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Abstract
Pressure-driven, shear-driven and combined pressure and shear driven flow of a non-Newtonian Sisko fluid through rectan-
gular channels is investigated. Inclusion of the aspect ratio in the formulation yields a highly nonlinear partial differential 
equation, which is not reported in the existing literature. Thus, neither analytical nor numerical solution to this equation is 
available in the open literature. In the present study, the partial differential equation, describing the flow, is solved employing 
the finite difference method. Explicit method is adopted, and the solution for the non-dimensional velocity and wall shear 
stress is obtained. An exact solution for the flow of a Sisko fluid, for a special case (for non-Newtonian index 2), through 
large parallel plates (aspect ratio to be zero) is obtained. Expression for the friction factor, including the effect of the aspect 
ratio, is given. The effects of the aspect ratio, Sisko fluid parameter, non-Newtonian index on the non-dimensional velocity 
distribution and shear-stress distribution are analyzed both for shear-thinning and shear-thickening fluids. The results indicate 
that for pressure-driven flow, the effect of the aspect ratio on the velocity is negligible when it is less than 0.1. In case of 
shear-driven flow and combined pressure and shear driven flow also, the characteristics of flow through large parallel plates 
exist in nearly 50% of the channel for the aspect ratio of 0.1 or less, which means that for up to 50% of the channel, near the 
core, the parallel plates assumption will generate reasonably accurate results.

Keywords Sisko fluid · Aspect ratio · Shear-thickening fluid · Shear-thinning fluid · Pressure-driven flow · Shear-driven 
flow

List of Symbols
Ã1  1st Rivlin–Erickson tensor
B⃗  Body force per unit volume (N/m3)
a  Material constant (Ns/m2)
b  Material constants (Ns/mn−1)
b∗  Sisko fluid parameter
De  Hydraulic diameter (m)
f  Friction factor
ffr  Friction factor
g  Acceleration due to gravity (m/s2)

Ĩ  Identity matrix
k1, k2, k3, k4  Constant
L̃  Velocity gradient matrix (1/s)
2L1  Depth of the channel (m)
2L2  Width of the channel (m)
n  Material constant
p  Pressure (N/m2)
r  The locator where the maximum velocity 

occurs (m)
Re  Reynold number
Rem  Modified Reynolds number
ReN  Reynolds number for Newtonian fluid
Rep  Reynolds number for power law fluid
S̃  Extra stress tensor (N/m2)
T̃   Canely’s stress tensor (N/m2)
t  Time (s)
u  Dimensional coordinate along x direction 

(m/s)
u∗  Non-dimensional coordinate along axial 

direction
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up  Velocity of upper plate (m/s)
uavg  Average velocity (m/s)
u1  Velocity in region 1
u2  Velocity in region 2
V⃗   Velocity vector (m/s)
x, y, z  Dimensional coordinates along axial, verti-

cal and lateral direction (m)
x*, y*, z*  Non-dimensional coordinates along axial, 

vertical and lateral directions

Greek Symbols
ρ  Density (kg/m3)
τxy  Shear stress along axial direction (N/m)
τxz  Shear stress along lateral direction (N/m)
μe  Effective viscosity (Ns/m2)

1 Introduction

Flow and heat transfer aspects of various fluids through 
rectangular channels find wide applications in different 
industrial and engineering processes. Numerous research-
ers considered flow through rectangular channel with low 
aspect ratio (ratio of depth and width of the channel) which 
reduced the problem to that of flow through large parallel 
plates, for which analytical solution is admissable. During 
the last decade, technological shift toward miniaturization 
attracted the research community to consider flow and heat 
transfer aspects of fluids through micro-channel which find 
wide spectrum of applications in the fields of micro-electro-
mechanical systems (MEMS), bio-technology, small-scale 
heat exchangers etc. Some of the important studies are dis-
cussed here. Shashikumar et al. [1] investigated effects of 
different alloy nanoparticles of aluminum and titanium on 
micro-channel flow with partial slip and convective bound-
ary condition. Menni et al. [2] carried out analysis of tur-
bulent flow and heat transfer in forced convection of pure 
water, pure ethylene glycol as base fluids, with dispersion 
of  Al2O3 nanosized particles. Effects of different base fluids 
and shape of the nanoparticle on the flow and heat transfer 
were analyzed. Chamkha [3] studied laminar flow and heat 
transfer of a suspension in an electrically conducting fluid 
through channel and circular pipes, and the effect of the mag-
netic field, viscosity ratio on the friction coefficient, Nusselt 
number, particle-phase volume flow rate and liquid-phase 
flow rate was reported. Mixed convection of pulsating ferro-
fluid flow over a backward facing step has been studied by 
Selimefendigil et al. [4] employing finite element method. 
Unsteady two-fluid flow and heat transfer of two-viscous flu-
ids in a rectangular channel was studied by Umavathi et al. 
[5]. Analytical solution has been obtained, and the effect of 
viscosity ratio, conductivity ratio, Prandtl (Pr) number and 
the frequency parameter on the velocity and temperature has 

been analyzed. Chamkha [6] studied mixed convection in a 
vertical channel with symmetric and asymetric wall heating 
conditions. Analytical solutions for velocity and temperature 
have been obtained, and the effects of pertinent parameters on 
velocity and temperature have been obtained. A comprehen-
sive review on nanofluids applications in micro-channel has 
been carried out by Chamkha et al. [7]. Oscillatory flow and 
heat transfer in unsteady condition in a horizontal compos-
ite porous medium channel has been examined by Umavathi 
et al. [8]. Another interesting aspect of channel flow could 
be the flow in different geometries with flexible walls which 
have adjustable elasticity, thin size and desirable thermal 
properties. Some important and interesting studies on flow 
through cavities with flexible walls can be found in Refs. 
[9–12].

