
Vol.:(0123456789)1 3

Arabian Journal for Science and Engineering (2020) 45:8981–8997
https://doi.org/10.1007/s13369-020-04640-1

RESEARCH ARTICLE-MECHANICAL ENGINEERING

Parallelization of Numerical Conjugate Heat Transfer Analysis
in Parallel Plate Channel Using OpenMP

Asif Afzal1  · Zahid Ansari2 · M. K. Ramis1

Received: 2 July 2019 / Accepted: 14 May 2020 / Published online: 28 May 2020
© King Fahd University of Petroleum & Minerals 2020

Abstract
Conjugate heat transfer and fluid flow is a common phenomenon occurring in parallel plate channels. Finite volume method
(FVM) formulation-based semi-implicit pressure linked equations algorithm is a common technique to solve the Navier–
Stokes equation for fluid flow simulation in such phenomena, which is computationally expensive. In this article, an indig-
enous FVM code is developed for numerical analysis of conjugate heat transfer and fluid flow, considering different problems.
The computational time spent by the code is found to be around 90% of total execution time in solving the pressure (P) cor-
rection equation. The remaining time is spent on U, V velocity, and temperature (T) functions, which use tri-diagonal matrix
algorithm. To carry out the numerical analysis faster, the developed FVM code is parallelized using OpenMP paradigm.
All the functions of the code (U, V, T, and P) are parallelized using OpenMP, and the parallel performance is analyzed for
different fluid flow, grid size, and boundary conditions. Using nested and without nested OpenMP parallelization, analysis
is done on different computing machines having different configurations. From the complete analysis, it is observed that
flow Reynolds number (Re) has a significant impact on the sequential execution time of the FVM code but has a negligible
role in effecting speedup and parallel efficiency. OpenMP parallelization of the FVM code provides a maximum speedup
of up to 1.5 for considered conditions.

Keywords  Parallelization · FVM code · OpenMP · Fluid flow · Speedup · Parallel efficiency

List of Symbols
Ar	� Aspect ratio of battery cell
L	� Length of battery cell
k	� Thermal conductivity
lo	� Length of extra outlet fluid domain
li	� Length of extra fluid domain
Lo	� Dimensionless length of extra outlet fluid domain
Li	� Dimensionless length of extra inlet fluid domain
q′′′	� Volumetric heat generation
q̄	� Non-dimensional heat flux
S̄q	� Dimensionless volumetric heat generation

Pr	� Prandtl number
Re	� Reynolds number
T	� Temperature
To	� Maximum allowable temperature of battery cell
T̄ 	� Non-dimensional temperature
u	� Velocity along the axial direction
U	� Non-dimensional velocity along the axial direction
u∞	� Free stream velocity
v	� Velocity along the transverse direction
Qr	� Heat removed from surface (non-dimensional)
V	� Non-dimensional velocity along the transverse

direction
w	� Half-width
W̄ 	� Non-dimensional width
x	� Axial direction
X	� Non-dimensional axial direction
y	� Transverse direction
Y	� Non-dimensional transverse direction

Greek Symbols
α	� Thermal diffusivity of fluid
ν	� Kinematic viscosity of fluid
ρ	� Density of fluid

 *	 Asif Afzal
	 asif.afzal86@gmail.com

 *	 M. K. Ramis
	 ramismk@pace.edu.in

1	 Department of Mechanical Engineering, P. A. College
of Engineering (Affiliated to Visvesvaraya Technological
University, Belagavi), Mangaluru, India

2	 Department of Computer Science and Engineering,
P. A. College of Engineering (Affiliated to Visvesvaraya
Technological University, Belagavi), Mangaluru, India

http://orcid.org/0000-0003-2961-6186
http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-020-04640-1&domain=pdf

8982	 Arabian Journal for Science and Engineering (2020) 45:8981–8997

1 3

ζcc	� Conduction–convection parameter
μ	� Dynamic viscosity

Subscripts
c	� Center
f	� Fluid domain
s	� Solid domain (battery cell)
∞	� Free stream
m	� Mean

1  Introduction

Dealing with any physical problem by individual means of
heat transfer is standard practice. But there are certain areas
in which the given physical problem can be addressed by
combining two modes of heat transfer, i.e., coupling conduc-
tion–convection or radiation mode, and such type of heat
transfer process is called as conjugate heat transfer. This
kind of heat transfer phenomena finds applications in practi-
cal and industrial uses. Consider the heat transfer analysis of
electronic devices in which the conductions in the solid body
are coupled with convection in the fluid body [1]. Few more
areas to mention where this coupled heat transfer analysis is
required include the heat extraction by coolants from nuclear
fuel elements, heat exchangers, minichannels, and modern
hybrid electric vehicles in which the lithium-ion (Li-ion)
battery needs to be cooled, etc. On another hand, one of the
most common idea to provide proper cooling and effective
heat transfer to/from the surface of hot bodies is the use of
a parallel plate channel. In parallel plate channels, the fluid
is forced to flow past the parallelly placed hot solid bodies
from which heat is extracted continuously. Hence, the phe-
nomena of conjugate heat transfer in a parallel plate channel
occur. The technique of parallelly placing fins/plates has a
wide range of applications in innumerous areas, too large
to mention [2].

The analysis of heat and fluid flow behavior in coupled
heat transfer and parallel plate channels is commonly carried
out using computational fluid dynamics (CFD) analysis. In
CFD analysis, the prominent methods used for numerical
prediction are finite difference method (FDM), finite vol-
ume method (FVM), or finite element method. The FDM
and FVM methods are the most commonly used methods
by scientists for conjugate analysis in parallel plate chan-
nels. However, FVM is comparatively more effectively used
than FDM due to its several advantages in predictions of
fluid flow behavior easily [3, 4]. Further, even though several
methods are available to numerically obtain the solution of
governing partial differential equations (PDEs) represent-
ing fluid flow conditions, but semi-implicit pressure linked
equation (SIMPLE) algorithm is one of the most common
employed algorithm developed by Patankar and Splanding

[5]. One of the major issue associated with SIMPLE algo-
rithm is that it is computationally expensive due to its slow
convergence. The inner pressure corrections involved in
this algorithm generally make the computations slow. Lot
of research work is carried out to reduce the computational
time of applications developed for numerical analysis using
SIMPLE algorithm. Apart from developing modified ver-
sions of SIMPLE algorithm, parallelization of such appli-
cations/codes for fast numerical experimentations is also
followed nowadays [6–9].

Recently, parallelization techniques of many CFD codes/
software using different parallel computing tools are dem-
onstrated for a particular application area and for in-house
built codes. Gropp et al. [10] demonstrated parallelization
of FUN3D code developed at NASA. FUN3D is developed
for incompressible and compressible Navier–Stokes (NS)
and Euler equations having a vertex-centered, tetrahedral
unstructured grid. The subdomain parallelization of FUN3D
code was successfully demonstrated using message passing
interface (MPI) tool. Transient NS equation for incompress-
ible flows in three dimensions for analysis of shear flows was
solved by Passoni et al. [11] developing a code. Second-
order finite difference central scheme in solid body, third-
order procedure of Runge–Kutta in time along with explicit
treatment of diffusive and convective terms, and for time
marching fractional step method were used. The paralleli-
zation of the developed computational code was achieved
using MPI applying their developed schemes (scheme
A/B/C). 91% of parallel efficiency on doubling the proces-
sors and 60% parallel efficiency upon eightfold increase in
processors was obtained.

