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Abstract
Compliant mechanism is becoming increasingly to be a part of precision engineering, robotics, and bioengineering thanks to
excellent advantages of free friction, free lubricant, no backlash, monolithic structure, andminimal assembly. However, design
and analysis of compliant mechanism has been facing challenges due to a coupling of kinematic and mechanical behaviors
in comparison with rigid-body counterparts. Particularly, considering a multi-response optimization design, the problem is
becoming more and more complex. Thus, this article proposes a new efficient hybrid methodology to resolve multi-objective
optimization design of compliant mechanisms. A bridge amplification mechanism with three numerical examples is a case
study to demonstrate the effectiveness of the proposed optimizing technique. A hybridization is developed by combining finite
element method, statistical method, desirability function approach, fuzzy logic system, adaptive neuro-fuzzy inference system
(ANFIS), and lightning attachment procedure optimization (LAPO). A 3D finite element model for the bridge amplification
mechanism is designed, and then Box–Behnken design is employed to construct numerical experiments. The sensitivity of
geometrical parameters of the mechanism is investigated through analysis of variance and Taguchi approach to make a few
populations for the LAPO. Subsequently, desirability values of the displacement and safety factor of the mechanism are
determined, and the results are transferred into the fuzzy logic system. The output of this system is considered as single
combined objective function. By developing the ANFIS structure, the refined design variables are well mapped with the
output of FIS. Finally, LAPO algorithm is adopted for solving the multi-objective optimization problem for the mechanism.
The results reveal that the proposed method is more efficient than the Taguchi-based fuzzy logic. Besides, the performances of
the proposed method are superior to the Jaya algorithm and TLBO algorithm throughWilcoxon signed rank test and Friedman
test. The results of this article can be useful for complex optimization problems.
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1 Introduction

Bridge amplification mechanism (BAM) is an important part
of compliant mechanisms in highly precise engineering. The
motions of the BAM are based on storing the elastic energy
of flexure hinges [1–3]. It benefits of a monolithic structure,
lightweight, and free friction without bearings or kinematic-
based joints [4–6]. In the field of compliant mechanisms [7],
it is well known that the important performances include
a large displacement, a minimal stress, a high frequency, a
high safety factor, and a small parasitic error. Considering
a real application of the BAM, the displacement, safety fac-
tor, and stress are considered as the three most significant
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characteristics. Compliant mechanism is becoming promis-
ingly to alternate for rigid-body mechanisms in precision
engineering and robots, microelectromechanical systems
(MEMs), bioengineering, and so forth. However, modeling
and analyzing the above-mentioned performances are facing
difficulties. When conducting a multiple-performance opti-
mization problem for compliant mechanisms, it is more and
more complicated.

During the last decades, there have been more efforts to
conduct the design, analysis, and synthesis for compliant
mechanisms, e.g., kinematic-basedmethods [8–11]. Besides,
a lot of techniques have been developed, such as pseudo-
rigid-body model (PRBM) [12, 13], Castigliano’s second
theorem [14], compliance matrix method [15], elastic beam
theory [16], two-port dynamic stiffnessmodel [17], empirical
method [18], beam constraint model [19], Euler–Bernoulli
beam theory [20], andfinite elementmethod [21]. ThePRBM
is limited in estimating highly nonlinear deformation of
flexure hinges because the characteristic parameters of the
PRBM are strongly dependent on the number of torsional
springs and location of these springs. In addition, under com-
plex loads and complicated structures, PRBM is not still
suitable. So, the approximations of the PRBM are signifi-
cant for simple architectures. Castigliano’s second theorem
can predict the strain energies of flexure hinges, e.g., tensile,
shear, and bending strains, but is also limited for complex
structures. Compliance matrix method is becoming more
difficult when compliant mechanisms subject multiple actu-
ation forces. Elastic beam theory is similar to Castigliano’s
second theorem and it still difficult for modeling. Based on
two-port dynamic stiffness model, the performances of com-
pliant mechanisms can be resolved, but it is a challenge for
irregular structures. Empiricalmodeling can estimate the per-
formances with a high accuracy, but it is time-consuming.
Beam constraint model cannot precisely predict a large
deformation of flexure hinges. Meanwhile, finite element
method (FEM) has higher prediction accuracy over analyti-
cal approaches because it discretizes compliant mechanisms
into elements and nodes. Although the mentioned analyt-
ical methods are still valuable in advancing of compliant
mechanisms, the uses of them are facing challenges for
more complex compliant mechanisms, e.g., irregular shapes
of flexure hinges, multi-axis flexure hinges, and a large
deflection. In the otherword, the estimating accuracy ofmod-
eling is still challenging due to a coupling of kinematic and
mechanical behaviors of compliant mechanisms. When opti-
mizing multiple performances of the BAM simultaneously,
it becomes a complex problem. Hence, FEM is chosen as
an effective tool to analyze the highly nonlinear deforma-
tion of the BAM. Up to now, there have been three types of
optimization for compliant mechanisms, including topology
optimization [22], shape optimization, and size optimization
[20, 23, 24]. Among these types, the size optimization is crit-

ical important to improve the performances. According to
the field of compliant mechanism [25], the displacement is
always conflicted with the safety factor. From reviewing the
literature review, the motivation of this article is to develop
a computational intelligence approach to solve the multi-
objective optimization (MOO) problem for the BAM. The
purpose of MOO problem is to reach a trade-off between
the displacement and safety factor. Nowadays, MOO prob-
lem has received a great interest in the field of compliant
mechanisms [26–28].

The results of previous studies in the literature review
indicated that physical performances of the BAM are very
sensitive to a change in shape, material, or geometrical
parameters. Shape and material are directly chosen accord-
ing to customer’s requirements. Meanwhile, geometrical
parameters have strongly affected the performances. There-
fore, the most significant parameters and the nonsignificant
parameters should be identified. The most key parameters,
considered as design variables, always contribute on the
physical outcomes of the BAM. Meanwhile, the less con-
tributing parameters should be suppressed during the MOO
problem because they cause a high computational cost. So,
searching such geometrical parameters is the first motivation
of this article.

Considering the modeling process of fitness functions for
the BAM, a mathematical model is established through ana-
lytical approaches such as pseudo-rigid-body model [29],
semi-analytical model [30], and compliance matrix [31]
before dealing with a MOO problem. But the analytical
methods are limited to feature the performances of compli-
ant mechanisms, especially for the BAM. When using the
formed equations, the later optimal solutions may be impre-
cise since the modeling is an uncompleted approximation.
In order to overcome this limitation, data-driven approach
is an advantageous tool to deal with the MOO problem.
Data-driven approach is called as a surrogate-based method
which directly maps inputs and outputs. Several common
approaches can be utilized for MOO problem, e.g., desir-
ability function approach (DFA) [32], gray relational analysis
(GRA) [33], and Taguchi method-based fuzzy logic (TMFL)
[34]. However, both the DFA and GRA require a weight
factor for each objective function, but weighting is largely
dependent on experience or users. Meanwhile, the TMFL
does not require any weight factor, but it searches optimal
results, considered as local solutions, because the Taguchi
method finds discrete solutions. In order to avoid a local
result, surrogate models are employed, such as response sur-
face method [35], kriging technique [36], artificial neural
network [37–39], and adaptive neuro-fuzzy inference system
(ANFIS) [40–42]. Among them, the ANFIS is more effective
technique to formulate a virtual fitness function. Therefore,
the ANFIS is chosen to model process of the fitness function
for the BAM.
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It is noted that nature-basedmetaheuristic algorithms have
been developing increasingly, e.g., genetic algorithm [43],
particle swarm optimization [44], differential evolution [45],
cuckoo search algorithm [46], and other algorithms [47–50].
More recently, several algorithms with less or non-tuned
parameters have been developed such as teaching learning-
based algorithm (TLBO) [51, 52], Jaya algorithm [53], and
lightning attachment procedure optimization (LAPO) algo-
rithm [54]. Among three less-parameter algorithms, LAPO
algorithm is an effective tool for a lot of engineering areas,
but it has not been applied for the bridge mechanism yet.
Therefore, this article chooses LAPO algorithm to extend to
MOO design for the bridge mechanism.

Summarily, new contributions of this study are covered
as follows: (i) The performances of the BAM are effec-
tively analyzed via using the nonlinear FEM. (ii) The less
influencing parameters and the most significant parameters
are identified. And then, the nonsignificant parameters are
refined to redetermine a few new populations for LAPO
algorithm. This process helps to decrease the complexity of
optimization problem. (iii) The desirability values of two per-
formances of the BAMare calculated and transferred into the
fuzzy inference reasoning (FIS) system to generate a single
combined objective function. (iv) The ANFIS structure is
developed to combine the refined design variables and the
output of FIS. (v) LAPO algorithm is extended for solving
the MOO problem of the BAM. (vi) The proposed optimiz-
ing scheme provides a computational intelligence approach
by integrating statistical methods, FEM, fuzzy logic system,
ANFIS, andmetaheuristic algorithms,which can be extended
for other optimization problems.