The preceding discussion reports the studies on flow of 
Newtonian fluids through channel, micro-channel and the pos-
sibilities of exploring the flow through channels with flexible 
walls. However, it is well known that several fluids used in the 
industry do not follow the linear stress–strain rate relation of 
the Newtonian fluid model and exhibit nonlinear stress–strain 
rate behavior. For capturing the complex response of such 
fluids to shear force, several non-Newtonian fluid models such 
as power law fluid, third grade fluid, viscoelastic fluid, Casson 
fluid and Sisko fluid have been proposed by the researchers. 
Viscoelastic model possesses the characteristics of both solid 
and fluid, and this model has drawn the attention of numer-
ous researchers [13–15]. Narain et al. [16] reported how even 
Newtonian fluids can display the characteristics of viscoelastic 
fluids. The power law fluid model is another widely adopted 
non-Newtonian fluid model. Tso et al. [17] investigated flow 
and heat transfer of a power law fluid through large parallel 
plates. Exact solutions for the velocity and temperature dis-
tribution are obtained, and the effects of the non-Newtonian 
index and the non-Newtonian parameter on the temperature 
and heat transfer have been discussed. Electro-magneto-
hydrodynamic (EMHD) flow and heat transfer of a third-grade 
fluid through large parallel plates have been studied by Wang 
et al. [18], and the ordinary differential equations (ODEs) 
describing the flow and heat transfer have been solved by the 
perturbation method and spectral method. Exact analytical 
solutions of the velocity of a third-grade fluid, for Poiseuille 
and Couette-Poiseuille flow, flowing between parallel plates 
have been reported by Danish et al. [19]. The effect of the 
third-grade fluid parameter on the non-dimensional veloc-
ity has been analyzed and an expression for the flow rate is 
obtained. Akbarzadeh [20] investigated pulsatile magneto-
hydro-dynamic blood flow through the porous blood vessel, 
modeling blood as a third-grade fluid. The equations gov-
erning the flow are solved by the perturbation method and 
also by numerical technique. The effects of the pertinent no-
dimensional parameters on the velocity, flow rate and the wall 
shear stress have been discussed.
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The above discussion emphasizes the importance of 
applications of the non-Newtonian fluids in different fields. 
One such fluid is the Sisko model which can describe the 
flow of several fluids in the high shear rate region. Differ-
ent polymers, polymer melts, rubber melts and slurries are 
observed to follow the Sisko model. Sisko fluid model is 
introduced by A. W. Sisko [21], which is a three-parameter 
model. This model can be adopted to describe the flow of 
the fluids, mentioned above, for a wider range of shear rate. 
Some important investigations on Sisko fluid are discussed 
here. Khan et al. [22] investigated flow and heat transfer of 
a Sisko fluid in an annular pipe. The equations governing 
the flow and heat transfer have been solved by employing 
the homotopy analysis method (HAM) [23]. Chaudhuri and 
Das [24] investigated forced convection of Sisko fluid in a 
pipe and semi-analytical solutions, adopting the least square 
method (LSM) [25, 26] for the velocity and temperature 
have been obtained. The effects of the Sisko fluid parameter, 
non-Newtonian index on the velocity, temperature and heat 
transfer have been analyzed. Taylor’s scrapping problem of 
a Sisko fluid has been studied by Siddiqui et al. [27]. In a 
recent study, Khan et al. [28] investigated entropy generation 
in flow of a Sisko nanofluid employing HAM and the effect 
of various parameters on the entropy generation rate has 
been examined. Wire coating analysis by withdrawal from 
a bath of Sisko fluid has been studied by Sajid and Hayat 
[29]. Peristaltic flows of a Sisko fluid through an endoscope 
and through an inclined tube have been investigated by the 
researchers [30, 31]. Peristaltic flow, with heat and mass 
transfer effect, in a undulating porous curved channel has 
been studied by Zeeshan et al. [32].Implicit finite difference 
(FDM) scheme is employed to solve the highly nonlinear 
ordinary differential equations. Saheen et al. [33] investi-
gated peristaltic flow of Sisko fluids, under the action of 
a magnetic field, including the effect of viscous dissipa-
tion. The effect of variable thermal conductivity has been 
included. Flow of Sisko nanofluid over a curved surface has 
been numerically studied by Ali et al. [34]. The effect of 
chemical process, radiation, thermophoresis and Lorentz 
force is considered.

The researches, cited above, indicate that the flow of 
Sisko fluids in various engineering systems is an important 
area of study. The flow of Sisko fluid through a rectangular 
channel, considering the effect of the aspect ratio, has never 
been investigated, though it finds wide applications in indus-
try involving flow of polymer melt, rubber melt. Most of 
the investigations on non-Newtonian fluids for rectangular 
geometry considered the flow through large parallel plates 
which neglected the effect of the aspect ratio. In most of 
the real-life situations, however, plates are not very large 
in the lateral direction and effect of the aspect ratio plays 
a significant role in the flow and thermal characteristics. 
In this regard, the investigation by Chaudhuri and Sahoo 

[35] can be mentioned, which considered the effect of the 
aspect ratio on the magneto-hydrodynamic (MHD) flow 
of a third-grade fluid through a rectangular channel. In the 
present study, the effect of the aspect ratio has been consid-
ered for hydro-dynamically fully developed flow of a Sisko 
fluid through a rectangular channel. Inclusion of the effect 
of the aspect ratio in the governing equation yields a highly 
nonlinear partial differential equation (PDE), required to 
describe the flow. On the contrary, if the flow is considered 
through large parallel plates (neglecting the effect of the 
aspect ratio), the equation describing the flow is a nonlinear 
ordinary differential equation (ODE), relatively simple to 
obtain the solution. The PDE describing the flow of Sisko 
fluid through a rectangular channel is reported for the first 
time in the present study, and numerical solution has been 
generated adopting the finite difference scheme. The results 
of numerical solution are compared with that of the exact 
solution of Sisko fluid flowing through large parallel plates 
(aspect ratio zero) for a special case of the non-Newtonian 
index. The comparison of the results exhibits an excellent 
agreement which validates the results of the present numeri-
cal solution. Moreover, an expression of the friction factor 
has been provided. Non-dimensional velocity distributions 
and wall shear-stress variation at the lower wall, for three 
different cases, namely pressure-driven flow, shear-driven 
flow and combined pressure and shear driven flow, have 
been presented. The effects of the pertinent non-dimensional 
parameters such as aspect ratio, Sisko fluid parameter, non-
Newtonian index and the non-dimensional pressure gradient 
on velocity and wall shear are discussed.

2  Mathematical Formulation

Hydro-dynamically fully developed flow of a Sisko fluid 
through a rectangular channel is considered. The physical 
problem addressed here is pictorially sketched in Fig. 1. 
The reference frame is fixed at the center of the channel as 
depicted in the figure. The x axis is along the direction of 
the flow, y axis is chosen along the direction perpendicular 
to the flow and z axis is chosen along the lateral direction.

The flow is assumed to be steady, laminar and incom-
pressible. The equations governing the flow are derived from 
the mass and momentum conservation principle which are 
the basic equations of fluid mechanics [22] and for the sake 
of brevity, not presented here. The stress tensor for non-
Newtonian fluid differs from that of the Newtonian fluid.

The stress tensor equation [22], in general, is given as:

where T̃ , p, S̃, Ĩ  are Cauchy stress tensor, thermody-
namic pressure, extra stress tensor and unit stress tensor, 

(1)T̃ = −pĨ + S̃
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respectively. Depending on the behavior of the non-Newto-
nian fluids, the extra stress tensor introduces various forms 
of nonlinearity into the equation. The equation of extra stress 
tensor for the Sisko fluid [22] is given as:

A1 is the first Rivlin–Erickson tensor [22], L is the veloc-
ity gradient matrix [22], a, b and n are constants which vary 
for different Sisko fluids. For hydro-dynamically fully devel-
oped flow condition, only the axial component of velocity 
u exists and u is a function of y, z and independent of x. We 
seek a solution of the following form:

where V is the velocity vector, u is the velocity of the fluid 
in the axial direction x. y and z are the coordinates along the 
vertical and lateral directions, respectively. The inertia term 
from the momentum equation vanishes as the flow consid-
ered is hydro-dynamically fully developed.

