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Abstract
Conjugate heat transfer and fluid flow is a common phenomenon occurring in parallel plate channels. Finite volume method 
(FVM) formulation-based semi-implicit pressure linked equations algorithm is a common technique to solve the Navier–
Stokes equation for fluid flow simulation in such phenomena, which is computationally expensive. In this article, an indig-
enous FVM code is developed for numerical analysis of conjugate heat transfer and fluid flow, considering different problems. 
The computational time spent by the code is found to be around 90% of total execution time in solving the pressure (P) cor-
rection equation. The remaining time is spent on U, V velocity, and temperature (T) functions, which use tri-diagonal matrix 
algorithm. To carry out the numerical analysis faster, the developed FVM code is parallelized using OpenMP paradigm. 
All the functions of the code (U, V, T, and P) are parallelized using OpenMP, and the parallel performance is analyzed for 
different fluid flow, grid size, and boundary conditions. Using nested and without nested OpenMP parallelization, analysis 
is done on different computing machines having different configurations. From the complete analysis, it is observed that 
flow Reynolds number (Re) has a significant impact on the sequential execution time of the FVM code but has a negligible 
role in effecting speedup and parallel efficiency. OpenMP parallelization of the FVM code provides a maximum speedup 
of up to 1.5 for considered conditions.

Keywords  Parallelization · FVM code · OpenMP · Fluid flow · Speedup · Parallel efficiency

List of Symbols
Ar	� Aspect ratio of battery cell
L	� Length of battery cell
k	� Thermal conductivity
lo	� Length of extra outlet fluid domain
li	� Length of extra fluid domain
Lo	� Dimensionless length of extra outlet fluid domain
Li	� Dimensionless length of extra inlet fluid domain
q′′′	� Volumetric heat generation
q̄	� Non-dimensional heat flux
S̄q	� Dimensionless volumetric heat generation

Pr	� Prandtl number
Re	� Reynolds number
T	� Temperature
To	� Maximum allowable temperature of battery cell
T̄ 	� Non-dimensional temperature
u	� Velocity along the axial direction
U	� Non-dimensional velocity along the axial direction
u∞	� Free stream velocity
v	� Velocity along the transverse direction
Qr	� Heat removed from surface (non-dimensional)
V	� Non-dimensional velocity along the transverse 

direction
w	� Half-width
W̄ 	� Non-dimensional width
x	� Axial direction
X	� Non-dimensional axial direction
y	� Transverse direction
Y	� Non-dimensional transverse direction

Greek Symbols
α	� Thermal diffusivity of fluid
ν	� Kinematic viscosity of fluid
ρ	� Density of fluid

 *	 Asif Afzal 
	 asif.afzal86@gmail.com

 *	 M. K. Ramis 
	 ramismk@pace.edu.in

1	 Department of Mechanical Engineering, P. A. College 
of Engineering (Affiliated to Visvesvaraya Technological 
University, Belagavi), Mangaluru, India

2	 Department of Computer Science and Engineering, 
P. A. College of Engineering (Affiliated to Visvesvaraya 
Technological University, Belagavi), Mangaluru, India

http://orcid.org/0000-0003-2961-6186
http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-020-04640-1&domain=pdf


8982	 Arabian Journal for Science and Engineering (2020) 45:8981–8997

1 3

ζcc	� Conduction–convection parameter
μ	� Dynamic viscosity

Subscripts
c	� Center
f	� Fluid domain
s	� Solid domain (battery cell)
∞	� Free stream
m	� Mean

1  Introduction

Dealing with any physical problem by individual means of 
heat transfer is standard practice. But there are certain areas 
in which the given physical problem can be addressed by 
combining two modes of heat transfer, i.e., coupling conduc-
tion–convection or radiation mode, and such type of heat 
transfer process is called as conjugate heat transfer. This 
kind of heat transfer phenomena finds applications in practi-
cal and industrial uses. Consider the heat transfer analysis of 
electronic devices in which the conductions in the solid body 
are coupled with convection in the fluid body [1]. Few more 
areas to mention where this coupled heat transfer analysis is 
required include the heat extraction by coolants from nuclear 
fuel elements, heat exchangers, minichannels, and modern 
hybrid electric vehicles in which the lithium-ion (Li-ion) 
battery needs to be cooled, etc. On another hand, one of the 
most common idea to provide proper cooling and effective 
heat transfer to/from the surface of hot bodies is the use of 
a parallel plate channel. In parallel plate channels, the fluid 
is forced to flow past the parallelly placed hot solid bodies 
from which heat is extracted continuously. Hence, the phe-
nomena of conjugate heat transfer in a parallel plate channel 
occur. The technique of parallelly placing fins/plates has a 
wide range of applications in innumerous areas, too large 
to mention [2].

