imaging applications
such as forensic image analysis, video surveillance [1], med-
ical imaging, image security analysis [2] and many more.
However, the resolution of an image is exclusively influ-
enced by the properties and specification of the capturing
device. Possible reasons for the limited resolution may be
due to different physical constraints, insufficient amount of
photodetectors, inferior spatial sampling rate and inappropri-
ate image capturing process. Moreover, images captured in
poor environmental condition get contaminated with differ-
ent degradations such as fog, haze and smog. Consequently,
quality of images gets degraded and results in low resolution
(LR) images. Various dehazing and defogging techniques
[3,4] have been suggested in the literature to reinstate the
visibility and to diminish the artifacts. These methods works
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efficiently as the preprocessing step to the reconstruction pro-
cess but hardly improve the perceived resolution. Possible
approaches to boost up the spatial resolution of the captured
LR images are either by redesigning the hardware (by inte-
grating adequate number of photodetector or by increasing
pixel density per unit area) or by increasing the chip size.
However, resolution enhancement by redesigning the hard-
ware is critically challenging, costly and time-consuming in
nature. As an alternative, image reconstruction is a mathe-
matical process which generates images from the acquired
projections captured at different angles or at different times.
It aims at retrieving information that has been lost or obscured
in the imaging process without sacrificing the quality of
the image. Basically, reconstruction process is intended to
model the degradation phenomenon and utilizes the reverse
process to retrieve the original images from the degraded,
noisy, blurred and aliased images. Over the few decades,
Super-resolution reconstruction (SRR) has been recognized
as one of the evolving and cost effective off-line technology
to enrich the resolution of the LR images. This process aims
at estimating HR image by fusing the non-redundant infor-
mation in the single ormultiple LR images of the same scene.
SRR methods overcome the limitations associated with the
optics and sensor technology and efficiently enhance the res-
olution.

SRR methodologies have been widely used in various
imaging applications such as remote sensing [5], medical
imaging [6] andmachine vision. In the age of advanced space
technology, commercial remote sensors capture images
of better spatial resolution. However, quality of images
degrades due to various atmospheric effects. Consequently,
results in nonaligned LR images. In that scenario, SRR tech-
niques behave as adaptive and low-risk solutions which will
effectively enhance the resolution of the archive of remotely
sensed LR images. Inmedical imaging, resolution of the cap-
tured multimodal images of a particular patient using the
same imaging device at different timesmay not be consistent.
This is due to several physical constraints, environmental
conditions and also due to the respiratory behavior of the
patient. Consequently, captured images are of limited reso-
lution. SRR methodologies help to increase the resolution
of captured images for better diagnostic analysis and proper
treatment planning. Another important application of SRR
is in the field of video surveillance [7]. Coding of surveil-
lance video for various application needs large volume of
memory and storage. As an alternative, we can compress the
original video sequences into its lower version to store them
effectively. Their resolution can be further improved via SRR
techniques at the user end.

SRR of a HR image by using multiple number of LR
images is referred as multi-image SRR (MISRR), whereas
reconstruction of a HR image with single LR image is
referred as single-image SRR (SISRR). Performance of the

MISRR methods relies on the accuracy of motion estima-
tion among the LR observations which is again an open
research problem. Moreover, error in the registration process
affects a lot to the reconstruction process. Furthermore, avail-
ability of a series of LR observations of a particular scene
encompassing sub-pixel shift among each other is not an
easy task. All these limitations necessitate the use of SISRR
in reconstructing a HR image. SISRR aims at estimating a
pleasant HR solution with enhanced image detail from its
LR image. Learning-based approaches have been drawing
widespread attention in SISRR as these types of reconstruc-
tion process provide better reconstruction capability even at
higher magnification factors. These approaches exploit some
image priors extracted from external training image datasets
to recover the missing image details in the HR image.

Figure 1 depicts the basic flowchart of learning-based
single-image super-resolution reconstruction (LBSISRR)
methods. Estimation of the output HR image is performed
by utilizing two basic steps such as training stage followed
by reconstruction stage. Training stage aims at learning the
co-occurrence priors or correlation among the training image
patches via some learning models. This stage involves two
subsequent steps such as feature extraction step and learn-
ing step. Training stage starts with the input LR image
whose resolution is to be enhanced and a set of training
images. Training images contain various HR images and
their corresponding LR images. Prior to feature extraction
step, the training/testing HR and LR images are divided into
overlapped patches. In the feature extraction step, each train-
ing/testing HR and LR image patches are represented in
feature space, i.e., any predefined feature extraction oper-
ator is used to represent each image patch in terms of feature
vectors. Next, the learning step involves different learning
models to preserve the co-occurrence prior among images
patches. This phase aims at providing potential candidate
HR patches corresponding to each input LR image patch for
the reconstruction process. Candidate patches are selected
by measuring the patch similarity in feature space. After the
successful implementation of training stage, the reconstruc-
tion stage integrates the learned knowledge as a priori term
with the input LR image to preserve the missing details in
the estimation process. Finally, the estimated HR patches are
stitched to generate the super-resolved output image. Basic
steps followed in the reconstruction process are summarized
as follows:

– Generation of training image dataset containing HR
images and their corresponding LR images

– Division of training images into overlapped patches
– Extraction of features for training image patches
– Division of input LR image into several patches
– Extraction of feature for the input LR image patches
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Fig. 1 Flowchart of LBSISRR method

– Establishment of learningmodel to learn the co-occurrence
priors among patches

– Utilization of appropriate searchingmethod to select can-
didate patches for each LR patch

– Estimation of HR image by utilizing the priors obtained
from the learning models.

Based on the variety of learning models available in the
literature, LBSISRR methods are categorized as example-
based single-image SRR (EX-SISRR) [8–15] methods,
neighbor-embedding-based single-image SRR (NE-SISRR)
methods [16–24], and sparse coding-based single-image
super-resolution (SC-SISRR) [25–35]methods.Now-a-days,
deep learning-based SRR methods have been successfully
implemented for providing fast and high-quality super-
resolution (SR) results [36–40].

EX-SISRRmethods [8–14] dependonanumerous amount
of example training patches for the reconstruction process.
Prediction of HR patch is achieved by learning the Markov
randomfield (MRF)model solved by belief propagation (BP)
algorithm. Spatial relationship between the LR patches and
their corresponding HR patches is learned from the exam-
ple images using the Markov network. Despite the recent
advances, these methods suffer from heavy computational
overload and have a weak generality property in preserving
the boundary between two highly contrasted patches [14,15].

All these bottlenecks make these methods often too slow for
practical use [29]. A detailed analysis about some of the sig-
nificant EX-SISRRmethods is provided in Sect. 2.1. Several
NE-SISRR and SC-SISRR methods have been proposed to
overcome these issues.

NE-SISRR methodologies are based on the idea of local
linear embedding (LLE) from themanifold learning and esti-
mate the HR image by linearly combining the neighboring
candidate HR patches. Existing state-of-the-art NE-SISRR
methodologies utilize two independent steps: (1) searching
of K numbers of candidate patches for each input patch in
its feature space and (2) obtaining the reconstruction weights
of patches for estimating the HR image. Popularly, size of
K is chosen randomly or by means of any distance function
[18,23], whereas theweight of each patch is selected by least-
squaresminimization of reconstruction error. Reconstruction
quality of the estimated HR image solely depends on the
quality and spatial compatibility among the K number of
candidate patches. Computational overload of the estimation
process is contributed mainly due to searching of candidate
patches using Euclidean distance (Eud) measure. As com-
pared to EX-SISRR methods, NE-SISRR methods exhibit
much stronger generalization capability for a range of images
[21]. These methods can estimate a high-quality HR solution
by utilizing relatively limited training image patches. Some
important aspects which influence the performance of NE-
SISRR methods are

– To obtain efficient feature mapping scheme in a low
dimensional feature space which will help to preserve the
missing details in the reconstruction process by selecting
relevant candidate patches

– To choose the optimal size of K which will enable faith-
ful reconstruction. As reconstruction of a HR image
with fixed number of neighboring patches causes over
or under-fitting of data, thus yields blurred output.

– To use a faster searching scheme to get the neighboring
patches which will reduce the computational overload of
the whole reconstruction process

So far, many improved NE-SISRR methods have been pro-
posed in the literature. The detail description about these
methods is provided in Sect. 2.2.

SC-SISRR methods exploit the sparsity prior to solve the
reconstruction problem. These methods are based on the
assumption that the LR image patch and its corresponding
HR patch shares the same sparse representations. As the ini-
tial step, these methods aim at learning dictionaries from the
external image datasets. Next step aims at searching the dic-
tionary for each image patch to obtain the optimal match.
Performance of these methods solely relies on dictionary
learning in its feature space andmain time-consuming step is
the searching mechanism for obtaining the similar candidate
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patches from the dictionary. In the literature, a number of
advanced SC-SISRR methods have been proposed by learn-
ing compact dictionaries and/or by utilizing faster searching
schemes. A brief description about some of these methods is
provided in Sect. 2.3.

1.1 Gaps in the Literature and Solutions to Break
Them

Varieties of SISRR approaches have been suggested in the
literature (refer Tables 1, 2, 3) to enable an efficient trade-
off between reconstruct quality and processing time. An
appropriate balance between the quality of HR solutions
and the computational speed highly depends upon the selec-
tion of training image dataset, feature extraction operation
to represent each patch, searching of candidate patches and
the learning model to learn the co-occurrence prior among
patches. Selection of an efficient training image dataset or
an over-complete dictionary from a set of example image
patches plays an important role in the successful accomplish-
ment of the reconstruction task. Quality of reconstruction
gets enhanced when the training image patches encompass
structural as well as statistical similarity with the input image
to be super-resolved [15]. However, learning of training
dataset or dictionary is performed only once for any recon-
struction problem, hence may not contribute more toward
the computational overload of the method. Irrespective of
the type of learning model, trade-off process is critically
influenced by two major aspects such as (1) selection of
appropriate feature type to represent image patch and (2)
searching of candidate patches from the pool of training
image dataset or learned dictionary. A brief discussion about
these two aspects is discussed below.