Schulz et al. [12] used lattice Boltzmann method (LBM)
for fluid flow analysis and established data structures to
reduce the memory requirements. MPI parallelization for
a grid size of 2 × 107 was used and achieved about 90% of
parallel efficiency. Reproducing kernel particle method, also
commonly known as mesh-free method, was used by Zhang
et al. [13] to solve the NS equation for incompressible flow.
MPI was used for domain decomposition-based paralleliza-
tion to analyze three-dimensional flow over a cylinder, flow
past a building. Seventy processors were used to obtain
speedup of 35 [13]. Peigin and Epstein [14] used NES code,
which primarily depends upon essentially non-oscillatory
concept. MPI was used for multi-level parallelization of code
NES for optimization. A cluster of 144 processors was used
for implementing parallel execution, which provided around
95% parallel efficiency. Eyheramendy [15] used FEM analy-
sis of lid-driven cavity problem developing a JAVA-based
code. The cavity problem was solved for 50182 degrees of
freedom (dofs) on a four-processor Compaq machine. For
different Re, dofs, and number of threads the paralleliza-
tion using multithreading feature of JAVA was accessed.
By increasing the number of threads for different dofs, the

8983Arabian Journal for Science and Engineering (2020) 45:8981–8997	

1 3

parallel efficiency reduced. Jia and Sunden [16] used in-
house developed CALC-MP three-dimensional multi-block
code for solving NS and energy equation. Three different
schemes 1/2/3 were developed for parallelization using dif-
ferent tools. The speedup obtained using three schemes was
almost near on processors up to 8 and 16 in number.

Lehmkuhl et al. [17] presented the features of parallel
unstructured CFD code ThermoFluids. This code is used for
solving accurately and to have reliable results for industrial
problems of turbulent flows. The parallelization of Thermo-
Fluids was carried out using METIS software on a cluster of
ten processors. Speedup of 8 is reported on maximum num-
ber of processors. Oktay et al. [18] used CFD code FAPeda
to calculate aerodynamic pressure for a given angle of attack
and speed on a wing shape. Using MUMPS library centered
on multi-frontal approach, parallelization of FAPeda was
achieved. The parallel speedup was worse using MUMPS;
hence, the study was restricted to two-dimensional com-
pressible flow. The CFD code GenIDLEST used for simula-
tion of real-world problems was parallelized using OpenMP
tool by Amritkar et al. [19]. This code is used for analysis of
propulsion, biology-related problems to multi-physics flows.
Further, Amritkar et al. [20] provided parallelization strate-
gies using OpenMP for simulation of dense particulate sys-
tem by discrete element method (DEM) with the same code
GenIDLEST. OpenMP speedup was twice than the speedup
of MPI on 25 cores.

Steijl and Barakos [21] applied quantum Fourier trans-
form to solve Poisson equation to a vortex in cell method.
MPI was used for parallelization of Poisson solver required
for simulation of quantum circuits. Gorobets et al. [22]
described parallelization of compressible NS equation for
viscous turbulent fluid flow. OpenMP + MPI + OpenCL
(open computing language) were used on a multi-level mode
for parallelization across wide variety of hybrid architec-
ture supercomputers. Compute unified device architecture
(CUDA) tool was used by Lai et al. [23] to parallelize com-
pressible NS equation on NVIDIAs GTX 1070 GPU. Two
cases were demonstrated using the parallelized NS solver for
flow over cylinder and double ellipsoid. CFD code ultraFlu-
idX based on LBM was parallelized using CUDA by Nieder-
meier et al. [24]. Empty wind tunnel and wind tunnel with
car were the test cases demonstrated by parallel execution
of the code on multiple GPUs. The use of Green function
for simulation analysis of complicated surfaces such as in
modern ship design requires immense computational time.
OpenMP was used to parallelize the Green function-based
code applying 16 number of threads. For different discretiza-
tion methods, the speedup up to 12 was achieved using 16
threads [25]. In the simulation analysis of bacterial biofilm
model, fluid dynamics and solute simulation was together
performed by Sheraton and Sloot [26]. For this two-model
simulation analysis, FENICS software was used based on

FEM. One to 16 processors were used for parallel perfor-
mance analysis using METIS library. Wang et al. [27] devel-
oped in-house CFD code to solve NS equation for compress-
ible viscous flow in three dimensions. For discretization in
space, nonlinear weighted compact fourth-order FDM was
used. Implicit/explicit scheme was used for time discretiza-
tion, but the code is computationally expensive. Using MPI,
OpenMP and offload programming model parallel execution
on heterogeneous architecture of the supercomputer Tianhe-
1A and Tianhe-2 was performed successfully.

It is a usual practice of CFD engineers to develop their
own code for their specific application areas. The above
literature works reported give an insight into paralleliza-
tion of codes developed for simulation of fluid dynamics,
design optimization of aerodynamics structure, compressible
viscous flows, thermal and fluid flow analysis, etc. How-
ever, parallelization of SIMPLE algorithm-based code for
conjugate heat transfer and fluid flow using OpenMP is not
reported. In this work, an indigenous CFD code is devel-
oped for different applications, which includes fluid flow
analysis over a flat plate, fins, or in a parallel plate channel
considering conjugate condition at the interface of solid and
fluid body. The analysis can be extended to prediction of
either only thermal analysis or coupled/conjugate thermal
and fluid analysis of plates with uniform or non-uniform heat
generation. Conjugate heat transfer analysis of nuclear fuel
elements, Li-ion battery cells, fins, etc., can be performed
using this code. The in-house code solves NS equation in
two dimensions considering incompressible flow in Carte-
sian coordinates. FVM formulation with staggered grid and
SIMPLE algorithm to solve the NS equation is applied. But,
due to pressure corrections required during each iteration,
the computational cost is expensive. Hence, parallelization
of the FVM code is carried out using OpenMP for different
fluid flow conditions like internal flow, external flow, differ-
ent Re, grid size, etc. Red and black successive over-relaxa-
tion (RBSOR) scheme is employed for parallelization of the
pressure Poisson equation. As a demonstration, the thermal
management problem of a Li-ion battery system is consid-
ered in this article. In the reminder of the article, numerical
methodology, parallelization strategy, and obtained parallel
performance on different computing machines are discussed.

2 � Numerical Methodology

A battery module usually consists of battery cells that are
densely packed to obtain higher power densities. For ease
of operation and better thermal uniformity, the number of
battery cells in each module is less. In this paper, a compu-
tationally efficient thermal model used for simulating the
thermal behavior of modern electric vehicle battery cells
generating uniform heat during charging and discharging

8984	 Arabian Journal for Science and Engineering (2020) 45:8981–8997

1 3

operations at a steady state is simulated. A parallel chan-
nel with liquid coolant flow is employed to cool the battery
cells during operation. The developed thermal model is then
used to analyze the thermal behavior of the battery cell for
various parameters, as shown in Fig. 1. Alongside, the com-
putational domain is symmetrical along the vertical axis;
therefore, to reduce the computational cost, only half of the
domain through a flow passage, configuration is modeled.
Figure 2 shows the simulated domain, which consists of two
sub-domains, which are the Li-ion battery cells, a vertical
parallel flow path channel and the coolant. The fluid flow
inside the channel is commonly in laminar regime owing to
the low velocity of the flow inside the channel.

The governing equation describing the heat transfer process
when discharging/charging the Li-ion battery cell is given by

where q′′′ is volumetric heat generation term.
The governing equations for two-dimensional, steady,

incompressible, laminar, forced convection flow in the fluid
domain are continuity equation, x and y momentum equations
and equation of energy, which are as follows:

(1)ks∇
2T + q��� = 0

(2)∇u = 0

(3)(u∇u) = −
1

�
∇p + �∇2u

(4)u∇T = �∇2T

Ba�ery cells/
Ba�ery power

 Coolant passage

 Coolant passage

Fan/pump

Ba�ery cells Coolant flowing

H
eat flux to the

surrounding coolant
flow

ing

H
ea

t fl
ux

 to
 th

e
su

rr
ou

nd
in

g
co

ol
an

t
flo

w
in

g

H
eat genera�on in the

ba�
ery

(a)Compact battery module with a stack of batteries and coolant passages (b) Heat flux from the
battery surface

Fig. 1   Schematic view of the arrangement of battery cells with air circulation fan and heat generation in batteries

Fig. 2   The symmetrical battery
(prismatic cell) and coolant flow
domain considered for computa-
tional analysis