The goal of this paper is to develop a new hybrid opti-
mizing method for solving the MOO problem of compliant
mechanisms. TheBAM is a case study to illustrate the perfor-
mance efficiency of the proposed method. Three numerical
examples of the BAM are studied. The remaining structure
of this article is summarized as follows. The proposed hybrid
method is presented in Sect. 2. Section 3 demonstrates the
structural design and simulation formulation for the BAM.
Results and discussion are presented in Sect. 4. The analy-
sis of case studies is given in Sect. 5. A comparison of the
proposed method with Jaya algorithm and TLBO algorithm
is discussed in Sect. 6 by using the Wilcoxon signed rank
test and Friedman test. Conclusions and future work are pre-
sented in Sect. 7.

2 Proposed Hybrid Methodology

Figure 1 describes the proposed hybrid methodology. The
proposedmethod is utilized for solvingMOOdesign problem
for theBAM. Practically, the performances of themechanism
require a large displacement and a high safety factor. In order

to achieve an improvement in desired objectives, the per-
formances of mechanism are optimized simultaneously. The
proposed hybrid methodology consists of five key phases: (i)
mechanical design and analysis, (ii) desirability calculation,
(iii) fuzzy logic system, (iv) ANFIS modeling, and (v) MOO
problem by LAPO algorithm. Each phase includes sub-steps.

Phase 1: Design and analysis

Initially, analysis phase defines a mechanical design prob-
lem. In this study, the BAM is numerically investigated to
validate the performance effectiveness of proposed method-
ology. This phase experiences the following main steps.

Step 1 Architecture design

As mentioned discuss, the BAM needs a large displace-
ment but must guarantee a high safety factor. In addition,
equivalent stress must be lower than the yield strength of
proposed material to avoid plastic failures.

Step 2 Predetermine geometrical parameters

A mechanical structure has a lot of geometrical param-
eters affecting the displacement, the safety factor, and the
stress. Influences of the geometrical parameters are evalu-
ated through a sensitivity investigation later.

Step 3 Define output performances

After determining the initial design variables, a large dis-
placement and a high safety factor are assigned as two desired
outputs. In order to satisfy a working strength, a minimal
stress is a critical constraint.

Step 4 Create 3D finite element model

This step initializes a 3D FEMmodel, and then, finite ele-
ment analysis (FEA) is implemented to retrieve the numerical
data.

Step 5 Box–Behnken design

After creating the 3D model, an experimental matrix is
initialized by using Box–Behnken design (BBD).

Step 6 Collect numerical data

Boundary conditions, load, and material are set up for the
3D model. Subsequently, a set of numerical data is collected
through simulations.
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Fig. 1 Flowchart of proposed hybrid approach

Step 7 Sensitivity analysis

Sensitivity investigation is an important step to determine
the most significant parameters, named as design variables,
and the nonsignificant parameters are neglected during the
further optimization process. This process is conducted
through analysis of variance (ANOVA) and the Taguchi
method.

Step 8 Refine and eliminate design variables

Based on the results of sensitivity analysis in step 7, the
results of refining parameters create several new populations
for the LAPO later. This is a preparing step for further opti-

mization process. The goal of step 8 is to determine a suitable
searching space so as to reduce the computational cost.

Step 9 Redesign Box–Behnken design

There will be several new spaces of design variables are
created in step 8, and step 9 will rebuild the 3Dmodel. Then,
the numerical experiments are set up by using BBD again.

Step 10 Refine finite element model

After new experimental matrix is initialized, the key
design variables are redetermined for 3D FEM model. Sub-
sequently, simulations are implemented to get the numerical
data for each case study.

123



Arabian Journal for Science and Engineering (2020) 45:5803–5831 5807

Phase 2: Desirability calculation
Step 11 Recollect numerical data

Based on experimental matrix in step 9 and 3D FEM
model in step 10, numerical data for each of case studies
are collected through FEA simulations.

Step 12 Compute desirability value for performances

Based on desirability function approach [55], the expo-
nential type is transformed to each response into a desirability
function. Principle of this technique is to compute ith quality
response (y*) to become ith desirability (di), and then, all
values of desirability are combined into a single desirabil-
ity function (D). Desirability value can reach unity when the
response’s target is achieved, and otherwise. Each individ-
ual desirability function is divided into three types based
on user’s specific demand. It includes three target types,
i.e., smaller-the-best, higher-the-best, and normal-the-best.
Desirability for two specifications of the mechanism is com-
puted. Displacement is millimeter, while safety factor has no
unit. Based on calculating the desirability, a such influence
of unit is neglected. Hence, such difference no longer affects
a later optimal solution.

Smaller-the-best The response’s value is expected lower
than an upper limit. The desirability function is identified by

di � 0, y∗ ≥ Ub

di �
(
y∗ −Ub

Lb −Ub

)r

, Lb ≤ y∗ ≤ Ub

di � 1, y∗ ≤ LB, (1)

where di is the desirability value. y* is ith response, and Lb
and Ub are lower and upper limits of the response, respec-
tively.

Normal-the-best The response’s value is expected toward
a target value (T ). The desirability function can be deter-
mined by

di �
(
y∗ − Lb

T − Lb

)p

, Lb ≤ y∗ ≤ T

di �
(
y∗ −Ub

T −Ub

)q

, T ≤ y∗ ≤ Ub

di � 0, y∗ ≤ Lb or y∗ ≥ Ub

di � 1, y∗ � T (2)

where p and q are specific parameters defined by users (p,
q>0) which determine shape of di.

Higher-the-best The response’s value is expected higher
than a lower limit. The desirability function can be described
by

di � 0, y∗ ≤ Lb

di �
(
y∗ − Lb

Ub − Lb

)r

, Lb ≤ y∗ ≤ Ub

di � 1, y∗ ≥ Ub, (3)

where r is the desirability function index.
All individual desirability’s values of the displacement

and safety factor are transformed into overall desirability,
D, which is considered as a single quality index. This index
is determined by assigning corresponding weight factor for
different quality responses. However, weight factor of each
response is dependent on priority or customer’s demands. A
combined desirability index is computed as

D � (
(d1)

w1(d2)
w2 · · · (dn)wn

) 1∑
wi (4)

where D is the overall desirability index and wi is weight of
ith response.D is equal to one as each di is also equal to one.
Otherwise, at least one of dis is zero and D is zero.

In the present work, a larger type is used for both the dis-
placement and safety factor. In the past, in order to solve a
MOO problem, a set of optimal parameters may be found
by maximizing the single quality index D. Although this
approach is still an effective tool, an optimal result is varied
when the weight factor of each response is changed. It may
result an imprecisely optimal value. In order to overcome this
uncertainty, a fuzzy logic system is then developed to deal
with all individual values of desirability of both responses
since this system does not require any weight factor.

Phase 3: Fuzzy logic reasoning system

A fuzzy logic reasoning system includes knowledge base,
fuzzifier, inference engine, and defuzzifier. Details can be
briefly described as follows [56]: (i) Fuzzifier plays a role
to transform real value into a fuzzy system. Inputs of the
fuzzy logic system are called as crisp values which contain
precise information of a real world. Through the fuzzifier,
real value is transformed into linguistic variable. (ii) Knowl-
edge base consists of rule base that forms a number of fuzzy
rules (if–then). Moreover, the knowledge based contains a
database which defines membership function (MF) of the
fuzzy sets. (iii) Inference engine system of the FIS is consid-
ered as decision making based on fuzzy rules. It handles how
the rules are combined. (iv) Defuzzifier transfers the output
of the FIS into a crisp value. In the defuzzification method,
centroid method is used to the transformation. The output
of FIS, a non-fuzzy value, is called as a multi-characteristic
performance index (MPCI).

In order to implement the FIS, Mamdani method is
employed in the present paper. Subsequently, trapezoidal
MFs are adopted for the inputs and outputs of the FIS so
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as to form fuzzy sets. MFs are in the range from zero to one,
and MFs can describe the way a variable matches a fuzzy
set. Inputs and outputs of fuzzification system are then trans-
formed into linguistic variables. The trapezoidal MFs are
defined as

μA(x, k, l,m, p) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x−k)
(l−k) k ≤ x ≤ l
1 l < x < p
(x−m)
(p−m)

p ≤ x ≤ m

0 x ≤ k or m ≤ x

, (5)

whereμA notes theMFs, while k, l,m, p are the x coordinates
of the membership function.

In this study, desirability values of displacement and safety
factor are calculated, and then, they are considered as two
input variables for the FIS. These linguistic input variables
will be combined into an output for the FIS. The trapezoidal
MFs are employed for both the fuzzification and defuzzifi-
cation. The following fuzzy rules are briefly described.

Fuzzy rule: if x1i is A1 and x2i is B1i then yi isCi

else (i � 1, 2, 3, . . . , n)

where x1i and x2i are the two ith inputs and yi is the ith output.
Ai, Bi, and Ci are defined by corresponding MFs (μAi, μBi,
andμCi), and these parameters are regarded as fuzzy subsets.