1.1.1 Selection of Feature Type

After doing a critical review from Tables 1, 2 and 3, it
observed that most of the SISRR methods [14,16,18,20,
23,25,26] commonly use first- and second-order gradient
operator to represent each patch. These operators individ-
ually preserve the local edge information of patches, but
their combination may not preserve the local neighborhood
compatibility. Moreover, second-order gradients are sensi-
tive to noises. As compared to them, feature vectors using
norm luminance (NL) [18,24] efficiently preserve the low
frequency information but fail to capture the high frequency
information of the patch. Zernike moment (ZM)-based fea-
ture vectors [24] are insensitive to noise, efficiently preserve
the global compatibility, but have limited reconstruction
capability. Field-of-experts (FoE)-based feature vectors in
[22] and histograms of oriented gradients (HoG)-based fea-
ture vectors in [19,21] help to preservemore image details for
images rich in edge information but provide limited perfor-

mance to images rich in structural and geometrical contents.
Methods in [15,28,32,34,35] utilize pixel intensity to repre-
sent image patch. However, intensity values of the patches
are much sensitive to noise and contrast variation. Hence,
a small disturbance in intensity value may result a signifi-
cant change in further processing. Methods in [30,31] use
texture of the image as the feature vector to represent image
patch. However, this feature vector cannot preserve the struc-
tural and statistical correlation among patches, consequently
provide limited performance for images rich in geometrical
and structural content. Disadvantages of these aforemen-
tionedmethods necessitate selecting a state-of-the-art feature
extraction operator which will fit to variety of image types
in preserving high frequency information and spatial corre-
lation in both LR and HR space.

1.1.2 Searching of Candidate Patches

About the searching of candidate patches, almost all the
EX-SISRR and NE-SISRR methods unexceptionally utilize
KNN-based searching scheme where EuD or its variants are
used for measuring the patch similarity [21,35]. EuD makes
the searching process computationally intensive, does not
preserve sufficient spatial relationship among patches and is
sensitive to small amount of disturbances, hence may not
select potential candidate patches. Consequently, estimated
HR image suffers from various artifacts. Similarly, almost
all SC-SISRR methods popularly use orthogonal match-
ing pursuit (OMP) or linear programming (LP) to search
the dictionary. This searching process utilizes l2 norm for
minimizing the error which is again computationally pro-
hibitive. However, methods in [21,26,29,32] utilizes some
faster searching techniques which results in reducing the
computational complexity of the reconstruction process with
an compromise with the reconstruction quality. All these
aspects motivated us to propose a SISRR method which will
provide an efficient trade-off between reconstruction quality
and processing speed.

This paper proposes an enhanced yet computationally effi-
cient NE-SISRR method which will enable faster searching
of potential candidate patches andwill facilitate better preser-
vation of image details with diminished effect of artifacts.
Major contributions and novelty of the work include

– Propositionof a low-dimensional featuremapping scheme
to represent image patch in its feature space. Each patch
is represented as a combination of several raw feature
attributes such as intensity profile, texture, edge, sta-
tistical and spatial information. Fusion of these feature
attributes enable to preserve sufficient structural, sta-
tistical and spatial homogeneity among patches in the
reconstruction process.
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– (2) Development of a faster searching scheme to get
potential candidate patches by measuring the similarity
in non-Euclidean space. Patch similarity is measured by
distance function based on eigenvalues rather than Eud
which speeds up the searching process

– (3) Implication of an automotive scheme to choose the
neighborhood size of K based on the input patch charac-
teristic.Neighborhood size of each input patch is adaptive
in nature and is decided by the patch characteristics.

Afterward, the reconstruction weights are obtained by mini-
mizing the reconstruction error. Finally, the output HR image
is estimated by the linear combination of neighboring can-
didate HR patches. Performance analysis of the suggested
method is compared in someof the significant state-of-the-art
learning-basedmethodologies and found tobeoutperforming
in terms of image quality as well as faster searching speed.

Rest of the paper is organized as follows: Sect. 2 pro-
vides a brief discussion about some of the significant
LBSISRR methods in the literature. Detailed description of
the proposed reconstruction method is provided in Sect. 3.
Performance evaluation and analysis of the proposedmethod
compared with some of the state-of-the-art LBSISRR meth-
ods along with some faster SISRRmethods are performed in
Sect. 4. Section 5 concludes the paper.

2 Related LBSISRRMethods

2.1 Example-Based Single-Image SRR (EX-SISRR)
Methodologies

Freeman et al. [8] pioneered the concept of example-based
SRRof single image. In thismethod, authors select numerous
amount of training patches for the reconstruction process.
Band-pass filtered feature map is used to represent each
patch. Nearest neighbor (NN) search method is used to find
candidate patches for each input patch and Eud is used to
measure the patch similarity. MRF network is used to learn
the correlation among related HR-LR image patches. BP
algorithm is used to train theMRF network.Maximum a pos-
teriori (MAP) approach is used to estimate the HR patch by
utilizing the learned prior knowledge. However, this method
fails to preserve sufficient spatial correlation among patches
due to integration of Gaussian smoothness functions in the
computation of compatibility functions. Moreover, heavy
computational overload, slow rate of convergence make this
method prohibitive in practical applications [14]. Number of
methods have been proposed in the literature to address these
limitations. Authors in [9,10] proposed example-basedmeth-
ods which enable faster convergence rate, whereas methods
in [12–15] aim at preservingmore image details in the recon-
structed output image. In method [9], each image patch is

represented by Gaussian derivative. Position constraint oper-
ation is used to compute compatibility function and squared
difference is used as the patch similarity measure, whereas
primal sketch priors are used to represent patch in its feature
space. In [11], searching of candidate patches is done via K-
means algorithm to improve the rate of convergence of the
reconstruction process. In [12], authors employ Contourlet
coefficients to represent raw image patches and weighted
Euclidean distance is used to measure the patch similarity.
Method in [13] utilizes structural contents to represent each
patch and patch similarity is measured via modified Chi-
square distance. In [14,15], authors utilize image Euclidean
distance (IMED) to measure patch similarity. Method in [15]
uses a probability way of searching candidate patches and
utilizes edge preserving compatibility functions to preserve
more image details. Table 1 provides a brief comparative
analysis of the popularly used EX-SISRR methods. From
the critical review of the literature, it is observed that EX-
SISRR methodologies provide sharper output images by
selecting appropriate compatibility functions. But computa-
tional burden of these methods remain high due to utilization
of numerous amount of example images for the reconstruc-
tion process and EuD to measure patch similarity. Hence,
these methods remain unsuitable for real-time applications.

2.2 NE-Based Single-Image SRR (NE-SISRR)
Methodologies

NE-SISRRmethodologies are based on the idea of LLE from
the manifold learning. These methods presume that HR and
LR imagepatches share identical local geometry and estimate
the HR image as the linear combination of K nearest neigh-
boring patches. In [16], authors introduce the concept of LLE
based SRR of image. This method utilizes first- and second-
order gradient to represent each patch and uses the fixed
size of K for the reconstruction process. The reconstructed
output cannot well preserve the high frequency details in
the images and sometimes produces too much blurry output
images. Afterward, a variety of NE-SISRR methodologies
[17–24] are proposed in the literature. In [17], histogram-
based matching is used to select efficient training images
and image residuals generated by image pyramid are used as
feature vectors. Method in [18] emphasizes the importance
of edge and neighborhood size in the reconstruction process.
This method utilizes edge detection and feature selection to
generate discriminate training patches. Combination of first-
order gradient and NL feature vectors is used to represent
each patch. Method in [19], proposes a partially-supervised
neighbor embedding (NE)-based SRR (NE-SRR) process
and uses the notion of multi-manifold assumption. In this
method, each image patch is represented by means HoG
feature vectors. K-mean algorithm via unsupervised Gaus-
sian mixture model is employed to assign class labels in the
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searching of neighboring patches. In [20], discrete-cosine-
transform (DCT) coefficients are used as feature vectors.
Neighborhood size is selected based on K-means algorithm.
In [21], each image patch is represented byHoG features. The
initial training dataset is divided into a set of training sub-
sets via K-means clustering. L2 norm is used as the distance
measure in the clustering process. With the HoG, training
image pairs in a particular subset carry similar geometry.
In this method, searching of candidate neighboring patches
and reconstructionweights are performed simultaneously via
variants of Robust-SL0 algorithm. This algorithm dimin-
ishes the limitation of the KNN searching with EuD and
enhances the speed of reconstruction process. In [22], a new
feature extraction operator, i.e., FoE is utilized to represent
each image patch. Non-local similarity constraint is consid-
ered to find the optimal weight in the reconstruction process.
K-means clustering using GMM is performed to divide the
initial training dataset into 32 number of sub clusters. KNN
searching process via EuD is utilized for measuring patch
similarity. In [23], a NE-SRR method is proposed which is
robust to the outliers present in the input image. This method
employs histogram-based matching criterion to select train-
ing image dataset and global neighborhood size is selected
based on Euclidean and geodesic distance measure. Each
patch is represented by eight feature vectors based on gra-
dients along different orientations. In [24], a new feature
vectors based on combination of ZM and NL is employed to
preserve global structure in the reconstruction process. Hier-
archical method using residual variance is used to select the
global size of K in the searching process. Table 2 describes a
brief analysis of some of the state-of-art NE-SISRRmethods.

2.3 Sparse Coding-Based Single-Image
Super-Resolution (SC-SISRR) Methodologies

SC-SISRR methods have been widely used in recent years.
Thesemethods assume that theLR,HRpatches have the simi-
lar sparse representation. Any LR patch can be reconstructed
as a sparse linear combination of different atoms from an
appropriately chosen dictionary. They do not work directly
on the raw training image patches rather different compact
dictionaries are learned from the set of training patches to
capture the co-occurrence priors. In the training step, differ-
ent learning techniques are utilized to learn the dictionaries
followed by the sparse coding (SC) algorithm to obtain the
optimal sparse representation (α∗) of each LR patch with
respect to the learned over complete dictionary. In the recon-
struction step, learned α∗ of each LR serves as sparse priors
for the reconstruction of its HR patch. In the final step, the
estimated HR patches are merged by averaging the over-
lapping area to obtain the output HR image. Later, various
regularization constrains are further used to provide sharp-
ened output by minimizing the effect of reconstruction error.