Using Eqs. (5), (1) and (2), the momentum conservation 
equations in the x, y and z directions are obtained as follows:

(2)S̃ =

[

a + b

(√
0.5tr(A2

1
)

)n−1
]

A1

(3)Ã1 = L̃ + L̃T

(4)L̃ = grad V⃗
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From the momentum conservation equations in the other 
directions, it can be concluded that the pressure gradient along 
the axial direction is only function of x; the LHS of Eq. (6) 
indicates that it is a function of y and z only, while the RHS is a 
function of x only. These two conditions can be satisfied only if

For shear-driven flow, the pressure gradient term is set to 
be zero, which then describes the PDE for shear-driven flow 
condition. If u is assumed to be independent of z (large parallel 
plate case, A = 0), then Eq. (6) [22] reduces to the following:

2.1  Pressure‑Driven Flow

2.2  Shear‑Driven Flow

(7)
�p

�x
= C

(8)a
d2u

dy2
+ nb

d2u

dy2

||
||

du

dy

||
||

n−1

=
dp

dx

(9.1)At y = ±L1, u = 0

(9.2)At z = ±L2, u = 0

(10.1)At y = −L1, u = 0, at y = L1, u = Up

(10.2)At z = ±L2, u = 0

Fig. 1  Problem geometry
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2L1 and 2L2 are the depth and width of the rectangu-
lar channel, respectively, and Up is the velocity of the 
upper plate in shear-driven and combined pressure and 
shear driven flow conditions. For combined pressure and 
shear driven flow, the boundary conditions are same as the 
boundary conditions of shear-driven flow.

For reducing Eq. (6) into its non-dimensional form, 
following non-dimensional variables and parameters are 
introduced:

where y*, z*, u*, u0, A, N are the non-dimensional coordinates 
in the vertical and lateral directions, non-dimensional veloc-
ity in the axial direction, reference velocity, aspect ratio of 
the channel and non-dimensional pressure gradient. u0 for 
shear-driven flow and combined pressure and shear driven 

flow can be considered as the velocity of the upper plate. For 
pressure-driven flow condition, u0 is considered as follows:

It is important to mention that u0, defined in Eq. (12), 
is not the average velocity through the channel. For a spe-
cific value of N only, u0 from Eq. (12) represents the aver-
age velocity. In case of Newtonian fluid, this N has got a 
specific value for average velocity; however, in case of 
non-Newtonian fluid, the average velocity is not directly 
proportional to the pressure gradient, rather it is a non-
linear function of the pressure gradient. But to express 
the average velocity for non-Newtonian fluid in the same 
form as that of Newtonian fluid case, a factor N can be 
introduced and u0 can be expressed as given in Eq. (12). 
The value of N can be fixed once the average velocity is 
calculated. Higher pressure gradient results in a higher 

(11)

y∗ =
y
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, z∗ =

z

L2
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u
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dp
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b
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)n−1

(12)u0 =
1

N

(
dp
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)
L2
1

a

average velocity. This leads to an increase in the factor 
N. Therefore, N can be considered as a measure of the 
pressure gradient. N could be considered as unity also as 
assumed in the study of Danish et al. [19]. But in that 
case, the effect of the higher pressure gradient cannot be 
included in the study. Average velocity, however, has to 
be calculated numerically (analytical solution, even if pos-
sible, will be valid for a very small range of parameters, 
only) which requires the values of the material constants 
a, b and n, which are not reported in the literature. For this 
reason, here, N is arbitrarily chosen, for which u0 can be 
considered as a multiplication of the average velocity and 
some factor. This factor may be less than unity or greater 
than unity or even unity (unit value represents the average 
velocity).

Using the non-dimensional variables and parameters 
given by Eqs. (11) and (12) and omitting the asterisks for 
convenience, the non-dimensional forms of the governing 
equation and the boundary conditions are given below as:

Boundary conditions in the non-dimensional form for 
three different cases are given as follows:

2.3  Pressure‑Driven Flow

2.4  Shear‑Driven Flow

For shear-driven flow and combined pressure and shear 
driven flow, the velocity is made non-dimensional by tak-
ing the velocity of the upper plate Up as the reference veloc-
ity. The boundary conditions for shear-driven flow are given 
below as:
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(14.1)At y = ±1, u = 0

(14.2)And, at z = ±1, u = 0



5930 Arabian Journal for Science and Engineering (2020) 45:5925–5947

1 3

Boundary conditions for combined pressure and shear 
driven flow are same as the boundary conditions of shear-
driven flow condition.

2.5  Shear Stress

The expression of the shear stress, in the axial direction, for 
Sisko fluid is given as follows:

The shear-stress equation in the lateral direction is as 
given below:

Upon substitution of the non-dimensional variables from 
Eq. (11) into Eqs. (16) and (17), and omitting the asterisks, 
the non-dimensional forms of the shear-stress equations are 
as given below:

To obtain the wall shear stress in the axial direction at 
the lower wall, y = − 1 is substituted in Eq. (18). Shear stress 
along the lateral direction in the wall is zero as u is zero at 
the wall (no slip) rendering the gradient of u with respect to 
z is zero at all points. Therefore, from Eq. (16) we obtain that 
τxz = 0. For flow through large parallel plates, A is negligible 
and considered to be zero. Substituting A = 0 in Eq. (18), the 
expression of the shear stress in the axial direction reduces 
to the following:

(15.1)At y = −1, u = 0 and at y = 1, u = 1

(15.2)At z = ±1, u = 0
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3  Solution

The non-dimensional governing differential equation (i.e., 
Eq. 13) is a second-order highly nonlinear PDE involving 
cross-derivatives which does not have any exact analytical 
solution. Moreover, getting a solution employing any of the 
approximate analytical method, too, is a formidable task. 
Hence, the nonlinear PDE has been solved numerically using 
finite difference method. The nonlinear momentum equation 
is first discretized using second-order accurate central differ-
ence scheme in order to keep the numerical error within the 
acceptable limit. The resulting system of algebraic equations 
is written in an explicit fashion, i.e., the right-hand side of 
the algebraic equation is calculated based on the known val-
ues of the variables from the previous iteration. The iterative 
solver is executed till the difference between the values of 
the unknown (here velocity) obtained from two successive 
iterations attains the required tolerance level. In order to 
make the results independent of the mesh size, mesh sensi-
tivity test is carried out. The number of grid points both in 
y and z direction are varied from 10 to 300, and the local 
velocity as well as the wall shear stress are plotted as a func-
tion of number of grids. The grid size is fixed 200 × 200 as 
no appreciable variation in the local velocity and wall shear 
stress is observed by reducing grid size further. Uniform 
and equal grid spacing is considered. The convergence cri-
terion is fixed at error less than  10−6. The error is defined 
as follows:

where uk
ij
 is the velocity in the x direction at ij node for the 

kth iteration. For the calculation of wall shear stress using 
Eq. 20, the 1st velocity gradient at the wall is calculated by 
using one-sided three-point second-order difference scheme 
to keep the result second-order accurate.

