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Abstract
CMC is an important parameter for the characterization of surfactants. Compared to other properties, the CMC can be
correlated with surfactants performance characteristics on an industrial scale. In this investigation, QSPR models were
established to identify the relation between the molecular structures and the critical micelle concentration (CMC) of 50
anionic surfactants employing four molecular structural descriptors. Three regression methods were chosen in this work
to develop robust predictive models, namely multilayer perceptron–artificial neural network (MLP/ANN), multiple linear
regressions, and partial least square approach. To establish the reliability and the robustness of the developed QSPR models,

all available validation strategies were adopted. The best results
(
r2m � 0.87; Q2

LOO � 0.93; Q2
F1 � 0.95;�r2m � 0.15

)
were

obtained for MLP/ANN with a 4-3-1 artificial neural network model trained with the Broyden–Fletcher–Goldfarb–Shanno
algorithm. In this study, it is observed that electronic properties, structure and size of the molecule, as well as the number of
atoms in the longest aliphatic chain play major roles in the development of the CMC model of anionic surfactants.
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1 Introduction

A large number of main properties of the surfactant solu-
tion such as conductivity, emulsification, surface tension,
detergency, foam stability and conductivity are important for
many industrial and biological systems [1–4]. In addition, it
has been established that the values of these physicochem-
ical properties change radically as soon as the molecules
begin to aggregate to form micelles [5]. At this moment, the
concentration of the surfactant is defined as critical micelle
concentration (CMC). Therefore, the CMC is an important
and extremely useful parameter for characterizing surfac-
tants. Given the impact of CMC on the characteristics of
surfactant, it seems obvious to pay special attention to it [4].
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Anionic surfactants constitute the largest class of surfac-
tants.Of all types of surfactants, they are themostwidelyused
and account for about 70% of the surfactant consumption [6].
Various industrial processes are carried out with the addition
of anionic surfactants. They are used aswetting agents, emul-
sifiers, dispersants and foaming agents. They play a major
role in modern cleaning products (laundry detergents, elec-
tric dishwashing detergents, and in some shampoos) due to
their superior detergency performance [7]. In addition, these
compounds are often added to a variety of products, such
as pharmaceuticals, antimicrobials and corrosion inhibitors
[4]. From the moment that micellization process is impor-
tant from both technological and environmental point of
view, many researchers use quantitative structure–property
relationships (QSPR) models [8] to provide early CMC esti-
mations on the one hand and to design new surfactants with
a special property on the other hand. The QSPR princi-
ple consists in finding a correlation between a property (or
activity) of a substance (such as CMC) with its structural
characteristics (molecular descriptors) reflecting topological,
geometric and electrostatic aspects of a molecule. QSPRs are
very practical methods involved in the early assessment of
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physico-chemical and biological parameters of substances
that have not been studied experimentally.

Indeed, founded over 50 years ago by Corwin Hansch,
quantitative models of “structure–activity” (QSAR) rela-
tionships are widely used at university research structures,
industry and several government agencies (OECD, REACH,
etc.). The abundance of experimental databases for millions
of products added to pressure from several organizations
to minimize the use of animals has encouraged the use
of QSAR/QSPR as a promising alternative in drug design,
toxicology and ecotoxicological risk assessment [9, 10]. Ref-
erence works dealing with fundamental concepts of QSAR
modeling and their basic concepts for applications in risk
assessment are currently available in the literature [11, 12].

Recently, large amounts of QSPR approaches have been
developed to estimate the physic-chemical parameters of a
large group of important compounds for industrial appli-
cations [13–16]. In the past two decades, few studies have
been published on the establishing of QSPR models to pre-
dict CMCs for anionic surfactants. A QSPR approach was
designed to attempt to correlate the molecular structure
of 119 anionic surfactants to their CMC [17]. With three
descriptors containing information on the size, structure and
hydrophobic properties of the surfactants studied (n � 68),
a regression model was developed. A very good value of
the coefficient of determination (R2 � 0.988) was obtained.
Recently, a set of 31 anionic surfactantswas used to develop a
QSPRmodel linkingmolecular structural parameters and log
CMC [4]. The statistics of these models (R2 � 0.964 and R2

� 0.982) with each other with cross-validation performance
confirm the aptitude of both models to predict the CMC of
anionic surfactants. In conclusion, the authors suggest that
the branching and the polarity of the compounds studied con-
tribute significantly to the micellization process. However,
they claim that the polarity contributes less to this process.

A QSPR study was developed for the quantification of
CMC from the logP (octanol/water partition coefficient) for
a various range of anionic surfactants [18]. Acceptable mod-
eling was obtained by using two parameters, πh and L. In
the same year, 37 anionic surfactants of sodium alkyl sul-
fates and 3 descriptors were used to develop a QSPR model
for the prediction of CMC [19]. Given the results obtained,
the authors suggest the use of this model in the context of the
prediction of the CMC of anionic surfactants

In a report published in 2004 [20], 98 anionic surfactants
and three descriptors were used to develop a QSPR model
for the predicting of the CMC using multiple linear regres-
sion techniques. The anionic surfactants used include a wide
variety of hydrophobic structures.

The results obtained (R2 � 0.980 and R2
cv � 0.978) indi-

cate the robustness and friability of the QSPR approach. A
good correlation between observed and predicted CMC was
noticed. The authors suggested that the contribution of three

parameters (total atom number, dipole moment, and max
net atomic charge on C atom) is very important. Interest-
ing QSPR models have been generated to predict the CMC
of 37 anionic surfactants using two categories of descriptors
[21]. The internal performance and the predictivity ofmodels
are satisfactory. The descriptors used highlighted the impact
of ramification, hydrophobicity, and electronic properties of
the surfactants on the micellization process.