In order to compute the fuzzy logic reasoning, max–min
operation ofMamdani is adopted. Subsequently, the FIS out-
put is retrieved. The MFs of the FIS output can be described
by

μci (yi ) � max

[
min

{
μA1i (x1), μA2i (x2), . . . , μAsi (xs)

}
j

]
,

i � 1, 2, . . . , n. (6)

At last, the FIS output is transformed into real value
through the defuzzification. Subsequently, a non-fuzzy value
y0, which is called as MPCI, is defined by

y0 �
∑

yiμC0i (yi )∑
μC0i (yi )

. (7)

Based on the theory of FIS, the best solution for overall
responses and a set of optimal design variables can be found
by maximizing the MPCI index through Taguchi method.
This technique is divided into three types as: (i) higher-the-
better, (ii) normal-the-best, and (iii) smaller-the-better. The
larger-the-better type is chosen for maximizing the MPCI,
which is described as

η � −10 log

(
1

n

n∑
i�1

1

MPCI2i

)
, (8)

whereMPCIi is ith MPCI index of the FIS and n the number
of ith experiment’s repetition.

According to the TMFL [34], some optimal candidates
may be local optimum solutions. The reason is because the
Taguchi technique is employed to minimize or maximize a
singlefitness function in termsof discrete values.Meanwhile,
a real problem desires to search a global optimum solution.
In order to overcome this situation, ANFIS is then extended
to model the MPCI, and the MOO design for the BAM can
be effectively solved by using LAPO algorithm.

Phase 4: Adaptive neuro-fuzzy inference system

As aforementioned, the FIS is a modeling technique in
terms of linguistic variables where Mamdani method is used
for the FIS. Meanwhile, ANFIS is an artificial technique
which is developed by integrating neural network and the
FIS. Nowadays, ANFIS is considered as an intelligent mod-
eling which creates a connection between inputs and outputs.
In theory of ANFIS, the Sugeno model is employed to create
fuzzy rules [57]. The fuzzy rules for ANFIS model can be
defined as

if x1 is A1 and x2 is A2, then y � a × x1 + b × x2 + c (9)

where x1 and x2 are the inputs with respect to A1 and A2 are
the fuzzy sets, y is the output, and a, b, c are the constant
values.

Figure 2 illustrates ANFIS structure which consists of
five-layer feed-forward neural network.

Layer 1 is the fuzzification layer that assigns the member-
ship degrees for input factors based on the given MFs. The
output of layer 1 can be described as

Mi
1 � μAi (x) (10)

where x is the input with respect to node ith, Ai is a linguistic
label, and Mi

1 is the MFs of Ai.
Layer 2 includes the fuzzy rule and a rule node which gets

inputs and identifies firing strength of the rule. Each node is
labeled as a circle node,P. Each node output can be defined
as.

wi � μAi (x) × μAi (y) . . . i � 1, 2, 3, . . . , n. (11)

Layer 3 is a normalized layer which is used to estimate
a ratio of firing strength of a given rule to total of firing
strengths of all rules. Every node is labeled a circle node, N.
In this layer, w̄ is named for normalized firing strength of
rules and defined as:

w̄ � wi

w1 + w2 + w3, . . . ,+wn
, i � 1, 2, 3, . . . , n. (12)
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Fig. 2 The ANFIS

Layer 4 is defuzzification process and ith node is a labeled
as square node by

Mi
1 � w̄i fi � w̄i (ax + by, . . . , c), i � 1, 2, 3, . . . , n.

(13)

Layer 5 is an overall output, sum of all signals, which is
defined as:

Mi
5 �

∑
i

w̄i fi

∑
i wi fi
wi

. (14)

In this article, the trapezoidal MFs are adopted for the
ANFIS as well.

Phase 5: Lightning attachment procedure optimization
algorithm

LAPO is a new algorithm based on physically lightning
phenomena [54, 58, 59]. The LAPO benefits of a free param-
eter tuning. Hence, this algorithm can efficiently solve a lot
of different engineering problems, e.g., gear train design,
pressure vessel designs, beam, cantilever beam design, and
welding, and the results demonstrated that LAPO is supe-
rior to other metaheuristic algorithms [54, 58, 59]. From
the excellent advantages of the LAPO algorithm, this study
chooses the LAPO algorithm to expand it to the field of com-
pliant mechanism. It consists of five main phases as follows.

Step 1 Initialization

Unlike previous studies, the present work generates a few
new search spaces based on the sensitivity results in previous
steps. The LAPO also needs an initial population, Np, within
a search space of design variables. Each individual in NP is
a vector comprising n design variables X� (x1, x2,…, xn).
It is noted that a matrix of Np is randomly initialized. They
are regarded as the test points which are located in the cloud
and the ground surface [54, 58, 59]. The test points can be
defined as

xitestpoint � ximin +
(
ximax − ximin

)
× rand[0, 1] (15)

where ximin and ximax denote the upper and lower bounds
of design variables. Rank is a randomly given parameter in
range from zero to one. Fitness of the solution is defined as

Fi
testpoint � obj

(
xitestpoint

)
. (16)

Step 2 Next jump determination

Herein, the test points in vector xitestpoint achieve a high
value of electrical field which is considered as the potential
next jump points. Assume that the point k is chosen from
the population. If the electric field of point k (the fitness of
point k) is better than that of the averages of all test points, the
tendency of lightning jumps toward this point. Otherwise, the
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lightning displaces to other direction. After that, the average
value of the overall test points and the value of fitness of the
points are computed as in Eqs. (17)–(18), respectively.

xaverage � mean
(
xtestpoint

)
, (17)

faverage � obj
(
xaverage

)
, (18)

where xaverage and faverage note the average value and value
of fitness of the points, respectively.

If the electric field, fitness function, of potential point h is
greater than the averagevalueof the test points, it is calculated
as

xitestpoint_new � xitestpoint + rand[0, 1]

×
(
xaverage + rand[0, 1] ×

(
xhpotential point

))
.

(19)

Otherwise, it is calculated as

xitestpoint_new � xitestpoint − rand[0, 1]

×
(
xaverage + rand[0, 1] ×

(
xhpotential point

))
.

(20)

Step 3 Branch fading

If the fitness function of new test point (xitestpoint_new) is

better than the previous point (xitestpoint), the branch sustains;
otherwise, the branch fades as

xitestpoint � xitestpoint_new, f itestpoint_new < f itestpoint

xitestpoint_new � xitestpoint, otherwise. (21)

This step is carried out for overall the test points so as to
rest points moving down.

Step 4 Upward leader movement

In this step, an exponent factor based on the charge of
downward leader is employed to take all the test points as the
upward leader and moved up. The exponent factor is based
on the charge of downward leader, which can be defined by

S � 1 − noi

noimax
× exp

(
− noi

noimax

)
, (22)

where noi and noimax denote the number of iterations and
maximum number of iterations, respectively. The upward
leaders are defined for the next strategy of test point as

xtestpoint_new � xtestpoint_new + rand[0, 1]

× S
(
xmin − xmax

)
, (23)

where xmin and xmax denote the best value and the worst
solution of the population, respectively.

In each iteration, it should be remarked that the average of
the entire population is computed by Eq. (17). The fitness of
the average solution is determined byEq. (18). If the fitness of
the worst solution is worse than the average one, it is updated
by the average solution.

Step 5 Final jump

The process is ended when the upward leader meets the
downward leader to each other. It is noted that the optimiza-
tion process is ended if stop criterion is achieved. In addition,
themaximum iteration ismet and the process is ended herein.
In this paper, the maximum iteration is chosen as 104.

3 Case Studies: MOODesign for Bridge
AmplificationMechanism

In order to effectively solve aMOO design of bridge amplifi-
cationmechanism (BAM), this article considers three numer-
ical examples. The obtained results from these numerical
solutions also evaluate application’s capability and effective-
ness of the proposed hybrid methodology.

3.1 Structural Description

Figure 3 demonstrates a mechanical structure of the BAM.
The bottom end of the BAM is located at fixed supports by
screws, while the top end is moved freely. This mechanism
includes four flexure hinges at the top side and four flex-
ure hinges at bottom side, which is arranged in a symmetric
configuration, as shown in Fig. 3a. The BAM consists of a
rigid link 2 coupled with two rigid links 1 through flexure
hinges. The output, such called end effector, is at the middle
of rigid link 2. Based on symmetric topology, the output of
mechanism can move along the y-axis by exciting two input
loads from piezoelectric actuators, as depicted in Fig. 3b. The
purposes of the BAM do not amplify a large working stroke
along the desired direction but also ensure a high safety fac-
tor. Themechanism includes main parameters such asH,H1,
H2, H3, H4, L, L1, L2, L3, T, W, W1, and W2, as given in
Figs. 3 and 4. In this article, AL T73-7075 material is cho-
sen for the mechanism because of its lightweight. According
to mechanic theory of bistable compliant mechanisms and
others [60, 61], the main design parameters are comprised of
structural parameters being considered as a vector of design
variable X � [L1, L2, L3, H1, H2, T ]T. Remain parameters
(W, H, L, H3, H4) are assigned as constant values.
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Fig. 3 Schematics of the bridge
amplification mechanism (unit:
mm): a dimension, b working
principle

Fig. 4 3D model of the bridge amplification mechanism (unit: mm)

Table 1 gives the geometrical parameters of the pro-
posed BAM and the mechanical properties of AL T73-7075
material. The ranges of upper and lower bounds of design

variables are determined based on a capacity of fabrication
device.