3.1  Exact Solution for the Sisko Fluid, for n = 2, 
Flowing Through Large Parallel Plates (A = 0)

Equation (8), in the non-dimensional form, after omitting 
the asterisks, is given below as:

Substituting n = 2 in Eq. (2), we get the following form:
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In the ODE, a modulus sign is present in Eq. (23). To get 
rid of this, Eq. (23) has been solved in the domain of y = − 1 
to y = 0. In this domain, u decreases with a decrease in y (at 
the plate u = 0 and u increase toward the center). Beyond the 
center (y = 0), u decreases with an increase in y. Therefore, 
in the domain y = 0 to y = − 1, modulus of the velocity gra-
dient is positive. In the domain y = 0 to y = 1, the velocity 
will be symmetric. Once the velocity in the domain y = − 1 
to y = 0 is obtained, the velocity from y = 0 to y = 1 can be 
reproduced using the condition of symmetry. Equation (23) 
is a second-order, nonlinear ODE requiring two boundary 
conditions for obtaining the solution. The boundary condi-
tions are given below as:

The solution of Eq. (23), using the boundary conditions 
by Eqs. (24.1)–(24.2), is given below as:

3.2  Exact Solution for Combined Pressure 
and Shear Driven Flow of a Sisko Fluid, 
with n = 2, Through Large Parallel Plates (A = 0)

To obtain the solution for combined pressure and shear 
driven flow, governing differential equations remain same 
as given by Eq. (23), but the boundary conditions are dif-
ferent from the previous case. It is a known fact that for 
combined pressure and shear driven flows, the maximum 
velocity does not occur always at the upper moving plate. 
Rather, the maximum velocity is observed to occur at a 
point away from the plate depending on the magnitude of 
the pressure gradient. It is important to note that the modu-
lus sign present in the governing equation will produce 
positive values of the velocity gradient term (du/dy)n−1 
for odd values of n. However, for even n, modulus of (du/
dy)n−1 will be negative beyond the point where the veloc-
ity is maximum. For n = 2, an exact solution can be easily 
obtained. For combined pressure and shear driven flow, 
the location of the point where the peak velocity occurs, 
is unknown a priori. To locate the point, we will assume 
the distance from the center is being in the positive direc-
tion of the coordinate system as shown in Fig. 1. Then the 
domain is divided in two region −1 ≤ y ≤ r and the other 
region is r ≤ y ≤ 1.

(24.1)At y = −1, u = 0

(24.2)y = 0,
du

dy
= 0

(25)

u = −
1

2b
(1 + y) +

1

12b2N

[
(1 + 4bNy)1.5 − (1 − 4bN)1.5

]

The governing differential equations are given below as:

The boundary conditions are as follows:

Solutions of Eqs. (26) and (27) are given below as:

where k1, k2, k3 and k4 are constants. Utilizing the bound-
ary conditions given by Eqs. (28.1)–(28.4), four algebraic 
equations are obtained; the solution of which provides the 
values of unknowns k1, k2, k3, and k4. The equations are as 
given below:

(26)
d2u1

dy2
+ 2b

d2u1

dy2

du1

dy
= N − 1 ≤ y ≤ r

(27)
d2u2

dy2
− 2b

d2u2

dy2

du2

dy
= N r ≤ y ≤ 1

(28.1)y = −1, u1 = 0

(28.2)y = r, u1 = u2

(28.3)y = r,
du1

dy
=

du2

dy

(28.4)y = 1, u2 = 1

(29)u1 =
1

2b

[

−y +

{
1 + 4b

(
Ny + k1

)}1.5

6bN

]

+ k2

(30)u2 = −
1

2b

[

−y −

{
1 − 4b

(
Ny + k3

)}1.5

6bN

]

+ k4

(31.1)1

2b

[

1 −

{
1 + 4b

(
−N + k1

)}1.5

6bN

]

+ k2 = 0

(31.2)

1

2b

[

−r −

{
1 + 4b

(
Nr + k

1

)}1.5

6bN

]

+ k
2

=
−1

2b

[

−r −

{
1 − 4b

(
Nr + k

3

)}1.5

6bN

]

+ k
4

(31.3)

1

2b

[

−1 +

√
1 + 4b

(
Nr + k1

)
]

= −
1

2b

[

−1 −

√
1 − 4b

(
Nr + k3

)
]

(31.4)−1

2b

[

−1 −

{
1 − 4b

(
N + k3

)}1.5

6bN

]

+ k4 = 1
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Equations (31.1)–(31.4) are coupled, nonlinear algebraic 
equations. For a fixed value of r, the unknowns k1, k2, k3 
and k4 can be determined by solving the coupled equations. 
As the equations are nonlinear, multiple roots are possible. 
Physically realistic values are chosen such that velocity 
field is positive. The value of r, where the non-dimensional 
velocity attains the peak value, depends on the factors like 
the non-dimensional pressure gradient N and the Sisko fluid 
parameter b. Hence, r is an unknown which needs to be 
fixed. In order to determine the value of r, we again fix the 
coordinate system at the bottom surface. The governing 
equations remain the same as given by Eqs. (26) and (27), 
but the boundary conditions get modified as follows:

The no-slip boundary conditions remain same as the pre-
vious case. But the point, where the peak velocity occurs, 
now has the coordinate of 0.5 + r. Therefore, in Eq. (32.2) 
and in Eq. (32.3) r will be replaced by 0.5 + r and the two 
sets of equation will be solved. The value of r has to be 
guessed and the solutions of the two sets are obtained. The 
velocity profiles will coincide for the correct value of the 
r. Therefore, by hit and trial process, that r has to be fixed 
for which the velocity profiles, obtained from the solution 
of Eqs. (26) and (27) using the boundary conditions given 
by Eqs. (31.1)–(31.4) and Eqs. (32.1)–(32.4), are the same.

3.3  Shear‑Driven Flow

For shear-driven flow, the governing equation (with A = 0) 
is given below as:

The solution, using the boundary conditions of 
Eqs. (15.1) and (15.2), is given below as:

3.4  Evaluation of Friction Factor

Friction factor is an important parameter in determining 
the pressure drop in the channel for pressure-driven and 

(32.1)y = −1, u1 = 0

(32.2)y = 0.5 + r, u1 = u2

(32.3)y = 0.5 + r,
du1

dy
=

du2

dy

(32.4)y = 1, u2 = 1

(33)d2u

dy2
+ nb

d2u

dy2

||
||

du

dy

||
||

n−1

= 0

(34)u =
1 + y

2

combined pressure and shear driven flow conditions. The 
expression of the friction factors for flow of Sisko fluid can 
be yielded by modifying the available relation of the friction 
factor in case of Newtonian fluid. For flow of a Newtonian 
fluid through a circular pipe, the friction factor is given by 
the well-known relation:

For flow of non-Newtonian fluids, a modified Reynolds 
number is defined which is based on the apparent viscosity 
or effective viscosity of the fluids. In the present study, for 
the flow of a Sisko fluid, the apparent viscosity has to be 
identified first. For flow of a Sisko fluid through large par-
allel plates, the expression of the shear stress, in the axial 
direction, can be obtained from Eq. (16) upon substitution 
which gives the required equation as follows:

The effective viscosity can be obtained from Eq. (35) as 
follows:

Equation (36) can be modified to the following as men-
tioned by Gupta [36]:

where De is the hydraulic diameter [36] of the rectangular 
channel, as given below:

ReN and  Rep can be considered as the Reynolds numbers 
of the Newtonian (a represents the dynamic viscosity of the 
fluid when b = 0) and power law fluid (when a = 0, b is used 
to define the modified Reynolds number for power law fluid), 
respectively. Therefore, the friction factor for the pressure-
driven flow of a Sisko fluid through a rectangular channel 
is given below as:

(35)�u

�z
= 0 �xy = a

du

dy
+ b

(
du

dy

)n−1

(36)�e = a + b

(
du

dy

)n−1

(37)�e = a + b

(
8u0

De

)n−1

(38)De =
4L1L2

L1 + L2

(39)
Rem =

1
1

ReN

(
1

1+A

) +
1

Rep

(
1

(1+A)n

)