The analysis of heat and fluid flow behavior in coupled 
heat transfer and parallel plate channels is commonly carried 
out using computational fluid dynamics (CFD) analysis. In 
CFD analysis, the prominent methods used for numerical 
prediction are finite difference method (FDM), finite vol-
ume method (FVM), or finite element method. The FDM 
and FVM methods are the most commonly used methods 
by scientists for conjugate analysis in parallel plate chan-
nels. However, FVM is comparatively more effectively used 
than FDM due to its several advantages in predictions of 
fluid flow behavior easily [3, 4]. Further, even though several 
methods are available to numerically obtain the solution of 
governing partial differential equations (PDEs) represent-
ing fluid flow conditions, but semi-implicit pressure linked 
equation (SIMPLE) algorithm is one of the most common 
employed algorithm developed by Patankar and Splanding 

[5]. One of the major issue associated with SIMPLE algo-
rithm is that it is computationally expensive due to its slow 
convergence. The inner pressure corrections involved in 
this algorithm generally make the computations slow. Lot 
of research work is carried out to reduce the computational 
time of applications developed for numerical analysis using 
SIMPLE algorithm. Apart from developing modified ver-
sions of SIMPLE algorithm, parallelization of such appli-
cations/codes for fast numerical experimentations is also 
followed nowadays [6–9].

Recently, parallelization techniques of many CFD codes/
software using different parallel computing tools are dem-
onstrated for a particular application area and for in-house 
built codes. Gropp et al. [10] demonstrated parallelization 
of FUN3D code developed at NASA. FUN3D is developed 
for incompressible and compressible Navier–Stokes (NS) 
and Euler equations having a vertex-centered, tetrahedral 
unstructured grid. The subdomain parallelization of FUN3D 
code was successfully demonstrated using message passing 
interface (MPI) tool. Transient NS equation for incompress-
ible flows in three dimensions for analysis of shear flows was 
solved by Passoni et al. [11] developing a code. Second-
order finite difference central scheme in solid body, third-
order procedure of Runge–Kutta in time along with explicit 
treatment of diffusive and convective terms, and for time 
marching fractional step method were used. The paralleli-
zation of the developed computational code was achieved 
using MPI applying their developed schemes (scheme 
A/B/C). 91% of parallel efficiency on doubling the proces-
sors and 60% parallel efficiency upon eightfold increase in 
processors was obtained.

Schulz et al. [12] used lattice Boltzmann method (LBM) 
for fluid flow analysis and established data structures to 
reduce the memory requirements. MPI parallelization for 
a grid size of 2 × 107 was used and achieved about 90% of 
parallel efficiency. Reproducing kernel particle method, also 
commonly known as mesh-free method, was used by Zhang 
et al. [13] to solve the NS equation for incompressible flow. 
MPI was used for domain decomposition-based paralleliza-
tion to analyze three-dimensional flow over a cylinder, flow 
past a building. Seventy processors were used to obtain 
speedup of 35 [13]. Peigin and Epstein [14] used NES code, 
which primarily depends upon essentially non-oscillatory 
concept. MPI was used for multi-level parallelization of code 
NES for optimization. A cluster of 144 processors was used 
for implementing parallel execution, which provided around 
95% parallel efficiency. Eyheramendy [15] used FEM analy-
sis of lid-driven cavity problem developing a JAVA-based 
code. The cavity problem was solved for 50182 degrees of 
freedom (dofs) on a four-processor Compaq machine. For 
different Re, dofs, and number of threads the paralleliza-
tion using multithreading feature of JAVA was accessed. 
By increasing the number of threads for different dofs, the 
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parallel efficiency reduced. Jia and Sunden [16] used in-
house developed CALC-MP three-dimensional multi-block 
code for solving NS and energy equation. Three different 
schemes 1/2/3 were developed for parallelization using dif-
ferent tools. The speedup obtained using three schemes was 
almost near on processors up to 8 and 16 in number.

Lehmkuhl et al. [17] presented the features of parallel 
unstructured CFD code ThermoFluids. This code is used for 
solving accurately and to have reliable results for industrial 
problems of turbulent flows. The parallelization of Thermo-
Fluids was carried out using METIS software on a cluster of 
ten processors. Speedup of 8 is reported on maximum num-
ber of processors. Oktay et al. [18] used CFD code FAPeda 
to calculate aerodynamic pressure for a given angle of attack 
and speed on a wing shape. Using MUMPS library centered 
on multi-frontal approach, parallelization of FAPeda was 
achieved. The parallel speedup was worse using MUMPS; 
hence, the study was restricted to two-dimensional com-
pressible flow. The CFD code GenIDLEST used for simula-
tion of real-world problems was parallelized using OpenMP 
tool by Amritkar et al. [19]. This code is used for analysis of 
propulsion, biology-related problems to multi-physics flows. 
Further, Amritkar et al. [20] provided parallelization strate-
gies using OpenMP for simulation of dense particulate sys-
tem by discrete element method (DEM) with the same code 
GenIDLEST. OpenMP speedup was twice than the speedup 
of MPI on 25 cores.