Yang et al. in [25] applied the SC algorithm for both generic
and face image SR. In this method, probabilistic approach is
used to learn the over-complete dictionary pairs. Linear pro-
gramming algorithm is used to find the sparse coefficients.
This method founds to be outperforming in providing high-
quality SR images but computational time of this method
is very high. As an advancement, Zeyde et al. in [26] pro-
poses a faster sparse representation based method. Instead of
simultaneous learning of dictionary pairs, authors utilize K-
SVD to learn the LR dictionary and pseudo-inverse to learn
the HR dictionary. Principal component analysis (PCA) is
used for dimension reduction of patch features and orthogo-
nal matching pursuit (OMP) is utilized as the SC algorithm.
This SC algorithm enables faster rate of convergence than
the SC approach in [25]. Afterward, a variety of methods
have been proposed in the literature based on different dic-
tionary learning (DL) strategy as well as SC algorithms
to maintain an efficient balance between the computational
time and the image quality. In [28], authors utilize semi-
coupled dictionary learning (SCDL) approach for cross-style
image SRR. In [28], the proposed learning approach enables
simultaneous learning of dictionary pairs as well as mapping
functions to preserve better compatibility between two style
domains. Moreover, K-means clustering as well as image
nonlocal-redundancy is also integrated in the SCDL model
to enhance its stability. The proposed method serves as an
effective alternative for photo-sketch synthesis problems at
a cost of computational overload. Authors in [29] propose
a faster yet efficient SRR method using anchored neighbor-
hood regression approach by integrating the notion of NE
with SC. Dictionary is learned by sparse model and the dic-
tionary atoms are grouped into neighborhoods based on the
correlation among the atoms. The SC model is modified as a
least-square regression problem. Estimation of HR patch is
achieved by performing mapping of projection matrix of its
nearest neighborhood atoms in the dictionary. Eud is used to
measure the distance between anchored atoms and trained
samples. In [30], an improved ODL approach is used as
the dictionary learning purpose. Particle swarm optimiza-
tion (PSO) is used in the dictionary training stage to provide
the information about atom updating and direction of opti-
mization process. This helps to speed up the reconstruction
rate. In [31], authors utilize Gabor filtered feature vectors
to represent each image patch. In [32], an evolutionary SC
based method is proposed. This method utilizes the adaptive
Genetic algorithm as the SC model to obtain α∗ of each LR
patch. This evolutionary SCmodel speeds up the reconstruc-
tion process than by using the conventional l0- or l1-based
SC models. In [33], a super-pixel based sparse representa-
tion model is proposed for hyper-spectral (HS) image SRR.
This method constructs two dictionaries such as a spectral
dictionary fromHS image and a transformed dictionary from
multispectral image. The generalized simultaneousOMP (G-
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Table 2 Comparative analysis of NE-SISRR methods

Methods (Year) Generation of
training dataset

Feature extraction
operation

Searching
process and size
of K

Learning model Observations

[16] (2004) Images from Kodak
web-site

First + Second-order
gradient

KNN, K = 5 LLE High frequency details
are not well preserved

[17] (2006) Histogram-based
matching for images
in FERET database

Image residuals KNN, K = 5 LLE Preserves sharp contrast,
edges. Block effects
predominant in
homogeneous region
of image

[18] (2009) Discriminate training
patches using edge
information

First-order gradient +
NL

KNN, (K= 2 and
5)

LLE Preserves more image
details. Adaptive
selection of size K
produces less blocky
effect

[19] (2011) Same images used in
method [18]

HoG K-means
clustering

LLE Enhanced output at
additional
computational
complexity

[20] (2012) 50 images from MIT
database

DCT K-means
clustering

LLE Enhanced image quality
and better processing
speed

[21] (2012) Subsets of training
images using
HoG-based clustering

HoG + First +
Second-order gradient

variants of
Robust-SL0
algorithm

LLE + Sparse Accelerates speed of
SRR. Does not
perform well for
images rich in textures

[22] (2014) Clustering based using
FoE features

FoE features KNN LLE + Non-local
self similarity

Well preserves the edges
and textures.
Computationally
heavy in measuring
EuD among FoE
features

[23] (2016) Histogram based Gradients along eight
orientations

KNN Global size
of K

LLE+ Robust
PCA

Produces enhanced
output with minimized
outliers at a cost of
computational
overload

[24] (2017) Randomly selected
standard images

ZM + NL KNN, K=1-15 LLE Produces blurry output
for images rich in
texture and geometry

SOMP+) is used to solve the sparse representation. Fractional
abundance coefficient matrix is used for the reconstruction
of final HS HR image. In [34], authors propose multiple dic-
tionary pairs based on different structural contents of image
via improved fuzzy C-means (IFCM) clustering method. A
weighted SC model is used to obtain α∗ of each LR patch.
Method proposed in [35] enables a faster searching of can-
didate patches by utilizing KNN-based dictionary pair for
each patch rather than the unified dictionary pair. Binary
encoding scheme is used to accelerate the KNN retrieval
process. Moreover, the proposed method uses large sized
patches which encompass more information and hence pre-
serves more image details in the reconstruction process. The
proposed method enhances the processing speed as well as

reconstruction quality. A brief discussion about some of the
significant state-of-the-art SC-SISRRmethods is provided in
Table 3. Some of the parameter and abbreviations used in this
table are given in.1

2.4 Deep Learning-Based SRR

In recent years, deep learning-based SRR of image [36–39]
has made excellent breakthroughs in providing high-quality
reconstruction. The reconstruction process preforms end to

1 α∗, optimal sparse coefficient; LASSO, least absolute shrinkage
and selection operator, NCC, normalized cross-correlation, G-SOMP+,
generalized simultaneous OMP, HSI, hyper-spectral image, IFCM,
improved fuzzy C-means.
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Table 3 Comparative analysis of SC-SISRR methods

Methods (Year) Type of
dictionary

Dictionary
learning
algorithm

Feature
extraction
operation

Searching of
dictionary for
α∗

Sparse
models

Observations

[25] (2010) Joint dictionary Probabilistic
model

First +
second-order
derivative

LASSO SC model +
K-mean
clustering

Provides
enhanced
output than the
method in [16]
at a
computational
overload

[26] (2011) Dual dictionary K-SVD +
Pseudo-inverse

HPF + PCA OMP Conventional SC
using l2 norm

Sharper result.
Lesser artifacts,
much faster
than the
method in [25]

[27] (2012) Coupled
dictionary

Supervised
descent method

Gradient features LASSO Conventional SC
using conjugate
gradient
descent

Outperforms
joint dictionary
training
methods

[28] (2012) Semi-coupled
dictionary

Minimization of
energy function

Patch intensity LASSO Conventional SC
+ Clustering +
non-local
similarity

Effective method
in cross-style
image synthesis

[29] (2014) Neighborhood of
dictionary

K-SVD First + second
order

NN NE+Sparse
model using

Faster searching
of dictionary

[30] (2015) Over-complete
dictionary

ODL using PSO Texture feature OMP Conventional SC
using l2 norm

Provides
improved result
for remote
sensing images

[31] (2015) Dual dictionary K-SVD features Gabor NCC Conventional SC
using l1 norm

Preserves more
image details
than the
method in [25]

[32] (2016) Over-complete
dictionary

L1-regularized
least square

Pixel intensity Adaptive GA Evolutionary SC
model

Reduces
dictionary
searching
complexity

[33] (2017) Spectral
dictionary

ODL Spectral
signature

G-SOMP+ Conventional SC
model

Superior result
for HSI SRR

[34] (2018) Multiple
dictionary pairs

IFCM clustering
methods

Pixel intensity l0 minimization Weighted SC
model

Provides
improved
results for
infrared images
at a higher
computational
cost

[35] (2019) KNN-based
dictionary

KNN Gray values of
patch

Binary encoding
method

Conventional SC
model

Provides better
results in flat
areas.
Dictionary
training process
is time-
consuming

end mapping of a LR image into a HR image either via
convolutional neural network (CNN) model [36,37] or by
Generative-Adversarial-Nets (GAN) model [38] or by deep
shallow convolutional network [39]. Generally, the state-of-

the-art deep learning-basedmethodologies diverge fromeach
other in terms of: varieties of network architectures, vari-
ants of loss functions and most importantly different types
of learning strategies. Wang et al. [40] provide an excel-
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lent survey in the context of SRR via deep leaning models.
Irrespective of the great accomplishment of these methods
in terms of reconstruction accuracy with reduced compu-
tational burden, they suffer from some critical bottlenecks
which should be solved carefully. To design an optimal net-
work which will efficiently combine local as well as global
along with low as well as high-level information at a reduced
spatial and temporal cost is still an open problem [40]. The
next difficult aspect of implementing these methods is select-
ing an appropriate loss function which will guide to optimize
the model parameters. In [38], Ledig et al. have utilized
cross-entropy based adversarial loss in the reconstruction
process to provide an enhanced output. However, training
the GAN architecture is quite difficult and sometimes unsta-
ble in nature [40].

3 ProposedMethod

In this section,wewill discuss about the proposedNE-SISRR
method known as efficient neighbor embedding-based SRR
(ENESR) method. The proposed work is based on the idea
of the work in method [16] with several important modifica-
tions. Both of these methods are based on the concept of LLE
which aims at estimating theHR imageby linearly combining
the neighboring candidate HR patches. Method in [16] uti-
lizes first- and second-order gradient to represent each patch
and employs fixed neighborhood size K for the reconstruc-
tion process. Consequently, the estimated output cannot well
preserve the high frequency details in the reconstruction pro-
cess. Sometimes, produces too much blurry output solutions.
Moreover, this method exploits distance function based Eud
to measure patch similarity. Hence, searching of candidate
patches from the pool of training image patches consumes
more time. On the contrary, proposedwork fuses a number of
feature attributes naturally to represent each image patch. The
fusion process helps to preserve sufficient structural, spatial
and statistical correlation among image patches. An auto-
motive scheme is proposed to choose adaptive neighborhood
sizeK for each imagepatch.Aiding to that, distance functions
based on the notion of generalized eigenvalue which lies in
computationally cheap non-Euclidean space is exploited to
measure patch similarity. Detailed description on the contri-
butions and novelty of the proposed work are discussed as
follows:

– Propositionof a low-dimensional featuremapping scheme
to represent image patch in its feature space.

1. To the best of our knowledge, till now the LBSISRR
methods either use edge information or combination
of edge and smoothness information to represent the
image patch. Consequently, reconstruction solutions

well preserve the high frequency information in the
reconstruction process, but provides limited perfor-
mance for images rich in structural and statistical
content. This necessitates selecting an efficient fea-
ture extraction operator which will preserve not only
the high frequency information but also the spatial
and structural correlation in both LR and HR space.

2. To accomplish this, a low-dimensional feature map-
ping scheme is proposed which enables compact yet
informative way of representing a patch in its feature
space. Each patch is represented by a set of discrim-
inative feature attributes. Correlation among these
feature attributes is modeled via global covariance
matrix. The matrix enables to fuse multiple corre-
lated features naturally. This fusion process helps to
preserve sufficient structural, spatial and statistical
correlation among each other. Hence, allows faithful
reconstruction of HR patch.

3. Moreover, unlike individual raw feature the unified
feature attributes are insensitive to noise; invariant to
scale and illumination variations, consequently pro-
vides robust performance.

– Development of a faster searching scheme to get potential
candidate patches by measuring the similarity in non-
Euclidean space

1. In the searching of candidate neighbors, unexception-
ally, almost all methods use the Eud or its variants to
measure the patch similarity. Eud-based measure uti-
lizes intensity profile of the patch for its computation
hence there is no provision to preserve the spatial
correlation among pixels. Nevertheless, this measure
is much sensitive to noise and suffers from curse of
dimensionality.