Coolant flowing

Coolant flowing

Ph
ys

ic
al

 d
om

ai
n

un
de

r
co

ns
id

er
a

on

Ba
�

er
y

ce
ll

Ba
�

er
y

ce
ll

Ba
�

er
y

ce
ll

Ba
�

er
y

ce
ll

L

Y

X

Extended outlet domain

li

lo

Extended intlet domain

Ws Wf

8985Arabian Journal for Science and Engineering (2020) 45:8981–8997	

1 3

The above equations are non-dimensionalized using the
following set of normalizing parameters:

The final set of non-dimensionalized governing equations
turns out to be:

2.1 � Solution Strategy

The numerical solution of the conjugate problem consisting
of energy and momentum equations is obtained by employ-
ing the staggered grid method of finite volume method
(FVM). SIMPLE algorithm is used to solve the coupled
momentum and continuity equation to obtain velocity and
pressure components. Employing the tri-diagonal matrix
algorithm (TDMA) for velocity and temperature equations,
numerical solution is obtained. For pressure correction equa-
tion, successive over-relaxation (SOR) is used. The detailed
numerical method, boundary conditions, solution strategy,
and validation are discussed in [28], which are avoided here
for the sake of briefness. The flowchart of the solution pro-
cess is illustrated in Fig. 3, which is common for both inter-
nal and external flows. In the chart U*, V*, and P* represent
the velocity and pressure guessed values. The detailed expla-
nation can be easily referred from work [5].

3 � Parallelization Attempt Using OpenMP

Parallel architectures are in significant attention to offer
immense computational power by utilizing multiple process-
ing units. The progress in the growth of parallel processing

(5)

S̄q =
q���w2

s

ks(To − T∞)
,C = 4Ar2, T̄ =

T − T∞

T0 − T∞
, Li =

li

L
, Lo =

lo

L

X =
x

L
, U =

u

u∞
, V =

v

u∞
, P =

p

𝜌u2
∞

,Ar =
L

2ws

Ys =
ys

ws

, Yf = 1 +
yf

L
,W f =

wf

L
, 𝜁cc =

kf

ks

[ws

L

]

,

Re =
u∞L

𝜈
, Pr =

𝜈

𝛼

(6)
𝜕2T̄s

𝜕 X2
+ C

𝜕2T̄s

𝜕 Y2
s

+ CS̄q = 0

(7)∇U = 0

(8)U∇U = −∇P +
1

Re
∇2U

(9)U∇Tf =
1

Re Pr
∇2Tf

is due to stagnation of central processing units (CPUs) clock
speed. To benefit out of the present multi-core/processor
architecture, the programs have to be developed for parallel
execution [29–31]. In this research work, an effort is made
to parallelize the developed FVM code for the present con-
jugate heat transfer problem. Parallelization of the in-house
developed indigenous code written in C language is achieved
on multi-cores (CPUs) of a single computing machine (CM).
Parallel computing paradigm OpenMP (open multiprocess-
ing) is employed for the parallelization of the FVM code.
Parallelization of the FVM code is achieved using red and
black successive over-relaxation (RBSOR) scheme.

For fluid flow conditions like internal flow, external
flow, internal flow with outlet domain extended, and inter-
nal flow with inlet and outlet domain extended, computa-
tional speedup obtained is investigated in detail. Grid size
of 42 × 82, 52 × 102, 62 × 122, and 72 × 142 for internal
flow and grid size of 24 × 122 for inlet and outlet extended
domain are adopted for parallel performance analysis. For
external flow, the grid sizes chosen are 122 × 122, 162 × 162,
202 × 202, and 242 × 242 to understand the parallel speedup
achieved. In the case of internal flow, the spacing between
the parallel battery cells W̄f = 0.1 is kept constant. For both
internal and external flows, Re = 250, 750, 1250, and 1750 is
considered. The other parameters are fixed to their base val-
ues for complete parallelization analysis. Parallel efficiency
of the parallelized code is also investigated to understand the
fraction of time for useful processor utilization.

3.1 � The RBSOR Method

The computational time taken by the developed FVM code
depending on parameters varies from approximately 30 min
to 24 h. From the profile analysis of different functions used
in the code, it is found that up to 91% of computational
time is spent on pressure correction function. The remaining
time is used by U and V velocity, temperature, and printing
output results function. Hence, the major focus is made on
parallelizing the pressure correction function using RBSOR
scheme on CMs with different configurations. SOR method
is employed for solving the pressure correction equation
obtained using the SIMPLE algorithm technique. For the
remaining functions, TDMA is used to solve the correspond-
ing discretized equations. One of the commonly known
scheme for parallelization of SOR is red and black SOR
(RBSOR) scheme. In the following section, detailed descrip-
tion of working of RBSOR scheme is provided.

The SOR is an important iterative method to solve the
system of linear equations. SOR is an expansion/improve-
ment of Gauss–Seidel method that speedups convergence.
It over-relaxes and combines the old values and current
values by a factor greater than unity [32–35]. In this work,
SOR is used to solve the pressure correction equation with

8986	 Arabian Journal for Science and Engineering (2020) 45:8981–8997

1 3

over-relaxation factor equal to 1.8. This pressure correction
function consumes maximum computational time as men-
tioned earlier, due to inner iterations required for correcting
the pressure.

The parallel implementation of SOR technique is not
easy as it uses the values of neighboring cells/grid points
of the current iteration as shown in Fig. 4. The gird point/

cell shown in yellow color (number 15) requires the values
of upper, lower, left, and right side cells (numbers 5, 25, 14,
and 16, respectively) shown in blue color. Each grid point is
serially executed one after the other taking the newly calcu-
lated values of neighboring points. In Fig. 4, this concept is
shown serially from 1 to 100. Hence, this brings in sequen-
tial dependency and may lead to different results in parallelly

Fig. 3   Flowchart of SIMPLE
algorithm-based solution
process

Start

Define Grid size, Reynolds number,
Flow type (internal or external)

Initialization of U, V, P,
U*, V*, and P*

Solve U* from Equation 8 using TDMA

Solve V* from Equation 8 using TDMA

Solve Pʹ from Equation 7 using SOR

Calculate U, V, and P using the U*, V*, and Pʹ

Converge?

Calculate T for battery and fluid from Equation 6 and 9 by TDMA

Update T at the interface

Converge?

Stop

No

Yes

Update U*,
V*, and P*

Copy to old
U*, V*, P*

No

Copy to old T

Yes

8987Arabian Journal for Science and Engineering (2020) 45:8981–8997	

1 3

executed SOR. To overcome this sequential dependency and
parallelize the SOR algorithm, graph coloring methods are
used. Using this coloring method, the single sweep of SOR
can be broken into multiple sweeps which are suitable for
parallel processing. The RBSOR scheme can be thought of

as a compromise among Gauss–Seidel and Jacobi iteration.
As shown in Fig. 5, the RBSOR solves by coloring in the
checkerboard with alternative red/black grids. At first, all
the red cells are computed simultaneously considering the
neighboring black points. Then, black cells are computed
using the updated red cells parallelly. The RBSOR scheme
implementation is mentioned briefly in Algorithm 1.

98

16

100

2 4

14

5

15

25

1

99

3

Fig. 4   Serial execution of grid points depending upon the four neigh-
boring cells

Red cells Black cells

Fig. 5   RBSOR scheme for parallel implementation of SOR

3.2 � OpenMP Paradigm

OpenMP is an application program interface (API) that can
be used for explicitly writing multithreaded shared memory
parallel applications. OpenMP primarily consists of a set
of API components like compiler directives, environment
variables, and runtime library routines. OpenMP is suit-
able for shared memory multi-core/processor in which the
parallelism is achieved with the use of execution threads
which exists within the source of a sole process [36–38]. The
smallest unit scheduled by an operating system for process-
ing is commonly known as an execution thread. OpenMP
parallelization can involve insertion of simple compiler
directives in a serial program or complex subroutines to set
locks, nested locks, nested parallelism, and even multiple
level parallelism. OpenMP parallelization works on a fork-
and-join parallel execution model as shown in Fig. 6. The
master thread starts as a single process and keeps execut-
ing serially (sequentially) until it comes across the paral-
lel construct region. Then, the master thread creates a team
of threads (fork) as required to simultaneously process the
statements within the parallel region. Once the newly created
threads (slave threads) execute parallelly and complete the
parallel region, they synchronize/terminate (join), leaving
solely the master thread to continue. This kind of parallelism
is famously known as fork-and-join parallel model. The slave

8988	 Arabian Journal for Science and Engineering (2020) 45:8981–8997

1 3

threads can be made to wait at a point until all the threads
have reached a common point in the parallel region using
proper barriers.

