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Abstract
The Wireless Sensor Network (WSN) personifies vital and active functions in multi-disciplinary research sectors, as it can
deploy in harsh and antagonistic atmospheres where the deployment of a wired system is not possible. However, designing an
energy efficient and durable WSN is still a key challenge. Though the contribution of the clustering mechanism attempts to
augment the network LifeTime, the energy consumption in the Cluster Heads (CHs) is rapidly high. This led to the frequent
change of CHs and minimized the network’s lifetime. To diminish these issues, we propose an Energy Efficient LifeTime
Maximization (EELTM) approach which utilizes the intelligent techniques Particle Swarm Optimization (PSO) and Fuzzy
Inference System (FIS). Further, we propose an optimal CH–CR selection algorithm in our approach which exploits the
fitness values calculated by the PSO technique to determine two optimal nodes in each cluster to act as CH and Cluster
Router (CR). The selected CH exclusively gathers the information from its cluster members, whereas the CR is liable for
receiving the gathered information from its CH and transferring it to the BS. Thus, the overhead of CH is reduced. Another
intelligent technique is that FIS figures out the radius for each CH, and thereby it partitions the network into unequal clusters.
The performance of our proposed EELTM approach is analyzed, and evaluations are elaborated with well-known existing
clustering algorithms. To assess the proficiency of EELTM and to evaluate the endurance of the network, efficiency parameters
such as total-remaining-energy, first-node-expires and fifty-percent-expires are exploited. The experimental outcomes justify
that the EELTM approach surpasses the existing mechanisms by 14%.

Keywords Wireless sensor network · Unequal clustering · Particle swarm optimization · Fuzzy inference system ·
Cluster head · Cluster router · Cluster radius

1 Introduction

1.1 Background

TheWireless Sensor Network (WSN) remains a well-known
wireless technology since it has multi-disciplinary applica-
tions. It comprises of Base Station (BS) and a high quantity of
spatially dispersed sensor nodes. The distribution of sensor
nodes can be either static or dynamic [1]. These sensor nodes
have the capability of monitoring the physical attributes such
as moisture level in the air, temperature, noise, pressure,
vibrations, etc.[2,3]. WSN can be incorporated in various
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circumstances to monitor, collect and transmit the physi-
cal and environmental occurrences. But there are significant
constraints that the deployed sensor nodes are restricted by
energy, computational capability, bandwidth and memory
[4,5]. Among them, the energy constraint of the sensor nodes
personifies a significant part in affecting the lifespan of the
network. Further, the transmission cost of the network over-
takes the sensing and computation cost [6]. Hence, the energy
of the nodes which is available for access should be utilized
efficiently to augment the network lifetime and to lessen the
communication cost [7].

The clustering technique is the essential approach in han-
dling the energy constraints of the sensor nodes [8]. This
technique segregates the entire network into certain groups
called clusters. All clusters have an individual leader called
Cluster Head (CH), and the rest of the nodes in the cluster
are said to be its members [9,10]. The elected CH is sus-
ceptible for gathering and transferring the data collected by
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the cluster members. The received data are transmitted to the
BS via single-hop (direct) or multi-hop transmission [11].
Generally, clustering is done in two ways, one is equal clus-
tering, and another one is unequal clustering [12,13]. In equal
clustering, the clusters are made up of the same quantities of
sensor nodes, whereas, in unequal clustering, the clusters are
made by various quantities of sensor nodes. Figure 1 shows
the architecture of the unequal clustering scheme.

In equal clustering, the dissemination of nodes in the net-
work directly affects its performance, and it can performwell
only when the nodes are uniformly disseminated [14]. Con-
sequently, it does notwork favorably inmost of the scenarios,
as the nodes are randomly deployed. Besides, there will be
more differences in the energy depletion (i.e., unequal energy
consumption) of CHs [15]. In general, a node in each clus-
ter that possesses higher residual energy will be chosen as a
CH [16]. After some period, the energy level of the selected
CH will be reduced due to communication overhead. So, for
the subsequent round, another node having higher residual
energy among the remaining nodes will be selected as the
next CH. Further, the CHs of longer distance spend more
energy on transmission than the other CHs. This leads to a
frequent change of CH which successively reduces the net-
work lifetime, as the frequent selection of CHs increases the
transmission of control packets.

In typical unequal clustering, the clusters are formed with
various dimensions depending on the distance [17]. The clus-
ters which are located closer to the BS will be smaller, and
its CHs are picked as forwarders, and the clusters which are
located far away from the BS will be larger. The chosen
forwarders are liable for accumulating and disseminating
the data collected by the remaining CHs in the network
[18]. Though unequal clustering forms balanced clusters,
the energy distribution will not be uniform, as the density
of the clusters may vary. When density is considered, there
is a probability that even the smaller clusters can have more
cluster members, which in turn collecting data from more
cluster members will consume more energy in the CH. This
leads the closely located CH to change frequently which in
turn lessens the network lifetime.

WSN is used in various terrains such as forest fire detec-
tion, animal tracking, security and surveillance, military
applications, environmental monitoring and so on. Most of
the WSN applications are usually deployed in a remote area
and inaccessible after deployment. Energy is one of the pri-
mary concerns in WSN application, since the sensor nodes
are equipped with limited battery power. The utilization of
energy of the sensor nodes has a greater influence in the net-
work lifetime. Various researchers have tried to minimize the
energy consumption of sensor nodes via various approaches
[9,19–52]. Clustering approach is one of the best ways to
minimize the energy consumption of a sensor network in an
optimizedmanner. Though there are various clustering proto-

Fig. 1 Architecture of unequal clustering in WSN

cols, the critical problems like energy optimization and load
balancing among the sensor nodes of a network demand addi-
tional examination. To address these problems mentioned
above and to augment the lifetime of WSN, we propose
energy efficient lifetime maximization (EELTM) approach,
which forms energy-balanced unequal clusters.