(40)ReN =
�u04L1

a
Rep =

�u2−n
0

(
4L1

)n

8n−1b

(41)f =
16

Rem
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4  Results and Discussion

4.1  Validation

Before proceeding further with the study of the effect of 
parametric variation in the velocity distribution, first, a com-
parison of the results obtained from the numerical solution 
for the limiting case of A = 0, and the exact solution obtained 
for large parallel plate flow problem (A = 0) for n = 2, has 
been made in Fig. 2a–d for pressure-driven and combined 
pressure and shear driven flow conditions. Figure 2a and c 
presents the comparison for N = − 6, and for different values 
of the Sisko fluid parameter b for pressure-driven flow and 
combined pressure and shear driven flow. In Fig. 2b and 
d, comparison between the velocity distributions is made 

for N = − 8 and different values of b for pressure-driven and 
combined pressure and shear driven flow conditions. In both 
the cases, the results of the numerical solution are observed 
to overlap with the exact solution which demonstrates the 
validity of the present numerical scheme. Then, the physi-
cally permissible values of the non-dimensional parameters 
have to be fixed, before carrying out the study of parametric 
variation. Sisko fluid parameter b, in the previous studies 
[10], has been varied in the range of 0.1 to 0.9. Therefore, in 
the present study, b has been varied in the same range. The 
value of N is considered in between − 6 and − 8. n has been 
varied in the range of 1.1 to 2.5 for shear-thickening fluids 
and for shear-thinning fluids, n has been varied in between 
0.7 and 0.9.

Fig. 2  Comparison of the velocity distributions (pressure-driven 
flow) obtained from the numerical solution and the exact solution 
a A = 0 and n = 2 for N = − 6; b A = 0, n = 2 and N = − 8; c velocity 

distributions (combined pressure and shear driven flow) when A = 0, 
n = 2, N = − 6; d A = 0, n = 2, N = − 8
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4.2  Pressure‑Driven Flow

Effect of the aspect ratio on non-dimensional velocity dis-
tribution, for shear-thickening and shear-thinning fluids, is 
displayed in Fig. 3a and b, respectively. It is evident from 
the figures, that both for shear-thickening and shear-thin-
ning fluids, the non-dimensional velocity decreases with an 
increase in the aspect ratio. With an increase in the aspect 
ratio, the resistance offered by the side walls on the flow 

increases. Therefore, the effect of wall friction on the veloc-
ity increases resulting in a decrease in the velocity. Fig-
ure 3c and d depicts effect of the aspect ratio on the wall 
shear-stress variation along the lateral direction, both for 
shear-thickening and shear-thinning fluids. The results indi-
cate that the wall shear stress increases with a decrease in 
the aspect ratio. A decrease in the aspect ratio indicates an 
increase in the distance between the side walls. Therefore, 
the resistance offered by the side walls decreases which, 

Fig. 3  a Non-dimensional velocity distribution at z = 0, for different 
A, when N = − 6, b = 0.5 and n = 1.5, b Non-dimensional velocity dis-
tribution at z = 0, for different A, when N = − 6, b = 0.5 and n = 0.8, 

c Non-dimensional wall shear-stress variation with z for different A, 
when N = − 6, b = 0.5, n = 1.5, d Non-dimensional wall shear-stress 
variation with z for different A when N = − 6, b = 0.5 and n = 0.8
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finally, leads to the higher velocity resulting in an increase 
in the wall shear stress. Wall shear stress reaches maximum 
at the central plane, as the velocity is maximum and then it 
gradually reduces toward the side walls. It is interesting to 
note that for A = 0.1, Fig. 3c displays a different trend com-
pared to other graphs. The reason is discussed as follows.

Lower values of the aspect ratio A indicates a higher 
length along the lateral direction of the channel. This means 
when A reaches a certain value, the effect of the side walls 
on the central part of the channel is insignificant indicating 
flow through parallel plates. It can be mentioned here that 
for flow through parallel plates, it is assumed that the results 
are independent of the lateral coordinate (z). Practically, it 
means that the results of parallel plates case are valid only 
in the central portion of the channel. In Fig. 3c, the graph for 
A = 0.1 displays a flatter portion near the central portion of 
the channel, which is in sharp contrast to the other curves for 
A = 0.75, 0.5 and 0.25. The flat portion means that the shear 
stress is invariant along the lateral direction (or independent 
of z). The graph for A = 0.1 shows that when aspect ratio is 
0.1 or lower, the shear-stress distribution is independent of 
z for a significant portion along the central region indicat-
ing resemblance with flow through parallel plates. Figure 3d 
indicates a different when A = 0.1.

Figure 3c displays the result for n = 1.5 (shear-thick-
ening fluids, n > 1), and Fig. 3d displays the results for 
n = 0.8 (shear-thinning fluids, n < 1). With a decrease in 
the aspect ratio A, the effect of the wall on the results 
diminishes and when A reaches a certain value, the varia-
tion with z is insignificant for a large portion of the chan-
nel. Figure 3 d displays that when aspect ratio A reaches 
0.1, for n = 0.8 the results are independent of z resembling 
the flow through the parallel plate case.

Effect of Sisko fluid parameter on the non-dimensional 
velocity, for shear-thickening and shear-thinning fluids, is 
presented in Fig. 4a and b, respectively. It is evident from 
the figures that the velocity decreases with an increase in 
the Sisko fluid parameter both for shear-thickening and 
shear-thinning fluids. An increase in b implies an increase 
in the viscosity effect, which indicates higher resistance for 
pressure-driven flow. Therefore, both for shear-thinning and 
shear-thickening fluids, velocity decreases. Similar trends 
have been reported for the flow of a Sisko fluid through 
annular pipe studied by Khan et al. [10]. It is interesting to 
note, in Fig. 4a, that an increase in b from 0.1 to 0.3 results 
in a drastic reduction in the velocity. Whereas the decrease 
in velocity caused by a change in b from 0.3 to 0.5 is mar-
ginal. In this case, the value of the non-Newtonian index n 
is 1.8; n = 1 signifies the case for Newtonian fluid; n = 1.8 
indicates a strong deviation from a Newtonian fluid. There-
fore, when b changes from 0.1 to 0.3, the effect is drastic. 
On the contrary, when n = 0.8, the decrease in the velocity 
caused by an increase in b from 0.1 to 0.3 is relatively less. 

For n = 0.8, the non-Newtonian effect is not so strong; as 
a result a change in b for 0.1 to 0.3 causes less effect in 
the velocity. The velocity in case of shear-thinning fluid is 
higher compared to the velocity in shear-thickening fluids 
in all the cases.

Figure 4c and d presents the effect of b on the wall shear-
stress variation along the lateral direction of shear-thicken-
ing and shear-thinning fluids. It is evident from the figures 
that wall shear stress is higher for lower values of b as the 
velocity is higher resulting in a higher velocity gradient. As 
expected, the wall shear stress is a maximum at the center 
plane as the velocity is a maximum.