3.2 Numerical Simulation

A 3D FEM model is created, and then, the numerical exper-
iments are formulated via the BBD. Numerical data are then
collected by implementing FEA simulations. The boundary
conditions and loads are given, as shown in Fig. 3. A load
of 0.08 mm is applied to both sides of inputs of the mecha-
nism along the horizontal direction. Meanwhile, the output
response of the mechanism is amplified along the vertical
direction. Sizing technique is utilized for meshing. Meshing
of flexure hinges is refined in order to achieve accurate analy-
sis, as shown in Fig. 5. The meshing results give a number of
elements of 8155 and a number of nodes of 16379. Skewness
criteria, metric performance, are used to evaluate the quality
of meshing. Its value is in the range from zero to one. The
results showed that the average value of skewness is approx-
imately 0.60619. In the other word, this value guarantees the
quality of meshing is relatively good, as given in Fig. 6.
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Table 1 Geometrical parameters and material properties of bridge
amplification compliant mechanism

Design parameters Symbol Value

Length of flexure hinge L1 11.25mm ≤ L1 ≤ 13.75mm

Length of rigid link 1 L2 2.7mm ≤ L2 ≤ 3.3mm

Length of rigid link 2 L3 16.7mm ≤ L3 ≤ 18.7mm

Thickness of rigid links H1 4.5mm ≤ H1 ≤ 6.5mm

Distance between two
flexure hinges

H2 1.5mm ≤ H2 ≤ 1.7mm

Thickness of flexure hinges T 0.45mm ≤ T ≤ 0.65mm

Height of input link H3 10 mm

Distance between upper
and lower series

H4 12.25 mm

First width of input link W1 7 mm

Second width of input link W2 8 mm

Width of the mechanism W 10 mm

Height of the mechanism H 24 mm

Length of the mechanism L 68 mm

Total size of the
mechanism

68 × 24 × 10mm3

Mechanical properties of Al T73-7075

Density 2810 kg/m3

Young’s modulus 71700 MPa

Yield strength 503 MPa

Poisson’s ratio 0.33

Fig. 5 Meshing model of the bridge amplification mechanism

Table 2 Levels of their design variables

Symbol Value Level 1 Level 2 Level 3

L1 2.7mm ≤ L1 ≤ 3.3mm 11.25 12.50 13.75

L2 11.25mm ≤ L2 ≤ 13.75mm 2.7 3.0 3.3

L3 16.7mm ≤ L3 ≤ 18.7mm 16.7 17.7 18.7

H1 4.5mm ≤ H1 ≤ 6.5mm 4.5 5.5 6.5

H2 1.5 mm ≤ H2 ≤ 1.7 mm 1.44 1.6 1.76

T 0.45mm ≤ T ≤ 0.65mm 0.45 0.55 0.66

4 Results and Discussion

4.1 Sensitivity Investigation and Refinement
of DesignVariables

In order to decrease the complexity of the proposed algo-
rithm, a whole of initial design variables are evaluated to
reduce the searching space. The goal of sensitivity analysis
is to redetermine a few populations for the further LAPO
algorithm. This section firstly determines the most critical
important parameters and the nonsignificant ones. Secondly,
it refines space of design variables. In this article, six factors
are divided into three levels, as given in Table 2. Each numer-
ical experiment retrieves two quality specifications and one
constraint, including safety factor (F1 (X) and displacement
(F2 (X)-mm), and equivalent stress (F3 (X)-MPa). Forty-
nine experiments are generated and the numerical results are
given, as shown in Table 3.

As stated above, this article considers two objective func-
tions. Furthermore, it considers twoconstraints for twoobjec-
tive functions and one constraint about working strength for
solvingMOO problem of the BAM. The sensitivity of design
variables with respect to the displacement, safety factor, and
stress is analyzed, individually. In this study, ANOVA and
Taguchi approach are implemented by using Minitab soft-
ware 18.

Case study 1 considers the safety factor. ANOVA is uti-
lized for analysis of sensitivity at 95% confidence interval.
The results in Table 4 show that the contribution of parame-
ters L1, L3, and H1 on the safety factor is about 0% with p

Fig. 6 Quality of meshing elements using Skewness criterion
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Table 3 Initially numerical results:
safety factor, displacement, and
stress

No. Design variables (Unit: mm) Safety factor Displacement Stress

1 L1 L2 L3 T H1 H2 F1 (X) F2 (X)-mm F3 (X)-MPa

2 3 12.5 16.85 0.555 5.5 1.6 1.472587573 1.426138043 341.5756109

3 2.7 11.25 16.85 0.45 5.5 1.6 1.60331877 1.324164271 313.7242633

4 2.7 13.75 16.85 0.45 5.5 1.6 1.609474228 1.560522676 312.5244203

5 3.3 11.25 16.85 0.45 5.5 1.6 1.923061347 1.386443853 261.5621186

6 3.3 13.75 16.85 0.45 5.5 1.6 1.914484932 1.622220874 262.7338516

7 2.7 11.25 16.85 0.66 5.5 1.6 1.216333723 1.229423761 413.5378231

8 2.7 13.75 16.85 0.66 5.5 1.6 1.208586433 1.445500851 416.1886864

9 3.3 11.25 16.85 0.66 5.5 1.6 1.414269143 1.293904662 355.660733

10 3.3 13.75 16.85 0.66 5.5 1.6 1.394503216 1.511931181 360.701929

11 2.7 12.5 15 0.555 4.5 1.6 1.373567166 1.389369249 366.1997843

12 3.3 12.5 15 0.555 4.5 1.6 1.645083955 1.456207037 305.7594711

13 2.7 12.5 18.7 0.555 4.5 1.6 1.397360273 1.386978626 359.9644343

14 3.3 12.5 18.7 0.555 4.5 1.6 1.639985447 1.454615116 306.7100387

15 2.7 12.5 15 0.555 6.5 1.6 1.363312698 1.397742271 368.9542397

16 3.3 12.5 15 0.555 6.5 1.6 1.612947701 1.463092089 311.8514008

17 2.7 12.5 18.7 0.555 6.5 1.6 1.354836488 1.395954967 371.2625135

18 3.3 12.5 18.7 0.555 6.5 1.6 1.593021891 1.459637046 315.7520953

19 3 12.5 15 0.45 5.5 1.44 1.586714944 1.617383003 317.0071613

20 3 12.5 18.7 0.45 5.5 1.44 1.582628352 1.617017269 317.8257228

21 3 12.5 15 0.66 5.5 1.44 1.191600207 1.48103106 422.1214441

22 3 12.5 18.7 0.66 5.5 1.44 1.198413863 1.479096889 419.7214465

23 3 12.5 15 0.45 5.5 1.76 1.933504622 1.350423336 260.1493651

24 3 12.5 18.7 0.45 5.5 1.76 1.919370206 1.35050714 262.0651287

25 3 12.5 15 0.66 5.5 1.76 1.452630765 1.273059964 346.26831

26 3 12.5 18.7 0.66 5.5 1.76 1.416643905 1.269780993 355.0645283

27 3 11.25 16.85 0.45 4.5 1.6 1.781452363 1.353460312 282.3538875

28 3 13.75 16.85 0.45 4.5 1.6 1.785040587 1.588487983 281.7863098

29 3 11.25 16.85 0.66 4.5 1.6 1.330082409 1.255393028 378.1720565

30 3 13.75 16.85 0.66 4.5 1.6 1.341285713 1.469329 375.0133137

31 3 11.25 16.85 0.45 6.5 1.6 1.740143667 1.356318355 289.0565931

32 3 13.75 16.85 0.45 6.5 1.6 1.749753525 1.591756463 287.4690594

33 3 11.25 16.85 0.66 6.5 1.6 1.314709609 1.264823675 382.5939939

34 3 13.75 16.85 0.66 6.5 1.6 1.298884546 1.482865691 387.2553583

35 2.7 12.5 16.85 0.555 4.5 1.44 1.249208107 1.512535334 402.6550877

36 3.3 12.5 16.85 0.555 4.5 1.44 1.484492527 1.587330222 338.8363302

37 2.7 12.5 16.85 0.555 6.5 1.44 1.225446798 1.521378517 410.4625356

38 3.3 12.5 16.85 0.555 6.5 1.44 1.459963278 1.592926264 344.5292135

39 2.7 12.5 16.85 0.555 4.5 1.76 1.491748181 1.280308843 337.1882777

40 3.3 12.5 16.85 0.555 4.5 1.76 1.79908385 1.342087269 279.5867463

41 2.7 12.5 16.85 0.555 6.5 1.76 1.464464162 1.287930727 343.4703376

42 3.3 12.5 16.85 0.555 6.5 1.76 1.752125826 1.344850659 287.0798389

43 3 11.25 15 0.555 5.5 1.44 1.334165268 1.432215571 377.0147612

44 3 13.75 15 0.555 5.5 1.44 1.340641395 1.679494023 375.1935469

45 3 11.25 18.7 0.555 5.5 1.44 1.341636769 1.431200266 374.9151868

46 3 13.75 18.7 0.555 5.5 1.44 1.344417618 1.678059101 374.1396967

47 3 11.25 15 0.555 5.5 1.76 1.601065157 1.20985055 314.1658526

48 3 13.75 15 0.555 5.5 1.76 1.620710078 1.421619892 310.3577912

49 3 11.25 18.7 0.555 5.5 1.76 1.635506916 1.211179018 307.5499071

3 13.75 18.7 0.555 5.5 1.76 1.644002476 1.420678973 305.9606098
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Table 4 ANOVA results for the
safety factor Source DF Seq SS Contribution (%) Adj SS Adj MS F value p value