1.2 Authors’Contributions

The main objective of this paper is clustering in WSN in
an energy-efficient manner. Our EELTM apples the multi-
objective fitness function of the Particle SwarmOptimization
(PSO) algorithm for picking the CHs and the Cluster Routers
(CRs) for each cluster. The selected CHs by the EELTM
approach are liable only for accumulating the data from clus-
ter members, and the CRs are responsible for transmitting
the CH’s aggregated data. We further incorporate the Fuzzy
Inference System (FIS) to determine theClusterHeadRadius
(CHR) of each cluster. The CHR decides the size of each
cluster to form energy-balanced unequal clusters which in
turn minimizes the unequal energy consumption problem.
Besides, an energy threshold (ETH) is defined to balance the
energy distribution of nodes and to prevent the earlier death
of CHs. A new CH will be selected only when the energy
level of a CH is lesser than the ETH. By the ETH, the fre-
quent modifications in clusters are reduced, and the energy
is disseminated over the network, which successively extent
the lifetime of WSNs. The results of our approach are esti-
mated against the existing clustering techniques such as Low
EnergyAdaptive ClusteringHierarchy (LEACH) [9], Energy
Aware Unequal Clustering with Fuzzy (EAUCF) [42] and
Energy Efficient Unequal Clustering (EEUC) [43].

Our significant contributions in this paper are listed below:
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• Weproposed the EELTMapproach, which forms energy-
balanced optimal clusters for maximizing the lifetime of
the WSN network.

• In EELTM, we employed PSO-based multi-objective fit-
ness function to find the fitness value of each sensor node,
based on the important factors energy, density and dis-
tance.

• Further, we incorporated the Fuzzy-based Optimal CH–
CR selection algorithm to select CHs and CHRs.

• We introduced a CR node for each cluster to reduce the
overhead of CH and lessen the frequent change of CH
using energy threshold.

• The chosen CHs and CRs are responsible to do specific
tasks like collecting data from the sensor nodes and trans-
mitting the data to the BS, respectively.

1.3 Organization of the Paper

The structure of this paper is given as follows. The analysis
of previous works on various clustering mechanism is inter-
preted in Sect. 2. The in-depth description of the traditional
PSOalgorithm is given inSect. 3. Section4 contributes a deep
knowledge of the proposed EELTMapproach. Sections 5 and
6 deliver the results and the conclusion of our research work.

2 RelatedWorks

The clustering mechanism holds the most significant and
optimized solution inWSN. Initially, several clustering algo-
rithms have been designed. Later, smart procedures such as
evolutionary algorithms, neural networks, intelligent swarm
techniques and reinforcement learning are applied for fixing
numerous design concerns in WSN. The design concerns
include data aggregation, CH collection, synchronization,
routing and security. Since the nodes in the network rely on
each other with relevant metrics, configuring the structure of
the cluster by employing predefined rules is not profoundly
appropriate. For this reason, a smart technique is needed. In
addition to this smart technique, Fuzzy logic is required for
providing a remarkable solution for the problems with high
uncertainty [43]. Therefore, in this section, several strategies
like traditional strategy, swarm intelligence techniques and
fuzzy cumprocedures for clustering are reviewed elaborately.

2.1 Traditional Strategies

Low-EnergyAdaptiveClusteringHierarchyProtocol (LEACH)
[9] is one of the prominent clustering approaches in WSN.
It follows an iterative process in which it decides the CHs
in a random manner. As it accompanies a random selection
process, there are possibilities for selecting a node holding
very low residual energy as CH, which in turn causes ear-

lier death of CHs. Further, it follows single-hop transmission
which does not fit for large-scale WSNs.

A responsivemethodology calledHybrid Energy Efficient
Reactive [19] broadcasts the data based on the threshold rates.
Initially, the CH will broadcast a couple of threshold limits.
The nodes in the network are permitted to broadcast only
after checking the inequality between the sensed data and the
threshold limit. This protocol may diminish energy utiliza-
tion and improves the durability session andnetwork lifetime,
but realistically it cannot be practiced in all circumstances.
Because if a node does not hit the threshold limit, the data
will not be broadcasted and there will be a loss in perceiving
the sensing domain.

EEDC [20] is a clustering technique based on the distance,
which analyzes the availability of adequate space between
the chosen CHs to validate the uniform distribution of CHs.
If a CH holds the same or higher distance when compared
with the threshold distance, it is elected as a CH. Though this
technique is energy-efficient, it does not adhere to otherWSN
specifications, like monitoring the entire coverage zone.

An efficient data aggregation algorithm for WSN through
combined Power Efficient Gathering in Sensor Informa-
tion Systems (PEGASIS) algorithm and the Hamilton loop
algorithm is presented [21]. The whole sensing area is
divided non-uniformly to archive non-uniform clustering
using a threshold. Both single-hop and multi-hop transmis-
sion mechanisms used in this work by combining PEGASIS
algorithm and Hamilton loop algorithm. Further, using
Hamilton optimal moving pathmobile agents collect the data
from CH to achieve equal energy consumption and prolong
the network lifetime.

A Enhanced Power Efficient Gathering in Sensor Infor-
mation Systems (EPEGASIS) algorithm [22] is proposed to
solve hotspot problem with mobile sink to extend the life-
time of the WSNs. In EPEGASIS, optimal communication
distance is used to choose a relay node for data transmission.
Nodes whose remaining energy is less than the threshold
value will not act as a relay node to avoid early nodes dying.
Communication distance of the nodes is adjusted based on
the distance to themobile sink to reduce the energy consump-
tion which prolongs the networks lifetime

2.2 Swarm Intelligence Techniques

In [23], proposed Intelligent Data Gathering Schema with
Data Fusion(IDGS-DF). IDGS-DF scheme partition the
whole sensing region into several sub-partitions by virtual
grids. The cluster head is selected for each virtual grids based
on residual energy ratio and total neighbor distance. After
cluster head is selected, a pre-trained neural network algo-
rithm is used for data fusion in CH. Finally, the mobile agent
is gathered data fromCH using the predefined path. Each CH
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transfers the data to its neighbor CH which is closer to the
mobile agent.