2. In this work, the patch similarity is measured in non-
Euclidean space. Each patch is modeled as a global
co-variance matrix which lie in a Riemannian man-
ifold [41]. This matrix is symmetric and positive
definite in nature. Most importantly, the diagonal and
off-diagonal elements of this matrix possess variance
and correlation among feature attributes.

3. Inter-variance gap and inter-correlation map among
feature vectors are measured by distance functions
based on generalized eigenvalues which surely do not
lie onEuclidean space, thus enables a faster searching
process.

– Implication of an automotive scheme to choose the neigh-
borhood size of K based on the input patch characteristic

1. In the literature, various strategies such as K-mean
clustering [19–21] or by distance measure [23] have
been suggested to select the global size of K in the
NE-SISRRmethods. However, all these strategies aid
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additional computational load to the reconstruction
process. However, our proposed work uses a cheap
strategy to do that.

2. Similarity values of the input patch with its candidate
HR patches are sorted in descending order. Sorted
similarity values are plotted with respect to the patch
index. Next, gradient of this similarity curve is plot-
ted. The global minima point of the gradient curve is
considered as the threshold value ς . Training image
patch index whose gradient values are lesser than
equal to the threshold value ς are considered as the
K number of neighboring patches

Processing time of any LBSISRR approach is critically influ-
enced by effective searching of candidate patches from the
pool of training patches. Selection of K number of candi-
date patches is performed by matching the similarity among
patches. Each image patch is represented in its feature space.
State-of-the-art LBSISRRmethods utilize several raw image
statistics such as gradient, pixel intensity, filter responses,
DCT, HoG and FoE features to represent each image patch.
Let us consider the popularly used feature extraction oper-
ator such as first- and second-order gradients along vertical
and horizontal direction of an image patch of size (z× z).
Now, each patch is represented by (4z2×1) length of feature
vector. Patch similarity is determined by measuring similar-
ity among two (4z2 × 1) feature vectors using Eud-based
functions. Dimensionality of the feature representation of
an image patch depends on the patch size selected. Con-
sequently, complexity of the searching process increases
with increase in patch size. On the other hand, proposed
low-dimensional feature mapping scheme enables to fuse d
dimension of raw feature attributes to a covariance matrix of
size (d × d). The fusion process preserves sufficient image
details in the reconstruction process. Instead of working on
the high-dimensional feature vectors of image patches, pro-
posed work employs distance functions using eigenvalues of
(d×d)matrix tomeasure the patch similarity. Distance func-
tions based on generalized eigenvalues lie in non-Euclidean
space and hence converge faster that the Eud-based func-
tions. Hence, through the proposed low-dimensional feature
mapping scheme, we can effectively reduce the computa-
tional time of the searching process while enhancing the SR
quality of the reconstructed solution.

YL is the input LR image to be super-resolved to obtain
the final HR image X̂ H . XH is the ground truth HR image.
YL image is up-sampled by P-spline interpolation scheme
[42] by a factor of u to obtain YU so as to make its size

equal to the size of final HR image X̂ H .
{
y j
U

}N

j=1
are the N

number of overlapped patches of YU image and
{
x̂ j
H

}N

j=1
are

the corresponding N number of HR patches to be estimated.

T Roptimal is the optimal training image dataset consisting of

HR images HT Rbest and LR images LT Rbest .
{
l pT Rbest

}M
p=1

and
{
h p
T Rbest

}M
p=1 are M number of overlapped LR and

HR training image patches, respectively.
{
NE(y j

L)
}K

j=1
is

K number of neighboring LR training patches of the input

LR patch (y j
L) and

{
NE(x j

H )
}K

j=1
are their corresponding

HR patches, respectively. Equation (1) represents the math-
ematical formulation of the imaging model which is used to
generate the LR counterpart image YL of the HR image XH .

YL = DeBrWaXH + η (1)

where De is the decimation matrix, Br is the blurring opera-
tion, Wa performs the warping operation to generate the LR
image from its corresponding HR image. η is the amount of
AWGN which corrupts the imaging model. Terminologies
and notations utilized in this paper are described in Table 4
and pseudo-code of the proposed ENESRmethod is depicted
in Algorithm 1.

Algorithm 1 Pseudo-code of the proposed ENESR method
Preprocessing: YL , u, T Roptimal , HT Rbest , LT Rbest

T Roptimal is selected as given in section 3.1

Preprocessing: (i) Interpolate YL by factor u to yield YU

(ii) Divide YU to N number of overlapped patches
{
y j
U

}N

j=1
of size

z × z each
(iii)Divide HT Rbest images to M number of overlapped HR patches{
h p
T Rbest

}M
p=1 of size z × z each

(iv) Represent each overlapped patch in low dimensional feature
space as discussed in section 3.2

Output: X̂ H

Begin algorithm

1: for each test image patch y j
U in

{
y j
U

}N

j=1
do

2: Find K nearest neighbors NEK from
{
h p
T Rbest

}M
p=1 bymeasuring

the patch similarity in the non-Euclidean space as described in
section 3.3 and utilize an adaptive scheme to select the size of K
as given in section 3.4

3: Compute the reconstruction weights WK of the neighboring
patches as described in section 3.5

4: Embed the reconstruction weights contributed by the NEK HR
patches to estimate the HR patch x̂ j

H as given in Eq. (9)

5: end for

6: X̂ H is estimated by stitching the estimated HR patches
{
x̂ j
H

}N

j=1
by preserving the local compatibility and smoothness priors among
patches. The overlapped region of patches are averaged in the stitch-
ing process.
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Table 4 Notations and terminologies used

Symbol Interpretation Symbol Interpretation

De Decimation matrix HT Rbest HR images ∈ T Roptimal

Br Blurring matrix LT Rbest LR images ∈ T Roptimal

Wa Warping matrix
{
h p
T Rbest

}M
p=1 M number of overlapped patches of HT Rbest images

η Gaussian noise
{
l pT Rbest

}M
p=1 M number of overlapped patches of LT Rbest images

YL Input LR image
{
NE(y j

L )
}K

j=1
K number of neighborhood LR patches for y j

L

XH Ground truth HR image
{
NE(x j

H )
}K

j=1
K number of neighborhood HR patches for y j

L

YU Up-sampled LR image u Up-sampling factor

X̂ H Estimated HR image ρ1(.) and ρ2(.) Distance functions

N , M Number of overlapped patches No Normalization factor
{
x̂ j
H

}N

j=1
N number of estimated HR patches Sim Similarity index between two patches

{
y j
L

}N

j=1
N number of overlapped patches of YL ς Threshold value

T Roptimal Optimal training image dataset Ai Feature attribute vector

λi Eigenvalues of matrix Cp(x, y) Global covariance matrix

3.1 Selection of TRoptimal

Proposed work utilizes the methodology used in [15] for the
selection of optimal training image dataset T Roptimal . Selec-
tion of T Roptimal via spatiogram-based matching criterion
preserves sufficient statistical and structural similarity with
the input test image.

3.2 Selection of Features

This subsection describes the representation of each image
patch as a compact set of feature attributes. YU and HT Rbest

∈ T Roptimal are divided into patches of size (z × z) with
2 pixel overlapping. Each patch is represented by a set of
preferably compact and discriminative feature attributes. The
raw feature attributes exhibit some correlation among each
other. This correlation among feature vectors is modeled by
a global covariance matrix. The covariance matrix enables
to fuse multiple correlated features naturally [41]. Neverthe-
less, it is robust to noise and invariant to variations of scale,
rotation and illumination level [41]. Correlation between two
patches is based on measuring the similarity between their
corresponding global covariancematrices. The global covari-
ance matrices lie on non-Euclidean space [41]. Hence, the
notion of a generalized eigenvalue is considered for measur-
ing the similarity which enables a faster matching process.

Let a patch p of size (z × z) is represented by a d dimen-
sional attribute vector {Ai }i=1,2...n . Equation (2) represents
the formulation of its corresponding (d × d) covariance

matrix Cp(x, y). (x, y)th component of the Cp matrix is
described in Eq. (3) [41].

Cp = 1

n − 1

n∑
I=1

(Ai − μ)(Ai − μ)T (2)

Cp(x, y)

= 1

n − 1

[
n∑

i=1

Ai (x)Ai (y)−1

n

n∑
i=1

Ai (x)
n∑

i=1

Ai (y)

]

(3)

where μ is the mean of the feature attribute vector Ai .
In this work, we integrate 9 different feature vectors in the

formation of vector Ai and is represented in Eq. (4).

{A} = [x, y, ∣∣Ip
∣∣ ,GI , S j ]T I = SC × O; j = 1, 2 (4)

where (x, y) represents the pixel location,
∣∣Ip

∣∣ is the absolute
intensity profile of the patch p, GI are the multi-scale and
multi-orientation Gabor features and S j are the first-order
and second-order statistical information of the patch p. SC
and O are the total number of scales and orientations of the
Gabor filter, respectively.

The pixel locations (x, y) in the vector Ai are correlated
to other features which contribute toward the non-diagonal
entries of the covariance matrix. Gabor features are used
because they capture geometrical as well as textural infor-
mation effectively. The low-frequency Gabor filters often
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behave as a local image smoother and represent image patch
at coarse resolution. The high-frequency Gabor filters often
act as efficient edge detectors irrespective of the nature of
underlying intensity distributions [43]. Unlike conventional
edge detectors, the multi-oriented Gabor features easily dif-
ferentiate edges in horizontal as well as vertical directions
[43]. However, computational cost for the computation of
Gabor features is high. To reduce the computational cost,
the approximate method provided in [44] are adopted in this
work. The first- and second-order statistical information such
as mean and co-variance measure of the patch are embedded
to make the vector Ai adequate to characterize image patch
efficiently. With these 9 raw feature vectors, each patch p is
represented by a (9 × 9) covariance matrix Cp(x, y).

Some basic properties of the covariance matrix Cp(x, y)
are presented as follows:

– it is symmetric and positive definite which lie in Rieman-
nian manifold

– unlike individual raw features, it is robust to noise, insen-
sitive to change in scale, rotation and illumination

– it enables to integrate multiple correlated features
– diagonal elements exhibit the variance of the raw feature
vectors

– off-diagonal elements of the matrix hold the correlation
among feature vectors

3.3 Selection of Candidate Patches

In this section, candidate HR patches for each input LR patch
are searched over the image patches of HT Rbest ∈ T Roptimal .
Given two patches p, q with their corresponding global
covariance matrices Cp(x, y), Cq(x, y), measurement of
similarity between two patches is done w.r.t their covariance
matrices. Similarity between two patches will be maximum
when inter-variance gap of feature attributes will be min-
imum and the inter-correlation of feature attributes will be
maximum.Measurement of both inter-variance gap and inter-
correlation map is guided by specified distance function and
minimization of distance measure signifies the maximiza-
tion of the similarity between two patches. As the covariance
matrices do not lie in Euclidean space, distance function
is based on generalized eigenvalues which follow the Lie
group structure of positive definite matrices [41]. Equation
(5) defines the formulation of similarity between patches p
and q using their covariancematricesCp(x, y) andCq(x, y),
respectively.