Model 21 2.08824 98.45 2.08824 0.09944 81.70 0.000

Linear 6 2.07271 97.72 2.07271 0.34545 283.84 0.000

L1 1 0.00001 0.00 0.00001 0.00001 0.01 0.926

L2 1 0.39408 18.58 0.39408 0.39408 323.79 0.000

L3 1 0.00001 0.00 0.00001 0.00001 0.00 0.945

T 1 1.19305 56.25 1.19305 1.19305 980.26 0.000

H1 1 0.00630 0.30 0.00630 0.00630 5.17 0.031

H2 1 0.47927 22.60 0.47927 0.47927 393.79 0.000

Two-way interaction 15 0.01552 0.73 0.01552 0.00103 0.85 0.620

L1 * L2 1 0.00009 0.00 0.00009 0.00009 0.07 0.788

L1 * L3 1 0.00003 0.00 0.00003 0.00003 0.02 0.882

L1 * T 1 0.00012 0.01 0.00012 0.00012 0.09 0.761

L1 * H1 1 0.00006 0.00 0.00006 0.00006 0.05 0.833

L1 * H2 1 0.00004 0.00 0.00004 0.00004 0.04 0.850

L2 * L3 1 0.00020 0.01 0.00020 0.00020 0.17 0.686

L2 * T 1 0.00725 0.34 0.00725 0.00725 5.96 0.021

L2 * H1 1 0.00014 0.01 0.00014 0.00014 0.11 0.740

L2 * H2 1 0.00196 0.09 0.00196 0.00196 1.61 0.215

L3 * T 1 0.00001 0.00 0.00001 0.00001 0.01 0.912

L3 * H1 1 0.00028 0.01 0.00028 0.00028 0.23 0.637

L3 * H2 1 0.00000 0.00 0.00000 0.00000 0.00 0.964

T * H1 1 0.00004 0.00 0.00004 0.00004 0.04 0.850

T * H2 1 0.00522 0.25 0.00522 0.00522 4.29 0.048

H1 * H2 1 0.00008 0.00 0.00008 0.00008 0.07 0.795

Error 27 0.03286 1.55 0.03286 0.00122

Total 48 2.12110 100.00

Fig. 7 Effect plot of design
variables on the safety factor

value of 0.926, 0.945, and 0.031, respectively. These p val-
ues are more than 0.5%. According to the statistical theory,
p value is less than 0.5%, and that parameter is significant. It
means that the contributions of L1, L3, andH1 are very small

and can be ignored in further modeling and optimization pro-
cess. In addition, the Taguchi method with larger-the-better
type is used for this response to describe influencing plot of
displacement, as shown in Fig. 7. The results also showed that
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Table 5 ANOVA results for the
displacement Source DF Seq SS Contribution (%) Adj SS Adj MS F value p value

Model 21 0.746943 99.78 0.746943 0.035569 587.73 0.000

Linear 6 0.744068 99.40 0.744068 0.124011 2049.13 0.000

L1 1 0.309194 41.30 0.309194 0.309194 5109.04 0.000

L2 1 0.025574 3.42 0.025574 0.025574 422.58 0.000

L3 1 0.000012 0.00 0.000012 0.000012 0.19 0.663

T 1 0.066420 8.87 0.066420 0.066420 1097.50 0.000

H1 1 0.000288 0.04 0.000288 0.000288 4.76 0.038

H2 1 0.342580 45.76 0.342580 0.342580 5660.71 0.000

Two-way interaction 15 0.002875 0.38 0.002875 0.000192 3.17 0.004

L1 * L2 1 0.000000 0.00 0.000000 0.000000 0.00 0.951

L1 * L3 1 0.000001 0.00 0.000001 0.000001 0.01 0.904

L1 * T 1 0.000366 0.05 0.000366 0.000366 6.05 0.021

L1 * H1 1 0.000003 0.00 0.000003 0.000003 0.04 0.839

L1 * H2 1 0.000664 0.09 0.000664 0.000664 10.97 0.003

L2 * L3 1 0.000000 0.00 0.000000 0.000000 0.00 0.969

L2 * T 1 0.000006 0.00 0.000006 0.000006 0.10 0.755

L2 * H1 1 0.000011 0.00 0.000011 0.000011 0.19 0.667

L2 * H2 1 0.000096 0.01 0.000096 0.000096 1.58 0.220

L3 * T 1 0.000003 0.00 0.000003 0.000003 0.05 0.824

L3 * H1 1 0.000000 0.00 0.000000 0.000000 0.00 0.955

L3 * H2 1 0.000000 0.00 0.000000 0.000000 0.00 0.951

T * H1 1 0.000035 0.00 0.000035 0.000035 0.59 0.451

T * H2 1 0.001687 0.23 0.001687 0.001687 27.88 0.000

H1 * H2 1 0.000002 0.00 0.000002 0.000002 0.03 0.855

Error 27 0.001634 0.22 0.001634 0.000061

Total 48 0.748577 100.00

Fig. 8 Effect plot of design
variables on the displacement

factors L1, L3, andH1 are two nonsignificant factors because
the safety factor is a little change when those parameters are
varied. Meanwhile, other parameters are very sensitive to the
safety factor which are taken as key variables for case study
1.

Considering the displacement, case study 2 is expected to
be the higher-the-better type. In Table 5, the ANOVA results
revealed that parameters L3 and H1 have a lowest contribu-
tion on the displacement with respect to 0.663% and 0.038%,
respectively. These p values are larger than 0.5%. As a result,
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Table 6 ANOVA results for the
equivalent stress Source DF Seq SS Contribution (%) Adj SS Adj MS F value p value

Model 27 101509 99.82 101509 3759.6 435.64 0.000

Linear 6 100753 99.08 100753 16792.1 1945.80 0.000

L1 1 0 0.00 0 0.0 0.00 0.946

L2 1 19572 19.25 19572 19572.1 2267.93 0.000

L3 1 1 0.00 1 0.7 0.08 0.778

T 1 56458 55.52 56458 56458.0 6542.12 0.000

H1 1 305 0.30 305 304.7 35.30 0.000

H2 1 24417 24.01 24417 24417.2 2829.37 0.000

Square 6 561 0.55 561 93.5 10.83 0.000

L1 * L1 1 59 0.06 1 1.0 0.12 0.733

L2 * L2 1 13 0.01 9 8.5 0.99 0.332

L3 * L3 1 31 0.03 15 15.1 1.75 0.200

T * T 1 255 0.25 149 149.4 17.32 0.000

H1 * H1 1 157 0.15 43 42.6 4.94 0.037

H2 * H2 1 47 0.05 47 46.6 5.40 0.030

Two-way interaction 15 195 0.19 195 13.0 1.51 0.190

L1 * L2 1 3 0.00 3 2.8 0.33 0.573

L1 * L3 1 1 0.00 1 1.3 0.15 0.698

L1 * T 1 8 0.01 8 8.1 0.94 0.344

L1 * H1 1 6 0.01 6 5.8 0.67 0.422

L1 * H2 1 1 0.00 1 1.0 0.11 0.739

L2 * L3 1 10 0.01 10 9.6 1.12 0.303

L2 * T 1 16 0.02 16 16.3 1.89 0.184

L2 * H1 1 0 0.00 0 0.0 0.00 0.988

L2 * H2 1 31 0.03 31 31.0 3.60 0.072

L3 * T 1 2 0.00 2 1.7 0.19 0.664

L3 * H1 1 17 0.02 17 16.5 1.91 0.181

L3 * H2 1 1 0.00 1 1.2 0.14 0.710

T * H1 1 2 0.00 2 2.3 0.27 0.612

T * H2 1 97 0.10 97 97.2 11.27 0.003

H1 * H2 1 0 0.00 0 0.0 0.00 0.974

Error 21 181 0.18 181 8.6

Total 48 101690 100.00

the factors L3 and H1 are nonsignificant variables that can
be neglected in modeling and optimization process for case
study 2.

Figure 8 describes the sensitivity of full variables on the
displacement via using the Taguchi method. It also notes that
the parameters L3 andH1 have a very small influence on this
response. On the other hand, if these parameters are varied,
the displacement is somehow changed. When there is any
a change in the remain parameters, the displacement has a
sharply change.

Case study 3 deals with the equivalent stress, the ANOVA
results in Table 6 indicated that three parameters L1 and L3
have the lowest contribution on the stress with p value of
0.946 and 0.778, respectively. These values are more than

0.5%. According to the statistical theory, such factors are
nonsignificant and can be suppressed in further modeling
and the MOO process. A smaller-the-better type is utilized
for the stress. The results the Taguchi analysis show that three
parameters L1 and L3 also have a very small contribution on
the stress response, as shown in Fig. 9.