A novel cluster head selection based on k-means and
binary PSO called KBPSO is proposed in [24]. Initially,
sensor nodes are divided as several fuzzy initial subsets
using fuzzy clustering based on geographical location. The
improved particle swarm optimization algorithm is used to
find the fitness values of each node by considering energy
consumption and distance factors.

An approach presented in [25] for mobile sensing by
drones in WSN. Data collection is done by autonomous
drones where Bacterial Foraging Optimization Algorithm is
used to allow drones to move in a specific organized way.
Significant advantages of this scheme are drones acting as
mobile sink and collect data from static sensors to improvise
the network coverage and network is improved.

The ABC algorithm commands the BS for enforcing the
clustering and routing activities [26].A centralized clustering
algorithm incorporates PSO, and an effective particle encod-
ing scheme determines fitness function for yielding stable
clusters in the network. PSO-C is a converged scheme in
which a function is deployed for diminishing the distance
between the clusters. It optimizes energy utilization, but it
is not suitable for random deployment as it is aware of its
location.

Bee-Sensor-C [27] is a superior interpretation of Bee-C
technique which is proposed for event-driven WSNs. Here,
the clusters are formed among the closer sensor nodes and
routing occurs correspondingly. Thus, it performs unstable
clustering alongwith routing based on its demands.However,
it leads to an increasing burden for the massive deployment
of WSN. In ERP protocol [53], a unique fitness count is
estimated by coherence and departure errors. Though it aug-
ments the life of the network, its stability is automatically
lessened. Further, it is not recommended for feedback-based
WSN as the feedbacks are incredibly conscientious.

A PSO-based scheme is proposed in [28] for solv-
ing hotspot problems caused by multi-hop communication,
which includes both clustering and routing algorithms. The
traffic load over cluster head (CH) is distributed evenly in
the routing phase. In contrast, the energy of CHs is reduced
fast in the clustering phase by considering the precise num-
ber of sensor nodes. For avoiding the mortality rate of CHs,
they developed a distributed scheme, which then completely
resulted from energy depletion. For clustering and routing
algorithm problems, they use LP formulations. The simula-
tion of the proposed algorithm is to demonstrate its strength
over other existing algorithms.

In [29], a routing scheme is proposed to balance the over-
all energy of the sensor network using energy center-based
clustering. PSO is used to remove the energy hole and helped
in searching energy centers for CHs selection. CHs were
selected by considering the location of the node using geo-

metric partitioning. Besides, a safeguard mechanism helped
in preventing energy nodes. The EC-PSO performs similarly
in network lifetime improvement and energy utilization ratio.

Amodifiedversionof thePSOalgorithmcalled clustering-
based fuzzy particle swarm optimization (CFPSO) is pro-
posed in [30] aimed to incorporate weak ties between
clusters, and degree of influence in affection. Since the PSO
algorithm holds the information about the neighborhood
nodes, the degree of the neighborhood for each particle is
determined. More particles from more clusters are allowed
to affect their degrees. Thus, based on the degrees of the
neighborhood the clusters are formed.

An energy-efficient coverage control algorithm [31] is
presented to solve the coverage hole problem in randomly
deployed sensor nodes of static WSN using PSO algorithm.
In this method, the whole sensing region is partitioned into
virtual grids and each virtual grids sensing radius is adjusted
based on each grid’s coverage rate. PSO algorithm is used to
change the sensing radius based on energy consumption,with
this balanced coverage rate and energy efficiency obtained.

A two-tier protocol is proposed in [32] to overcome the use
of infinite transmission range and location awareness. The
two algorithms were proposed to solve both clustering and
routing problems.Thefirst onefinds the optimal cluster heads
and their associative clusters with energy efficiency, network
coverage and cluster quality. The latter one is used to find the
optimal routing tree for inter-cluster communication using a
novel particle encoding scheme. This work is simulated with
no assumptions were made about the locations of the node.

Based on the improved PSO algorithm, a new technique
is introduced in [33] to extend the network lifetime in WSN.
The CH is selected based on the two major parameters,
namely residual energy and locations. For each cluster head,
the relay node is being selected based on the distance between
BSs and their corresponding cluster node. The relay node is
used to minimize the energy consumption of CHs, for choos-
ing the next-hop node and channel contention.

In [34], a trajectory scheduling for multiple mobile sinks
based on coverage rate is described. This work mainly
focuses on two works which is park position selection and
finding an optimal path for multiple mobile sinks. First one
uses improved PSO algorithm to select a park position for
data collection from other sensor nodes based on coverage
and overlapped coverage rate of sensors. Second, Genetic
Algorithm(GE) is used for finding the mobile sink’s optimal
moving path.

Genetic Algorithm [35]-based energy-efficient protocol
works in two states to boost up the durability of WSN. The
two stages include the initialization state and the fixed state.
In the initialization state, the genetic algorithm is responsi-
ble for constructing the clusters. In the next state, the TDMA
scheduler is responsible for transmitting the data in between
the clusters. LEACH-LPR [36] acts as a dynamically dis-
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persed clustering technique that relies on LEACHprotocol. It
chooses the CHs by dealing with the parameters like distance
among the BSs, the residual energy and the region frequency.
By incorporating a genetic algorithm, it overcomes the com-
putational overhead in WSN.

In [37], presented a clustering and routing mechanism
using Binary Particle Swarm Optimization (BPSO). A new
2d particle representation is used for clustering and routing
process rather than uni-dimensional representation. A novel
stochastic particle position update strategy is introduced to
update the 2d particle representation.A simple novel efficient
transfer function is used for continuous to discrete mapping.