As the OpenMP paradigm works on a shared memory
model, all the threads have access by default to global
memory. The slave threads communicate by writing and/
or reading to global memory. Their simultaneous update
to global/shared memory may result in a race condition
which again changes with the scheduling of threads [39,
40]. A data race condition occurs when two or more
threads access the same memory without proper synchro-
nization. OpenMP also allows parallelization of parallel
regions, i.e., it permits placing of parallel loops inside par-
allel loops. In such cases, the created slave threads further
spawn to form again a team of threads, as shown in Fig. 7.

Once the slave threads are distributed on different proces-
sors, the thread id will remain public. Hence to avoid this
issue, the private clause can be used to keep the thread id
specific to the processor. This enables to parallelly process
instructions on different processors for a specific range of
iterations easily. The OpenMP model during the runtime
provides, to keep the threads static or to change the num-
ber of threads dynamically. The OpenMP parallel con-
structs placed with some clauses are the compiler direc-
tives. The inner for() loops of U, V, and T functions are
parallelized using the appropriate omp parallel constructs,
and the SOR is parallelized using the above-mentioned
RBSOR scheme. The algorithm of the FVM code parallel-
ized as discussed above is mentioned in Algorithm 2. Four
CMs (computing machines) with different configurations

Sequential
region

Parallel region

1
2
3
4

Sequential
region

Parallel region

1
2
3
4

Sequential
region

Fork Join

Master
thread

Master
thread Master

thread

Slave
threads

Fig. 6   Fork-and-join model of OpenMP parallel programming

Sequential
region

Parallel region

1

2

3

4

Fork
Join

Master
thread Master

thread

1
2
3
4

Nested parallel
region1

2
3
4 Nested parallel

region1
2
3
4

Nested parallel
region1

2
3
4

Slave
threads

Fork

Fork

Join

Join

Slave
threads

Sequential
region

Fig. 7   Nested parallel region inside a parallel region using OpenMP

8989Arabian Journal for Science and Engineering (2020) 45:8981–8997	

1 3

are used for OpenMP parallelization performance analy-
sis. The specifications of these four CMs are mentioned
in Table 1. CM1 is selected as the common machine for
parallel computational analysis and to compare with dif-
ferent approaches.

3.3 � Nested Loop and Without Nested Loop
Parallelization

OpenMP parallelization of the developed FVM code is
also tried using both the for() loops (nested) parallel-
ized and with only the outer for() loop parallelized
(without nested), as shown in Figs. 6 and 7. This attempt
to analyze the parallel performance of the code with nested
loop parallelized and without nested loop parallelized is
provided separately. In parallelization of a nested loop,
i.e., of both the outer and inner for() loops, hyper-
threading occurs among the logical cores of the physical
processor. When parallelization of only outer for() loop,
i.e., without nested, is executed, then the computations of

complete cells/grids along a particular indices of outer
loop occur on different cores. This kind of parallel execu-
tion refers to simple domain decomposition technique. As
there are a limited number of cores used (maximum eight
cores), repeated execution occurs on cores for process-
ing both nested and without nested parallelism. In without
nested parallelism, the inner for() loop computations
are performed serially.

3.4 � Speedup and Parallel Efficiency

Use of multiple processors to work together simultaneously
on a common task is commonly known as parallel comput-
ing. The performance of a parallel algorithm implemented
on a parallel architecture for parallel computations is meas-
ured by speedup and parallel efficiency. The ratio of time
taken to execute the sequential algorithm on a single proces-
sor to the time taken by the parallel algorithm to execute on
multiple processor is known as speedup. Parallel efficiency
is defined as the ratio of parallel speedup achieved to the
number of processers. Parallel efficiency gives the measure
of the fraction of computational time at which a processor
is used efficiently [6, 41–43].

According to the definition of speedup and parallel effi-
ciency, they are calculated as given by Eq. 10 [41, 42]:

where S(par) is the parallel speedup achieved, T(seq) is the
elapsed (wall) time taken by the sequential program, T(par)
is the wall time taken by the parallel program for execution,
E(par) is the parallel efficiency and N(par) is the number of
processors employed for parallel execution. The efficiency
of loss occurred due to communication of data, computa-
tional task partitioning, processors scheduling, management
of data, etc., during parallel implementation is accounted
by parallel efficiency. The elapsed time for computations in
parallel on N processors can be written as composed of [44]:

(10)S(par) =
T(seq)

T(par)
E(par) =

S(par)

N(par)

(11)T(par) = T(seq)N + T(N) + T(comm)N + T(misc)N

Table 1   Specifications of CMs used for OpenMP parallelization

CM number Processor Frequency
(GHz)

RAM (GB) Number of
logical cores

Memory (TB) Operating system

CM1 Intel® core ™ i7-4970 3.6 16 8 1.3 64-bit Windows 10
CM2 Intel® core ™ i7-4970 3.6 8 8 0.7 64-bit Windows 10
CM3 Intel® core ™ i5-3470 s 2.9 8 4 0.5 64-bit Windows 7 Professional
CM4 Intel® core ™ i3-3240 3.4 4 4 0.5 64-bit Windows 7 Professional

8990	 Arabian Journal for Science and Engineering (2020) 45:8981–8997

1 3

where T(seq)N is the time taken by CPU for computations
of sequential part of the program. T(N) is the time taken by
CPU for computations of parallel part of the program on N
processors, T(comm)N is the time taken by CPU for commu-
nication with N processors, and T(misc)N is the idle time or
extra time spent induced due to parallelization of program.

4 � Results and Discussion of Speedup
and Parallel Efficiency Using OpenMP

Using OpenMP parallel computing paradigm, the paral-
lelization of FVM code developed in-house is analyzed in
the form of parallel speedup and efficiency. Four different
computing machines (CMs), namely CM1, CM2, CM3, and
CM4, are employed having different configurations men-
tioned in Table 1 to implement OpenMP parallelization. In
this section, the speedup and parallel efficiency of the par-
allelized FVM code are provided in detail. Using RBSOR
scheme, various grid sizes, and Re for internal and external
flow, the computational time analysis is carried out. In this
entire parallel performance analysis, the operating heat and
fluid flow parameters are kept fixed at S ̅q= 0.5, ζcc = 0.06,
and Ar = 10, for both the flow conditions. For computational
time analysis, the grid sizes chosen are 42 × 82, 52 × 102,
6 × 122, and 72 × 142 for internal flow. The grid size con-
sidered for outlet and inlet domain extended is 24 × 122. In
case of external flow, 122 × 122, 162 × 162, 202 × 202, and
242 × 242 grid sizes are chosen, while Re is varied from
250 to 1750.

4.1 � Elapsed Time

The elapsed time of the FVM code for internal and external
flow on all the four machines is noted at first to get an idea
of computational cost for different conditions. In Fig. 8, the

elapsed time on CM1, CM2, CM3, and CM4 is shown for
internal and external flow. The flow Re = 250 to 1750 and
grid size of 62 × 122 and 202 × 202 for internal and external
flow, respectively, are fixed to note the elapsed time. The
elapsed time is higher for CM1 and other CMs at Re = 250
and keeps on reducing for both the flow conditions com-
pared to other Re. At low Re = 250, the boundary layer thick-
ness grows wider, which needs more pressure correction in
the numerical analysis causing more computational time,
while at higher Re = 1750, the boundary layer stays close
to surface, and hence, less correction is required leading
to reduced computational time. However, the time on CM4
is highest compared to other CMs at all Re. CM4 has the
lowest clock speed and lower RAM, which causes the execu-
tion of the code to be slower among other CMs. CM1 and
CM2 have a very similar configuration, which causes them
to behave similar in the execution of code on them. Hence,
time for CM1 and CM2 is almost same for all flow Re. This
elapsed time is for outlet and inlet domains not extended
during internal flow analysis. Surely, if higher grid size and
extra flow domains are considered, the computational time
increases up to 24 h and above.