Sim
{
Cp(x, y),Cq(x, y)

}

= ρ1
{
CpD(x, y),CqD(x, y)

}

+ρ2
{
CpND(x, y),CqND(x, y)

}
(5)

where ρ1(·), ρ2(·) are the distance functions to measure the
inter-variance gap and inter-correlation map, respectively.
Equations (6) and (7) provide the formulation of ρ1(·), ρ2(·),
respectively.

ρ1
{
CpD(x, y),CqD(x, y)

}

= sqrt

[
n∑

i=1

ln2 λi
(
CpD,CqD

)]
(6)

ρ2
{
CpND(x, y),CqND(x, y)

}

=
∥∥∥log (CpND

− 1
2 CqND CpND

− 1
2 )

∥∥∥
F

(7)

where CpD(x, y),CqD(x, y) are the diagonal matrices of
Cp(x, y), Cq(x, y), respectively. CpND(x, y),CqND(x, y)
are same as the Cp(x, y), Cq(x, y) matrices by keeping
all the off-diagonal entries unchanged and replacing all the
diagonal entries by one. λi

(
CpD,CqD

) = λ1, λ2 . . . λn are
joint eigenvalues of the matrices of CpD ,CqD by solving
the equation det(λCpD − CqD) = 0. ‖·‖F is the Frobenius
norm. Frobenius norm of a m × n matrix A is defined as the
square root of the sum of the absolute squares of its elements.

‖A‖F =
√∑m

i=1
∑n

j=1

∣∣ai j
∣∣2.

3.4 Selection of Size K

Size of K is adaptively chosen according to the patch similar-
ity values. After measuring the patch similarity (Sim) of the
input patch y j

L with respect to the training image patches{
h p
T Rbest

}M
p=1 by using the formulation given in Eq. (5),

the Sim values of patches are sorted in descending order.
Sorted similarity values are plotted with respect to the patch
index. Next, gradient of this similarity curve is plotted. The
global minima point of the gradient curve is considered as
the threshold value ς . Training image patch index whose
gradient values are lesser than equal to the threshold value
ς is considered as the K number of neighboring patches for
y j
L patch. Figure 2 shows the graphical representation of the

selection of size K of an arbitrary patch y j
L .

First row shows the plot of sorted Sim values against the
training image patch index. Second row shows the gradient
of the above curve. Global minima of the curve is shown in
circle and ς value is marked by the arrow mark. Here, the ς

is lying at the 10th number training image patch index and
hence the size of K is 10. Topmost 10 training image patches
are serving as the neighborhood candidate patches for the
input patch y j

L . Likewise, size of K is different for each LR
patch and it depends on the patch similarity of that particular

patch with the training image patches
{
h p
T Rbest

}M
p=1. Conse-

quently, neighborhood size K for the reconstruction process
is adaptive in nature and diminishes the effect of over and
under fitting of data. The overall steps for selecting the opti-
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Fig. 2 Selection of size K

mal candidate patches for each input LR patch are described
in Algorithm 2.

Algorithm 2 discusses about the steps to select K number
of candidate HR patches for each input patch. Input to this

searching process is N number of input patches
{
y j
U

}N

j=1
and

M number of training HR patches
{
h p
T Rbest

}M
p=1. Searching

process aims at selecting K number of HR training patches{
hiT Rbest

}K
i=1 from M number of training HR patches in

{
h p
T Rbest

}M
p=1 for each input patch y j

U in
{
y j
U

}N

j=1
. y j

U is

the j t h patch of up-sampled image YU . YU is obtained by
up-sampling the input LR image YL by a factor of u using P-
spline interpolation [42]. Image YU is divided into N number

of patches
{
y j
U

}N

j=1
with the same size as that of the each

h p
T Rbest patch. Now, feature vector Ai and its corresponding

co-variance matrix for each input patch y j
U R and each train-

ingHR imagepatches
{
h p
T Rbest

}M
p=1 are computedusingEqs.

(3) and (4), respectively. Correlation among the co-variance
matrix of input patch y j

U andM number of co-variancematrix

of training patches
{
h p
T Rbest

}M
p=1 aremeasured using Eq. (5).

Now we are available with M number of correlated values
which are termed as Sim values. By using the procedure
as discussed in Sect. 3.4, K number of candidate training

patches
{
hiT Rbest

}K
i=1 for the input patch y

j
U are selected. This

process is continued till eachpatch of
{
y j
U

}N

j=1
selects its cor-

responding K number of candidate HR patches. Afterward,
reconstruction weights are computed for the linear embed-
ding process to estimate the final HR image.

Algorithm 2 : Selection of neighborhood patches

Input: YL , magnification factor u and
{
h p
T Rbest

}M
p=1

Output:
{
NE(Y j

U )
}K

j=1

Begin algorithm

1: Interpolate YL by factor u to yield YU

2: Divide YU into N number of patches
{
y j
U

}N

j=1
with the same size

as that of the each h p
T Rbest patch

3: Compute the vector Ai for j th input patch y j
U using Eq. (4).

4: Compute the covariance matrix C(
y j
U

) using Eq. (3)

5: for each training HR image patches h p
T Rbest ∈ {

h p
T Rbest

}M
p=1 do

6: Compute the vector Ai

7: Compute its corresponding covariance matrix C(
h p
T Rbest

)

8: end for

9: Store M number of covariance matrices

{
Ci(

h p
T Rbest

)
}M

i=1
for the

training HR image patches

10: Compute the similarity values Sim among

{
C(

y j
U

)
}

and
{
Ci(

h p
T Rbest

)
}M

i=1
using Eq. (5)

11: Store and sort the values of Sim in descending order

12: Plot the values of sorted Sim values with respect to the training
patch index

13: Global minimum of the gradient curve plotted is treated as the ς

value.

14: Select K number of patches
{
hiT Rbest

}K
i=1 ∈ {

h p
T Rbest

}M
p=1 having

the gradient of Sim value≤ ς as candidate neighboring patches for
the j th input patch y j

U .

15:
{
NE(Y j

U )
}K

j=1
= {

hiT Rbest

}K
i=1

16: Return
{
NE(Y j

U )
}K

j=1
End algorithm

3.5 Computation of ReconstructionWeight and

Estimation of HR Image
{
x̂jH

}N

j=1

Optimal reconstruction weights WK of the neighboring
patches are computed byminimizing the local reconstruction
error as performed in [16,18]. For each y j

U , K nearest neigh-

bor patches
{
NE(Y j

U )
}K

j=1
are searched.WK is achieved by

minimizing the error for y j
U as given in Eq. (8).
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Fig. 3 a, b HR and LR images of ‘butterfly.bmp,’ c, d HR and LR
images of ‘ppt3.bmp,’ e, f HR and LR images of ‘189080.jpg’

Fig. 4 Reconstructed HR solutions of ‘butterfly.bmp’ image using dif-
ferent methods at a magnification factor of 3×. a Gao et al. [21], b Zhu
et al. [22], cMishra et al. [23], d Mishra et al. [24], e Nayak et al. [15],
f Liu et al. [35], g Ledig et al. [38], h ENESR (proposed)

εr ( j) =

∥∥∥∥∥∥∥
Y j
U −

∑

Y P
U ∈NE j

W jpY
P
U

∥∥∥∥∥∥∥

2

(8)

subject to constraint
∑

Y P
U ∈NE j

W jp = 1 and Wjp = 0 for

any patch Y P
U /∈ NE j . NE j is the nearest neighbor patches

of y j
U . Estimation of x̂ j

H is done by following the formulation
as described in Eq. (9).

x̂ j
H =

∑

Y P
U ∈NE j

W jp x̂
P
U . (9)

X̂ H is estimated by stitching the estimated HR patches{
x̂ j
H

}N

j=1
by preserving the local compatibility and smooth-

ness priors among patches. The overlapped region of patches
are averaged in the stitching process to preserve better inter-
patch compatibility.

4 Simulations and Result Analysis

Effectiveness of the proposed method in providing an
efficient trade-off between reconstruction quality and the
processing speed is validated through simulation data exper-
iments for both synthetic and real-time images. Performance
evaluation of the proposedwork is comparedwith someof the

Fig. 5 Reconstructed HR images for ‘ppt3.bmp’ image using different
reconstruction methods at 3× zooming factor. a Gao et al. [21], b Zhu
et al. [22], cMishra et al. [23], dMishra et al. [24], e Nayak et al. [15],
f Liu et al. [35], g Ledig et al. [38], h ENESR (proposed)

Fig. 6 Reconstructed HR solutions of ‘189080.jpg’ image using differ-
ent methods at a zooming factor of 3×. a Gao et al. [21], b Zhu et al.
[22], cMishra et al. [23], dMishra et al. [24], e Nayak et al. [15], f Liu
et al. [35], g Ledig et al. [38], h ENESR (proposed)

existing state-of-the-art LBSISRR methodologies [15,21–
24,35] along with the deep learning-based method proposed
in [38]. Along with visual perception, several subjective
image quality measures such as PSNR, SSIM, FSIM, ringing
measure (RM) and blur measure (BM) [45] are used to quan-
tify the reconstruction quality for synthetic data experiments.
To have a fair comparison, several objective qualitymeasures
such as Spearman rank order correlation coefficient (SRCC),
Pearson linear correlation coefficient (PLCC) and root mean
square error (RMSE) are also computed to quantify the recon-
struction quality of the estimated HR images. We have used
the methodology used in [46] for the computation of these
parameters. Reconstruction process is carried out for 2×,
3× and 4× magnification factors. For synthetic-data experi-
ments, images used in [15,25] are used for training purpose
and images from ‘Set5’ [47], ‘Set14’ [26] and ‘BSD200’
[48] are utilized for testing purpose. For real-time experi-
ments, images fromMDSP [49] dataset are used. Each of the
images in the MDSP dataset contains a sequence of image
frames with some global and local motion with each other.
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For the simulation purpose, one of the image sequence is
used as the testing image while rest of the frames are utilized
for training purpose. The blind image quality index (BIQI)
[50] and natural image quality evaluator (NIQE) [51] indices
are used to quantify the reconstruction accuracy for real-time
data experiments.Higher value signifies better reconstruction
quality.