An improved self-adaptive PSO is utilized along with
Fuzzy C-Means (FCM-IDPSO) [38] for effective clustering.
The system tried to avoid premature convergence and lead
toward global optimum by dynamically adjusting the param-
eters. Unlike the traditional PSO, the FCM-IDPSO utilizes
adaptive weights attained during training processes.

In [39], proposed a clustering algorithm considering the
new characteristic, i.e., buffer size of the sensor node. Two
clustering method is presented using two different swarm
intelligence algorithm called Grey Wolf Optimizer (GWO)
and Whale Optimization Algorithm (WOA). This clustering
method is mainly focused on heterogeneousWireless Sensor
Network with considering the buffer overflow problem.

In [40], presented a power-efficient clustering-based rout-
ing named as ABC-SD. In this method, the artificial bee
colony (ABC) meta-heuristic algorithm’s search features are
used to create power-efficient clusters. Clustering is done
based on sensor energy and neighborhood information sen-
sors. The cluster head is chosen using a multi-objective
fitness function. The entire clustering process is accom-
plished at the base station using a centralized algorithm.
An optimum routing path is selected by cost-based func-
tion which deals energy and number of hops. This technique
performance is measured in terms of packet delivery ratio,
network coverage and lifetime.

2.3 Fuzzy-Based Techniques

An extended version of LEACH is proposed in [41] which
selects a single CH among the CHs as a super-cluster head
to transfer the information to the mobile BS by using fuzzy
logic. The input fuzzy descriptors are battery power, mobility
of BS and centrality of clusters. The output fuzzy descriptor
is the probability of each CH to act as a super-cluster head.

EAUCF [42] forms unequal clusters with the aim of
enhancing the lifespan of WSNs. The radius of each clus-
ter depends on its remaining energy as well as on its distance
to the BS, and it is determined by the fuzzy-based distributed
mechanism.

EEUC [43] is a competitive approach in which each clus-
ter is assigned with an initial radius, and it selects the CHs of

each unequal cluster by conducting a local competition. In
this approach, nodes can probabilistically decide its partici-
pation in the local CH competition based on the time interval
between two successive cluster formation processes.

A fuzzy-based clusteringmethod [44] accompanies inputs
like centrality, power degree and frequency for the CH elec-
tion. The proximal distance from the center of the cluster is
represented as centrality, and the closeness of nodes in the
network is represented as frequency. This system estimates
the Mamdani Fuzzy Inference System (M-FIS).

For the selection ofCHs using fuzzy approach, a new algo-
rithm called DUCF is used in [45]. For balancing the energy
consumption among CHs, DUCF forms unequal clusters.
The DUCF uses three parameters such as residual energy,
node degree and distance to BS as input variables for CHs
selection. The output of fuzzy parameters is the probabil-
ity and size of the cluster. The cluster size of CHs is being
depicted based on the farther and nearer distance from the
base stations. It is indicated that the result of DUCF forms
unequal balancing, which ensures load balancing among
CHs.

The (MOFCA) Multi-Objective Fuzzy Clustering Algo-
rithm [46] aimed to conquer the hotspot issues in WSN. It
does not require centralized control of BS for electing the
CH. Thus, it reduces the complexity of the sink node and
increases its energy efficiency. Fuzzy-Logic-based Energy
Optimized Routing (FLEOR) [47] algorithm selects the CH
by utilizing the criteria such as the shortest path between
nodes, the proximal range among the node and sink node,
and the power density. The Fuzzy logic algorithm performs
multi-hop broadcasting for electing the optimal CH. How-
ever, this algorithm does not perform well when the nodes
are in a mobility state.

A non-centralized fuzzy-based clustering protocol is
CHEF [48] which uses the network’s local information for
electing the Local-CH. It fuses residual energy and proxim-
ity as input parameters for electing the CH. However, it acts
similarly to LEACH. Similar to CHEF, FBUC [49] is also to
a non-centralized fuzzy seeded clustering protocol, and it is
an upgraded transcription of EAUCF technique. It employs
probability evaluation for electing the Tentative-CHs (T-
CHs) and fuzzy logic for the evaluation of competitive radius
among T-CHs. The optimal CHs are chosen from T-CHs by
estimating the enduring energy and the density of the T-CHs.

The Improved Fuzzy Unequal Clustering (IFUC) mech-
anism [50] utilizes the residual energy, proximal distance
between BSs and the frequency of a node for estimating the
feasibility of a node to evolve as a CH and for evaluating the
radius of each cluster. Here, the data are broadcasted from
CHs to BSs by employing ACO algorithm. The relay node
is elected by examining the cost of communication, and the
total energy spent. Though it enhances the lifetime of the
network, it fails to analyze the hotspot issue.
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Table 1 Related definitions Symbol Description

PVx Velocity of the individual particle x

PPx Current position of the particle x

τ Weighting coefficient

const1& const2 Constant values

rnd1 & rnd2 Random values

PLBx Previous local best of the particle x

PGBx Previous global of the particle x best

Cn Number of awakened nodes available in the particular sensing range

Tn Number of awakened nodes

D Distance

d Particle’s density

di Distance among sensor node i

dp Distance between the particle and the BS

E (p) Particle’s energy

α1, α2& α3 Weight values

f Fitness value

Fuzzy and Ant Colony Optimization-Based Combined
MAC, Routing and Unequal Clustering Cross-Layer Pro-
tocol for WSN (FAMACROW) is a hybrid and cross-level
stratified technique which employs fuzzy and ACO mecha-
nism [51]. It chooses the CHs by concerning the energy of
residual nodes, the density of the nodes and the nature of the
connection established. Here the relay node is selected with
the aid of ACO, which examines the length of the queue, and
it delivers likelihood.