Steijl and Barakos [21] applied quantum Fourier trans-
form to solve Poisson equation to a vortex in cell method. 
MPI was used for parallelization of Poisson solver required 
for simulation of quantum circuits. Gorobets et al. [22] 
described parallelization of compressible NS equation for 
viscous turbulent fluid flow. OpenMP + MPI + OpenCL 
(open computing language) were used on a multi-level mode 
for parallelization across wide variety of hybrid architec-
ture supercomputers. Compute unified device architecture 
(CUDA) tool was used by Lai et al. [23] to parallelize com-
pressible NS equation on NVIDIAs GTX 1070 GPU. Two 
cases were demonstrated using the parallelized NS solver for 
flow over cylinder and double ellipsoid. CFD code ultraFlu-
idX based on LBM was parallelized using CUDA by Nieder-
meier et al. [24]. Empty wind tunnel and wind tunnel with 
car were the test cases demonstrated by parallel execution 
of the code on multiple GPUs. The use of Green function 
for simulation analysis of complicated surfaces such as in 
modern ship design requires immense computational time. 
OpenMP was used to parallelize the Green function-based 
code applying 16 number of threads. For different discretiza-
tion methods, the speedup up to 12 was achieved using 16 
threads [25]. In the simulation analysis of bacterial biofilm 
model, fluid dynamics and solute simulation was together 
performed by Sheraton and Sloot [26]. For this two-model 
simulation analysis, FENICS software was used based on 

FEM. One to 16 processors were used for parallel perfor-
mance analysis using METIS library. Wang et al. [27] devel-
oped in-house CFD code to solve NS equation for compress-
ible viscous flow in three dimensions. For discretization in 
space, nonlinear weighted compact fourth-order FDM was 
used. Implicit/explicit scheme was used for time discretiza-
tion, but the code is computationally expensive. Using MPI, 
OpenMP and offload programming model parallel execution 
on heterogeneous architecture of the supercomputer Tianhe-
1A and Tianhe-2 was performed successfully.

It is a usual practice of CFD engineers to develop their 
own code for their specific application areas. The above 
literature works reported give an insight into paralleliza-
tion of codes developed for simulation of fluid dynamics, 
design optimization of aerodynamics structure, compressible 
viscous flows, thermal and fluid flow analysis, etc. How-
ever, parallelization of SIMPLE algorithm-based code for 
conjugate heat transfer and fluid flow using OpenMP is not 
reported. In this work, an indigenous CFD code is devel-
oped for different applications, which includes fluid flow 
analysis over a flat plate, fins, or in a parallel plate channel 
considering conjugate condition at the interface of solid and 
fluid body. The analysis can be extended to prediction of 
either only thermal analysis or coupled/conjugate thermal 
and fluid analysis of plates with uniform or non-uniform heat 
generation. Conjugate heat transfer analysis of nuclear fuel 
elements, Li-ion battery cells, fins, etc., can be performed 
using this code. The in-house code solves NS equation in 
two dimensions considering incompressible flow in Carte-
sian coordinates. FVM formulation with staggered grid and 
SIMPLE algorithm to solve the NS equation is applied. But, 
due to pressure corrections required during each iteration, 
the computational cost is expensive. Hence, parallelization 
of the FVM code is carried out using OpenMP for different 
fluid flow conditions like internal flow, external flow, differ-
ent Re, grid size, etc. Red and black successive over-relaxa-
tion (RBSOR) scheme is employed for parallelization of the 
pressure Poisson equation. As a demonstration, the thermal 
management problem of a Li-ion battery system is consid-
ered in this article. In the reminder of the article, numerical 
methodology, parallelization strategy, and obtained parallel 
performance on different computing machines are discussed.

2 � Numerical Methodology

A battery module usually consists of battery cells that are 
densely packed to obtain higher power densities. For ease 
of operation and better thermal uniformity, the number of 
battery cells in each module is less. In this paper, a compu-
tationally efficient thermal model used for simulating the 
thermal behavior of modern electric vehicle battery cells 
generating uniform heat during charging and discharging 
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operations at a steady state is simulated. A parallel chan-
nel with liquid coolant flow is employed to cool the battery 
cells during operation. The developed thermal model is then 
used to analyze the thermal behavior of the battery cell for 
various parameters, as shown in Fig. 1. Alongside, the com-
putational domain is symmetrical along the vertical axis; 
therefore, to reduce the computational cost, only half of the 
domain through a flow passage, configuration is modeled. 
Figure 2 shows the simulated domain, which consists of two 
sub-domains, which are the Li-ion battery cells, a vertical 
parallel flow path channel and the coolant. The fluid flow 
inside the channel is commonly in laminar regime owing to 
the low velocity of the flow inside the channel.

The governing equation describing the heat transfer process 
when discharging/charging the Li-ion battery cell is given by

where q′′′ is volumetric heat generation term.
The governing equations for two-dimensional, steady, 

incompressible, laminar, forced convection flow in the fluid 
domain are continuity equation, x and y momentum equations 
and equation of energy, which are as follows:
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The above equations are non-dimensionalized using the 
following set of normalizing parameters:

The final set of non-dimensionalized governing equations 
turns out to be:

2.1 � Solution Strategy

The numerical solution of the conjugate problem consisting 
of energy and momentum equations is obtained by employ-
ing the staggered grid method of finite volume method 
(FVM). SIMPLE algorithm is used to solve the coupled 
momentum and continuity equation to obtain velocity and 
pressure components. Employing the tri-diagonal matrix 
algorithm (TDMA) for velocity and temperature equations, 
numerical solution is obtained. For pressure correction equa-
tion, successive over-relaxation (SOR) is used. The detailed 
numerical method, boundary conditions, solution strategy, 
and validation are discussed in [28], which are avoided here 
for the sake of briefness. The flowchart of the solution pro-
cess is illustrated in Fig. 3, which is common for both inter-
nal and external flows. In the chart U*, V*, and P* represent 
the velocity and pressure guessed values. The detailed expla-
nation can be easily referred from work [5].