4.2 Optimization Implementation

4.2.1 Selection of Membership Functions

In this section, the desirability values of both displacement
and the safety factor of the BAM are calculated, and their
results transformed into the FIS. The desirability values of
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Fig. 9 Effect plot of design
variables on the stress

Table 7 Linguistic variables for fuzzy reasoning process

Symbol T VS S SM M ML L VL H

Linguistic variables Tiny Very small Small Small–medium Medium Medium–large Large Very large Huge

both displacement and the safety factor are assigned as two
inputs for the FIS. Two inputs and one output (MPCI) of
this system are fuzzed by assigning the linguistic variables.
Table 7 shows the linguistic variables, including tiny, very
small, small, small–medium, medium, medium–large, large,
very large, and huge.

The MFs for desirability of safety factor are divided into
three levels such as small, medium, and large, as illustrated
in Fig. 10a. Meanwhile, the MFs of the desirability of dis-
placement are separated into seven levels, including tiny, very
small, small–medium, medium, medium–large, large, very
large, and huge, as depicted in Fig. 10b.At last, theMFs of the
output MPCI also include seven levels, as shown in Fig. 11.
All the MFs are defined by trapezoidal shape because this is
a popular MFs type for both the FIS and ANFIS model.

The results of sensitivity analysis help to decrease com-
putational time. Particularly, some parameters may be redun-
dant, while others are critically important factors. In the other
word, a sensitivity research is needed to refine a space of
design variables. Based on the sensitivity results, three fol-
lowing numerical examples are considered to evaluate the
performance effectiveness of proposed methodology. Afore-
mentioned above, a general optimization problem of the
BAM is briefly stated as follows:

Find vector of design variable: X� [L1, L2, L3, H1, H2,
T ]T

Maximize F1(X) (24)

Maximixe F2(X) (25)

Subject to constraints:

F1(X) ≥ 1.5

F2(X) ≥ 1.7mm

F3(X) ≤ σa (26)

Initial space of design variables:

2.7mm ≤ L1 ≤ 3.3mm

11.25mm ≤ L2 ≤ 13.75mm

16.7mm ≤ L3 ≤ 18.7mm

4.5mm ≤ H1 ≤ 6.5mm

1.44mm ≤ H2 ≤ 1.76mm

0.45mm ≤ T ≤ 0.65mm (27)

where F1 (X), F2 (X), and F3 (X) denote the safety factor,
displacement, and stress, respectively. σa is the yield stress
of proposed Al T73-7075. Specifically, F1 (X) and F2 (X)
are two objective functions, while F3 (X) is regarded as the
constraint.

If the full initial space is used, it may take a long time
to search optimum solutions. Therefore, this study limits the
searching spaces in Eq. (27). The following case studies are
separated to investigate and evaluate the efficiency of pro-
posed hybrid approach.
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Fig. 10 Membership functions plot: a the safety factor and b the displacement

Fig. 11 Membership functions plot for the MPCI

4.2.2 Case Study 1

Based on the results of sensitivity analysis in Table 4 and
Fig. 7, the lowest contributing factors are suppressed dur-
ing the optimization process since their influences are very

small on the safety factor.Meanwhile, real influencing factors
with large contributions are taken into account as key design
variables. Case study 1 takes two objective functions to be
optimized simultaneously with the spaces of design vari-
ables are relatively reduced. In order to solveMOO problem,
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Table 8 Desirability results of the case study 1

No. Design variables (unit:
mm)

Safety factor Displacement Stress Desirability of safety factor Desirability of displacement

L2 T H2 F1 (X) F2 (X)-mm F3 (X)-MPa d1 d2

1 12.5 0.555 1.6 1.475086 1.425435 340.9972 0.380999704 0.459061168

2 11.25 0.45 1.6 1.753896 1.354951 286.7901 0.761457884 0.310888149

3 13.75 0.45 1.6 1.774099 1.591645 283.5242 0.785413035 0.818092581

4 11.25 0.66 1.6 1.319707 1.263442 381.1451 0.172242603 0.109036186

5 13.75 0.66 1.6 1.314954 1.480399 382.523 0.162202839 0.574090949

6 11.25 0.555 1.44 1.333424 1.43232 377.2244 0.185263001 0.473312026

7 13.75 0.555 1.44 1.335427 1.678723 376.6585 0.191556403 0.997841414

8 11.25 0.555 1.76 1.620762 1.210485 310.3479 0.578640577 0.002158586

9 13.75 0.555 1.76 1.623741 1.420928 309.7785 0.586262563 0.449888393

10 12.5 0.45 1.44 1.583884 1.618079 317.5738 0.531301625 0.868582001

11 12.5 0.66 1.44 1.195386 1.480652 420.7844 0 0.581500805

12 12.5 0.45 1.76 1.929505 1.35067 260.6886 1 0.294874372

13 12.5 0.66 1.76 1.431208 1.273322 351.4514 0.319130754 0.136101974

the desirability of safety factor and the desirability of dis-
placement are transformed into a single combined objective
function, which is called as the MPCI of the FIS. According
to the fuzzy theory [34], the MPCI should be maximized to
reach an optimal solution. The optimization problem of case
study 1 is stated as follows:

Find vector of design variable: X� [L2, T, H2]T

Maximize MPCI(X)case study 1 (28)

S.t.

F1(X) ≥ 1.5

F2(X) ≥ 1.7 mm

F3(X) ≤ σa

11.25 mm ≤ L2 ≤ 13.75 mm

0.45 mm ≤ T ≤ 0.66 mm

1.44 mm ≤ H2 ≤ 1.76 mm (29)

Case study 1 evaluates three design variables (L2, T, and
H1) and two objective functions and three constraints. Based
on the number of design variables and their levels, BBD is
used to build 13 experiments. The results of displacement,
safety factor, and stress are collected, simultaneously.

Next, desirability of safety factor and desirability of dis-
placement are calculated, as given in Table 8. Real values
of two responses have different units, and it is a main
cause resulting in un-precise solutions. Therefore, desirabil-
ity function approach is proposed to overcome this limitation
because desirability has no unit and its value fromzero to one.

The results showed all stress values are satisfied in terms of
allowable stress of material.

In order to conduct the MOO problem for case study 1,
the MFs for desirability of safety factor include three levels
and the ones of displacement are divided into seven levels,
while theMFs of fuzzyMPCI output are separated into seven
levels, as given inTable 9. Subsequently,matrix of fuzzy rules
is built in this table.

In this study, center of gravity method is employed for
defuzzification and Mamdani method is utilized for fuzzy
operation. The FIS is implemented in MATLAB R2019b.
Figure 12 illustrates a relation of the fuzzy MPCI with the
desirability of safety factor and desirability of displacement.
The value of inputs and outputs of the FIS are in range from
zero to one. In this study, the weight of each rule is assumed
to be unity.

Based on 27 fuzzy rules in Table 9, the output of FIS is
computed, as shown in Fig. 13.

The results of MPCI output are determined with respect
to each value of desirability of displacement and desirability
of safety factor, as given in Table 10.

By taking the values of design variables in Table 8 and
the MPCI value in Table 10, a proper ANFIS model is devel-
oped formodeling theMPCI.Modeling is coded inMATLAB
R2019b. The predicting accuracy of the developANFISmod-
els for three case studies is evaluated through the root mean
square error (RMSE) and coefficient of determination (R2)
[62]. The results of ANFIS parameters are given in Table 11.

According to the theory of fuzzy logic [34], in order to
get a large displacement and a high safety factor simultane-
ously, a larger-the-better value is desired for theMPCI. In the
other word, the MPCI must be maximized so as to achieve
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Table 9 Fuzzy rules matrix for case study 1

No. Desirability for F1 (X) Desirability for F2 (X) MPCI

1 S T T

2 M T VS

3 L T S

4 S VS VS

5 M VS S

6 L VS SM

7 S S S

8 M S SM

9 L S ML

10 S SM S

11 M SM SM

12 L SM M

13 S M SM

14 M M M

15 L M ML

16 S ML SM

17 M ML M

18 L ML ML

19 S L ML

20 M L ML

21 L L L

22 S VL ML

23 M VL L

24 L VL VL

25 S H ML

26 M H L

27 L H H

Fig. 12 Plot of input versus output in the FIS

a global optimal solution. In order to evaluate the effective-
ness and robustness of the proposed hybrid approach, the
optimal results are compared with those obtained from a tra-
ditional combination of the Taguchi method and fuzzy logic
(TMFL), the optimal results from the TMFL are determined
at L2 � 13.75 mm, T� 0.45 mm, and H2� 1.44 mm, as
given in Table 12. The results of TMFL find that the optimal
displacement and the optimal safety factor are approximately
1.74598 mm and 1.59843, respectively. However, those opti-
mal values are discrete points. Such points can lead to local
optimum solutions. To overcome this limitation, LAPO algo-
rithm is used to search a global optimum solution. Based
on the established ANFIS modeling, a pseudo-objective
function of MPCI is well established. And then, a LAPO
programming is implemented in MATLAB R2019b, and the
results of the proposed approach showed that the optimal
design parameters are at L2 � 13.80 mm, T� 0.50 mm, and
H2� 1.44mm.By using the proposedmethodology, the opti-
mal displacement and the optimal safety factor are found at
1.7686 mm and 11.5111, respectively. Besides, the optimal
MPCI predicted from the TMFL is smaller than that pre-
dicted from the proposed hybrid methodology. According
to a larger-the-better value is best for the MPCI, the pro-
posed approach is efficient, robust, and better than the TMFL.
Besides, the equivalent stress in this case is lower than the
allowable stress of proposed material. It satisfies the design
objectives for the BAM. The optimal results are satisfiedwith
initial requirements.