Another hybrid method of PSO with Fuzzy is proposed in
[52] to deal with the energy consumption limitation in sensor
nodes. An improved FCM algorithm is used to create clus-
ters, which includes energy as a parameter in the objective
function. Another objective function is developed in PSO, for
calculating the non-connected sensor nodes in each cluster.
Additionally, PSO is used for selecting the optimal CHs.

3 Traditional Particle SwarmOptimization
Algorithm

PSO demonstrates a computational approach to figure out
the issues within complex nonlinear optimization tasks [54–
56] which imitates and stimulates the behavior of bird flocks.
It is an optimization mechanism which utilizes a sequence
of recurrent statements. By optimizing the issues, it yields
an enhanced version of resolution for any complex problem.
PSO considers a bunch of particles as the significant compo-
nent and these particles are abstracted as the population in
the area of exploration range. In a given exploration range,
each particle occupies a specific position and has the ability
to move around which is termed as the velocity of the par-

ticle. The position and velocity of each particle support in
deciding its exploration direction and distance. It also has its
peculiar fitness function to amplify its characteristics. The
symbols used in PSO and EELTM are illustrated in Table 1.

In PSO [57,58], the updated velocity (pvx+1) and posi-
tion (ppx+1) of individual particle is rejuvenated in each
iterative statement by exploiting the particle’s current veloc-
ity (pvx ), current position (ppx ), local_best (pLBx ) and
global_best (pGBx ). The next_velocity in addition to the
next_location of each particle is predictable by the previ-
ously predicted velocity of each particle. In each iterative
statement, the velocity of the particle will be modernized by
the predicted higher value from the previous iterative state-
ment. The initial maximum value obtained is referred to as
the present fitness value, and it is represented as particle best
(pB). In its recent repetitive statement, if any obtained value
is higher than of its neighbors, then it is referred to as the
particle local best (pLB). In the upcoming stages, if any
obtained value is higher than that of all its previous values,
then it is referred to as the particle global best (pGB). In
our EELTM approach, the nodes in the network are depicted
as particles. Figure 2 expresses the workflow diagram of the
PSO algorithm.

By considering the procedure of PSO, our EELTM
approach assumes that it contains n particles. The velocity
and position of (x + 1)th particle in the search space are
defined in Eqs. 1 and 2.

pvx+1 = τ pvx + (const1 ∗ rnd1)(pLBx − ppx )

+(const2 ∗ rnd2)(pGBx − ppx ) (1)

ppx+1 = ppx + PV x+1 (2)
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Fig. 2 Workflow diagram of PSO algorithm

4 Energy-Efficient LifetimeMaximization
(EELTM) Approach

4.1 Overview

Our EELTM approach intends to maximize the lifespan of
the sensor network through the formation of energy-balanced
unequal clusters. EELTMperforms in two stages, one is PSO-
based optimum node selection phase, and another one is
Fuzzy-Based Energy-Balanced Unequal Cluster Formation.
In the optimum node selection phase, the BS manipulates
the PSO to find which node is an optimum node to act as a
CH. The PSO algorithm uses the density, the distance and
the energy of an individual sensor node to evaluate the fit-
ness value of each node. A node that possesses the highest
fitness value is adopted as a CH. Further, a node which is in
the region of any CH possesses next higher fitness value is
selected as a CR. The optimal CH–CR selection algorithm
selects the CHs and CRs. After a CH is selected, EELTM
uses fuzzy rules to estimate the radius of each CH. The FIS
exploits the density, the distance and the residual energy of
sensor nodes as input variables and the CHR of each CH as

the output variable. Figure 3 shows the difference between
traditional and our proposed framework of unequal clustering
in WSN.

The BS directly involves the procedure of optimum node
selection phase and in the cluster formation phase. This cou-
ple of actions is looped in every cluster formation stagewhich
causes excessive energy consumption in sensor nodes for the
transmission of control packets. For evading this issue, the
EELTM approach forms new clusters only when the energy-
threshold (ETH) is higher than the residual energy of existing
CH. The value of ETH is the difference between the aver-
age energy (EAVG) and the standard deviation of remaining
energy (ESD) of the entire alive nodes in the network (i.e.,
ETH = EAVG − ESD). Thus, the EELTM approach mini-
mizes the energy consumption, and thereby it maximizes the
network lifetime.

4.2 PSO-Based OptimumNode Selection

Since the sensor nodes are randomlypositioned in the specific
sensing domain, the BS requires knowing their contexts. It
transmits a request message in f o_request to all the nodes.
On receiving this request, each sensor node formulates a reply
message in f o_reply which encloses the information like
position, distance to the BS and its residual energy. By using
this information, the BS applies the PSO algorithm to find the
fitness value of the node to determine the CHs. The following
are the crucial factors that are used to estimate the fitness
value of each node.
(1) Density

The density of the sensing region can be elucidated as
the proportion of the quantity of awakened nodes available
in the particular sensing range to the sum of the quantity
of awakened nodes. Equation 3 represents the mathematical
illustration of density.

Density, d = Cn

Tn
(3)

(2) Distance
The distance can be elucidated as the product of particle’s

density and the average distance, whereas the average dis-
tance is the ratio of average distance among individual sensor
node in the cluster and the BS to the distance bounded by the
particle and the BS. Equation 4 represents the mathematical
illustration of distance.

Distance, D = d ∗
∑ di

Cn

dp
(4)

(3) Energy
The energy (e) of each node can be derived by the dissim-

ilarity among the energy expenditure of the CH and the ratio
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Fig. 3 Traditional framework versus proposed framework of energy-balanced unequal clustering in WSN

of average energy.Where average energy is the proportion of
a particle’s energy to the mean energy of remaining nodes in
the cluster. The energy utilization of the CH is elucidated as
the product of distance and the sum of the amount of energy
spent on broadcasting n bits (n). Equation 5 represents the
mathematical illustration of energy.