3 � Parallelization Attempt Using OpenMP

Parallel architectures are in significant attention to offer 
immense computational power by utilizing multiple process-
ing units. The progress in the growth of parallel processing 
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is due to stagnation of central processing units (CPUs) clock 
speed. To benefit out of the present multi-core/processor 
architecture, the programs have to be developed for parallel 
execution [29–31]. In this research work, an effort is made 
to parallelize the developed FVM code for the present con-
jugate heat transfer problem. Parallelization of the in-house 
developed indigenous code written in C language is achieved 
on multi-cores (CPUs) of a single computing machine (CM). 
Parallel computing paradigm OpenMP (open multiprocess-
ing) is employed for the parallelization of the FVM code. 
Parallelization of the FVM code is achieved using red and 
black successive over-relaxation (RBSOR) scheme.

For fluid flow conditions like internal flow, external 
flow, internal flow with outlet domain extended, and inter-
nal flow with inlet and outlet domain extended, computa-
tional speedup obtained is investigated in detail. Grid size 
of 42 × 82, 52 × 102, 62 × 122, and 72 × 142 for internal 
flow and grid size of 24 × 122 for inlet and outlet extended 
domain are adopted for parallel performance analysis. For 
external flow, the grid sizes chosen are 122 × 122, 162 × 162, 
202 × 202, and 242 × 242 to understand the parallel speedup 
achieved. In the case of internal flow, the spacing between 
the parallel battery cells W̄f = 0.1 is kept constant. For both 
internal and external flows, Re = 250, 750, 1250, and 1750 is 
considered. The other parameters are fixed to their base val-
ues for complete parallelization analysis. Parallel efficiency 
of the parallelized code is also investigated to understand the 
fraction of time for useful processor utilization.

3.1 � The RBSOR Method

The computational time taken by the developed FVM code 
depending on parameters varies from approximately 30 min 
to 24 h. From the profile analysis of different functions used 
in the code, it is found that up to 91% of computational 
time is spent on pressure correction function. The remaining 
time is used by U and V velocity, temperature, and printing 
output results function. Hence, the major focus is made on 
parallelizing the pressure correction function using RBSOR 
scheme on CMs with different configurations. SOR method 
is employed for solving the pressure correction equation 
obtained using the SIMPLE algorithm technique. For the 
remaining functions, TDMA is used to solve the correspond-
ing discretized equations. One of the commonly known 
scheme for parallelization of SOR is red and black SOR 
(RBSOR) scheme. In the following section, detailed descrip-
tion of working of RBSOR scheme is provided.

The SOR is an important iterative method to solve the 
system of linear equations. SOR is an expansion/improve-
ment of Gauss–Seidel method that speedups convergence. 
It over-relaxes and combines the old values and current 
values by a factor greater than unity [32–35]. In this work, 
SOR is used to solve the pressure correction equation with 
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over-relaxation factor equal to 1.8. This pressure correction 
function consumes maximum computational time as men-
tioned earlier, due to inner iterations required for correcting 
the pressure.

The parallel implementation of SOR technique is not 
easy as it uses the values of neighboring cells/grid points 
of the current iteration as shown in Fig. 4. The gird point/

cell shown in yellow color (number 15) requires the values 
of upper, lower, left, and right side cells (numbers 5, 25, 14, 
and 16, respectively) shown in blue color. Each grid point is 
serially executed one after the other taking the newly calcu-
lated values of neighboring points. In Fig. 4, this concept is 
shown serially from 1 to 100. Hence, this brings in sequen-
tial dependency and may lead to different results in parallelly 

Fig. 3   Flowchart of SIMPLE 
algorithm-based solution 
process

Start

Define Grid size, Reynolds number, 
Flow type (internal or external)

Initialization of U, V, P,
U*, V*, and P*

Solve U* from Equation 8 using TDMA

Solve V* from Equation 8 using TDMA

Solve Pʹ from Equation 7 using SOR

Calculate U, V, and P using the U*, V*, and Pʹ

Converge?

Calculate T for battery and fluid from Equation 6 and 9 by TDMA

Update T at the interface

Converge?

Stop

No

Yes

Update U*,
V*, and P*

Copy to old 
U*, V*, P*

No

Copy to old T

Yes



8987Arabian Journal for Science and Engineering (2020) 45:8981–8997	

1 3

executed SOR. To overcome this sequential dependency and 
parallelize the SOR algorithm, graph coloring methods are 
used. Using this coloring method, the single sweep of SOR 
can be broken into multiple sweeps which are suitable for 
parallel processing. The RBSOR scheme can be thought of 

as a compromise among Gauss–Seidel and Jacobi iteration. 
As shown in Fig. 5, the RBSOR solves by coloring in the 
checkerboard with alternative red/black grids. At first, all 
the red cells are computed simultaneously considering the 
neighboring black points. Then, black cells are computed 
using the updated red cells parallelly. The RBSOR scheme 
implementation is mentioned briefly in Algorithm 1.