4.2.3 Case Study 2

Based on the results of sensitivity analysis in Table 5 and
Fig. 8, the nonsignificant factors are neglected in modeling
and optimization problem. The factors with actual contribu-
tions are considered as key design variables. The space of
design parameters is decreased, accordingly. Similarly, case
study 2 also maximizes both objective functions (F1 (X) and
maximizes F2 (X)), simultaneously. Two objective functions
are transferred into desirability values and then transformed
toMPCIvalue.Theoptimizationproblem is briefly expressed
as follows:

Find design variable X � [L1, L2, T, H2]T

Maximize MPCI(X)case study 2 (30)

S.t.

F1(X) ≥ 1.5

F2(X) ≥ 1.7 mm

F3(X) ≤ σa

2.7 mm ≤ L1 ≤ 3.3 mm

11.25 mm ≤ L2 ≤ 13.75 mm
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Fig. 13 Twenty-seven fuzzy rules

0.45 mm ≤ T ≤ 0.66 mm

1.44 mm ≤ H2 ≤ 1.76 mm (31)

The BBD is also used to build eight numerical experi-
ments. The results of displacement, safety factor, and stress
are collected by simulations. And then, desirability of dis-
placement and desirability of safety factor are calculated, as
given in Table 13. The resulting stress values are under the
allowable stress of Al T73-7075.

Next, the MFs for desirability of safety factor are also
divided into three levels and the desirability of displacement
into seven levels, while the MFs of fuzzy MPCI output are

separated into seven levels, as given in Table 9. Subsequently,
matrix of fuzzy rules is given in Table 14.

The results of MPCI output are calculated corresponding
to the desirability two responses, as given in Table 15.

By taking the values of design variables in Table 13 and
the MPCI value of Table 15, ANFIS model is formed for
modeling the MPCI. The ANFIS parameters for case study
2 are developed, as given in Table 16.

By using the TMFL, the optimal results are determined
at L1� 3.3 mm, L2� 13.75 mm, and T� 0.45 mm, and
H2 � 1.44 mm, as given in Table 17. Based on the TMFL,
the optimal displacement and the optimal safety factor are
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Table 10 Results of fuzzy MPCI for case study 1

No. Desirability for F1
(X)

Desirability for F2
(X)

MPCI value

1 0.380999704 0.459061168 0.461

2 0.761457884 0.310888149 0.513

3 0.785413035 0.818092581 0.774

4 0.172242603 0.109036186 0.144

5 0.162202839 0.574090949 0.389

6 0.185263001 0.473312026 0.375

7 0.191556403 0.997841414 0.655

8 0.578640577 0.002158586 0.125

9 0.586262563 0.449888393 0.451

10 0.531301625 0.868582001 0.75

11 0 0.581500805 0.375

12 1 0.294874372 0.581

13 0.319130754 0.136101974 0.226

Table 11 ANFIS parameters for case study 1

Number of nodes 58

Number of linear parameters 72

Number of nonlinear parameters 24

Total number of parameters 96

Number of training data pairs 13

Number of testing data pairs 0

Number of fuzzy rules 18

found at 1.7822 mm and 1.7444, respectively. Subsequently,
LAPO algorithm is used to search a global optimum value.
The results of proposed hybrid approach determined that the
optimal design parameters are L1� 3.2 mm, L2� 13.75 mm,
and T� 0.45 mm, and H2 � 1.44 mm. Using the proposed
methodology, the optimal displacement and the safety factor
are found at 1.8534mm and 1.7517, respectively. Finally, the
predicted MPCI from the proposed approach is greater than
that predicted from the TMFL. It means that the estimated
solution from the proposed methodology is robust and better
than that from the TMFL. Moreover, it finds that the equiva-
lent stress is under the allowable stress of polypropylene. It

also satisfies the MOO optimization problem for the bridge
mechanism.The optimal results are satisfiedwith design con-
straints.

4.2.4 Case Study 3

Based on the results of sensitivity analysis in Table 6 and
Fig. 9, the space of design variables is relatively shorted.
Case study 3 also simultaneously maximizes F1 (X) and
maximizes F2 (X). The computational principle is similar
to previous cases. The statement of optimization is stated as
follows:

Find design variable X� [T, H1, H2, L2]T

Maximize MPCI(X)case study 3 (32)

S.t.

F1(X) ≥ 1.5

F2(X) ≥ 1.7 mm

F3(X) ≤ σa

0.45 mm ≤ T ≤ 0.66 mm

4.5 mm ≤ H1 ≤ 6.6 mm

1.44 mm ≤ H2 ≤ 1.76 mm

11.25 mm ≤ L2 ≤ 13.75 mm (33)

Similarly, the BBD is used to build 25 numerical experi-
ments. The results of displacement, safety factor, and stress
are collected. And then, desirability values of two responses
are calculated, as given in Table 18. The results showed all
stress values are smaller than the allowable stress of proposed
material.

The MFs for desirability of safety factor include three
levels and the ones of displacement are consisted of seven
levels, while the MFs of fuzzy MPCI output are divided into
seven levels. Subsequently, a matrix of fuzzy rules is given
in Table 19.

Table 12 Comparison of different methods for case study 1

Method Optimal parameters (mm) Optimal results

Safety factor Displacement (mm) Stress (MPa) MPCI

Hybrid of Taguchi method and
fuzzy logic

L2 � 13.75 F1 (X) � 1.59843 F2 (X) � 1.74598 F3 (X) � 316.2440 0.8600

T� 0.45

H2� 1.44

Proposed hybrid approach L2 � 13.80 F1 (X) � 1.51110 F2 (X) � 1.76860 F3 (X) � 329.9409 0.9458

T� 0.50

H2� 1.44
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Table 13 Desirability results of the case study 2

No. Design variables (unit: mm) Safety factor Displacement Stress Desirability of safety
factor

Desirability of
displacement

L1 L2 T H2 F1 (X) F2 (X)-mm F3 (X)-MPa d1 d2

1 3 12.5 0.555 1.6 1.475086 1.425435 340.9972 0.380999704 0.459061168

2 2.7 11.25 0.555 1.6 1.355915 1.281085 370.9673 0.208136052 0.151590868

3 2.7 13.75 0.555 1.6 1.365908 1.507757 368.2531 0.221368807 0.635027905

4 3.3 11.25 0.555 1.6 1.594497 1.343716 315.4599 0.556001286 0.285199542

5 3.3 13.75 0.555 1.6 1.595557 1.57322 315.2505 0.557064098 0.77468262

6 3 12.5 0.45 1.44 1.583884 1.618079 317.5738 0.535487868 0.868760863

7 3 12.5 0.66 1.44 1.195386 1.480652 420.7844 0.001973228 0.583683153

8 3 12.5 0.45 1.76 1.929505 1.35067 260.6886 0.999456105 0.29350712

9 3 12.5 0.66 1.76 1.431208 1.273322 351.4514 0.316373845 0.136738209

10 3 11.25 0.555 1.44 1.333424 1.43232 377.2244 0.191536892 0.474177478

11 3 13.75 0.555 1.44 1.335427 1.678723 376.6585 0.198020384 0.999037326

12 3 11.25 0.555 1.76 1.620762 1.210485 310.3479 0.580057028 0.001477925

13 3 13.75 0.555 1.76 1.623741 1.420928 309.7785 0.587869103 0.449538192

14 2.7 12.5 0.45 1.6 1.593029 1.440769 315.7506 0.555109724 0.493728964

15 3.3 12.5 0.45 1.6 1.916378 1.504103 262.4743 0.972377667 0.629674025

16 2.7 12.5 0.66 1.6 1.198821 1.338879 419.5791 0.022298955 0.272119021

17 3.3 12.5 0.66 1.6 1.411335 1.402856 356.4001 0.288591536 0.409437348

18 3 11.25 0.45 1.6 1.753896 1.354951 286.7901 0.757750812 0.309056002

19 3 13.75 0.45 1.6 1.774099 1.591645 283.5242 0.781896054 0.816590894

20 3 11.25 0.66 1.6 1.319707 1.263442 381.1451 0.16644982 0.109207526

21 3 13.75 0.66 1.6 1.314954 1.480399 382.523 0.156600146 0.574592749

22 2.7 12.5 0.555 1.44 1.222579 1.520409 411.4253 0.027370717 0.659949831

23 12.5 0.555 1.44 1.459215 1.591396 344.7059 0.350027084 0.811021067

24 12.5 0.555 1.76 1.487116 1.286406 338.2386 0.397431249 0.163290029

25 12.5 0.555 1.76 1.75183 1.343871 287.1283 0.758335407 0.285482182

The value of MPCI is determined according to each value
of desirability for objective functions, as given in Table 20.

Subsequently, using the values of design variables in
Table 18 and the MPCI value of Table 20, ANFIS model
is formed for mapping the design variables and the MPCI.
TheANFIS parameters for case study 2 are given in Table 21.