Energy, e = E(p)
∑ E(pi )

Cn

− (D ∗ n) (5)

The fitness function ( f ) of the PSO algorithm is con-
trariwise proportionate to the density of each particle in the
transmission range. Equation 6 represents the mathematical
illustration of density.

Fitness, f ∝ 1

d
(6)

We aim to maximize the fitness value, which is to choose
an optimal node that possesses high energy, lower distance
and less density. Weight Sum Approach (WSA) [59] is used
for the development of fitness function with multiple objec-
tives. WSA selects multiple weight values αi based on the
priority of each objective and multiplies them with the cor-
responding objective. Following the same mechanism, we
multiply the weight values α1, α2, and α3 with the objectives
energy, distance and density. Considering these objectives,
energy has the highest priority, and density has high priority

Table 2 Sorted fitness values of
selected sensor nodes

Node ID Fitness value

45 10.00

26 9.76

39 9.01

4 8.67

than distance, and thus theweight valueswereα1 > α3 > α2.
Thus, a proposed fitness function is constructed by incorpo-
rating α1, α2, and α3, which is as follows,

f = (α1 ∗ e) + (α2 ∗ D) + α3

d
(7)

where α1, α2 and α3 hold a non-negative value between 0
and 1, such that α1 + α2 + α3 = 1.

The above fitness value is estimated in an iterative way
and by which it yields PLB and PGB. The iteration at which
the particle global best is obtained will be involved in the
selection of CH. After obtaining the fitness value of indi-
vidual nodes, it is sorted in descending order. The sample of
sorted fitness values of randomly selected nodes is illustrated
in Table 2.

The radius of the CH will be determined by utilizing
the FIS. Thus, the EELTM approach forms energy-balanced
unequal clustering in the network.
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Algorithm 1: Optimal CH–CR selection algorithm
Input: Sorted Fitness Values (SN1 , SN2, …, SNn)
Output: Cluster Heads (CH1, CH2, …, CHm ) with CHR) and

Cluster Router (CR1, CR2, …, CRm )
1 while SNi �= SNn do
2 if SNi is in the range of any CHj then
3 if CHj has CR j then
4 goto Step 1;
5 else
6 Make SNi as CR j for CH j ;
7 goto Step 1;

8 else
9 Find the CHR for SNi using Fuzzy rules given in Table 3;

10 Set SNi as CHi ;
11 goto Step 1;

4.3 Fuzzy-Based Energy-Balanced Unequal Cluster
Formation

The following are the significant phases which are entangled
in the fuzzy logic system [60–62]:

• Elucidation of linguistic input variablesThis stage is also
known as the initialization phase. In this initialization
phase, the universe of input variables is grouped into cer-
tain digits of fuzzy subcategories.

• Fuzzification In fuzzification, each subcategory contains
crisp and linguistic input variables is assigned with a
linguistic tag, respectively. This phase is also known as
configuring the subcategories of fuzzy.

• Formulation of membership function It is a simplified
formof the indicator function for the corresponding fuzzy
subcategories which directly indicates the depth of truth.

• Construction of expertise base It contains an expertise
base, which holds a bunch of rules in the form of IF-
THEN-ELSE structures

• Evaluation of expertise rules Predefined fuzzy operations
are utilized to evaluate the expertise rules. The predefined
fuzzy operations were MAX and MIN which represents
OR and AND, respectively. This is also known as desig-
nating the interconnection among fuzzy contribution and
its yield.

• De-Fuzzification it converts the obtained fuzzy output
into a crisp value by incorporating the membership func-
tion.

Our EELTM approach incorporates FIS to discover the
CHR of each CH in the network. Each CH has a unique
CHR depending on the density, the distance to BS and its
residual energy. As equally distributed CHs produce more
balanced clusters over the network, we paid more distinctive
attention for choosing a node as CH. To attain this, one CH
should not be positioned within the radius of other CHs. So,

a node possessing higher fitness value will be chosen as CHs,
with a criterion that it is not positioned within another CHR.
Besides, if a node located within another CHR possesses the
next higher fitness value when compared with the fitness
value of its CH, then it is chosen as the CR. Therefore, in
each CHR, there will be a CH and a CR. The remaining nodes
which are in the range of the CHR will be the members of
that particular cluster. Thus, the redundancyofCHs is evaded,
and no two CHs will be proximally closer to each other. By
this, EELTM produces energy-balanced distributed clusters
throughout the AOI. The process of CH and CR selection
is scripted in Algorithm 1, and its execution procedure is
illustrated in Fig. 4.

Generally,more energywill be dissipated for transmission
than sensing. So, if the CH involves both in aggregation and
transmission of data, its energy will be reduced in a faster
manner which leads to the change of CH. To avoid this issue,
the CH is responsible only for gathering the data from its
cluster members, and the chosen CR transmits the gathered
data to the BS. Thus, the CR reduces the overload of CH and
the frequent changes of CHs.

The FIS takes the density of node (d), the distance
bounded by the node and the BS (dp) and residual energy
of each sensor nodes (E(SNi ))) as inputs and yields CHR of
each CH as output. Figure 4 shows the execution procedure
of the optimal CH–CR selection algorithm.

To find the CHR of each CH, fuzzy expertise rules are
applied to all CHs. Our EELTM approach uses 18 rules and
is comprised in Table 3. These rules are assessed by M-FIS
approach, and defuzzification is done by [63] Centroid of
Area (COA) approach. Themathematical illustration ofCOA
is displayed in Eq. 8.

COA =
∫

�p(x) · xdx
∫

�p(x) · dx (8)

There are three linguistic variables for the input d, and
they are lower , average and higher . The overall range of
d fluctuates between 0 and 1. Likewise, the linguistic vari-
ables also have their corresponding ranges. The linguistic
variable lower fluctuates in the range between 0 and 0.5,
i.e., {lower|0 ≤ lower ≤ 0.5}, average fluctuates in the
range between 0 and 1, i.e., {average|0 ≤ average ≤ 1},
and higher fluctuates in the range between 0.5 and 1, i.e.,
{higher|0.5 ≤ higher ≤ 1}. The membership function of d
is illustrated in Fig. 5.