In this context, the main objective of this work is to
establish new robust QSPR models for predicting the CMC
of a wide variety of surfactants (classical and extended
anionic surfactants) from their molecular structure. The
models developed using multiple linear regression and
artificial neural network, which satisfies the guidelines
required by the Organization for Economic Cooperation
and Development (OECD), are based on different types
of descriptors to access physically meaningful models. In
addition, the developed QSPR models can be useful in the
design of new anionic surfactants.

2 Methodology

2.1 Data Collection and Dataset Division

To establish high-performance QSPR models, experimental
data must be of high quality [22]. In the present work, the
experimental critical micelle concentration (CMC) data of
50 anionic surfactants (36 conventional anionic surfactants
and 14 extended anionic surfactants) were extracted from the
literature (Table 1). A wide variety of surfactant structures
were included. The CMC values were measured at 25 °C in
purified water without any added ingredient. The data were
carefully analyzed to avoid any errors. The values of the
CMCwere converted to negative logarithmic scale [pCMC�
− log10CMC (μmol/L)] to guarantee the linear distribution.
The normality distribution was checked using different sta-
tistical tests and distribution plots are presented in Fig. 1a, b.
The complete dataset (50 anionic surfactants) has been split
into two sets, one for training and one for testing [23, 24]
employing “Kennard Stone” division method using ‘Dataset
division GUI 1.2’ tool (DTC Lab Software Tools). In this
case, the best ratio is 75:25 (ntraining � 38 anionic surfactants
and ntest � 12 anionic surfactants).

2.2 Molecular Descriptor Calculation

There aremore than 11145 usablemolecular descriptors [25].
All descriptors considered in this study were computed using
PaDEL-Descriptor (ver. 2.21) program. Anionic surfactant
structures were saved as SMILES (Simplified Molecular
Input Line-Entry System) notation, which is the recom-
mended input format for PaDEL-Descriptor software [26].
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Table 1 List of 50 anionic surfactants and their experimental pCMC
values along with predicted pCMC values

Nos. Anionic surfactants structures pCMC (μmol/L)

Experimentala Predictedb

Training set

1 C15H31CONHCH[CH(CH3)2]
COO− Na+

3.28 3.31

2 C10H21SO3
− Na+ 4.63 4.52

4 C12H25SO3
− Li+ 4.04 3.82

5 C12H25SO3
−NH4

+ 3.95 3.82

6 C12H25SO3
−K+ 3.97 3.82

7 C12H25SO4
−Na+ 3.91 3.76

8 C10H21
CHCH3C6H4SO3

−Na+
2.52 2.60

9 C12H25SO4
−Li+ 3.95 3.76

12 C14H29SO4
−Na+ 3.32 3.42

14 C10H21 OC2H4SO4
−Na+ 3.59 3.89

15 C10H21 (O C2H4)2SO4
−Na+ 3.46 3.29

17 C10H21 CH(C6H13)CH2(O
C2H4)5SO4

−Na+
1.93 2.02

19 C8H17 OOCCH2SO3
−Na+ 4.82 4.80

20 C10H21 OOCCH2SO3
−Na+ 4.34 4.32

21 C4H9 OOCCH2
CH(SO3

−Na+)COOC4H9

5.30 5.25

22 C5H11 OOCCH2
CH(SO3

−Na+)COOC5H11

4.72 4.81

23 C6H13 OOCCH2
CH(SO3

−Na+)COOC6H13

4.15 4.25

24 C4H9CH(C2H5)CH2
OOCCH2CH(SO3

−Na+)
COOCH2CH(C2H5)C4H9

3.40 3.48

25 C8H17 OOCCH2
CH(SO3

−Na+)COOC8H17

2.96 2.89

26 C12H25
CH(SO3

−Na+)COOC2H5

3.35 3.35

27 C12H25
CH(SO3

−Na+)COOC4H9

3.13 3.29

28 C7F15 COO−K+ 4.46 4.31

29 C7F15 COO−Na+ 4.48 4.31

31 (CF3)CF(CF2)4COO−Na+ 4.48 4.31

32 C8F17 COO−Li+ 3.69 4.01

33 C8F17 SO3
−Li+ 3.80 4.13

34 C11H23 COO−Na+ 3.45 3.96

35 C12H25 (O C2H4)5
OCH2COO−Na+

3.54 3.44

36 C12H25 (O C2H4)9
OCH2COO−Na+

3.77 3.80

37 C12H25 O[CH2CH(CH3)O]5
CH2CH(CH3)SO4

−Na+
3.83 3.93

38 C12H25 O[CH2CH(CH3)O]9
CH2CH(CH3)SO4

−Na+
4.28 4.20

41 C12H25 O[CH2CH(CH3)O]6
(C2H4O)2 SO4

−Na+
3.40 3.53

Table 1 continued

Nos. Anionic surfactants structures pCMC (μmol/L)