4.2 � Speedup Achieved

The speedup obtained on four machines CM1, CM2, CM3,
and CM4 using nested OpenMP parallelization for inter-
nal flow applying RBSOR scheme is shown in Fig. 9. The
speedup is shown for different grid sizes and Re with-
out considering any extended domain. From Fig. 9a–d, it
can be noted that with an increase in grid size at all, Re
considered the speedup increases on all CMs. The main
cause in increase in speedup with the increase in grid size
is increased parallel computation on multiple processors.
Parallel computation required on multiple processors will
be less if the number of grids are lesser. Hence, the ratio

Fig. 8   Elapsed time on different
machines for different flow
conditions

(a) Internal flow (b) External flow

0

1

2

3

4

5

6

7

250 750 1250 1750

El
ap

se
d

tim
e

(H
ou

rs
)

Re

CM1 CM2

CM3 CM4

0

1

2

3

4

5

6

7

8

9

250 750 1250 1750

El
ap

se
d

tim
e

(H
ou

rs
)

Re

CM1 CM2

CM3 CM4

8991Arabian Journal for Science and Engineering (2020) 45:8981–8997	

1 3

of parallel computations compared to serial computations
increases with increase in grid numbers.

It is easily understood from Fig. 9 that compared to CM1
and CM2, the speedup achieved on CM3 and CM4 is higher
for different flow Re. As the clock speed and number of
processors are more on CM1 and CM2 compared to CM3
and CM4, the serial computations are itself faster as shown
previously in Fig. 8. On CM1 and CM2, little extra time is
consumed on forking, joining, accessing/writing of data, and
synchronizing of salve threads on eight processors compared
to four processors on CM3 and CM4. Hence, the serial and
parallel computational time ratio remains lower on CM1
and CM2. To achieve better speedup on CM1 and CM2,
much more grid sizes are required. However, the speedup
on CM1 and CM2 is very close to each other due to their
similar configuration except RAM and hard disk capacity.
Another observation that can be made is the effect of Re on
speedup. With an increase in Re from 250 to 1750, there is a
slight improvement in speedup on all CMs, which is clearly
noticeable from Fig. 9d. The speedup achieved at Re = 250
is nearly the same all CMs at 42 × 82, and on CM3 and CM4,

significant improvement is observed and is achieved with an
increase in grid size.

The speedup achieved on different CMs and Re for
internal flow with extended domains using nested OpenMP
parallelization is shown in Fig. 10. The grid size for this
analysis is fixed at 62 × 122, and for outlet and inlet
domains, grid size is 24 × 122 each. When only the outlet
domain is extended with extra 24 × 122 grids, the speedup
achieved is shown in Fig. 10a. For both outlet and inlet
domain extended, the speedup is shown in Fig. 10b. The
speedup obtained for both the cases is similar at all Re on
CM1 and CM2. On CM3 and CM4, the speedups are quite
more at all Re compared to CM1 and CM2. Speedups are
slightly increased for both the domains extended due to
increased number of grid points compared to only outlet
domain extended. Speedup on CM1 and CM2 in this case
is same as speedup obtained for without extended domain
shown previously in Fig. 9.

The speedup obtained for external flow with grid size
122 × 122, 162 × 162, 202 × 202, and 242 × 242 on differ-
ent CMs is shown in Fig. 11. With increase in grid size,
the speedup obtained increased on all machines at all

Fig. 9   Speedup obtained for
internal flow without extended
domain with nested OpenMP

(a) CM1 (b) CM2

(c) CM3 (d) CM4

1

1.05

1.1

1.15

1.2

1.25

1.3

250 750 1250 1750

42x82 52x102

62x122 72x142

1

1.05

1.1

1.15

1.2

1.25

1.3

250 750 1250 1750

42x82 52x102

62x122 72x142

1

1.1

1.2

1.3

1.4

1.5

1.6

250 750 1250 1750

42x82 52x102 62x122 72x142

1

1.1

1.2

1.3

1.4

1.5

1.6

250 750 1250 1750

Sp
ee

du
p

Re

Sp
ee

du
p

Re

Sp
ee

du
p

Re

Sp
ee

du
p

Re

42x82 52x102 62x122 72x142

8992	 Arabian Journal for Science and Engineering (2020) 45:8981–8997

1 3

flow Re. The speedups are significant on CM1 and CM2
compared to CM3 and CM4 due to increased number of
grid size. This is in agreement with preceding discussion
made on increasing the speedup by increasing the grid
size for CM1 and CM2. With nested OpenMP paralleliza-
tion, the outer for() loop indices are forked on different

processors and further the newly created threads are again
forked on each processor for inner for() loop which is
generally termed as multithreading. However, this speedup
is same at all Re for CM1 and CM2, whereas on CM3 and
CM4, the speedups are not same.

Fig. 10   Speedup for inlet and
exit domain extended in internal
flow with nested OpenMP

(a) Only outlet domain extended (b) Inlet and outlet domain extended

1

1.1

1.2

1.3

1.4

1.5

1.6

250 750 1250 1750

Sp
ee

du
p

Re

CM1 CM2

CM3 CM4

1

1.1

1.2

1.3

1.4

1.5

1.6

250 750 1250 1750

Sp
ee

du
p

Re

CM1 CM2

CM3 CM4

Fig. 11   Speedup obtained on
different machines for external
flow with nested OpenMP

(a) CM1 (b) CM2

(c) CM3 (d) CM4

1.2

1.4

1.6

1.8

2

2.2

250 750 1250 1750

122x122 162x162
202x202 242x242

Sp
ee

du
p

Re

1.2

1.4

1.6

1.8

2

2.2

250 750 1250 1750

122x122 162x162
202x202 242x242

Sp
ee

du
p

Re

1

1.2

1.4

1.6

1.8

2

2.2

250 750 1250 1750

122x122 162x162
202x202 242x242

Sp
ee

du
p

Re
1

1.2

1.4

1.6

1.8

2

2.2

2.4

250 750 1250 1750

122x122 162x162
202x202 242x242

Sp
ee

du
p

Re

8993Arabian Journal for Science and Engineering (2020) 45:8981–8997	

1 3

Parallel performance speedup of the FVM code using
without nested OpenMP for() loop in case of inter-
nal and external flow is depicted in Fig. 12. The speedup
achieved on all the CMs is shown at different Re with fixed
grid size of 62 × 122 and 202 × 202 for internal and external
flow, respectively, without any extended domain. In with-
out nested OpenMP parallelization, the outer for() loop
indices are spawned on multiprocessors and then the inner
for() loop indices are executed serially on every proces-
sor. Here, the time spent for further threading, joining, and
synchronizing for inner for() loop is avoided. Hence, the
speedups obtained in both the internal and external flow
problem on all CMs are very similar to speedups reported
earlier in case of with nested OpenMP parallelization. For
higher grid size and then present consideration, the speedup
will surely fall compared to nested OpenMP parallelization.

4.3 � Speedup by Different Comparison

In Fig. 13, speedup obtained on different CMs considering
the ratio of parallel execution on a CM and serial execution
time of CM1 in all cases is depicted. Different Re and fixed

grid size of 62 × 122 without any extended domain for inter-
nal flow and applying RBSOR scheme with nested OpenMP
parallelization are implemented. It is quite obvious that the
speedup on CM1 and CM2 will remain unchanged as the
serial execution and parallel execution time on both the CMs
is very similar due to their similar configuration. However, it
is worth noticing that speedup on CM3 and CM4 is reduced
when serial execution time of CM1 is considered. It can be
seen that the speedup on CM3 is very close to but less than
unity. This means that the parallel execution time on CM3
and serial execution time on CM1/CM2 are almost equal.
If further look at Fig. 13 is focused, it will be seen that the
speedup of CM4 is worse than the serial execution on CM1/
CM2. It is appropriate to mention that for internal flow with
62 × 122 grid size, it is unimportant to parallelize the FVM
code on CMs with less clock speed compared to clock speed
of CM1 and CM2.