Non-dimensional velocity distribution at z = 0, consider-
ing n as a parameter, for both shear-thickening and shear-
thinning fluids is presented in Fig. 5a and b, respectively. 
The results clearly indicate that an increase in the non-
Newtonian index n causes a decrease in the velocity both 
for shear-thickening and shear-thinning fluids. However, the 
rate of decrease in velocity due to increase in n is lower in 
case of shear-thinning fluid compared to shear-thickening 
fluid. It is evident from Fig. 5a and b that, for other param-
eters remaining the same, for n < 1 (shear-thinning fluids), 
the velocity is higher than the velocity of the fluid for n > 1 
(shear-thickening fluids). Figure 5a reveals that the veloc-
ity profile is almost uniform for n = 2 and for higher values 
of n for shear-thickening fluids. It is important to note that 
for n = 2.5, a different trend is displayed in Fig. 5a. With 
increase in the non-Newtonian index n, the resistance toward 
the flow increases. As a result, velocity decreases. For 
n = 2.5, velocity remains unchanged along y meaning that 
velocity is nearly constant along the depth of the channel.

Non-dimensional wall shear-stress variation with z for 
different values of n is presented in Fig. 5c and d. It is evi-
dent from the figure that an increase in n leads to a decrease 
in the wall shear stress for both shear-thickening and shear-
thinning fluids. An increase results in an increase in the vis-
cosity effect, which results in a decrease in flow velocity. 
Consequently, the wall shear stress is reduced.

4.3  Shear‑Driven Flow

For shear-driven flow, the effect of various parameters 
on the non-dimensional velocity and wall shear stress 
is graphically presented in this section. Figure 6a and b 
depicts the effect of the aspect ratio on the non-dimen-
sional velocity both for shear-thickening and shear-thin-
ning fluids, respectively. The results indicate that with 
an increase in the aspect ratio A, the velocity decreases 
significantly. An increase in the aspect ratio (A) indicates 
higher resistance toward the flow, resulting in a decrease 
in the velocity. In Fig. 6a, the graph for A = 0.1 represents 
the case when effect of the aspect ratio is marginal and the 
velocity profile nearly follows a straight line starting from 
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zero at the lower plate and reaching the velocity of the 
upper plate linearly. Even the velocity profile for A = 0.25 
also displays a linear pattern as depicted in Fig. 6a. The 
effect of the aspect ratio is clearly indicated by the non-
linear nature of the velocity profile starting from A = 0.5. 
The linear profiles of the velocity up to A = 0.25 reveal that 
for values of the parameters b = 0.5, n = 1.5, N = − 8, up to 
the aspect ratio 0.25, the flow can very well be considered 
as flow through large parallel plates and relatively simple 
ODE can be solved to obtain the velocity field. Beyond 

A = 0.5, for given values of the other parameters, the effect 
of the aspect ratio is dominant and must be considered. For 
shear-thinning fluids also, Fig. 6b reveals that up to aspect 
ratio A = 0.25, the velocity profiles follow a linear pattern 
and the flow can very well be considered as flow through 
large parallel plates.

Effect of the aspect ratio on the non-dimensional wall 
shear-stress variation along z is depicted in Fig. 6c and d for 
shear-thickening and shear-thinning fluids, respectively. The 
results indicate that for A = 0.1, both for n = 1.5 and n = 0.8, 

Fig. 4  a Non-dimensional velocity distribution at z = 0, for different 
values of b, when A = 0.8, N = − 8, n = 1.8, b non-dimensional veloc-
ity distribution at z = 0, for different values of b, when A = 0.8, N = − 8 
and n = 0.8, c non-dimensional wall shear-stress variation with z, for 

different b, when A = 0.8, N = − 8, n = 1.8, d non-dimensional wall 
shear-stress variation with z for different b, when A = 0.8, N = − 8 and 
n = 0.8
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the wall shear stress is invariant along z in almost entire por-
tion of the channel except near the walls. For A = 0.25, the 
deviation from a constant wall shear stress is large and the 
effect of the aspect ratio starts dominating.

Effect of the Sisko fluid parameter b on non-dimensional 
velocity, for shear-thickening fluids, is depicted in Fig. 7a. 
The results indicate that with an increase in b, the velocity 
decreases. When b changes from 0.1 to 0.3, the decrease in 
velocity is significant. For other values of b, the change in 

velocity is relatively marginal. For shear-thinning fluids, it is 
interesting to note that for n = 0.8, velocity remains more or 
less unaffected by any increase in b. Effect of the Sisko fluid 
parameter on variation of the wall shear stress is depicted in 
Fig. 7c and d both for shear-thickening and shear-thinning 
fluids respectively. It is evident from the figure that with an 
increase in b, the wall shear stress decreases significantly. 
For n = 0.8, the wall shear stress is higher as displayed in the 
figures. For n = 0.8 (n < 1), the fluid exhibits shear-thinning 

Fig. 5  a Non-dimensional velocity distribution at z = 0 for different 
n, when N = − 8, A = 0.8, b = 0.5, b non-dimensional velocity distri-
bution at z = 0 for different n, when N = − 8, A = 0.8, b = 0.5, c non-

dimensional wall shear-stress variation with z for different n when 
A = 0.8, N = − 8 and b = 0.5, d non-dimensional wall shear-stress vari-
ation with z for different n when A = 0.8, N = − 8 and b = 0.5
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behavior, resulting in a higher velocity compared to n > 1 
case. Aspect ratio A in both the cases is chosen to be 0.8. 
Therefore, the velocity profile does not indicate any constant 
value of wall shear stress over any portion of the channel 
wall.

The effect of non-Newtonian index n on the non-dimen-
sional velocity distribution at z = 0, both for shear-thicken-
ing and shear-thinning fluids is depicted in Fig. 8a and b 
respectively. With an increase in n, the velocity is observed 
to decrease. A higher value of n indicates an increase in 

the resistance toward the flow, thus causing a decrease in 
the velocity. The variation of wall shear stress with n is 
presented in Fig. 8c and d for shear-thickening and shear-
thinning fluids, respectively. Wall shear stress decreases with 
an increase in n both of shear-thickening and shear-thinning 
fluids. However, in case of shear-thinning fluids, the effect 
is marginal.

Fig. 6  a Non-dimensional velocity distribution at z = 0 for different A, 
when b = 0.5, n = 1.5, b non-dimensional velocity distribution at z = 0 
for different A, when b = 0.5, n = 0.8, c non-dimensional wall shear-

stress variation with z for different A when b = 0.5, n = 1.5, d non-
dimensional wall shear-stress variation with z for different A, when 
b = 0.5, n = 0.8
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4.4  Combined Pressure and Shear Driven Flow

Figure 9a and b presents effect of the aspect ratio on non-
dimensional velocity distribution at z = 0, both for shear-
thickening and shear-thinning fluids, respectively, for com-
bined pressure and shear driven flow conditions. It is evident 
from the figures that effect of the aspect ratio A is significant 
on the velocity distribution both for shear-thickening and 
shear-thinning fluids. It is important to note that for a change 
in A from 0.1 to 0.25, decrease in velocity is not very high, 
but a change in A from 0.25 to 0.5 causes a drastic reduction 

in velocity both for shear-thickening and shear-thinning 
fluids. For shear-thinning fluid, the velocity is higher than 
the velocity of shear-thickening fluid for other parameters 
remaining the same.