Experimentala Predictedb

42 C12H25 O[CH2CH(CH3)O]10
(C2H4O)2 SO4

−Na+
4.05 3.97

45 C12H25O[CH2CH(CH3)O]10
CH2COO−Na+

3.99 4.05

46 C12H25 O[CH2CH(CH3)O]14
CH2COO−Na+

4.44 4.38

47 C9H20 (C6H4)[O
CH2CH(CH3)]3 SO4

−Na+
4.23 3.97

48 C9H20 (C6H4)[O
CH2CH(CH3)]6 SO4

−Na+
4.52 4.71

49 C9H20 (C6H4)[O
CH2CH(CH3)]9 SO4

−Na+
4.80 4.91

Test set

3 C12H25SO3
− Na+ 4.08 3.82

10 C12H25SO4
− N(CH+

3)4 3.74 3.76

11 C12H25SO4
− N(C3H+

7)4 3.34 3.76

13 C10H21 OC2SO3
−Na+ 4.18 4.38

16 C10H21 (O C2H4)5SO4
−Na+ 1.40 1.65

18 C6H13 OOCCH2SO3
−Na+ 5.23 5.05

30 C7F15 COO−Li+ 4.52 4.31

39 C12H25 O[CH2CH(CH3)O]13
CH2CH(CH3)SO4

−Na+
4.89 4.53

40 C12H25 O[CH2CH(CH3)O]6
(C2H4O)2CH2COO−Na+

3.77 3.71

43 C12H25 O[CH2CH(CH3)O]6
CH2COO−Na+

3.54 3.59

44 C12H25 O[CH2CH(CH3)O]14
(C2H4O)2 SO4

−Na+
4.29 4.31

50 C9H20 (C6H4)[O
CH2CH(CH3)]12 SO4

−Na+
4.92 5.03

aExperimental pCMC values are collected from following literatures:
[24, 47, 48]
bpCMC values predicted by MLP/ANN model

In this work, 1543 molecular descriptors were calculated for
each surfactant.

2.3 Molecular Descriptor Selection

One of the important steps inQSPRmodeling is the reduction
of the number of descriptors. This reduction has a twofold
purpose: to avoid the phenomenon of overfitting and to
reduce the risk of obtaining a model by chance [27]. To keep
only the most important descriptors, the selection procedure
described previously in one of our articles was used [22]. The
number of descriptors obtained after the selection was 868.
Then, the GA approach was employed (http://teqip.jdvu.ac.
in/QSAR_Tools/).
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Fig. 1 Normality distribution plot of CMC data: a before transforma-
tion, b after log transformation (pCMC)

2.4 QSPRModel’s Development andValidation

In this present study, models are developed employing three
statistical methods: (1) multiple linear regressions (MLR)
approach; (2) partial least square (PLS) approach; (3) mul-
tilayer perceptron–artificial neural networks (MLP/ANN)
with BFGS (Broyden–Fletcher–Goldfarb–Shanno) as learn-
ing algorithms. For MLP/ANN approach, we have employed
STATISTICA software (STATISTICA 8.0, Tulsa; StatSoft,
Inc.). For second and third methods, we have employed
MLRPlus ValidationGUI 1.3 tools and Partial Least Squares
v1.0, respectively (DTC Lab Software Tools). Theories and
applications about the MLP–ANN have been reported in the
literature [28, 29].

To assess model’s quality and predictability, validation
(internal and external) is a necessary step. For internal valida-
tion, traditional validation metrics recommended by leading
research groups [30, 31] were checked: the determination
coefficient (R2), and the cross-validated correlation coeffi-
cient (Q2

LOO) along with novel validation parameters (r2m ;
�r2m). The external validation was performed on the test set

by calculating the following parameters: Q2
F1, Q

2
F2, average

r2m , and �r2m . The equations of these validation statistical
parameters are provided in the literature [32–35]. In a recent
work, Roy and his collaborators [36] suggested adding a
parameter for external validation. This parameter concerns to
establish of a threshold for the mean absolute error (MAE).
Thus, to assess the predictive performance of QSAR mod-
els with a higher degree of confidence, we have calculated
and verified the criteria based on the MAE as suggested by
Roy et al. [36]. A tool (XternalValidationPlus) for computing
the suggested MAE based criteria for external validation is
accessible online [37].

Further,XternalValidation Plus has been used to check the
presence of high systematic errors (bias) in the ANN model.
If the bias is present in the model, then it should be discarded
and performing any external validation test is useless on such
a biased model [38].

2.5 QSPRModel’s Applicability Domain

In addition to internal and external validation, the determi-
nation of applicability domain (AD) is therefore of great
importance [39]. The AD is another validation measure to
check the friability of QSPR models. The QSPR model can-
not be applied outside of the chemical space covered by the
training set. Therefore, extrapolation is not allowed and can
lead to erroneous model predictions [40]. To investigate the
AD of the anionic surfactants used in this study, theWilliams
plot was established [22, 41].

3 Results and Discussion

3.1 Molecular Descriptor Selection

To select the optimal number of suitable descriptors, the
effect of the number of descriptors on the statistic param-
eters (R2,Q2, r̄2m , �r2m) was investigated for 2–7 descriptors.
The results are shown as plots of R2, Q2, r̄2m, and �r2m for
the training set as a function of the number of descriptors
for the 2–7 descriptors in the model (Fig. 2). Analyzing
Fig. 2 and Table 2 (prediction quality), we can confirm that
the best numbers of descriptors are 4 and 5. However, it is
plausible to note that there is no significant improvement in
their statistical parameters. For this reason, we have chosen
the following 4 descriptors: ATSC7v; ATSC5e; nAtomLAC;
ETA_Epsilon_3 (Table S1 in supplementary files).

The correlation matrix of four relevant descriptors has
been obtained and is presented in the additional files of Table
S2. From this table, the 4 relevant variables (descriptors) are
independent of the fact that each pair of descriptors has a
correlation coefficient value of less than 0.57.
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Fig. 2 Influences of the number of descriptors on statistical parameters

3.2 MLRModel

As mentioned in the methodology section, the MLR model
was developed based on 4 relevant molecular descriptors.
The final equation of the MLR model is as follows (Eq. 1):

pCMC � 76.89501 (± 15, 94778)

+ 0.00041 (± 0, 00007) AT SC7v

− 0.13615 (± 0.02508) AT SC5e

− 165.43679 (± 37.07955) ET A_Epsilon_3

− 0.18446 (± 0.01934) nAtomLAC

(1)

ntrain � 38 R2 � 0.80 Q2
LOO � 0.72 r2m(scaled) � 0.62

�r2m(scaled) � 0.16

ntest � 12 Q2
F1 � 0.87 Q2

F2 � 0.87 r2m(scaled) � 0.64

�r2m(scaled) � 0.15

Q2 � 0.72, (Threshold value Q2 >0.5), Passed

r2 � 0.92, (Threshold value r2 >0.6), Passed
|r20 − r0′2| � 0.11 (Threshold value |r20 − r0′2| <0.3),
Passed
[(r2 − r20)/r

2] � 0.05<0.1 or, [(r2 − r2
′

0 )/r
2] � 0.16<0.1,

Passed
0.85≤k � 1.00≤1.15 or 0.85≤k′ � 0.99≤1.15, Passed

The statistical parameters values indicate the robustness
and friability of theMLRmodel. The predicted pCMCvalues
of the surfactants studied as well as the values of the descrip-
tors of the model are presented in Table S3 (supplementary
files).