4.1 Experimental Setting

In the reconstruction process, T Roptimal is generated as
done in [15]. Size of K is chosen adaptively as described
in Sect. 3.4. The degradation process as defined in Eq. (1)
utilizes the blurring matrix Br as (5×5) Gaussian LPF with
smoothing parameter 0.1. Warping matrix Wa executes [−1
to 1] translation along both x and y directions along with 2
degrees of rotation. Down-sampling operation is performed
by an amount of 2 to 4. Noise η is added to make the SNR as
20 dB. In the real-time experiments, the degradation process
ignores the warping operation as the image sequences com-
prise of local as well as global shift among each other. Size
of LR patch z × z is taken as (5 × 5) with two pixels over-
lapping. For extracting the Gabor features of patches, scale
SC = 1 and orientation O = 4, i.e., O = {

π
4 , π

2 , 3π
4 , π

}
are used. Parameters of the compared LBSISRR methods
are chosen in the similar fashion as provided in their original
work.

4.2 Performance Analysis of Synthetic Data
Experiments

In this section, we have discussed the performance analysis
of the proposed work with some of the existing state-of-the
art methods by performing experimentation on synthetic test
images from the ‘Set5,’ ‘Set14’ and ‘BSD200’ datasets at dif-
ferent magnification factors. For objective quality analysis,
reconstructed HR solutions of some test images from these
datasets are also provided.

Figure 3 depicts the original HR and their corresponding
LR versions of ‘butterfly.bmp,’ ‘ppt3.bmp’ and ‘189080.jpg’
images from the ‘Set5,’ ‘Set14’ and ‘BSD200’ datasets,
respectively.

Reconstructed HR solutions of these there test images at
3×magnification factor are presented in Figs. 4, 5 and 6. Cor-
responding subjective quality measures of the reconstructed
images are given in Table 5.

From the visual analysis as perceived from images in
Figs. 4, 5 and 6g and tabular data analysis, it is observed
that the deep learning-based SRR method in [38] provides
superior performance. However, here our soul aim is to pro-
pose a faster and efficient LBSISRR method as compared
to the existing ones. Hence, we will analyze the effective-
ness of our proposed work with respect to the compared

LBSISRR methods. The reconstructed HR images using the
method in [21] well preserves the image details by utiliz-
ing the HOG feature. However, reconstruction quality of
this method degrades for images rich in textural contents
as observed in Fig. 6a for ‘189080.jpg’ image. However,
method in [22] utilizes FoE features and non-local based
constraints, consequently produces enhanced output even for
images rich in textural content. But, measuring patch sim-
ilarity by means of EuD among feature vector makes the
method time-consuming in nature. Likewise, method in [24]
is also providing some pleasant output by utilizing ZM based
features. This method well preserves the global structure of
image and robust to noise but have limited reconstruction
capability for large-scale reconstruction.Consequently, some
unwanted artifacts dominant in the reconstructed solutions as
observed in Fig. 5d for ‘ppt3.bmp’ image. As compared to
the above discussed methods, method in [23] is quite robust
to noise and outliers present. This method also suggests an
automated scheme for selecting the global size K for the
reconstruction process. The estimated solutions as shown in
Figs. 4, 5 and 6c show the efficacy of this method in produc-
ing the enhanced output. However, utilization of geodesic
and EuD makes the reconstruction process computationally
expensive. Method in [15] proposes edge preserving com-
patibility functions to well preserve the compatibility among
neighboring patches and hence produces better HR results
than the methods in [21,22,24]. This can be observed from
the images in Figs. 4, 5 and 6e. However, utilization of inten-
sity profile to represent patch in its feature space makes
this method sensitive to noise and outliers. Nevertheless,
computational complexity of this method is too high due
to epitomic-based neighborhood searching process. Recon-
structed solutions as shown in Figs. 4, 5 and 6f via the
method in [35] produce sharper HR images by utilizing SC-
based learning and KNN-based dictionary instead of unified
dictionaries. Consequently, this method provides enhanced
image quality at a lesser computational overload. Fromvisual
perception of reconstructed HR images as shown in Figs.
4, 5 and 6h, it is clearly seen that the proposed method
produces sharp image details with diminished effect of arti-
facts than the other methods. Improvement of reconstruction
quality of the proposed work is due to the integration of sev-
eral raw image features which in turn provides an unified
framework to preserve the complete set of high frequency
components in the reconstruction process. To provide a fair
comparative analysis, average values of different subjective
quality measures of the reconstructed solutions for three
image datasets at different magnification factors are pro-
vided in Tables 6, 7 and 8. Quality measure values using
the method in [38] are shown in boldfaces and the values by
using the proposed ENESR method are shown in italic and
boldfaces.
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Table 5 Subjective quality measures of the reconstructed HR solutions for ‘butterfly.bmp,’ ‘ppt3.bmp’ and ‘189080.jpg’ test images at zooming
factor of 3×
Quality measures Bi-cubic [21] [22] [23] [24] [15] [35] [38] ENESR (proposed)

‘butterfly.bmp’

PSNR (dB) 26.53 28.90 29.62 33.14 30.71 31.64 33.67 39.30 34.52

SSIM .823 .844 .850 .870 .852 .867 .874 .912 .880

FSIM .831 .865 .878 .913 .900 .908 .926 .950 .933

RM 8.77 6.42 5.43 2.01 4.80 3.22 2.14 0.681 1.77

BM 10.55 7.73 6.66 3.41 5.58 6.40 2.93 1.07 2.26

‘ppt3.bmp’

PSNR (dB) 26.44 28.34 29.23 32.24 30.61 31.85 33.48 37.10 34.48

SSIM .665 .673 .701 .748 .712 .726 .758 .837 .797

FSIM .676 .714 .734 .826 .784 .804 .836 .894 .840

RM 11.2 8.11 7.20 4.28 5.14 6.89 3.83 1.54 2.34

BM 12.6 9.14 8.34 5.24 6.70 6.10 4.64 2.01 3.18

‘189080.jpg’

PSNR (dB) 27.44 28.64 29.44 31.24 30.17 30.90 32.16 36.10 33.14

SSIM .789 .801 .813 .836 .820 .826 .841 .900 .853

FSIM .804 .823 .835 .874 .851 .868 .880 .934 .896

RM 15.6 11.1 10.3 6.95 7.22 7.14 4.01 1.27 3.20

BM 19.8 12.0 11.4 7.41 8.84 8.32 5.32 1.93 4.04

Table 6 Average values of subjective quality measures of the reconstructed HR images for ‘Set5’ dataset [47] at 2×, 3× and 4× zooming factors

Quality measures Bi-cubic [21] [22] [23] [24] [15] [35] [38] ENESR (proposed)

‘2 ×’

PSNR (dB) 33.34 34.26 35.03 37.13 35.18 36.05 38.23 40.40 39.11

SSIM/FSIM .830/.841 .873/.887 .886/.895 .913/.947 .892/.903 .902/.917 .957/.964 .989/.990 .968/.972

RM/BM 10.3/11.8 8.28/9.81 7.10/8.88 3.20/4.42 6.13/7.71 5.05/6.89 2.34/3.66 1.03/1.68 1.46/2.02

‘3 ×’

PSNR (dB) 30.36 31.18 32.42 33.07 32.63 32.81 33.80 35.64 34.55

SSIM/FSIM .808/.826 .854/.867 .861/.870 .882/.903 .876/.890 .879/.892 .897/.921 .921/.951 .907/.928

RM/BM 14.7/16.5 9.36/10.5 8.72/9.94 4.47/5.35 7.75/9.04 5.66/8.80 2.89/4.65 1.96/2.05 2.21/2.77

‘4 ×’

PSNR (dB) 28.40 29.04 29.62 30.23 29.72 29.80 30.55 32.06 31.11

SSIM/FSIM .779/.813 .791/.827 .801/.845 .823/.850 .813/.844 .816/.848 .839/.857 .881/.902 .846/.860

RM/BM 17.3/20.7 10.7/13.4 9.60/10.6 6.78/8.68 7.53/10.2 7.17/7.76 3.54/6.50 2.78/4.06 3.07/5.18

Tables 9 and 10 show the average values of the objective
quality assessment parameters of the reconstructed HR solu-
tions at magnification factors of 3× and 4×, respectively,
for different dataset images. By analyzing the data present in
Tables 6, 7, 8, 9 and 10, it is observed that, both the subjec-
tive and objective quality measures are consistent with the
visual perception and our proposed ENESR method outper-
forms the compared methods. However, methods in [23,35]
are providing comparable results with the ENESR method.

Tables 11 and 12 provide the improvement of different
subjective and objective quality measures of the proposed

method compared to the two comparable methods in [23,35]
at different magnification factors for the three test image
datasets. From the above tabular data analysis, it is observed
that, improvement in different quality measures of the pro-
posed method decreases with increase in magnification
factors. However, our proposed method provides remarkable
improvement in image quality even at higher magnification
factor which signifies the efficacy of the method in providing
high-quality image details.

Table 13 provides the average processing time for dataset
images, whereas Table 14 provides the average processing
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Table 7 Average values of the subjective quality measures of reconstructed HR images for ‘Set14’ dataset [26] at zooming factors of 2×, 3× and
4×
Quality measures Bi-cubic [21] [22] [23] [24] [15] [35] [38] ENESR (proposed)

‘2 ×’

PSNR (dB) 30.20 30.65 31.08 32.60 31.68 32.10 32.94 35.55 33.74

SSIM/FSIM .868/.871 .887/.890 .891/.892 .935/.937 .902/.903 .911/.921 .940/.941 .981/.982 .951/.952

RM/BM 10.3/12.1 9.83/11.7 8.21/10.0 5.05/7.44 6.18/8.20 5.41/8.30 4.64/6.60 2.49/4.41 3.34/5.16

‘3 ×’

PSNR (dB) 27.53 28.07 28.51 30.73 28.83 29.14 31.13 33.62 31.73

SSIM/FSIM .773/.776 .813/.814 .825/.827 .839/.845 .827/.828 .829/.830 .843/.844 .861/.864 .852/.855

RM/BM 13.3/16.9 9.60/10.3 8.86/9.81 6.15/7.23 7.32/8.42 6.54/7.60 5.20/6.31 3.46/4.41 4.35/5.32

‘4 ×’

PSNR (dB) 25.94 26.12 26.74 27.76 27.01 27.25 28.07 29.15 28.64

SSIM/FSIM .701/.70 .714/.715 .720/.721 .758/.760 .730/.732 .736/.737 .761/.763 .790/.802 .767/.768

RM/BM 13.5/19.3 10.0/10.6 9.32/10.0 6.40/7.40 7.74/8.36 6.83/7.93 5.41/6.41 4.42/4.67 5.02/5.49

Table 8 Average values of subjective quality measures of reconstructed HR images for ‘BSD200’ dataset [48] at zooming factors of 2×, 3× and
4×, respectively

Quality measures Bi-cubic [21] [22] [23] [24] [15] [35] [38] ENESR (proposed)