98

16

100

2 4

14

5

15

25

1

99

3

Fig. 4   Serial execution of grid points depending upon the four neigh-
boring cells

Red cells Black cells

Fig. 5   RBSOR scheme for parallel implementation of SOR

3.2 � OpenMP Paradigm

OpenMP is an application program interface (API) that can 
be used for explicitly writing multithreaded shared memory 
parallel applications. OpenMP primarily consists of a set 
of API components like compiler directives, environment 
variables, and runtime library routines. OpenMP is suit-
able for shared memory multi-core/processor in which the 
parallelism is achieved with the use of execution threads 
which exists within the source of a sole process [36–38]. The 
smallest unit scheduled by an operating system for process-
ing is commonly known as an execution thread. OpenMP 
parallelization can involve insertion of simple compiler 
directives in a serial program or complex subroutines to set 
locks, nested locks, nested parallelism, and even multiple 
level parallelism. OpenMP parallelization works on a fork-
and-join parallel execution model as shown in Fig. 6. The 
master thread starts as a single process and keeps execut-
ing serially (sequentially) until it comes across the paral-
lel construct region. Then, the master thread creates a team 
of threads (fork) as required to simultaneously process the 
statements within the parallel region. Once the newly created 
threads (slave threads) execute parallelly and complete the 
parallel region, they synchronize/terminate (join), leaving 
solely the master thread to continue. This kind of parallelism 
is famously known as fork-and-join parallel model. The slave 
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threads can be made to wait at a point until all the threads 
have reached a common point in the parallel region using 
proper barriers.

As the OpenMP paradigm works on a shared memory 
model, all the threads have access by default to global 
memory. The slave threads communicate by writing and/
or reading to global memory. Their simultaneous update 
to global/shared memory may result in a race condition 
which again changes with the scheduling of threads [39, 
40]. A data race condition occurs when two or more 
threads access the same memory without proper synchro-
nization. OpenMP also allows parallelization of parallel 
regions, i.e., it permits placing of parallel loops inside par-
allel loops. In such cases, the created slave threads further 
spawn to form again a team of threads, as shown in Fig. 7. 

Once the slave threads are distributed on different proces-
sors, the thread id will remain public. Hence to avoid this 
issue, the private clause can be used to keep the thread id 
specific to the processor. This enables to parallelly process 
instructions on different processors for a specific range of 
iterations easily. The OpenMP model during the runtime 
provides, to keep the threads static or to change the num-
ber of threads dynamically. The OpenMP parallel con-
structs placed with some clauses are the compiler direc-
tives. The inner for() loops of U, V, and T functions are 
parallelized using the appropriate omp parallel constructs, 
and the SOR is parallelized using the above-mentioned 
RBSOR scheme. The algorithm of the FVM code parallel-
ized as discussed above is mentioned in Algorithm 2. Four 
CMs (computing machines) with different configurations 
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Fig. 6   Fork-and-join model of OpenMP parallel programming
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are used for OpenMP parallelization performance analy-
sis. The specifications of these four CMs are mentioned 
in Table 1. CM1 is selected as the common machine for 
parallel computational analysis and to compare with dif-
ferent approaches.

3.3 � Nested Loop and Without Nested Loop 
Parallelization

OpenMP parallelization of the developed FVM code is 
also tried using both the for() loops (nested) parallel-
ized and with only the outer for()  loop parallelized 
(without nested), as shown in Figs. 6 and 7. This attempt 
to analyze the parallel performance of the code with nested 
loop parallelized and without nested loop parallelized is 
provided separately. In parallelization of a nested loop, 
i.e., of both the outer and inner for() loops, hyper-
threading occurs among the logical cores of the physical 
processor. When parallelization of only outer for() loop, 
i.e., without nested, is executed, then the computations of 

complete cells/grids along a particular indices of outer 
loop occur on different cores. This kind of parallel execu-
tion refers to simple domain decomposition technique. As 
there are a limited number of cores used (maximum eight 
cores), repeated execution occurs on cores for process-
ing both nested and without nested parallelism. In without 
nested parallelism, the inner for() loop computations 
are performed serially.

3.4 � Speedup and Parallel Efficiency

Use of multiple processors to work together simultaneously 
on a common task is commonly known as parallel comput-
ing. The performance of a parallel algorithm implemented 
on a parallel architecture for parallel computations is meas-
ured by speedup and parallel efficiency. The ratio of time 
taken to execute the sequential algorithm on a single proces-
sor to the time taken by the parallel algorithm to execute on 
multiple processor is known as speedup. Parallel efficiency 
is defined as the ratio of parallel speedup achieved to the 
number of processers. Parallel efficiency gives the measure 
of the fraction of computational time at which a processor 
is used efficiently [6, 41–43].