According to the recommendation of Tropsha and Gol-
braikh [42, 43], if the difference between R2 and Q2

LOO is
less than 0.3, the model is without overfitting. In the actual
study,R2-Q2

LOO � 0.08, indicating no overfitting in theMLR
model. Moreover, the concrete prediction error of the model
is estimated by the PRESS parameter value [44]. To have
a credible QSPR model, the PRESS/SSY ratio should be
smaller than 0.4. As part of this study, the PRESS/SSY ratio
was equal to 0.25 (PRESS � 3.32 and SSY � 13.19), so this
proves that the developedmodel predict is better than chance.
In addition, to confirm the absence of a chance factor dur-
ing the development of the MLR model, a Y-randomization
analysis was performed by generating 50 random models.
The average values of R2 and Q2 obtained (0.12 and − 0.17)
are below than the acceptable limit of 0.5 for both parameters.

The impact of a descriptor in a model is characterized
by its sign-in model mathematical equation. According to
the regression coefficients of Eq. (1), the ETA_Epsilon_3
descriptor was the main contributor to the CMC of anionic
surfactants. This descriptor has highest and negative contri-
bution and therefore has a negative impact onCMC.Thus, for
specified anionic surfactants, low values of ETA_Epsilon_3
descriptor would help in improving its CMC. In addition,
the regression coefficients of the descriptors ATSC5e and
nAtomLAChad negative signs, thus giving a negative impact
on CMC. On the contrary, ATSC7v has positive contribution

Table 2 Calculated parameters for selection of optimal descriptors

Number of
descriptors

Descriptors R2 Q2 r2m �r2m Prediction quality

2 GATS5s; nAtomLAC 0.36 0.27 0.12 0.28 Bad

3 GATS5s; nAtomLAC; GATS3p 0.48 0.38 0.22 0.26 Bad

4 ATSC7v; ATSC5e; nAtomLAC; ETA_Epsilon_3 0.82 0.77 0.68 0.15 Good

5 ATSC5m; nAtomLAC; VE2_DzZ; ATSC6m; ATSC7e; 0.83 0.78 0.70 0.13 Good

6 ATSC6s; GATS5s; nAtomLAC; GATS3p; ATSC6m; ATSC2i; piPC10. 0.83 0.74 0.65 0.08 Moderate

7 ATSC2i; GATS3p; nAtomLAC; ATSC6m; GATS5s; ATSC6s; piPC10 0.86 0.79 0.72 0.06 Moderate

The bold signifies the best model chosen for the rest of the study
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towards CMC and the highest values were conducive to the
improvement of the CMC of anionic surfactants.

3.3 PLSModel

The results obtained with PLS model for the prediction of
CMC of anionic surfactants, using 50 compounds, are sum-
marized below:

3.3.1 Internal Validation Parameters
R2 (Train): 0.79896
Q2 (LOO): 0.72238
Scaled average R2

m (train; LOO): 0.6165
Scaled Delta R2

m (train; LOO): 0.16275
Mean absolute errors (MAE; train):0.2673
Standard deviation of absolute errors (SD; train):0.2247
Training set prediction quality (based on MAE-based cri-
teria*): MODERATE

3.3.2 External Validation Parameters
Q2

F1: 0.87167
Q2

F2: 0.87034
Scaled average R2

m (test): 0.63903
Scaled Delta R2

m (test): 0.15178
CCC (test): 0.91628
Standard deviation of absolute errors (SD; test): 0.0952
Test set prediction quality (based on MAE-based crite-
ria*): good

3.4 MLP/ANNModel

In this investigation, the learning algorithm used to develop
an MLP/ANN nonlinear model to predict the critical micelle
concentration (CMC) of anionic surfactants is called BFGS.
The database has been divided into a training set (75%) and
a test set (25%). the ANN network selected for this study
is the multilayer perceptron (with an input layer, a hidden
layer and an output layer). Several studies have shown that
this category of the network is able to model any activity (or
property) of a substance whatever its complexity [28]. One
output neuron was used to represent the predicted pCMC.
The two transfer functions used in this study are the hyper-
bolic tangent (tanh) and the identity function, respectively.
Furthermore, the following rule has been taken into account
to optimize the number of neurons in the hidden layer:
[ (
Number of input neurons × number of hidden neurons

)

+
(
number of hidden neurons

× number of output neurons
) ] ≤ (size of database)

In order to ensure the best possible model, many trials
sometimes involving more than 800 iterations were carried
out. The model with the lowest value of the RMSE was

Fig. 3 Scatter plot of the predicted values of logCMC versus the exper-
imental values by ANN model for the training, and test set

selected [28]. Then, the best model with MLP/ANN archi-
tecture {4-3-1} was selected.

The predictive pCMC from the MLP/ANN model for 50
anionic surfactants is given in Table 1. The observed versus
predicted pCMCof the training and test set is shown in Fig. 3.
From this figure, a close correlation between the predicted
and observed values of pCMC was obtained. The values of
the validation (internal and external) statistical parameters
reported in Table 3 comply with the acceptability criteria
[29], suggesting that theMLP/ANNmodel is robust and pro-
vides excellent predictive quality.