‘2 ×’

PSNR (dB) 27.36 28.14 28.56 29.63 28.65 29.06 30.14 34.43 30.84

SSIM/FSIM .852/.863 .870/.886 .872/.887 .893/.907 .886/.895 .890/.900 .898/.910 .922/.943 .914/.924

RM/BM 14.4/18.6 8.84/13.4 8.32/12.2 6.24/8.03 7.56/8.91 6.65/9.44 5.78/7.05 3.46/4.31 5.11/6.63

‘3 ×’

PSNR (dB) 25.92 26.03 26.72 27.42 26.80 26.89 27.83 30.62 28.46

SSIM/FSIM .746/.761 .769/.785 .772/.786 .788/.807 .776/.790 .784/.792 .793/.812 .821/.845 .802/.821

RM/BM 16.3/20.8 13.7/17.1 10.5/14.1 7.08/8.21 9.12/10.4 8.55/9.48 6.14/7.34 3.80/5.84 5.84/7.00

‘4 ×’

PSNR (dB) 24.63 25.01 25.32 26.04 25.66 25.83 26.34 29.32 26.88

SSIM/FSIM .672/.721 .693/.743 .699/.746 .707/.760 .700/.751 .703/.756 .712/.764 .762/.781 .718/.770

RM/BM 20.6/23.6 17.2/20.2 14.8/17.1 9.06/10.0 12.1/14.2 11.3/12.1 8.12/9.20 5.11/6.13 7.89/8.94

Table 9 Average values of objective quality measures of the reconstructed HR images at a zooming factor of 3×
Quality measures Bi-cubic [21] [22] [23] [24] [15] [35] [38] ENESR (proposed)

‘Set5’

SRCC .3016 .4424 .4517 .5215 .4853 .5016 .6632 .8271 .7314

PLCC .3624 .4943 .5023 .5516 .5226 .5314 .7010 .8642 .7619

RMSE 3.492 2.726 2.418 2.210 2.341 2.398 1.432 1.068 1.215

‘Set14’

SRCC .2062 .3801 .3912 .4516 .4113 .4311 .5014 .6588 .5913

PLCC .3491 .4817 .5241 .6218 .5373 .6013 .7228 .8323 .7896

RMSE 4.682 2.808 2.562 2.314 2.446 2.416 1.606 1.07 1.321

‘BSD200’

SRCC .4432 .5064 .5234 .6019 .5617 .5777 .6324 .8218 .7011

PLCC .4713 .5214 .5619 .6414 .5828 .5770 .6811 .8414 .7316

RMSE 5.412 3.441 3.212 3.110 3.281 3.216 2.321 1.108 2.01
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Table 10 Average values of objective quality measures of the reconstructed HR images at a zooming factor of 4×
Quality measures Bi-cubic [21] [22] [23] [24] [15] [35] [38] ENESR (proposed)

‘Set5’

SRCC .2110 .4213 .4310 .5168 .4646 .4837 .6446 .8113 .7012

PLCC .2624 .4717 .4823 .5347 .4918 .5026 .6865 .8411 .7213

RMSE 6.442 4.726 4.818 2.793 4.660 4.765 2.213 1.792 2.113

‘Set14’

SRCC .1189 .3601 .3722 .4406 .4023 .4110 .4818 .6470 .5632

PLCC .2007 .4606 .5003 .6117 .5115 .5613 .7003 .8117 .7414

RMSE 8.832 4.469 4.314 2.762 3.317 3.116 2.201 1.87 2.061

‘BSD200’

SRCC .2175 .4416 .4537 .5891 .4817 .4945 .6210 .8116 .6800

PLCC .2220 .4572 .4680 .6295 .5441 .5321 .6771 .8330 .7114

RMSE 8.882 5.642 6.013 3.600 4.413 3.967 3.01 1.63 2.85

Table 11 Average improvement
of various subjective quality
measures of proposed method
over the methods in [23] and
[35] at different magnification
factors

Datasets 	PSNR (dB) 	SSIM (%) 	FSIM (%) 	RM (%) 	BM (%)
[23]/[35] [23]/[35] [23]/[35] [23]/[35] [23]/[35]

2×
‘Set 5’ 1.98/0.88 5.68/1.13 2.57/0.82 54.3/37.6 54.2/44.8

‘Set 14’ 1.14/0.8 1.68/1.16 1.157/1.5 33.86/28.01 30.65/21.81

‘BSD200’ 1.23/0.7 2.29/1.75 1.83/1.51 18.10/11.6 17.43/5.96

3×
‘Set 5’ 1.48/0.75 2.75/1.10 2.69/0.76 50.5/23.52 48.2/40.40

‘Set 14’ 1.00/0.60 1.52/1.06 1.16/1.05 29.26/16.34 26.41/15.68

‘BSD200’ 1.04/0.63 1.74/1.12 1.70/1.09 17.51/4.89 14.73/4.63

4×
‘Set 5’ 0.88/0.56 2.71/0.82 1.16/0.35 54.71/13.27 40.32/20.31

‘Set 14’ 0.88/0.57 1.17/0.78 1.04/0.65 21.56/7.20 25.81/14.35

‘BSD200’ 0.84/0.54 1.53/0.83 1.29/0.78 12.91/2.83 10.68.81/2.82

Table 12 Average improvement of various objective quality measures
of proposed method over the methods in [23] and [35] at magnification
factors 3× and 4×
Datasets 	SRCC(%) 	PLCC (%) 	RMSE

[23]/[35] [23]/[35] [23]/[35]

3×
‘Set 5’ 28.69/9.32 27.60/7.99 0.995/0.217

‘Set 14’ 23.62/15.20 21.25/8.45 0.993/0.288

‘BSD200’ 14.14/9.79 12.32/6.90 1.10/0.311

4×
‘Set 5’ 26.29/8.07 25.86/4.82 0.68/0.11

‘Set 14’ 21.76/14.45 17.49/5.54 0.70/0.14

‘BSD200’ 13.38/8.67 11.51/4.82 0.75/0.16

time in reconstructing the HR images in three ‘Set5,’ ‘Set14’
and ‘BSD100’ datasets.

4.2.1 Comparison with the State-of-the-Art Faster LBSISRR
Methods

In this subsection, performance of our proposed method is
compared with some of the existing state-of-the-art faster
LBSISRR methods [21,26,29,32,35] to show its superior-
ity in providing a high-quality solution at a faster processing
speed. Figure 7 shows theHRsolutions of the ‘butterfly.bmp,’
‘ppt3.bmp’ and ‘189080.jpg’ images byusing the abovemen-
tioned reconstruction methods.

Table 15 describes both subjective and objective image
quality assessment parameters of these reconstructed solu-
tions at a magnification factor 3×. Table 16 describes the
average values of both subjective and objective image qual-
ity assessment parameters along with average processing
speed (in seconds) of the reconstructed solutions at different
magnification factors. Averaging process takes the quality
measure values and processing time for reconstructing the
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Table 13 Average processing time (seconds) at different magnification factors for ‘Set5’ dataset images

Zooming factor [21] [22] [23] [24] [15] [35] [38] ENESR (proposed)

‘2×’ 32.01 50.68 35.38 46.65 106 5.03 3.14 12.84

‘3×’ 42.14 61.32 45.32 56.18 132 7.00 4.11 19.3

‘4×’ 53.32 72.65 56.60 63.14 168 13.19 6.12 22.12

Table 14 Average processing time (seconds) at different magnification factors for images in three datasets

Zooming factor [21] [22] [23] [24] [15] [35] [38] ENESR (proposed)

‘2×’ 28.01 46.28 31.33 42.35 103 4.13 3.11 8.34

‘3×’ 34.10 55.30 41.12 52.16 129 6.72 4.10 10.3

‘4×’ 49.32 68.34 52.10 58.21 163 11.49 6.10 15.12

Fig. 7 Reconstructed HR solutions of ‘butterfly.bmp,’ ‘ppt3.bmp’ and ‘189080.jpg’ images using different faster LBSISRR methods at a zooming
factor of 3×. a Zeyde et al. [26], b Gao et al. [21], c Timofte et al. [29], d Ahmadi et al. [32], e Liu et al. [35], f ENESR (proposed)

images in ‘Set5,’ ‘Set14’ and ‘BSD100’ datasets. From the
visual perception and tabular data analysis, it is observed that,
proposed ENESR method outperforms the compared faster
LBSISRR methods. This is because, our proposed method
efficiently fuses several raw image features to preserve suffi-
cient amount of structural, statistical and spatial image details
in the estimated solutions with reduced effect of artifacts.
However, method in [29] provides comparable results with
the proposed method. This method utilizes the combination
of sparse coding and neighbor embedding to learn the dictio-
nary. Unlike, conventional EuD-based measures, candidate
patches are searched by considering the correlation with the

dictionary atoms and hence sufficient spatial correlation have
been preserved among neighboring patches. Consequently,
yields a better quality of reconstruction and considered as the
next state-of-the-art faster LBSISRR method.

4.2.2 Entropy of Reconstructed HR Solutions

Along with the above mentioned subjective and objective
quality measures, entropy of the LR and its corresponding
reconstructed HR images using different LBSISRR methods
are also provided here to show the information content in the
reconstructed solutions. Entropy values of the reconstructed
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Table 15 Quality measures of ‘butterfly.bmp,’ ‘ppt3.bmp’ and ‘189080.jpg’ images using proposed and compared faster LBSISRR methods at a
zooming factor of 3×
Methods PSNR (dB) SSIM FSIM RM BM SRCC PLCC RMSE

‘butterfly.bmp’

[26] 28.67 .846 .868 6.00 7.28 .4432 .5545 3.112

[21] 28.40 .844 .865 6.42 7.73 .4321 .5432 3.321

[29] 33.81 .876 .928 2.10 2.76 .6865 .7654 2.110

[32] 28.85 .848 .875 5.60 6.85 .5014 .5748 3.001

[35] 33.67 .874 .926 2.14 2.93 .6756 .7555 2.342

Proposed 34.52 .880 .933 1.77 2.26 .7112 .8234 1.412

‘ppt3.bmp’

[26] 28.45 .688 .718 7.40 8.65 .4567 .5003 2.434

[21] 28.34 .673 .714 8.11 9.14 .4432 .4956 2.675

[29] 33.54 763 .841 3.12 4.02 .6657 .7008 1.897

[32] 28.68 .695 .722 6.55 7.54 .4615 .5123 2.121

[35] 33.48 .758 .836 3.83 4.64 .6638 .7000 1.930

Proposed 34.48 .797 .840 2.34 3.18 .7231 .7342 1.753

‘189080.jpg’