Effect of the aspect ratio A, on the non-dimensional wall 
shear-stress variation on the lower wall, is depicted in Fig. 9c 
and d, for shear-thickening and shear-thinning fluid, respec-
tively. For n = 1.8, it is observed from Fig. 9c that wall shear 
stress exhibits a flat portion, indicating an invariant shear 
stress along the lateral direction. This invariance along the 
lateral direction implies that for nearly 75% of the channel in 

Fig. 7  a Non-dimensional velocity distribution at z = 0 for different b, 
when n = 1.8, A = 0.8, b non-dimensional velocity distribution at z = 0 
for different b, when n = 0.8, A = 0.8, c non-dimensional wall shear-

stress variation with z for different b when n = 1.8, A = 0.8, d non-
dimensional wall shear-stress variation with z for different b, when 
n = 0.8, A = 0.8
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the central core, the flow is dominated by the characteristics 
of flow through large parallel plates for the chosen values 
of the parameters.

Effect of b on the non-dimensional velocity distribution 
at z = 0, for shear-thickening and shear-thinning fluid, is 
presented in Fig. 10a and b, respectively. The results indi-
cate that velocity decreases drastically with an increase 
in b, when b is small. Figure 10a depicts that for b = 0.1, 
the velocity profile exhibits mainly the characteristics of 
pressure-driven flow. But as b increases from 0.1 to 0.3, the 
characteristic of pressure-driven flow is suppressed and the 

characteristics of shear-driven flow dominate. With a further 
increase in b, the velocity remains significantly lower than 
the velocity of the moving plate, up to a major portion of 
the channel. Velocity again increases and finally reaches the 
velocity of the moving plate only after reaching region very 
close to the plate.

Figure 10a displays the velocity distribution for combined 
pressure and shear driven flow. It is evident that for b = 0.1, 
the nature of the graph is different from the other graph. 
The non-Newtonian parameter b is a measure of the viscos-
ity of the fluid. For lower values of b, the resistance toward 

Fig. 8  a Non-dimensional velocity distribution at z = 0 for different n 
(shear thickening), when b = 0.5, A = 0.8, b non-dimensional velocity 
distribution at z = 0 for different n (for shear thinning), when b = 0.5, 
A = 0.8, c non-dimensional wall shear-stress variation with z for dif-

ferent n (shear thickening), when b = 0.5, A = 0.8, d non-dimensional 
wall shear-stress variation with z for different n (shear thinning), 
when b = 0.5, A = 0.8
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the flow is less (contribution of the pressure-driven flow 
is present) and fluid velocity increases in nearly all parts 
of the channel. But near the upper plate as the plate itself 
moves, the fluid velocity reaches that of the plate (no slip 
condition). Thus, velocity shows an increasing pattern up to 
a certain depth and then it decreases the plate velocity. But 
with increase in b, the resistance toward the flow increases 
and velocity in the entire section decreases. Near the upper 
plate, due to the movement of the plate, velocity increases 

and reach that of the plate. Therefore, for higher values of 
b, velocity in lower and central part is less and then near the 
upper wall it shows an increasing trend ad reaches the plate 
velocity. Therefore, the graph for b = 0.1 shows an opposite 
trend.

For shear-thinning fluids, Fig. 10b indicates an increase 
in the velocity for all the corresponding values of the param-
eters. It is evident from the figure that when b changes from 
0.7 to 0.9, velocity decreases drastically and the decrease 

Fig. 9  a Non-dimensional velocity distribution at z = 0 for different 
A, when N = − 6, b = 0.5 and n = 1.5, b non-dimensional velocity dis-
tribution at z = 0 for different A, when N = − 6, b = 0.5 and n = 0.8, c 
non-dimensional wall shear-stress variation with z considering A as 

a parameter, when N = − 6, b = 0.5 and n = 1.5, d non-dimensional 
wall shear-stress variation with z considering A as a parameter, when 
N = − 6, b = 0.5 and n = 0.8
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in velocity, when b changes from 0.1 to 0.7, is gradual. For 
higher values of the non-Newtonian parameter b, the resist-
ance toward the flow increases. Therefore, with increase in 
b, velocity decreases. For b = 0.9, velocity decreases signifi-
cantly indicating that beyond this value of b (for the other 
values of the parameters as given) velocity is significantly 
lower in the entire channel.

Wall shear stress, at the lower wall, along z for different 
values of b is presented in Fig. 10c and d. Figure 10d dis-
plays nearly unaffected behavior with a change in b. With 
an increase in b, velocity decreases due to increase in flow 
resistance. However, this decrease in velocity is marginal 
when the velocity is already lower for higher values of b.

Figure 11a and b depicts the effect of n on the non-dimen-
sional velocity distribution both for shear-thickening and 

Fig. 10  a Non-dimensional velocity distribution at z = 0 for differ-
ent values of b when N = − 6, A = 0.8 and n = 1.8, b non-dimensional 
velocity distribution at z = 0 for different values of b when N = − 6, 
A = 0.8 and n = 0.8, c non-dimensional wall shear stress at z = 0 for 

different values of b when N = − 6, A = 0.8 and n = 1.8, d non-dimen-
sional wall shear stress at z = 0 for different values of b when N = − 6, 
A = 0.8 and n = 0.8
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shear-thinning fluids. An increase in n causes a significant 
decrease in the velocity both for shear-thickening and shear-
thinning fluids. However, for shear-thickening fluid, velocity 
is higher as expected. For n = 2, in case of shear-thickening 
fluid, the velocity decreases at a very lower value and then 
again it increases near the plate. It is interesting to note that 
velocity profile displays a different trend for with changes 
in n. Higher values of the non-Newtonian index n result in 

higher values of apparent viscosity of the fluids at any shear 
rate. Therefore, with an increase in n, for combined pres-
sure and shear driven flow, for a given N (non-dimensional 
pressure gradient) the resistance toward the flow increases 
which results in a decrease in the velocity. From the figure, 
it is clear that for N = − 6 and n = 1.1 the maximum velocity 
achieved is higher than that of the plate velocity. That means 
the shearing of the plate is retarding flow induced by the 

Fig. 11  a Non-dimensional velocity distribution at z = 0, for differ-
ent n when N = − 6, A = 0.8 and b = 0.5, b non-dimensional velocity 
distribution at z = 0, for different n when N = − 6, A = 0.8 and b = 0.5, 
c non-dimensional wall shear-stress variation in lower wall along z, 

for different n when N = − 6, A = 0.8 and b = 0.5, d non-dimensional 
wall shear-stress variation in lower wall along z for different n when 
N = − 6, A = 0.8 and b = 0.5
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pressure gradient. For n = 1.5, velocity decreases compared 
to the case of n = 1.1 as shown in Fig. 11a. With further 
increase in n, for n = 2, there is a significant decrease in the 
velocity in the central zone below that of the plate velocity. 
This may be attributed to the adverse effect of increased 

viscosity on the driving force due to the pressure gradient. 
However, near the upper plate (near y = 1), velocity shows 
an increasing trend due to the influence of the moving upper 
plate. At y = 1 (in the upper plate), velocity reaches the same 
velocity as of the plate. n = 1 implies the case of Newtonian 

Fig. 12  a Variation of maximum non-dimensional velocity with A, 
for pressure-driven flow, considering b as a parameter when N = − 8 
and n = 1.8, b variation of maximum non-dimensional velocity 
with A, for pressure-driven flow, considering b as a parameter when 
N = − 8 and n = 0.8, c variation of maximum non-dimensional veloc-

ity with A, for pressure- and shear-driven flow, considering b as 
parameter when N = − 8 and n = 1.8, d variation of maximum non-
dimensional velocity with A, for combined pressure and shear driven 
flow, considering b as parameter when N = − 8 and n = 0.8
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fluid; therefore, n = 1.1 indicates that the deviation from 
the Newtonian fluid behavior is marginal. For this case, 
velocity is relatively higher and then near the upper plate, it 
reaches the plate velocity. The graph for this case (n = 1.1) 
first shows an increasing trend with the depth followed by 
a decrease near the upper plate. In contrast, the velocity for 
n = 2 displays in increase with depth, but rate of increase is 
marginal. Near the plate, there is a significant increase in 
the velocity due to the moving plate. Therefore, the nature 
of these graphs differs in their pattern.