Due to the complexity of the relationship between the pre-
dicted property and the descriptors (variables) in an ANN
model [45], the effect of variables in the micellization pro-
cess is relatively easy to interpret in the case of linear
regression. The relative contribution [46] of the MLP/ANN
model descriptors was calculated and is represented in Fig. 4.
The importance of these descriptors decreases in the order:
ATSC7v>nAtomLAC>ATSC5e>ETA_Epsilon_3.

ATSC7v (weighted by van der Waals volume) belongs to
the 2D autocorrelation descriptors. This descriptor describes
the distribution of van der Waals volume with a lag of 7
along the topological structure of the anionic surfactants.
The physic-chemical significance of the descriptor ATSC7v
concerns the volume of the molecule. Thus, the increase
in the volume of a molecule leads to the increase in the
value of ATSC7v. The second descriptor in MLP/ANN
model was nAtomLAC, which involves the number of
atoms in the longest aliphatic chain. ATSC5e (weighted by
Sanderson electronegativity) and ETA_Epsilon_3 (Extended
Topochemical Atom descriptor) are the third and fourth
descriptors in the MLP/ANN model. All these quantities are
well defined in the literature.
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Table 3 Statistical quality of all developed QSPR models

Model Internal validation parameters External validation parameters

R2 R2
adj Q2

LOO r2m(training) �r2m(training) Q2
F1 Q2

F2 r2m (test) �r2m (test) MAE (95% data) MAE + 3σ (95%
data)

MLP/ANN 0.94 0.93 0.93 0.89 0.06 0.95 0.95 0.87 0.15 0.1564 0.4935

PLS 0.79 0.76 0.72 0.61 0.15 0.87 0.87 0.63 0.16 0.2590 0.5446

MLR 0.80 0.77 0.72 0.62 0.16 0.87 0.87 0.64 0.15 0.2055 0.6336

Fig. 4 Plot of the fraction contribution of the descriptors to the pCMC
of anionic surfactant

As can be seen in Fig. 4, the CMC widely depends
on the two descriptors ATSC7v and nAtomLAC. ATSC7v
and nAtomLAC which accounts, respectively, 40.85% and
30.18% of the total contribution. The remaining 28.97%
is from ATSC5e (16.68%), and ETA_Epsilon_3 (12.29%).
Summarizing, it can be concluded that atomic electronega-
tivity, molecular size, and the number of atoms in the longest
aliphatic chain, all play an important role in micellization of
anionic surfactants.

3.5 Statistical Comparison of the QSPRModels

Comparative statistics of the MLR, PLS, and MLP/ANN
regressionmodels is presented in Table 3. For eachmodel, we
used the same type and number of descriptors, as well as the
same composition of the training and test sets. From Table 3,
it is observed that all the reportedmodels (MLP/ANN,MLR,
and PLS) are of acceptable quality. Among all three regres-
sion models, MLP/ANN model shows the highest values for
quality parameters, i.e., R2 (0.94), R2

adjusted (0.93), Q2
LOO

(0.93), and Q2
F1 (0.95). In addition, the MLP/ANN model

exhibits an improvement in terms of external statistics com-
pared to the PLS and MLR models.

Fig. 5 Projection of the training, and test set of anionic surfactants in
the Williams plot

The MAE-based metrics (MAE and MAE + 3×σ ) after
omitting 5% data points with high prediction residuals esti-
mated that the predictions of the ANN model are classified
as ‘good’ (see results in supplementary file) which is also in
agreement with the judgment provided by the classical met-
rics for external validation (Table 3). In addition, the output
file of Xternal Validation tool Plus (see results in supplemen-
tary file) indicated the absence of systematic error (bias) in
the ANN model.

3.6 Applicability Domain Investigation

After the validation of a model, the domain of applica-
bility (third principle of the OECD) must be established.
As part of this study, the applicability domain of the
MLP/ANN model was determined based on the Williams
plot (Fig. 5). The computed threshold leverage (h*) is
0.34. As shown in Fig. 5, none of the 50 surfactants in
the model are outside the range of±3 standard deviation
units. Also, compound 24 [C4H9CH(C2H5)CH2OOCCH2

CH(SO3
−Na+)COOCH2CH(C2H5)C4H9] and compound

25 [C8H17 OOCCH2 CH(SO3
−Na+)COOC8H17] are out-

side the applicability domain (with h >h*). Thus, 96% of
surfactants belong to the applicability domain and therefore
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was covered by the MLP/ANN model. Fortunately, in this
work, the data predicted by the MLP/ANN model is good
for these compounds; thus, these are “good leverage” chem-
icals, implying that these compounds were very influential
on the model, and can stabilize the QSPR model and make
it more precise. Consequently, Williams’s plot provides the
acceptance of built MLP/ANNmodel to predict the CMC. In
conclusion, we can assert that the MLP/ANNmodel adheres
to the third OECD principle.

3.7 Comparison with Previously ReportedModels

The statistical results of the MLP/ANN model were com-
paredwith those of somepreviously developedQSPRmodels
(Table 4). In Table 4, it can be observed that no applicability
domain according to the OECD guidelines has been deter-
mined and no external quality measurement approach has
been carried out in the other models with the exception of
the model developed by Roy and Kabir [21]. Also, unlike
other models, the MLP/ANN model and that of Roy and
Kabir [21] are those that offer a better predictive power. If
the statistical parameters of the internal validation are almost
identical, our model slightly exceeds the model of Roy and
Kabir [21] in terms of external validation, since the crite-
ria based on the MAE have not been verified. It should be
noted, however, that the results provided by Roy are those
obtained by the linear regression-based techniques. We can
conclude that theMLP/ANNmodel developed in this work is
encouraging and can therefore be used for the determination
of CMC of new surfactants, thus contributing to substantial
amounts of money and time.