[26] 28.73 .807 .826 10.34 11.65 .4578 .4973 3.332

[21] 28.64 .801 .823 11.1 12.0 .4649 .5057 3.456

[29] 32.50 .847 .887 3.97 4.45 .5367 .5743 2.123

[32] 28.85 .811 .829 5.46 7.23 .4700 .5188 3.176

[35] 32.16 .841 .880 4.01 5.32 .5321 .5770 2.459

Proposed 33.14 .853 .896 3.20 4.04 .5432 .5842 1.801

Table 16 Comparison of average values (for images in ‘Set5,’ ‘Set14’ and ‘BSD100’ datasets) of various image qualitymeasures of the reconstructed
HR images using proposed scheme along with compared faster LBSISRR methods at different zooming factors

Methods PSNR (dB) SSIM FSIM RM BM SRCC PLCC RMSE Processing time (s)

3×
[26] 28.56 .8192 .8243 10.32 12.12 .4512 .5010 2.81 20.21

[21] 28.39 .8183 .8220 10.88 12.63 .4419 .4991 2.99 34.10

[29] 30.96 .8465 .8618 4.63 5.17 .6002 .7192 1.73 5.60

[32] 28.63 .8200 .8376 9.94 10.14 .4617 .5146 2.06 11.24

[35] 30.92 .8443 .8590 4.74 6.1 .5990 .7016 1.79 6.72

Proposed 31.58 .8536 .8760 4.13 5.03 .7314 .7610 1.515 10.34

4×
[26] 26.60 .738 .768 11.84 14.11 .4108 .4721 4.63 22.14

[21] 26.53 .732 .761 12.63 14.73 .4076 .4631 4.94 49.32

[29] 28.40 .772 .813 5.56 7.25 .6017 .7032 2.40 8.63

[32] 26.68 .740 .773 11.07 12.11 .4231 .4856 4.11 19.18

[35] 28.32 .770 .810 5.69 7.37 .5824 .6880 2.47 11.49

Proposed 28.69 .777 .819 5.32 6.54 .6481 .7247 2.34 15.12
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Fig. 8 Bar plot of the entropy values of different SISRR methods for
estimating ‘butterfly.bmp,’ ‘ppt3.bmp’ and ‘189080.jpg’ images at a
zooming factor of 3×

‘butterfly.bmp,’ ‘ppt3.bmp’ and ‘189080.jpg’ images at a
magnification factor of 3× are plotted in Fig. 8.

Formulation for the calculation of entropy and information
gain is provided in Eq. (10).

En = −
M∑
i=1

N∑
j=1

p(i, j)log2 p(i, j)

IG = En(HR)

En(LR)
(10)

where M, N are size of images, p(i, j) pixel values and
log2 p(i, j) probability density.

From Fig. 8, it is quite evident that, for each of the
images the HR solutions contain higher information than its
corresponding LR images. However, our proposed ENESR
method outperforms the compared methods and methods in
[29,35] provide comparable results. Information gain (IG)
of a method is computed by taking the ratio of the entropy
values of the reconstructed HR solution to its corresponding
LR image. Higher value of IG signifies more information
content. Values of IG for ‘butterfly.bmp,’ ‘ppt3.bmp’ and
‘189080.jpg’ images of the proposed method are: 1.82, 1.63,
1.70. Values of IG for the method in [35] are: 1.70, 1.54,
1.55, whereas values for the method in [29] are: 1.72, 1.56,
1.70, respectively. Thus, average improvement of the pro-
posed ENESR method over the methods in [29,35] is around
6.98% and 5.81 %, respectively.

4.2.3 Reconstruction Quality Versus Processing Speed

This section discusses about the trade-off between the recon-
struction accuracy and the processing speed behavior of the
reconstruction process. This is demonstrated by plotting the
average computational speed (in seconds) against the avg.
PSNR(dB) of the reconstructedHR solutions. The plot is pro-
vided for the proposed, compared state-of-the-art LBSISRR
methods and faster SRR methods at different magnification
factors. Figures 9 and 10 show the plot of average running
time Vs average PSNR at 3× and 4×, respectively.

Fig. 9 Avg. processing speed (s) versus Avg. PSNR (dB) of the pro-
posed and the state-of-the-art LBSISRR methods at a magnification
factor of 3×. Blue color represents the proposed ENESR method

Fig. 10 Avg. processing speed (s) versus Avg. PSNR (dB) of the pro-
posed and the state-of-the-art LBSISRR methods at a zooming factor
4×. Blue color represents the proposed ENESR method

Fig. 11 Reconstructed HR solutions of ‘Foreman’ sequence using dif-
ferent methods at a magnification factor 3× along with the BIQI/NIQE
values a Gao et al. [21] (19.46/.5612), b Zhu et al. [22] (20.01/.5718),
c Mishra et al. [23] (22.43/.6013), dMishra et al. [24] (20.68/.5819), e
Nayak et al. [15] (20.86/.5867), f Liu et al. [35] (23.60/.6312), g Ledig
et al. [38] (32.24/.6615), h ENESR (proposed) (25.01/.6519)

From the plot, it is observed that the methods in [15,22]
consumemore processing time to converge. This is due to the
integration of EuD-based measure to compute the compati-
bility functions and patch similarity. As compared to other
methods, method in [29,35] outperforms in terms of compu-
tational speed. Integration of SC based learning method by
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Fig. 12 Reconstructed HR solutions of ‘Foreman’ sequence using pro-
posed and compared faster LBSISRRmethods at a magnification factor
3× along with their BIQI/NIQE values a Zeyde. et al. (19.90/.5703),

b Gao et al. [21] (19.46/.5612), c Timofte et al. [29] (24.11/.6410),
d Ahmadi et al. [32] (19.97/.5711), e Liu et al. [35] (23.60/.6312), f
ENESR (proposed) (25.01/.6519)

Table 17 Average values of BIQI/NIQE measures for real-time reconstructed HR images in MDSP database [49] at different zooming factors

Zooming factors [21] [22] [23] [24] [15] [29] [35] [38] ENESR (proposed)

‘2 ×’ 26.3/.581 28.2/.601 32.2/.641 29.2/.612 31.3/.621 33.5/.691 33.3/.682 41.7/.731 34.2/.701

‘3 ×’ 22.4/.562 25.7/.583 30.7/.622 26.4/.591 28.9/.601 31.4/.670 31.1/.662 39.2/.721 31.7/.680

‘4 ×’ 20.1/.531 23.1/.551 28.9/.591 25.4/.560 27.0/.572 30.0/.650 29.9/.642 37.4/.711 30.7/.660

Table 18 Average improvement of 	BIQI (%)/	NIQE (%) of pro-
posed method over the methods in [35] and [29] at different magnifica-
tion factors

Zooming factor [35] [29]

‘2 ×’ 2.63/2.75 1.99/1.44

‘3 ×’ 2.30/2.74 1.98/1.46

‘4 ×’ 2.54/2.74 1.96/1.44

utilizing the KNN-based dictionary clusters enables faster
convergence in method [35]. However, method in [29] uti-
lizes an off-line anchored regression process to obtain the
neighborhood by measuring the correlation with the dictio-
nary atoms. Most importantly, this method integrates the
notion of SC along with neighbor embedding approach to
interpret the learned dictionary in a smaller space. Con-
sequently, the method enables to preserve sufficient image
details and converges at a faster rate than the methods using
SC only [26,32,35]. However, our proposed method is con-
suming a little more time than the comparable methods in
[29,35] but yields high-quality reconstruction accuracy. This
is due to the use of covariance-based feature representation
of image patches. At higher magnification factors, i.e., at 3×
4×, proposed ENESR method achieves an average gain of
PSNR value by .45 dB to .64 dB at a cost of 4 to 6 sec-
onds more computational time than the next state-of-the-art
LBSISRRmethods in [29,35].Hence,methods in [29,35] can
be efficiently used for applications where the computation
speed is a major concern with the sacrifice in image quality.
On the contrary, our proposed ENESR method maintains an
efficient trade-off between computational speed and recon-

struction accuracy. Hence, it can be successfully applied in
various real-time applications.

4.3 Performance Analysis for Real-Time Data
Experiments

In this section, we have provided the performance analysis of
real-time test images for different magnification factors. Fig-
ure 11 depicts the reconstructed HR solutions of the Foreman
sequence along with their corresponding BIQE and NIQE
values at a magnification factor of 3×.

Figure 12 depicts the reconstructed HR solutions of the
Foreman sequence along with their corresponding BIQE
and NIQE values when compared with faster reconstruction
methods at zooming factor of 3×.

Table 17 provides the average values of BIQI and NIQE
measures of the reconstructed HR solutions from MDSP
dataset [49] at different magnification factors. From the
visual perception and tabular data analysis, it is observed that,
even for real-time data analysis also, our proposed method
is providing superior reconstruction quality than the other
methods.Methods in [29] and [35] are providing comparable
results to the proposed work. But, with increase in magnifi-
cation factor, the reconstruction accuracy of these methods
severely degrades and artifacts dominant. On the other hand,
our proposed method maintains its reconstruction accuracy
even at larger magnification factors.

Table 18 provides the average improvement of BIQI and
NIQE measures of the proposed method over the methods
in [29] and [35] at different magnification factors for MDSP
dataset.
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5 Conclusion

In this paper, we have presented an efficient neighbor
embedding-based super-resolution reconstruction scheme by
utilizing an enhancedway of representing image patch in fea-
ture space and a faster way of searching candidate patches.
Each patch is efficiently represented by fusing a num-
ber of low- and high-level feature attributes which in turn
provides sufficient essential information for reconstructing
high-quality image details. Moreover, this unified means of
patch representation makes the reconstruction process robust
to noise. Size of K is chosen adaptively and patch similar-
ity is measured in non-Euclidean space. This overcomes the
bottleneck of Euclidean distance-based similarity measures.
Qualitative and quantitative analysis of reconstruction pro-
cess suggests that methods in [29,35] provide comparable
results with the proposed method and hence considered as
the next two state-of-the-art methods. Our proposed work
produces an average gain in PSNR by 0.37-0.68 dB, aver-
age improvements of SSIM, FSIM, RM, BM, SRCC and
IG measures are by 0.91–1.08%, 1.09–1.94%, 6.45–12%,
11.26–17.54%, 10.13–18.10% and 6.98%, respectively, over
the method in [35] at a cost of 3–5s more processing time.
Moreover, as compared to method in [29], our method
achieves an average gain in PSNR by .30–.60 dB, average
gain in SSIM, FSIM, RM, BM, SRCC and IG measures
are by .64–.8%, .73–1.62%, 4.31–10.78%, 2.7–9.7%, 7.15–
17.9% and 5.8% at a cost of 4–6s processing time. All these
analysis suggest that the proposed work produces a better
trade-off between sharper image details and running time
than the compared state-of-the-art methods.
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