The linguistic variables for the input dp are nearby,moder-
ate and faraway. The overall range of dp fluctuates between
0 and 100. The linguistic variable nearby fluctuates in the
range between 0 and 50, i.e., {nearby|0 ≤ nearby ≤ 50},
moderate fluctuates in the range between 0 and 100, i.e.,
{moderate|0 ≤ moderate ≤ 100}, and faraway fluctuates in
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Table 3 Fuzzy Expertise Rules
for CHR Selection

Residual energy E(SNi ) Distance to the BS (d) Density (dp) Cluster Head Radius (CHR)

Deficient Nearby Higher Tiny

Deficient Nearby Average Tiny

Deficient Nearby Lower Small

Tremendous Nearby Higher Average

Tremendous Nearby Average Big

Tremendous Nearby Lower Massive

Deficient Moderate Higher Tiny

Deficient Moderate Average Small

Deficient Moderate Lower Average

Tremendous Moderate Higher Small

Tremendous Moderate Average Big

Tremendous Moderate Lower Massive

Deficient Faraway Higher Tiny

Deficient Faraway Average Small

Deficient Faraway Lower Average

Tremendous Faraway Higher Small

Tremendous Faraway Average Average

Tremendous Faraway Lower Big

Fig. 4 Execution procedure of optimal CH–CR selection algorithm

Fig. 5 Membership function for density of node

the range between 50 and 100, i.e., {faraway|50 ≤ faraway ≤
100}. The membership function of dp is illustrated in Fig. 6.

The linguistic variables for the input E(SNi ) arede f icient
and tremendous. The overall range of E(SNi ) fluctuates
between 0 and 1. The linguistic variable de f icient fluctu-
ates in the range between 0 and 0.6, i.e., {de f icient |0 ≤
de f icient ≤ 0.6}, tremendous fluctuates in the range
between 0.4 and 1, i.e., {tremendous|0.4 ≤ tremendous ≤
1}. The membership function of E(SNi ) is illustrated in Fig.
7.
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Fig. 6 Membership function for distance to the BS

Fig. 7 Membership function for residual energy of node

Fig. 8 Membership function for cluster radius (CHR) of node

The overall range of CHR is considered to be the aver-
age size of AOI, i.e., {CHR |0 ≤ CHR ≤ 50}. The output
yields the member functions T iny, Short , Average, Big
and Massive. The member function tiny represents the
smallest CHR, and massive represents largest CHR. The

Table 4 Parameters for simulation

Parameter Value

Area of interest 200 m * 200 m

Number of sensor node 200

Packet size 4000 bits

E_amp 100 pj/bit/m2

E_elec 50 nj/bit

Initial energy 1J

membership functions and its corresponding CHR are illus-
trated in Fig. 8.

5 Experimental Results

5.1 EELTM SystemModel

The proposed WSN model has some assumptions as given
below

• The sensor nodes are positioned randomly.
• The nodes have similar characteristics and posses unique
ID

• The locality of BS is familiar to all the sensor nodes.
• Receive signal intensity indicator is adapted to find the
distance among nodes.

• Each node has an equal amount of initial energy.

Our energy paradigm uses an abstract one-order radio
paradigm. The radio spends Eelec = 50nj/bit toward operat-
ing the transmitter or receiver integrated circuit and Eamp =
100pj/bit/m2 is the energy dissipated in the transmit ampli-
fier. Thus, the energy needed to broadcast a n bit data about
a d distance is given in Eq. 9.

ETx (n, d) = n × Eelec + n × Eamp × d2 (9)

In the receiver, the energy required to accept n bit data is
represented in Eq. 10.

ERx (n) = n × Eelec (10)

5.2 Evaluation Parameters

Typically, the efficiency parameters like First Node Expires
(FNE), Fifty Percent Expires (FPE) and Total Remaining
Energy (TRE) are exploited to assess the proficiency of an
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algorithm and for evaluating the endurance of the WSN net-
work [64–66]. The parameter FNE estimates the state at
which the first node among all nodes expires. FPE determines
the round at which fifty percent of the nodes die, and it is nec-
essary for the prospect of coverage area in AOI. Among these
parameters, the FNE is considered in the sparsely distributed
network in which the expiration of a single node is exces-
sively pivotal. For other divergences, FNE is not remarkably
substantial as the sensor network can perform its prescribed
task even though the first node is not alive. Therefore, to val-
idate the EELTM approach and for estimating the endurance
of the WSN, we exploit the parameters FNE, TRE and FPE.

Themost popular simulation toolMATLAB(R2017a) [67]
is used to run our proposed work. For the simulation, around
200 wireless sensor nodes are scattered randomly over the
sensing zone (AOI) of dimension 200m length and 200m
breadth. Through the first-order energy model, the energy
consumed for communication is calculated in which the ini-
tial energy is 1 J . The parameters used for the computation
are represented in Table 4.

Numerous simulation experimentationunder several phases
were done to assess our EELTM approach. In order to make
our simulation closer with the real-world WSN, we incorpo-
rate two significant phases based on the position of the BS.
In the first phase, the BS is positioned at the midpoint of
the sensing region and in the next phase, the BS is positioned
distant from the sensing region, i.e., the distance between the
BS and sensing field is a little high. The simulation of each
phase continues until all the node expires in the network and
the acquired outcomes are exposed in this section.

5.3 Phase-1: The BS is Positioned at theMidpoint of
the Sensing Region

The location of the BS is positioned in the midpoint of AOI
for this phase. This circumstance is chosen for deriving the
complete effects based on the position of the BS. Here, the
measurement of TRE is done approximately in the 500th

round. An illustration of phase-1 is represented in Fig. 9.
Table 5 represents the simulation results of this phase.