4 Conclusions

For the prediction of the CMC values for anionic surfac-
tants, three regression methods were utilized (MLR, PLS
and MLP/ANN) to develop robust predictive models. The
proposed models trained and validated using a dataset com-
prised of 50 anionic surfactantswere based on fourmolecular
descriptors. By applying all available validation strategies,
we were able to deduce that the models adopted were robust
for both internal validation and external validation param-
eters. The multilayer perceptron–artificial neural network
model (MLP/ANN) trained with the Broyden–Fletcher—
Goldfarb–Shanno (BFGS) algorithm gave better perfor-
mance in CMC predictions with a higher Q2

ext and r
2
m values

(0.95 and 0.87) and acceptable �r2m value (0.15) for test-
ing dataset compared to that of previously reported models.
TheMAE-basedmetrics estimated that theMLP/ANNmodel
shows ‘GOOD’ predictions (after removing 5% test set
objects with high residual values). Ta

bl
e
4
C
om

pa
ri
so
n
of

th
e
re
su
lts

of
in
te
rn
al
an
d
ex
te
rn
al
va
lid

at
io
n
of

ou
r
be
st
m
od
el
(M

L
P/
A
N
N
)
w
ith

pr
ev
io
us
ly

pu
bl
is
he
d
m
od
el
s

M
od
el
s

Ty
pe

of
de
sc
ri
pt
or

us
ed

N
to
ta
l

In
te
rn
al
va
lid

at
io
n

E
xt
er
na
lv

al
id
at
io
n

R
2

Q
2 L
O
O

r2 m
�
r2 m

Q
2 ex
t

r2 m
�
r2 m

M
A
E
(9
5%

da
ta
)

M
A
E
+
3σ

(9
5%

da
ta
)

Pr
es
en
tw

or
k
(M

L
P/
A
N
N
)

E
le
ct
ro
ni
c
an
d
st
ru
ct
ur
al

50
0.
94

0.
93

0.
89

0.
06

0.
95

0.
87

0.
15

0.
15
64

0.
49
35

R
oy

an
d
K
ab
ir
[1
6]

E
TA

an
d
hy
dr
op
ho
bi
ci
ty

37
0.
96

0.
94

0.
87

0.
05

0.
92

0.
82

0.
07

T
he

M
A
E
ba
se
d
cr
ite
ri
a
w
as

no
tu

se
d

L
ie
ta
l.
[1
5]

E
le
ct
ro
ni
c
an
d
co
ns
tit
ut
io
na
l

98
0.
98

0.
98

–
–

T
he

ex
te
rn
al
va
lid

at
io
n
w
as

no
tu

se
d

Y
ua
n
et
al
.[
43
]

T
he
rm

od
yn

am
ic
.E

le
ct
ro
ni
c.

an
d
co
ns
tit
ut
io
na
l

37
0.
99

–
–

–
T
he

ex
te
rn
al
va
lid

at
io
n
w
as

no
tu

se
d

W
an
g
et
al
.[
14
]

K
H
O
.E

T.
D
el
ta
H
(f
).
D
.

E
-L
U
M
O
an
d
E
-H

O
M
O

40
0.
98

–
–

–
T
he

ex
te
rn
al
va
lid

at
io
n
w
as

no
tu

se
d

Ja
lil
i-
H
er
av
ia
nd

K
on
ou
z
[7
]

To
po
lo
gi
ca
l.
ge
om

et
ri
c.
an
d

el
ec
tr
on

ic
31

0.
99

–
–

–
T
he

ex
te
rn
al
va
lid

at
io
n
w
as

no
tu

se
d

H
ui
be
rs
et
al
.[
12
]

C
on

st
itu

tio
na
l.
to
po

lo
gi
ca
l.
an
d

qu
an
tu
m

ch
em

ic
al
.

11
9

0.
94

–
T
he

ex
te
rn
al
va
lid

at
io
n
w
as

no
tu

se
d

T
he

bo
ld

re
fe
rs
to

th
e
be
st
m
od
el
am

on
g
th
e
m
od
el
s
re
po
rt
ed

in
Ta
bl
e
4

123



Arabian Journal for Science and Engineering (2020) 45:7445–7454 7453

By studying the properties of the four descriptors used
to develop QSPR models, it appears that the length of the
aliphatic chain, the electronic properties (electronegativity),
and the structure of the molecules play a crucial role in the
micellization process. In conclusion, the QSPRmodel devel-
oped in this work is in line with OECD principles and is
useful to provide early CMC estimations on the one hand
and to design new surfactants with a special property on the
other hand.
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3. Mozrzymas, A.; Różycka-Roszak, B.: Prediction of critical micelle
concentration of cationic surfactants using connectivity indices. J.
Math. Chem. 49(1), 276–289 (2010)

4. Jalali-Heravi, M.; Konouz, E.: Prediction of critical micelle con-
centration of some anionic surfactants using multiple regression
techniques: a quantitative structure–activity relationship study. J.
Surfactants Deterg. 3(1), 47–52 (2000)

5. Saunders, R.A.; Platts, J.A.: Correlation and prediction of critical
micelle concentration using polar surface area and LFERmethods.
J. Phys. Org. Chem. 17(5), 431–438 (2004)

6. Kronberg, B.; Holmberg, K.; Lindman, B.: Types of surfactants,
their synthesis, and applications. In: Surface Chemistry of Surfac-
tants and Polymers, 1st edn. Wiley, Berlin (2014)