Speedup on different CMs considering the sequential exe-
cution time of CM1 for external flow is shown in Fig. 14. Re
is changed from 250 to 1750, and RBSOR scheme is applied
for the external flow using nested OpenMP parallelization.

Fig. 12   Speedup for internal
and external flow without
nested OpenMP

(a) Internal flow (b) External flow

1

1.1

1.2

1.3

1.4

1.5

250 750 1250 1750

Sp
ee

du
p

Re

CM1 CM2

CM3 CM4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

250 750 1250 1750

Sp
ee

du
p

Re

CM1 CM2

CM3 CM4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

250 750 1250 1750

Sp
ee

du
p

Re

CM1 CM2 CM3 CM4

Fig. 13   Speedups with respect to serial time of CM1 for internal flow

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

250 750 1250 1750

Sp
ee

du
p

Re

CM1 CM2 CM3 CM4

Fig. 14   Speedups with respect to serial time of CM1 considering
external flow

8994	 Arabian Journal for Science and Engineering (2020) 45:8981–8997

1 3

It can be seen that the speedup on all the CMs consider-
ing serial time of CM1 is better in this case compared to
internal flow. The reason again is the use of higher grid size
with which the parallel computations become effective due
to better usage of multiprocessors. Speedups for internal
and external flow are completely contradictory. One thing
for sure is understanding the use of proper CM with suit-
able configuration for a given fluid flow problem and grid
size. While in internal flow problem the grid size was less,
the speedup on CM3 and CM4 deteriorated. And now in
case of external flow, the speedup on CM3 and CM4 is bet-
ter than the speedup on CM1 and CM2 due to increased
grid size. Hence, increased grid size leads to increased uti-
lization of multiprocessors for longer duration resulting in
improved speedup. Again, CMs with lower frequency con-
sume more time than CMs with higher frequency. Therefore,
the speedup will also be more on low-frequency CMs as
the multiprocessors are used for more time than those of
higher-frequency CMs. Nevertheless, increased speedup on
low-frequency CMs need not necessarily mean providing
faster results than that of higher-frequency CMs.

In Fig. 15, the speedup obtained on CM1 during each
iteration of the FVM code during internal flow for differ-
ent grid sizes and Re = 750 is shown. It can be seen that
the speedup for most of the iterations is slightly more than
unity. During the last few iterations at which the code is near
about convergence, the speedup drastically fluctuates above
and below the mean speedup of 1.2. Such kind of behavior
during the final iterations needs to be investigated in detail
as such the nature is not yet known and neither reported
anywhere. However, there is an immense speedup before
the convergence of iterations. For all grid sizes, the nature
of speedup achieved during each iteration looks very similar.

4.4 � Parallel Efficiency of the FVM Code

Parallel efficiency gives an idea of time utilized by the mul-
tiprocessors to perform computations parallelly compared
to time used by a single processor for serial execution. The
parallel efficiency of the FVM code using OpenMP and
RBSOR scheme on different CMs for different conditions
is presented in detail. During internal flow with different Re
and grid sizes, the parallel efficiency on all CMs is shown
in Fig. 16. The parallel efficiency of the serial program will
be always unity as only one processor is used for compu-
tations. The parallel efficiency on CM1 and CM2 and on
CM3 and CM4 is the same (Fig. 16a) for different Re, while
the grid size is fixed at 62 × 122. This is due to the same
number of processors on CM1 and CM2 and on CM3 and
CM4. Additionally, for different Re, the respective serial and
parallel computational time ratio is the same as explained
with respect to Fig. 8; hence, the parallel efficiency on all
CMs remains the same. However, the parallel efficiency on
CM3 and CM4 is better than CM1 and CM2 due to reduced
number of processors and increased speedups obtained. On
another hand, increasing grid size at a fixed Re = 750 results
in improving parallel efficiency on CM3 and CM4, as shown
in Fig. 16b. Again, this behavior is due to increasing speed-
ups with reduced processors on CM3 and CM4 compared to

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 200 400 600 800 1000 1200

Sp
ee

du
p

Iteration number

42x82

52x102

62x122

72x142

Fig. 15   Speedup obtained for each iteration for different grid sizes
during internal flow

Fig. 16   Parallel efficiency on
different machines for various
conditions and internal flow

(a) Different Re (b) Different Grids

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

CM1 CM2 CM3 CM4

Pa
ra

lle
l e

ff
ic

ie
nc

y

CM number

Re = 250
Re = 750
Re = 1250
Re = 1750

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

CM1 CM2 CM3 CM4

Pa
ra

lle
l e

ff
ic

ie
nc

y

CM number

42x82
52x102
62x122
72x142

8995Arabian Journal for Science and Engineering (2020) 45:8981–8997	

1 3

CM1 and CM2. Much higher grid size than those considered
in this study can further cause better parallel efficiency on
CM1 and CM2.

Parallel efficiency using RBSOR scheme for external
flow and different conditions is illustrated in Fig. 17. The
grid size is fixed at 202 × 202 for different Re to analyze the
parallel efficiency of the FVM code. As shown in Fig. 17a
the parallel efficiency is same for all Re due to same speed-
ups obtained on CMs as shown in Fig. 11. However with
increasing grid size for external flow, the parallel efficiency
increases on all CMs as shown in Fig. 17b. As mentioned
previously, by increasing the grid size compared to grid size
considered for internal flow, the parallel efficiency increases
due to more computational time spent on multiple proces-
sors. Hence, grid size has a prominent role in effecting paral-
lel efficiency, whereas the effect of Re is negligible.

5 � Conclusions

Parallel performance analysis of the parallelized FVM
code developed in-house is analyzed in the form of parallel
speedup and parallel efficiency. OpenMP parallel comput-
ing paradigm is used for parallelization applying RBSOR
scheme. Four computing machines CM1, CM2, CM3, and
CM4 for OpenMP parallelization are employed. For com-
putational time analysis, the grid sizes chosen are 42 × 82,
52 × 102, 6 × 122, and 72 × 142 for internal flow. The grid
sizes considered for outlet and inlet domain extended are
24 × 122. In case of external flow, 122 × 122, 162 × 162,
202 × 202, and 242 × 242 grid sizes are chosen, while Re is
varied from 250 to 1750.

From the complete speedup and parallel efficiency analy-
sis of the parallelized FVM code using different methods,
the following important conclusions are drawn:

1.	 The computational time of the FVM code significantly
changes with change in Re and grid size during internal
and external flow. Even though for internal flow, less
grid size is considered, the computational time is com-
paratively similar to higher grid size used in the external
flow.

2.	 OpenMP parallelization of the FVM code provides a
maximum speedup of up to 1.5 in the present investi-
gation for considered conditions. This speedup can be
increased by selecting a higher grid size in which the
parallel utilization of multiprocessors will increase.

3.	 In without nested OpenMP parallelization, the speedup
obtained on CMs is similar to speedup obtained using
nested OpenMP parallelization.

4.	 When internal and external flow speedups are compared
with respect to serial execution on CM1, it is found that
only for higher grid size, the parallelization on CMs with
low clock speed is worth and then serial execution on
CM1 with higher clock speed.

5.	 It is observed that grid size affects parallel efficiency to
some extent compared to Re, whereas the effect of Re is
found to be trivial.