An increase in n, results in a significant variation in the 
lower wall shear stress as depicted in Fig. 11c and d.

Figure 12a and b presents the variation of non-dimen-
sional velocity with A for different values of b, for shear-
thickening and shear-thinning fluids, respectively, in case 
of pressure-driven flow. It is important to note that even 
for A in the range of 0.1 to 0.2, the change in the maximum 
velocity, for n = 1.8, is higher in case of pressure-driven 
flow condition, indicating a significant effect of the aspect 
ratio on the velocity. It is evident from Fig. 12a that the 
maximum velocity decreases with an increase in A. This 
rate of decrease of umax with A is lower for higher values 
of b when A is greater than 0.5. For higher values of A, 
the velocity is lower. Any further increase in b, causes a 
marginal decrease in the velocity as revealed by Fig. 12a. 
Figure 12b reveals that for shear-thinning fluid when n = 0.8, 
the influence of aspect ratio A on the maximum velocity is 
insignificant when A lies in the range 0.1 to 0.2. For b = 0.9, 
the effect of A on umax is less even for A = 0.4. For higher 
values of b, the velocity is lower; with any increase in A, 
then, the rate of decrease in velocity is lower rendering umax 
insensitive toward A even for A = 0.4. For combined pressure 
and shear driven flow, the effect of A on umax is depicted 
in Fig. 12c and d for shear-thickening and shear-thinning 
fluid, respectively. It is interesting to note from Fig. 12c 
that umax is unaffected by A for A > 0.5, when b = 0.9. When 
b = 0.7, umax is unaffected when A lies in the range 0.8 to 1. 
The results indicate that max is nearly unaffected by A on 
the higher side, for higher values of b. Higher values of b 
imply higher flow resistance, nullifying the effect of pres-
sure gradient in case of combined pressure and shear driven 
flow, rendering the maximum non-dimensional velocity to 
be unity (same as upper plate velocity). It is interesting to 
note that effect of change in the parameter b diminishes as 
the parameter A increases. Increase in b implies increase in 
the viscosity and thus higher resistance to the flow caus-
ing lower velocity. Similarly, higher values of the aspect 
ratio A means higher resistance offered by the wall friction 
resulting in lower velocity. It is evident from the figure that 
for A = 0.75 and above and for b = 0.3 and above, velocity 
is low. For this range of A, with an increase in b, the rate 
of decrease in the velocity is marginal. As the velocity is 
relatively low, any further increase in b affects the velocity 

marginally. However, for b = 0.1 to b = 0.3, the decrease in 
velocity with a decrease in b is significant even for higher 
values of A (A = 0.75 and above) as depicted by Fig. 12c.

Due to the combined effect of increase in b and A, veloc-
ity decreases significantly and any further change in b or 
even in A cannot affect the velocity significantly which is 
displayed by the graph for b = 0.7.

For n = 0.8, as presented in Fig. 12d, it is observed that 
the effect of A on umax is less for higher values of b even 
for A up to 0.5. Beyond A = 0.5, the effect of A on umax is 
significant for all values of b.

5  Conclusion

The pressure-driven, shear-driven and combined pressure 
and shear driven flow of Sisko fluid through rectangular 
channels has been investigated. Effect of the aspect ratio 
for flow of Sisko fluid has never been considered, and PDE, 
governing the flow, is reported for the first time. The gov-
erning PDE is strongly nonlinear in nature, and obtaining 
a closed-form solution or approximate analytical or semi-
analytical solution is a formidable task. Explicit finite dif-
ference scheme with an iterative solver is used to generate 
the numerical solution of the equation, and the variation of 
velocity and wall shear stress has been studied. The impor-
tant conclusions made from the study are given below:

• For pressure-driven flow, for A up to 0.1, effect of the 
aspect ratio in a rectangular channel can be neglected.

• The wall shear-stress variation along the lateral direction 
remains nearly unaltered for around 60% of the channel 
indicating the characteristics of flow through large paral-
lel plates.

• In case of shear-driven flow and combined pressure and 
shear driven flow also, the characteristics of flow through 
large parallel plates are observed in nearly 50% of the 
channel for A = 0.1 or less. This implies for up to 50% of 
the channel, near the core, the l assumption of large par-
allel plate generates reasonably accurate results, beyond 
which the effect of the aspect ratio is significant on sev-
eral occasions.

• An increase in the aspect ratio in case of both shear-
driven and combined pressure and shear driven flow, 
from 0.1 to 1, drastically decreases the velocity in a large 
portion of the channel. Whereas the linear velocity pro-
files, obtained in case of large parallel plate assumptions, 
for shear-driven flow, are observed for up to A = 0.25 and 
less, for both shear-thickening and shear-thinning fluids.

• The velocity of shear-thinning fluid is higher than the 
velocity of shear-thickening fluid in all cases.
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• The effect of n on velocity and wall shear stress is very 
strong both for shear-thickening and shear-thinning flu-
ids.

• With an increase in n, velocity and shear stress decreases 
significantly.

• The effect of b in presence of the aspect ratio effect is 
interesting. An increase in b from 0.1 to 0.3, when devia-
tion of n from 1 is large, results in a drastic decrease in 
the velocity for pressure-driven, shear-driven and com-
bined pressure and shear driven flows. This feature is 
depicted for the shear-thickening fluid case shown for 
n = 1.8. However, when n is close to unity, the effect of 
b on the velocity is gradual over a relatively wide range 
for all the cases.

In the present study, only the momentum conservation 
equation is solved and the results may be useful for study of 
forced convection heat transfer of Sisko fluid through rectan-
gular channels, where the velocity field is required to solve 
the energy conservation equation. For further investigation, 
flow and heat transfer aspect through channel with flexible 
walls can be considered; the advantages of flexible walls are 
already discussed. Forced convection and mixed convection 
can be considered with temperature-dependent properties, 
which will produce a coupled set of momentum and energy 
conservation equation, requiring more computational effort. 
It is important to mention that no experimental results on 
the flow of Sisko fluids through channel for pressure-driven, 
shear-driven and combined pressure and shear driven flow 
are reported in the open literature. Therefore, the results of 
the present study cannot be compared with any experimental 
data. In future, experimental study can also be conducted 
and the results of the present study can be compared.
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