Based on the results, it is apparent that the outcome of the
EELTM approach is higher than the remaining existing algo-
rithms while considering all efficiency parameters. However,
by considering the decreasing quantity of alive sensor nodes,
it is apparent that all existingmechanisms excluding LEACH
engage with approximately homogeneous executions. Here,
the LEACHmechanism has deprived performance, as it only
exploits the probabilistic method and it does not consider the
parameter TRE while choosing final CHs.

Ourmain focus is the energy efficiency of the sensor node.
That is defined by using TRE metric. In this phase, 500th

round is considered as the measurement point. Performance
of EAUCF is slightly closer to our proposed; however, it per-

Fig. 9 Representation of phase 1: the BS is positioned at the midpoint
of the sensing region

Table 5 Result for phase-1 for FNE, FPE and TRE

Algorithm FNE FPE TRE

LEACH [9] 247 471 0.16

EAUCF [42] 369 688 0.26

EEUC [43] 334 652 0.22

EELTM 469 759 0.27

Fig. 10 Number of iterations versus % of alive nodes for phase-1

Fig. 11 Number of iterations versus % of TRE for phase-1
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Fig. 12 Representation of phase 2: the BS is positioned faraway from
the sensing region

forms much better than LEACH and EEUC if we consider
the TRE metric. FNE and FPE metric is used to measure
the performance of load balancing in WSN. FNE is much
better than other compared algorithms since network load is
distributed across the network. Similarly, FPE is also bet-
ter than LEACH, EEUC and EAUCF. Figure 10 illustrates
the dissemination of alive nodes for the count of iterations
of phase-1. Further, Fig. 11 interprets the sum of lessened
residual energy for the number of iterations of phase-1.

From Fig. 10, it is recognizable that the LEACH algo-
rithm performs poorly than all other algorithms. The EAUCF
and the EEUC approach have more or less similar results,
but in the end, EAUCF approach has more number of iter-
ations than EEUC. Our proposed method performs well in
the initial stage; however it is slightly closer at the end stage.
Distributions of the total remaining energy with respect to
the number of iterations are depicted in Fig. 11. By seeing
at number of iteration, LEACH is lesser than all others and
EAUCF is closer with EELTM in terms of the number of
iterations. In this phase, when compared to the existing algo-
rithms LEACH, EAUCF, and EEUC and by considering the
FNEparameter, the performance of EELTMexceeds by 43%,
22%, and 29% respectively. Similarly, EELTM exceeds the
above-mentioned existing algorithms by 8%, 9%, and 15%
when considering the FPE parameter and it is very closer to
EAUCF for the TRE parameter with 4% differences.

Table 6 Result for phase-2 for FNE, FPE and TRE

Algorithm FNE FPE TRE

LEACH [9] 104 193 0.12

EAUCF [42] 105 201 0.18

EEUC [43] 109 221 0.17

EELTM 156 271 0.22

Fig. 13 Number of iterations versus % of alive nodes for phase-2

Fig. 14 Number of iterations versus % of TRE for phase-2

5.4 Phase-2: The BS is Positioned Distant from the
Sensing Region

In this phase, the nodes are arbitrarily distributed, and the
BS is positioned far away from the region of AOI. The fun-
damental concept behind choosing this phase is to find the
outcome of the location of the BS. An illustration of this
phase is represented in Fig. 12.

Table 6 represents the simulation results of this phase.
From the results, it is apparent that the outcome of EELTM
is higher than the remaining existing algorithms in consider-
ation of all efficiency parameters. Here, the measurement of
TRE is done approximately at 200th rounds. Further, by con-
sidering the FNE parameter, all the compared mechanisms
have similar performances; however, when dealing with the
FPE metric, EEUC achieves much better than LEACH and
EAUCF. The performance of EELTM is higher than all the
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compared mechanisms in terms of FPE metric. Considering
TRE metric, EAUCF and EEUC mechanisms have simi-
lar performance and better than LEACH. EELTM performs
slightly higher than all the compared mechanisms when con-
sidering TRE metric.

TheEAUCFmechanismperformed4%better thanLEACH
mechanism. EEUC performs 9% better than EAUCF and
EELTM performs 30% better than other algorithms for FNE
and 18% better than for FPE parameter. From Fig. 13, in the
beginning, the mechanisms EEUC and EAUCF have similar
performances, but when the FPE parameter is considered the
performance of EEUC has been enhanced when compared
to EAUCF. From Fig. 14, the EEUC, the EAUCF and the
EELTM have similar performance and similar energy uti-
lization. Though, after FPE is reached, the TRE of EAUCF,
and EEUC algorithms lessen rapidly than EELTM until the
last node dies. In this phase, when compared to the existing
algorithms LEACH, EAUCF and EEUC, the performance of
EELTM exceeds by 45%, 18%, and 23% respectively, when
considering the FNE parameter.

6 Conclusion

In this paper, we proposed a novel EELTM approach to fig-
ure out the frequent CH change issue and to augment the
lifetime of WSN. Our proposed EELTM approach utilizes
an iterative computational technique called PSO for evalu-
ating the fitness value of each node. Based on the obtained
fitness values, the best CHs and CRs are selected through the
optimal CH–CR selection algorithm.We also incorporate the
FIS technique to determine the CHR of each cluster and to
handle the uncertainties of data. Additionally, an ETH value
is defined to avoid frequent changes in CHs.When compared
with the existing techniques, the extensive experiments jus-
tify that our proposed EELTM approach performs well and
it lessens the energy utilization of the network. Thus, the
EELTM approach amplifies the lifetime of the network. In
future, the FIS can be formulated with additional parame-
ters like quality of the connection established and its other
associated parameters.
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