References

	 1.	 Ling, Z.; Zhang, Z.; Shi, G.; Fang, X.; Wang, L.; Gao, X.; et al.:
Review on thermal management systems using phase change
materials for electronic components, Li-ion batteries, and pho-
tovoltaic modules. Renew. Sustain. Energy Rev. 31, 427–438
(2014). https​://doi.org/10.1016/j.rser.2013.12.017

	 2.	 Bazdidi-Tehrani, F.; Aghaamini, M.; Moghaddam, S.: Radiation
effects on turbulent mixed convection in an asymmetrically heated
vertical channel. Heat Transf. Eng. 38, 475–497 (2017). https​://
doi.org/10.1080/01457​632.2016.11946​95

	 3.	 Shukla, A.; Singh, A.K.; Singh, P.: A comparative study
of finite volume method and finite difference method for

Fig. 17   Parallel efficiency of
the FVM code on different
machines, grid sizes, and flow
Re for external flow

(a) Different Re (b) Different Grids

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

CM1 CM2 CM3 CM4
Pa

ra
lle

l e
ff

ic
ie

nc
y

CM number

Re = 250
Re = 750
Re = 1250
Re = 1750

0

0.1

0.2

0.3

0.4

0.5

0.6

CM1 CM2 CM3 CM4

Pa
ra

lle
l e

ff
ic

ie
nc

y

CM number

122x122
162x162
202x202
242x242

https://doi.org/10.1016/j.rser.2013.12.017
https://doi.org/10.1080/01457632.2016.1194695
https://doi.org/10.1080/01457632.2016.1194695

8996	 Arabian Journal for Science and Engineering (2020) 45:8981–8997

1 3

convection-diffusion problem. Am. J. Comput. Appl. Math. 1,
67–73 (2012). https​://doi.org/10.5923/j.ajcam​.20110​102.13

	 4.	 Kolditz, O.: Finite Volume Method. Computation. Springer, Ber-
lin, Heidelberg (2013)

	 5.	 Patankar, S.: Numerical Heat Transfer and Fluid Flow. CRC Press,
Boca Raton (1980)

	 6.	 Wang, X.; Guo, L.; Ge, W.; Tang, D.; Ma, J.; Yang, Z.; et al.: Par-
allel implementation of macro-scale pseudo-particle simulation
for particle-fluid systems. Comput. Chem. Eng. 29, 1543–1553
(2005). https​://doi.org/10.1016/j.compc​hemen​g.2004.12.006

	 7.	 Gerndt, A.; Sarholz, S.; Wolter, M.; Mey, D.A.; Bischof, C.;
Kuhlen, T: Nested OpenMP for efficient computation of 3D
critical points in multi-block CFD datasets. In: 2006 ACM/IEEE
Conf Supercomput, p. 46 (2006). https​://doi.org/10.1145/11884​
55.11885​53

	 8.	 Duvigneau, R.; Kloczko, T.; Praveen, C.: A three-level paralleliza-
tion strategy for robust design in aerodynamics. In: 20th Int Conf
Parallel Comput Fluid Dyn, pp. 101–108 (2008)

	 9.	 Gourdain, N.; Gicquel, L.; Staffelbach, G.; Vermorel, O.; Duch-
aine, F.; Boussuge, J.-F.; et al.: High performance parallel com-
puting of flows in complex geometries: I. Methods Comput.
Sci. Discov. 2, 015003 (2009). https​://doi.org/10.1088/1749-
4699/2/1/01500​3

	10.	 Gropp, W.D.; Kaushik, D.K.; Keyes, D.E.; Smith, B.F.: High-
performance parallel implicit CFD. Parallel Comput. 27, 337–362
(2001). https​://doi.org/10.1016/S0167​-8191(00)00075​-2

	11.	 Passoni, G.; Cremonesi, P.; Alfonsi, G.: Analysis and implemen-
tation of a parallelization strategy on a Navier-Stokes solver for
shear flow simulations. Parallel Comput. 27, 1665–1685 (2001).
https​://doi.org/10.1016/S0167​-8191(01)00114​-4

	12.	 Schulz, M.; Krafczyk, M.; Tölke, J.; Rank, E.: Parallelization
strategies and efficiency of CFD computations in complex geom-
etries using lattice Boltzmann methods on high-performance com-
puters. High Perform. Sci. Eng. Comput. 21, 115–122 (2002).
https​://doi.org/10.1007/978-3-642-55919​-8

	13.	 Zhang, L.T.; Wagner, G.J.; Liu, W.K.: A parallelized mesh-
free method with boundary enrichment for large-scale CFD. J.
Comput. Phys. 176, 483–506 (2002). https​://doi.org/10.1006/
jcph.2002.6999

	14.	 Peigin, S.; Epstein, B.: Embedded parallelization approach for
optimization in aerodynamic design. J. Supercomput. 29, 243–263
(2004). https​://doi.org/10.1023/B:SUPE.00000​32780​.68664​.1b

	15.	 Eyheramendy, D.: Object-oriented parallel CFD with JAVA.
Parallel Comput. Fluid Dyn. 2003 Adv. Numer. Methods, Softw.
Appl. 2004, 409–416 (2003). https​://doi.org/10.1016/B978-04445​
1612-1/50052​-4

	16.	 Jia, R.; Sundén, B.: Parallelization of a multi-blocked CFD code
via three strategies for fluid flow and heat transfer analysis. Com-
put. Fluids 33, 57–80 (2004). https​://doi.org/10.1016/S0045​
-7930(03)00029​-X

	17.	 Lehmkuhl, O.: Borrell, R.; Soria, M.; Oliva, A.: TermoFluids:
a new parallel unstructured CFD code for the simulation of tur-
bulent industrial problems on low cost PC cluster. In: Parallel
Comput. Fluid Dyn. 2007. Lect. Notes Comput. Sci. Eng., vol.
67, pp. 275–282. Springer, Berlin, Heidelberg (2009). https://doi.
org/10.1007/978-3-540-92744-0

	18.	 Oktay, E.; Akay, H.U.; Merttopcuoglu, O.: Parallelized structural
topology optimization and CFD coupling for design of aircraft
wing structures. Comput. Fluids 49, 141–145 (2011). https​://doi.
org/10.1016/j.compf​luid.2011.05.005

	19.	 Amritkar, A.; Tafti, D.; Liu, R.; Kufrin, R.; Chapman, B.:
OpenMP parallelism for fluid and fluid-particulate systems. Par-
allel Comput. 38, 501–517 (2012). https​://doi.org/10.1016/j.parco​
.2012.05.005

	20.	 Amritkar, A.; Deb, S.; Tafti, D.: Efficient parallel CFD-DEM sim-
ulations using OpenMP. J. Comput. Phys. 256, 501–519 (2014).
https​://doi.org/10.1016/j.jcp.2013.09.007

	21.	 Steijl, R.; Barakos, G.N.: Parallel evaluation of quantum algo-
rithms for computational fluid dynamics. Comput. Fluids 173,
22–28 (2018). https​://doi.org/10.1016/j.compf​luid.2018.03.080

	22.	 Gorobets, A.; Soukov, S.; Bogdanov, P.: Multilevel paralleliza-
tion for simulating compressible turbulent flows on most kinds
of hybrid supercomputers. Comput. Fluids 173, 171–177 (2018).
https​://doi.org/10.1016/j.compf​luid.2018.03.011

	23.	 Lai, J.; Li, H.; Tian, Z.: CPU/GPU heterogeneous parallel CFD
solver and optimizations. In: Proc. 2018 Int. Conf. Serv. Robot.
Technol., pp. 88–92. ACM, Chengdu (2018)

	24.	 Niedermeier, C.A.; Janssen, C.F.; Indinger, T.: Massively-parallel
multi-GPU simulations for fast and accurate automotive aerody-
namics. In: 6th Eur. Conf. Comput. Mech. (ECCM 6), Glasgow,
UK, pp. 1–8 (2018)

	25.	 Shan, P.; Zhu, R.; Wang, F.; Wu, J.: Efficient approximation
of free-surface Green function and OpenMP parallelization in
frequency-domain wave–body interactions. J. Mar. Sci. Technol.
(2018). https​://doi.org/10.1007/s0077​3-018-0568-9

	26.	 Sheraton, M.V.; Sloot, P.M.A.: Parallel performance analysis of
bacterial biofilm simulation models. In: Comput. Sci.—ICCS
2018. Lect. Notes Comput. Sci., vol. 10862, pp. 496–505.
Springer International Publishing, Berlin (2018). https​://doi.
org/10.1007/978-3-319-93713​-7