According to the definition of speedup and parallel effi-
ciency, they are calculated as given by Eq. 10 [41, 42]:

where S(par) is the parallel speedup achieved, T(seq) is the 
elapsed (wall) time taken by the sequential program, T(par) 
is the wall time taken by the parallel program for execution, 
E(par) is the parallel efficiency and N(par) is the number of 
processors employed for parallel execution. The efficiency 
of loss occurred due to communication of data, computa-
tional task partitioning, processors scheduling, management 
of data, etc., during parallel implementation is accounted 
by parallel efficiency. The elapsed time for computations in 
parallel on N processors can be written as composed of [44]:

(10)S(par) =
T(seq)

T(par)
E(par) =

S(par)

N(par)

(11)T(par) = T(seq)N + T(N) + T(comm)N + T(misc)N

Table 1   Specifications of CMs used for OpenMP parallelization

CM number Processor Frequency 
(GHz)

RAM (GB) Number of 
logical cores

Memory (TB) Operating system

CM1 Intel® core ™ i7-4970 3.6 16 8 1.3 64-bit Windows 10
CM2 Intel® core ™ i7-4970 3.6 8 8 0.7 64-bit Windows 10
CM3 Intel® core ™ i5-3470 s 2.9 8 4 0.5 64-bit Windows 7 Professional
CM4 Intel® core ™ i3-3240 3.4 4 4 0.5 64-bit Windows 7 Professional
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where T(seq)N is the time taken by CPU for computations 
of sequential part of the program. T(N) is the time taken by 
CPU for computations of parallel part of the program on N 
processors, T(comm)N is the time taken by CPU for commu-
nication with N processors, and T(misc)N is the idle time or 
extra time spent induced due to parallelization of program.

4 � Results and Discussion of Speedup 
and Parallel Efficiency Using OpenMP

Using OpenMP parallel computing paradigm, the paral-
lelization of FVM code developed in-house is analyzed in 
the form of parallel speedup and efficiency. Four different 
computing machines (CMs), namely CM1, CM2, CM3, and 
CM4, are employed having different configurations men-
tioned in Table 1 to implement OpenMP parallelization. In 
this section, the speedup and parallel efficiency of the par-
allelized FVM code are provided in detail. Using RBSOR 
scheme, various grid sizes, and Re for internal and external 
flow, the computational time analysis is carried out. In this 
entire parallel performance analysis, the operating heat and 
fluid flow parameters are kept fixed at S ̅q= 0.5, ζcc = 0.06, 
and Ar = 10, for both the flow conditions. For computational 
time analysis, the grid sizes chosen are 42 × 82, 52 × 102, 
6 × 122, and 72 × 142 for internal flow. The grid size con-
sidered for outlet and inlet domain extended is 24 × 122. In 
case of external flow, 122 × 122, 162 × 162, 202 × 202, and 
242 × 242 grid sizes are chosen, while Re is varied from 
250 to 1750.

4.1 � Elapsed Time

The elapsed time of the FVM code for internal and external 
flow on all the four machines is noted at first to get an idea 
of computational cost for different conditions. In Fig. 8, the 

elapsed time on CM1, CM2, CM3, and CM4 is shown for 
internal and external flow. The flow Re = 250 to 1750 and 
grid size of 62 × 122 and 202 × 202 for internal and external 
flow, respectively, are fixed to note the elapsed time. The 
elapsed time is higher for CM1 and other CMs at Re = 250 
and keeps on reducing for both the flow conditions com-
pared to other Re. At low Re = 250, the boundary layer thick-
ness grows wider, which needs more pressure correction in 
the numerical analysis causing more computational time, 
while at higher Re = 1750, the boundary layer stays close 
to surface, and hence, less correction is required leading 
to reduced computational time. However, the time on CM4 
is highest compared to other CMs at all Re. CM4 has the 
lowest clock speed and lower RAM, which causes the execu-
tion of the code to be slower among other CMs. CM1 and 
CM2 have a very similar configuration, which causes them 
to behave similar in the execution of code on them. Hence, 
time for CM1 and CM2 is almost same for all flow Re. This 
elapsed time is for outlet and inlet domains not extended 
during internal flow analysis. Surely, if higher grid size and 
extra flow domains are considered, the computational time 
increases up to 24 h and above.

4.2 � Speedup Achieved

The speedup obtained on four machines CM1, CM2, CM3, 
and CM4 using nested OpenMP parallelization for inter-
nal flow applying RBSOR scheme is shown in Fig. 9. The 
speedup is shown for different grid sizes and Re with-
out considering any extended domain. From Fig. 9a–d, it 
can be noted that with an increase in grid size at all, Re 
considered the speedup increases on all CMs. The main 
cause in increase in speedup with the increase in grid size 
is increased parallel computation on multiple processors. 
Parallel computation required on multiple processors will 
be less if the number of grids are lesser. Hence, the ratio 

Fig. 8   Elapsed time on different 
machines for different flow 
conditions

(a) Internal flow (b) External flow
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of parallel computations compared to serial computations 
increases with increase in grid numbers.

It is easily understood from Fig. 9 that compared to CM1 
and CM2, the speedup achieved on CM3 and CM4 is higher 
for different flow Re. As the clock speed and number of 
processors are more on CM1 and CM2 compared to CM3 
and CM4, the serial computations are itself faster as shown 
previously in Fig. 8. On CM1 and CM2, little extra time is 
consumed on forking, joining, accessing/writing of data, and 
synchronizing of salve threads on eight processors compared 
to four processors on CM3 and CM4. Hence, the serial and 
parallel computational time ratio remains lower on CM1 
and CM2. To achieve better speedup on CM1 and CM2, 
much more grid sizes are required. However, the speedup 
on CM1 and CM2 is very close to each other due to their 
similar configuration except RAM and hard disk capacity. 
Another observation that can be made is the effect of Re on 
speedup. With an increase in Re from 250 to 1750, there is a 
slight improvement in speedup on all CMs, which is clearly 
noticeable from Fig. 9d. The speedup achieved at Re = 250 
is nearly the same all CMs at 42 × 82, and on CM3 and CM4, 

significant improvement is observed and is achieved with an 
increase in grid size.