7. Gwaltney-Brant, S.M.: Miscellaneous indoor toxicants. J. Small.
Anim. Pract. 2013, 291–308 (2013)

8. Nieto-Draghi, C.; Fayet, G.; Creton, B.; Rozanska, X.; Rotureau,
P.; deHemptinne, J.C.; Adamo, C.A.: General guidebook for the
theoretical prediction of physicochemical properties of chemicals
for regulatory purposes. Chem. Rev. 115(24), 13093–13164 (2015)

9. Dearden, J.C.: The history and development of quantitative struc-
ture–activity relationships (QSARs). Int. J. Quant. Struct. Prop.
Relationsh. 1, 1–44 (2016)

10. Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin,
I.I.; Cronin, M.; Tropsha, A.: QSAR modeling: Where have you
been? Where are you going to? J. Med. Chem. 57(12), 4977–5010
(2014)

11. Roy, K.; Kar, S.; Das, R.N.: Understanding the Basics of QSAR
for Applications in Pharmaceutical Sciences and Risk Assessment,
pp. 1–46. Academic Press, Berlin (2015)

12. Roy, K.; Kar, S.; Das, R.N.: A Primer on QSAR/QSPR Modeling:
Fundamentals Concepts (Springer Briefs in Molecular Science),
pp. 1–35. Springer, Berlin (2015)

13. Haratipour, P.; Baghban, A.; Mohammadi, A.H.; Nazhad, S.H.;
Bahadori, A.: On the estimation of viscosities and densities ofCO2-
loaded MDEA, MDEA + AMP, MDEA + DIPA, MDEA + MEA,
and MDEA + DEA aqueous solutions. J. Mol. Liq. 242, 146–159
(2017)

14. Safder, U.; Nam, K.; Kim, D.; Shahlaei, M.; Yoo, C.: Quantitative
structure–property relationship (QSPR) models for predicting the
physicochemical properties of polychlorinated biphenyls (PCBs)
using deep belief network. Ecotoxicol. Environ. Saf. 162, 17–28
(2018)

15. Fariba, Z.; Baghban, A.: Phase behavior modelling of asphaltene
precipitation utilizing MLP–ANN approach. Pet. Sci. Technol. 35,
2009–2015 (2017)

16. Olguin, C.J.M.; Sampaio, S.C.; Do-Reis, R.R.; Remor, M.B.;
Olguin, C.F.A.: QSPR modelling of the soil sorption coefficient
from training sets of different sizes. SAR. QSAR Environ. Res
30(5), 299–311 (2019)

17. Huibers, P.D.T.; Lobanov, V.S.; Katritzky, A.R.; Shah, D.O.;
Karelson, M.: Prediction of critical micelle concentration using a
quantitative structure–property relationship approaches. 2.Anionic
surfactants. J. Colloid Interface Sci. 187, 113–120 (1997)

18. Roberts, D.W.: Application of octanol/water partition coefficients
in surfactant science: a quantitative structure–property relationship
for micellization of anionic surfactants. Langmuir 18(2), 345–352
(2002)

19. Yuan, S.; Cai, Z.; Xu, G.; Jiang, Y.: Quantitative structure–property
relationship of surfactants: critical micelle concentration of anionic
surfactants. J. Dispers. Sci. Technol. 23, 465–472 (2002)

20. Li, X.; Zhang, G.; Dong, J.; Zhou, X.; Yan, X.; Luo,M.: Estimation
of critical micelle concentration of anionic surfactants with QSPR
approach. J. Mol. Struct. 710(1–3), 119–126 (2004)

21. Roy, K.; Kabir, H.: QSPRwith extended topochemical atom (ETA)
indices: exploring effects of hydrophobicity, branching and elec-
tronic parameters on logCMC values of anionic surfactants. Chem.
Eng. Sci. 8(7), 141–151 (2013)

22. Hamadache, M.; Benkortbi, O.; Hanini, S.; Amrane, A.: QSAR
modeling in ecotoxicological risk assessment: application to the
prediction of acute contact toxicity of pesticides on bees (Apis
mellifera L.). Environ. Sci. Pollut. Res. 25(1), 896–907 (2017)

23. Martin, T.M.; Harten, P.; Young, D.M.; Muratov, E.N.; Golbraikh,
A.; Zhu, H.; Tropsha, A.: Does rational selection of training and
test sets improve the outcome of QSAR modeling? J. Chem. Inf.
Model. 52(10), 2570–2578 (2012)

24. Roy, P.P.; Leonard, J.T.; Roy, K.: Exploring the impact of size
of training sets for the development of predictive QSAR models.
Chemometr. Intell. Lab. Syst. 90(1), 31–42 (2008)

25. Roubehie Fissa, M.; Lahiouel, Y.; Khaouane, L.; Hanini, S.: QSPR
estimation models of normal boiling point and relative liquid den-
sity of pure hydrocarbons using MLR and MLP–ANN methods. J.
Mol. Graph. Model. 87, 109–120 (2018)

26. Yap, C.W.: PaDEL-descriptor: anopen source software to calculate
moleculardescriptors and fingerprints. J. Comput. Chem. 32(7),
1466–1474 (2010)

27. Khan, K.; Benfenati, E.; Roy, K.: Consensus QSAR modeling of
toxicity of pharmaceuticals to different aquatic organisms: ranking
and prioritization of the DrugBank database compounds. Ecotoxi-
col. Environ. Saf. 168, 287–297 (2019)

28. Hamadache,M.; Benkortbi, O.; Hanini, S.; Amrane, A.; Khaouane,
L.; Si Moussa, C.: A quantitative structure activity relationship
for acute oral toxicity of pesticides on rats: validation, domain of
application and prediction. J. Hazard. Mater. 303, 28–40 (2016)

29. Hamadache,M.; Hanini, S.; Benkortbi, O.; Amrane, A.; Khaouane,
L.; Si Moussa, C.: Artificial neural network-based equation to pre-
dict the toxicity of herbicides on rats. Chemometr. Intell. Lab. Syst.
154, 7–15 (2016)

30. Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S.:
QSARINS: a new software for the development, analysis, and
validation of QSAR MLR models. J. Comput. Chem. 34(24),
2121–2132 (2013)

31. Chirico, N.; Gramatica, P.: Real external predictivity of QSAR
models. Part 2. New intercomparable thresholds for different val-
idation criteria and the need for scatter plot inspection. J. Chem.
Inf. Model. 52, 2044–2058 (2012)

32. Chirico, N.; Gramatica, P.: Real external predictivity of QSAR
models: how to evaluate it? Comparison of different validation cri-

123



7454 Arabian Journal for Science and Engineering (2020) 45:7445–7454

teria and proposal of using the concordance correlation coefficient.
J. Chem. Inf. Model. 51, 2320–2335 (2011)

33. Ojha, P.K.; Mitra, I.; Das, R.N.; Roy, K.: Further exploring RM2
metrics for validation of QSPR models. Chemometr. Intell. Lab.
Syst. 107, 194–205 (2011)

34. Roy, K.: On some aspects of validation of predictive quantitative
structure–activity relationship models. Expert Opin. Drug Discov.
2, 1567–1577 (2007)

35. Tropsha, A.: Best practices for QSAR model development, valida-
tion, and exploitation. Mol. Inform. 29, 476–488 (2010)

36. Roy, K.; Das, R.N.; Ambure, P.; Aher, R.B.: Be aware of error
measures. Further studies on validation of predictive QSAR mod-
els. Chemometr. Intell. Lab. Sys. 152, 18–33 (2016)

37. XternalValidationPlus: An online tool for computing the suggested
MAE based criteria for external validation is accessible from the
link. http://dtclab.webs.com/software-tools. http://teqip.jdvu.ac.in/
QSAR_Tools/

38. Roy, K.; Ambure, P.; Aher, R.B.: How important is to detect sys-
tematic error in predictions and understand statistical applicability
domain ofQSARmodels? Chemometr. Intell. Lab. Sys. 162, 44–54
(2017)

39. OECD: Principles for the validation, for regulatory purposes, of
(quantitative) structure–activity relationship models (2009)

40. Chen, J.W.; Li, X.H.; Yu, H.Y.; Wang, Y.N.; Qiao, X.L.: Progress
and perspectives of quantitative structure–activity relationships
used for ecological risk assessment of toxic organic compounds.
Sci. China B 51(7), 593–606 (2011)

41. Gramatica, P.; Cassani, S.; Roy, P.P.; Kovarich, S.; Yap, C.W.; Papa,
E.: QSAR modeling is not “push a button and find a correlation”:
a case study of toxicity of (benzo-)triazoles on algae. Mol. Inform.
31(11–12), 817–835 (2012)

42. Tropsha, A.; Gramatica, P.; Gombar, V.K.: The importance of being
earnest: validation is the absolute essential for successful applica-
tion and interpretation of QSPR models. QSAR Comb. Sci. 22,
69–77 (2003)

43. Golbraikh, A.; Shen, M.; Xiao, Z.Y.; Xiao, Y.D.; Lee, K.H.;
Tropsha, A.: Rational selection of training and test sets for the
development of validated QSAR models. J. Comput. Aided Mol.
Des. 17, 241–253 (2003)

44. Clementi, M.; Clementi, S.; Fornaciari, M.; Orlandi, F.; Romano,
B.: The GOLPE procedure for predicting olive crop production
from climatic parameters. J. Chemom. 15, 397–404 (2001)

45. Katritzky, A.R.; Pacureanu, L.M.; Slavov, S.H.; Dobchev, D.A.;
Karelson,M.:QSPR study of criticalmicelle concentrations of non-
ionic surfactants. Ind. Eng. Chem. Res. 47(23), 9687–9695 (2008)

46. Zheng, F.; Bayram, E.; Sumithran, S.P.; Ayers, J.T.; Zhan, C.G.;
Schmitt, J.D.; Dwoskin, L.P.; Crooks, P.A.: QSAR modeling of
mono- and bis-quaternary ammonium salts that act as antagonists
at neuronal nicotinic acetylcholine receptors mediating dopamine
release. Bioorg. Med. Chem. 14, 3017–3037 (2006)

47. Fernández, A.; Scorzza, C.; Usubillaga, A.; Salager, J.L.: Synthesis
of new extended surfactants containing a carboxylate or sulfate
polar group. J. Surfactants Deterg. 8(2), 187–191 (2005)

48. Zhi-qiang, H.; Mei-jun, Z.; Yun, F.; Guang-yong, J.; Ji, C.:
Extended surfactants: a well-designed spacer to improve interfacial
performance through a gradual polarity transition. Colloids Surf A.
Physicochem. Eng. Asp. 450, 83–92 (2014)

123

http://dtclab.webs.com/software-tools
http://teqip.jdvu.ac.in/QSAR_Tools/

	In Silico Prediction of Critical Micelle Concentration (CMC) of Classic and Extended Anionic Surfactants from Their Molecular Structural Descriptors
	Abstract
	1 Introduction
	2 Methodology
	2.1 Data Collection and Dataset Division
	2.2 Molecular Descriptor Calculation
	2.3 Molecular Descriptor Selection
	2.4 QSPR Model’s Development and Validation
	2.5 QSPR Model’s Applicability Domain

	3 Results and Discussion
	3.1 Molecular Descriptor Selection
	3.2 MLR Model
	3.3 PLS Model
	3.3.1 Internal Validation Parameters
	3.3.2 External Validation Parameters

	3.4 MLP/ANN Model
	3.5 Statistical Comparison of the QSPR Models
	3.6 Applicability Domain Investigation
	3.7 Comparison with Previously Reported Models

	4 Conclusions
	References