	27.	 Wang, Y.X.; Zhang, L.L.; Liu, W.; Cheng, X.H.; Zhuang, Y.;
Chronopoulos, A.T.: Performance optimizations for scalable
CFD applications on hybrid CPU + MIC heterogeneous comput-
ing system with millions of cores. Comput. Fluids 173, 226–236
(2018). https​://doi.org/10.1016/j.compf​luid.2018.03.005

	28.	 Afzal, A.; Mohammed Samee, A.D.; Abdul Razak, R.K.; Ramis,
M.K.: Effect of spacing on thermal performance characteristics
of Li-ion battery cells. J. Therm. Anal. Calorim. 135, 1797–
1811 (2019). https​://doi.org/10.1007/s1097​3-018-7664-2

	29.	 Mudigere, D.; Sridharan, S.; Deshpande, A.; Park, J.; Heinecke,
A.; Smelyanskiy, M.; et al.: Exploring shared-memory optimi-
zations for an unstructured mesh cfd application on modern par-
allel systems. In: 29th Parallel Distrib. Process. Symp. (IPDPS),
2015 IEEE Int., pp. 723–732 (2015)

	30.	 Couder-Castaneda, C.; Barrios-Pina, H.; Gitler, I.; Arroyo, M.:
Performance of a code migration for the simulation of super-
sonic ejector flow to SMP, MIC, and GPU using OpenMP,
OpenMP + LEO, and OpenACC directives. Sci. Program 2015,
1–20 (2015). https​://doi.org/10.1155/2015/73910​7

	31.	 Xu, Z.; Zhao, H.; Zheng, C.: Accelerating population balance-
Monte Carlo simulation for coagulation dynamics from the
Markov jump model, stochastic algorithm and GPU parallel
computing. J. Comput. Phys. 281, 844–863 (2015). https​://doi.
org/10.1016/j.jcp.2014.10.055

	32.	 Niemeyer, K.E.; Sung, C.-J.: Recent progress and challenges in
exploiting graphics processors in computational fluid dynamics.
J. Supercomput. 67, 528–564 (2014). https​://doi.org/10.1007/
s1122​7-013-1015-7

	33.	 Grelck, C.S.S.: SAC—from high-level programming with arrays
to efficient parallel execution. Parallel Process Lett. 13, 401–412
(2003)

	34.	 Wang, J.L.R.: Assessment of linear finite-difference Poisson-
Boltzmann solvers. J. Comput. Chem. 31, 1689–1698 (2010)

	35.	 Vanderbauwhede, W.T.T.T.: Buffering: a simple and highly
effective scheme for parallelization of successive over-relaxa-
tion on GPUs and other accelerators. In: Int Conf High Perform
Comput Simul, pp. 436–43 (2015)

	36.	 Mattson, T., Eigenmann, R.: OpenMP: an API for writing port-
able SMP application software. In: Supercomput. 99 Conf.
(1999)

https://doi.org/10.5923/j.ajcam.20110102.13
https://doi.org/10.1016/j.compchemeng.2004.12.006
https://doi.org/10.1145/1188455.1188553
https://doi.org/10.1145/1188455.1188553
https://doi.org/10.1088/1749-4699/2/1/015003
https://doi.org/10.1088/1749-4699/2/1/015003
https://doi.org/10.1016/S0167-8191(00)00075-2
https://doi.org/10.1016/S0167-8191(01)00114-4
https://doi.org/10.1007/978-3-642-55919-8
https://doi.org/10.1006/jcph.2002.6999
https://doi.org/10.1006/jcph.2002.6999
https://doi.org/10.1023/B:SUPE.0000032780.68664.1b
https://doi.org/10.1016/B978-044451612-1/50052-4
https://doi.org/10.1016/B978-044451612-1/50052-4
https://doi.org/10.1016/S0045-7930(03)00029-X
https://doi.org/10.1016/S0045-7930(03)00029-X
https://doi.org/10.1016/j.compfluid.2011.05.005
https://doi.org/10.1016/j.compfluid.2011.05.005
https://doi.org/10.1016/j.parco.2012.05.005
https://doi.org/10.1016/j.parco.2012.05.005
https://doi.org/10.1016/j.jcp.2013.09.007
https://doi.org/10.1016/j.compfluid.2018.03.080
https://doi.org/10.1016/j.compfluid.2018.03.011
https://doi.org/10.1007/s00773-018-0568-9
https://doi.org/10.1007/978-3-319-93713-7
https://doi.org/10.1007/978-3-319-93713-7
https://doi.org/10.1016/j.compfluid.2018.03.005
https://doi.org/10.1007/s10973-018-7664-2
https://doi.org/10.1155/2015/739107
https://doi.org/10.1016/j.jcp.2014.10.055
https://doi.org/10.1016/j.jcp.2014.10.055
https://doi.org/10.1007/s11227-013-1015-7
https://doi.org/10.1007/s11227-013-1015-7

8997Arabian Journal for Science and Engineering (2020) 45:8981–8997	

1 3

	37.	 Kobler, R.; Kranzlmüller, D.; Volkert, J.: Debugging OpenMP
programs using event manipulation. In: Eig, R., Voss, M.J. (eds.)
OpenMP Shar. Mem. Parallel Program. WOMPAT 2001. Lect.
Notes Comput. Sci., pp. 81–89. Springer, Berlin, Heidelberg
(2001). https​://doi.org/10.1007/3-540-44587​-0_8

	38.	 Chapman, B.; Jost, G.; Van Der Pas, R.: Using OpenMP: Port-
able Shared Memory Parallel Programming, 10th edn. MIT Press,
Cambridge (2008)

	39.	 McCool, M.; Robison, A.; Reinders, J.: Structured Parallel Pro-
gramming: Patterns for Efficient Computation. Elsevier, Amster-
dam (2012)

	40.	 Bücker, H.; Rasch, A.; Wolf, A.: A class of OpenMP applications
involving nested parallelism. In: Proc. 2004 ACM Symp. Appl.
Comput., ACM; n.d., pp. 220–224

	41.	 Darmana, D.; Deen, N.G.; Kuipers, J.A.M.: Parallelization of an
Euler-Lagrange model using mixed domain decomposition and
a mirror domain technique: application to dispersed gas-liquid
two-phase flow. J. Comput. Phys. 220, 216–248 (2006). https​://
doi.org/10.1016/j.jcp.2006.05.011

	42.	 Walther, J.H.; Sbalzarini, I.F.: Large-scale parallel discrete ele-
ment simulations of granular flow. Eng. Comput. 26, 688–697
(2009). https​://doi.org/10.1108/02644​40091​09754​78

	43.	 Mininni, P.D.; Rosenberg, D.; Reddy, R.; Pouquet, A.: A hybrid
MPI–OpenMP scheme for scalable parallel pseudospectral com-
putations for fluid turbulence. Parallel Comput. 37, 316–326
(2011)

	44.	 Shang, Y.: A distributed memory parallel Gauss—Seidel algo-
rithm for linear algebraic systems. Comput. Math Appl. 57, 1369–
1376 (2009). https​://doi.org/10.1016/j.camwa​.2009.01.034

https://doi.org/10.1007/3-540-44587-0_8
https://doi.org/10.1016/j.jcp.2006.05.011
https://doi.org/10.1016/j.jcp.2006.05.011
https://doi.org/10.1108/02644400910975478
https://doi.org/10.1016/j.camwa.2009.01.034

	Parallelization of Numerical Conjugate Heat Transfer Analysis in Parallel Plate Channel Using OpenMP
	Abstract
	1 Introduction
	2 Numerical Methodology
	2.1 Solution Strategy

	3 Parallelization Attempt Using OpenMP
	3.1 The RBSOR Method
	3.2 OpenMP Paradigm
	3.3 Nested Loop and Without Nested Loop Parallelization
	3.4 Speedup and Parallel Efficiency

	4 Results and Discussion of Speedup and Parallel Efficiency Using OpenMP
	4.1 Elapsed Time
	4.2 Speedup Achieved
	4.3 Speedup by Different Comparison
	4.4 Parallel Efficiency of the FVM Code

	5 Conclusions
	References