The speedup achieved on different CMs and Re for 
internal flow with extended domains using nested OpenMP 
parallelization is shown in Fig. 10. The grid size for this 
analysis is fixed at 62 × 122, and for outlet and inlet 
domains, grid size is 24 × 122 each. When only the outlet 
domain is extended with extra 24 × 122 grids, the speedup 
achieved is shown in Fig. 10a. For both outlet and inlet 
domain extended, the speedup is shown in Fig. 10b. The 
speedup obtained for both the cases is similar at all Re on 
CM1 and CM2. On CM3 and CM4, the speedups are quite 
more at all Re compared to CM1 and CM2. Speedups are 
slightly increased for both the domains extended due to 
increased number of grid points compared to only outlet 
domain extended. Speedup on CM1 and CM2 in this case 
is same as speedup obtained for without extended domain 
shown previously in Fig. 9.

The speedup obtained for external flow with grid size 
122 × 122, 162 × 162, 202 × 202, and 242 × 242 on differ-
ent CMs is shown in Fig. 11. With increase in grid size, 
the speedup obtained increased on all machines at all 

Fig. 9   Speedup obtained for 
internal flow without extended 
domain with nested OpenMP
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flow Re. The speedups are significant on CM1 and CM2 
compared to CM3 and CM4 due to increased number of 
grid size. This is in agreement with preceding discussion 
made on increasing the speedup by increasing the grid 
size for CM1 and CM2. With nested OpenMP paralleliza-
tion, the outer for() loop indices are forked on different 

processors and further the newly created threads are again 
forked on each processor for inner for() loop which is 
generally termed as multithreading. However, this speedup 
is same at all Re for CM1 and CM2, whereas on CM3 and 
CM4, the speedups are not same.

Fig. 10   Speedup for inlet and 
exit domain extended in internal 
flow with nested OpenMP

(a) Only outlet domain extended (b) Inlet and outlet domain extended
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Fig. 11   Speedup obtained on 
different machines for external 
flow with nested OpenMP
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Parallel performance speedup of the FVM code using 
without nested OpenMP for() loop in case of inter-
nal and external flow is depicted in Fig. 12. The speedup 
achieved on all the CMs is shown at different Re with fixed 
grid size of 62 × 122 and 202 × 202 for internal and external 
flow, respectively, without any extended domain. In with-
out nested OpenMP parallelization, the outer for() loop 
indices are spawned on multiprocessors and then the inner 
for() loop indices are executed serially on every proces-
sor. Here, the time spent for further threading, joining, and 
synchronizing for inner for() loop is avoided. Hence, the 
speedups obtained in both the internal and external flow 
problem on all CMs are very similar to speedups reported 
earlier in case of with nested OpenMP parallelization. For 
higher grid size and then present consideration, the speedup 
will surely fall compared to nested OpenMP parallelization.

4.3 � Speedup by Different Comparison

In Fig. 13, speedup obtained on different CMs considering 
the ratio of parallel execution on a CM and serial execution 
time of CM1 in all cases is depicted. Different Re and fixed 

grid size of 62 × 122 without any extended domain for inter-
nal flow and applying RBSOR scheme with nested OpenMP 
parallelization are implemented. It is quite obvious that the 
speedup on CM1 and CM2 will remain unchanged as the 
serial execution and parallel execution time on both the CMs 
is very similar due to their similar configuration. However, it 
is worth noticing that speedup on CM3 and CM4 is reduced 
when serial execution time of CM1 is considered. It can be 
seen that the speedup on CM3 is very close to but less than 
unity. This means that the parallel execution time on CM3 
and serial execution time on CM1/CM2 are almost equal. 
If further look at Fig. 13 is focused, it will be seen that the 
speedup of CM4 is worse than the serial execution on CM1/
CM2. It is appropriate to mention that for internal flow with 
62 × 122 grid size, it is unimportant to parallelize the FVM 
code on CMs with less clock speed compared to clock speed 
of CM1 and CM2.

Speedup on different CMs considering the sequential exe-
cution time of CM1 for external flow is shown in Fig. 14. Re 
is changed from 250 to 1750, and RBSOR scheme is applied 
for the external flow using nested OpenMP parallelization. 

Fig. 12   Speedup for internal 
and external flow without 
nested OpenMP
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It can be seen that the speedup on all the CMs consider-
ing serial time of CM1 is better in this case compared to 
internal flow. The reason again is the use of higher grid size 
with which the parallel computations become effective due 
to better usage of multiprocessors. Speedups for internal 
and external flow are completely contradictory. One thing 
for sure is understanding the use of proper CM with suit-
able configuration for a given fluid flow problem and grid 
size. While in internal flow problem the grid size was less, 
the speedup on CM3 and CM4 deteriorated. And now in 
case of external flow, the speedup on CM3 and CM4 is bet-
ter than the speedup on CM1 and CM2 due to increased 
grid size. Hence, increased grid size leads to increased uti-
lization of multiprocessors for longer duration resulting in 
improved speedup. Again, CMs with lower frequency con-
sume more time than CMs with higher frequency. Therefore, 
the speedup will also be more on low-frequency CMs as 
the multiprocessors are used for more time than those of 
higher-frequency CMs. Nevertheless, increased speedup on 
low-frequency CMs need not necessarily mean providing 
faster results than that of higher-frequency CMs.

In Fig. 15, the speedup obtained on CM1 during each 
iteration of the FVM code during internal flow for differ-
ent grid sizes and Re = 750 is shown. It can be seen that 
the speedup for most of the iterations is slightly more than 
unity. During the last few iterations at which the code is near 
about convergence, the speedup drastically fluctuates above 
and below the mean speedup of 1.2. Such kind of behavior 
during the final iterations needs to be investigated in detail 
as such the nature is not yet known and neither reported 
anywhere. However, there is an immense speedup before 
the convergence of iterations. For all grid sizes, the nature 
of speedup achieved during each iteration looks very similar.

4.4 � Parallel Efficiency of the FVM Code

Parallel efficiency gives an idea of time utilized by the mul-
tiprocessors to perform computations parallelly compared 
to time used by a single processor for serial execution. The 
parallel efficiency of the FVM code using OpenMP and 
RBSOR scheme on different CMs for different conditions 
is presented in detail. During internal flow with different Re 
and grid sizes, the parallel efficiency on all CMs is shown 
in Fig. 16. The parallel efficiency of the serial program will 
be always unity as only one processor is used for compu-
tations. The parallel efficiency on CM1 and CM2 and on 
CM3 and CM4 is the same (Fig. 16a) for different Re, while 
the grid size is fixed at 62 × 122. This is due to the same 
number of processors on CM1 and CM2 and on CM3 and 
CM4. Additionally, for different Re, the respective serial and 
parallel computational time ratio is the same as explained 
with respect to Fig. 8; hence, the parallel efficiency on all 
CMs remains the same. However, the parallel efficiency on 
CM3 and CM4 is better than CM1 and CM2 due to reduced 
number of processors and increased speedups obtained. On 
another hand, increasing grid size at a fixed Re = 750 results 
in improving parallel efficiency on CM3 and CM4, as shown 
in Fig. 16b. Again, this behavior is due to increasing speed-
ups with reduced processors on CM3 and CM4 compared to 
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Fig. 16   Parallel efficiency on 
different machines for various 
conditions and internal flow
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CM1 and CM2. Much higher grid size than those considered 
in this study can further cause better parallel efficiency on 
CM1 and CM2.

Parallel efficiency using RBSOR scheme for external 
flow and different conditions is illustrated in Fig. 17. The 
grid size is fixed at 202 × 202 for different Re to analyze the 
parallel efficiency of the FVM code. As shown in Fig. 17a 
the parallel efficiency is same for all Re due to same speed-
ups obtained on CMs as shown in Fig. 11. However with 
increasing grid size for external flow, the parallel efficiency 
increases on all CMs as shown in Fig. 17b. As mentioned 
previously, by increasing the grid size compared to grid size 
considered for internal flow, the parallel efficiency increases 
due to more computational time spent on multiple proces-
sors. Hence, grid size has a prominent role in effecting paral-
lel efficiency, whereas the effect of Re is negligible.

5 � Conclusions

Parallel performance analysis of the parallelized FVM 
code developed in-house is analyzed in the form of parallel 
speedup and parallel efficiency. OpenMP parallel comput-
ing paradigm is used for parallelization applying RBSOR 
scheme. Four computing machines CM1, CM2, CM3, and 
CM4 for OpenMP parallelization are employed. For com-
putational time analysis, the grid sizes chosen are 42 × 82, 
52 × 102, 6 × 122, and 72 × 142 for internal flow. The grid 
sizes considered for outlet and inlet domain extended are 
24 × 122. In case of external flow, 122 × 122, 162 × 162, 
202 × 202, and 242 × 242 grid sizes are chosen, while Re is 
varied from 250 to 1750.

From the complete speedup and parallel efficiency analy-
sis of the parallelized FVM code using different methods, 
the following important conclusions are drawn:

1.	 The computational time of the FVM code significantly 
changes with change in Re and grid size during internal 
and external flow. Even though for internal flow, less 
grid size is considered, the computational time is com-
paratively similar to higher grid size used in the external 
flow.

2.	 OpenMP parallelization of the FVM code provides a 
maximum speedup of up to 1.5 in the present investi-
gation for considered conditions. This speedup can be 
increased by selecting a higher grid size in which the 
parallel utilization of multiprocessors will increase.

3.	 In without nested OpenMP parallelization, the speedup 
obtained on CMs is similar to speedup obtained using 
nested OpenMP parallelization.

4.	 When internal and external flow speedups are compared 
with respect to serial execution on CM1, it is found that 
only for higher grid size, the parallelization on CMs with 
low clock speed is worth and then serial execution on 
CM1 with higher clock speed.

5.	 It is observed that grid size affects parallel efficiency to 
some extent compared to Re, whereas the effect of Re is 
found to be trivial.
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