Through the TMFL, the optimal results are determined
at T� 0.45 mm, H1 � 6.5 mm, H2� 1.44 mm, and L2
� 13.75 mm, as shown in Table 22. Based on the TMFL,
the optimal displacement and the safety factor are found at
1.7454 mm and 1.5904, respectively. Such optimal points
are local optimum solutions. Subsequently, the results of
proposed hybrid approach showed that the optimal design
parameters are atT� 0.47mm,H1 � 6.6mm,H2� 1.44mm,
and L2 � 13.75 mm. Using this proposed approach, the
optimal displacement and the safety factor are found at
1.7610 mm and 1.5133, respectively. At last, the predicted
MPCI from the proposed methodology is effective and better
than that from the TMFL. In addition, the equivalent stress
is also lower than the allowable stress of the polypropylene.

All responses are satisfied the optimal design process for
the BAM. The optimal results are satisfied with designer’s
requirements.

5 Results and Discussion

Based on spaces of design parameters are eliminated, three
cases of numerical studies are taken as examples to describe
application capacity and effectiveness of the proposed
methodology. The performances of proposed methodology
are compared with the TMFL. Table 23 summarizes all the
optimal solutions for this comparison. In each case study, the
optimal factors are used to create a 3D model in SolidWorks
2018 software and then imported into ANSYS 2018 soft-
ware to evaluate the robustness of proposed hybrid approach
by calculating the relative error. This error is calculated as
follows:
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Table 14 Fuzzy rules matrix for case study 2

No. Desirability for F1 (X) Desirability for F2 (X) MPCI

1 S T T

2 M T VS

3 L T S

4 S VS VS

5 M VS S

6 L VS SM

7 S S S

8 M S SM

9 L S ML

10 S SM S

11 M SM SM

12 L SM M

13 S M SM

14 M M M

15 L M ML

16 S ML SM

17 M ML M

18 L ML ML

19 S L ML

20 M L ML

21 L L L

22 S VL ML

23 M VL L

24 L VL VL

25 S H ML

26 M H L

27 L H H

ε(%) �
(
Rp − Ra

Ra
− 1

)
× 100 (34)

where 1, Rp, and Ra represent the relative error, predicted
result from proposed method, and actual result, respectively.

Case study 1: Using the TMFL, the results showed
the optimal displacement and safety factor are 1.745 mm
and 1.598, respectively. Meanwhile, the proposed hybrid
approach predicts the displacement and safety factor about
1.768 mm and 1.511, respectively. By using the proposed
method, the relative errors between predicted values andFEA
values are very small (around 4%), while the error value is
around 1% via using TMFL. Both the proposed methods are
reliable tools in this case. According to the Taguchi method,
a larger-the-better value of MPCI is a desired value for MOO
problem. On the other hand, the proposed hybrid approach
has a better performance than the TMFL.

Case study 2: Through the TMFL, the results showed the
optimal displacement and safety factor are 1.782 mm and
1.744, respectively. By using the proposed hybrid integra-

Table 15 Results of fuzzy MPCI for case study 2

No. Desirability for F1 (X) Desirability for F2 (X) MPCI

1 0.380999704 0.459061168 0.461

2 0.208136052 0.151590868 0.199

3 0.221368807 0.635027905 0.422

4 0.556001286 0.285199542 0.375

5 0.557064098 0.77468262 0.644

6 0.535487868 0.868760863 0.75

7 0.001973228 0.583683153 0.375

8 0.999456105 0.29350712 0.583

9 0.316373845 0.136738209 0.224

10 0.191536892 0.474177478 0.379

11 0.198020384 0.999037326 0.659

12 0.580057028 0.001477925 0.125

13 0.587869103 0.449538192 0.45

14 0.555109724 0.493728964 0.5

15 0.972377667 0.629674025 0.625

16 0.022298955 0.272119021 0.25

17 0.288591536 0.409437348 0.374

18 0.757750812 0.309056002 0.506

19 0.781896054 0.816590894 0.771

20 0.16644982 0.109207526 0.14

21 0.156600146 0.574592749 0.385

22 0.027370717 0.659949831 0.446

23 0.350027084 0.811021067 0.686

24 0.397431249 0.163290029 0.286

25 0.758335407 0.285482182 0.507

Table 16 ANFIS parameters for case study 2

Number of nodes 55

Number of linear parameters 80

Number of nonlinear parameters 24

Total number of parameters 104

Number of training data pairs 25

Number of testing data pairs 0

Number of fuzzy rules 16

tion, the optimal displacement and safety factor are found
at 1.853 mm and 1.751, respectively. By using the proposed
hybrid approach, the relative errors between predicted val-
ues and simulated values are around 4.6%, while the error
between the predicted value by the TMFL and FEA value is
less than 1%. In addition, the MPCI predicted by the pro-
posed hybrid approach is greater than that from TMFL. On
the other hand, the performance and prediction accuracy of
proposed methodology outperform the TMFL.

Case study 3: The results showed the optimal displace-
ment and safety factor are 1.745 mm and 1.590, respectively,
by using TMFL. Meanwhile, the proposed hybrid approach
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Table 17 Comparison of differential methods for case study 2

Method Optimal parameters (mm) Optimal results

Safety factor Displacement (mm) Stress (MPa) MPCI

Hybrid of Taguchi method and
Fuzzy logic

L1� 3.3 F1 (X) � 1.7444 F2 (X) � 1.7822 F3 (X) � 289.017 0.6447

L2� 13.75

T � 0.45

H2 � 1.44

Proposed hybrid approach L1� 3.2 F1 (X) � 1.7517 F2 (X) � 1.8534 F3 (X) � 287.127 0.8510

L2� 13.75

T � 0.45

H2 � 1.44

Table 18 Desirability results of the case study 3

No. Design variables (Unit: mm) Safety factor Displacement Stress Desirability of safety
factor

Desirability of
displacement

T H1 H2 L2 F1 (X) F2 (X)-mm F3 (X)-MPa d1 d2

1 0.555 5.5 1.6 12.5 1.475086 1.425435 340.9972 0.380999704 0.459061168

2 0.45 4.5 1.6 12.5 1.789175 1.470534 281.1352 0.810112854 0.557212568

3 0.66 4.5 1.6 12.5 1.335404 1.362406 376.6649 0.198083485 0.325262982

4 0.45 6.5 1.6 12.5 1.749785 1.473127 287.4638 0.753991796 0.560825817

5 0.66 6.5 1.6 12.5 1.300087 1.373929 386.8972 0.14750929 0.347946921

6 0.555 5.5 1.44 11.25 1.333424 1.43232 377.2244 0.18798522 0.475020102

7 0.555 5.5 1.76 11.25 1.620762 1.210485 310.3479 0.578318684 0.00252121

8 0.555 5.5 1.44 13.75 1.335427 1.678723 376.6585 0.19803483 0.998197693

9 0.555 5.5 1.76 13.75 1.623741 1.420928 309.7785 0.589696877 0.44889922

10 0.45 5.5 1.6 11.25 1.753896 1.354951 286.7901 0.754902024 0.310745122

11 0.66 5.5 1.6 11.25 1.319707 1.263442 381.1451 0.162643545 0.109405715

12 0.45 5.5 1.6 13.75 1.774099 1.591645 283.5242 0.782613384 0.816597757

13 0.66 5.5 1.6 13.75 1.314954 1.480399 382.523 0.156359989 0.573108682

14 0.555 4.5 1.44 12.5 1.376799 1.55096 365.3401 0.230938186 0.725249585

15 0.555 6.5 1.44 12.5 1.330449 1.557256 378.0678 0.181671104 0.738663717

16 0.555 4.5 1.76 12.5 1.662364 1.310603 302.5811 0.626016486 0.214616441

17 0.555 6.5 1.76 12.5 1.610023 1.31665 312.4179 0.568588316 0.227499495

18 0.45 5.5 1.44 12.5 1.583884 1.618079 317.5738 0.537466369 0.869201645

19 0.66 5.5 1.44 12.5 1.195386 1.480652 420.7844 0.002994242 0.582633005

20 0.45 5.5 1.76 12.5 1.929505 1.35067 260.6886 1 0.294148563

21 0.66 5.5 1.76 12.5 1.431208 1.273322 351.4514 0.319208187 0.135888722

22 0.555 4.5 1.6 11.25 1.491192 1.309506 337.3141 0.415518867 0.209348358

23 0.555 6.5 1.6 11.25 1.469213 1.314926 342.3601 0.374175383 0.22288113

24 0.555 4.5 1.6 13.75 1.513384 1.535411 332.3676 0.43823691 0.694510338

25 0.555 6.5 1.6 13.75 1.473781 1.540471 341.299 0.372885142 0.707274752

finds the optimal displacement and safety factor approxi-
mately 1.761 mm and 1.513, respectively. Both methods find
that the relative errors between predicted values and simu-
lated values are around 1%. Moreover, the MPCI predicted
by the proposed hybrid approach is higher than that from
TMFL. It can conclude that the performance and precision of

the proposed approach outperform the Taguchi-based fuzzy
logic.

The results of three numerical examples show that the
proposed optimization scheme is better than an integration
of Taguchi-based fuzzy logic. Among three numerical exam-
ples, case study 3 may be chosen as an optimal solution for
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Table 19 Fuzzy rules matrix for case study 3

No. Desirability for F1 (X) Desirability for F2 (X) MPCI

1 S T T

2 M T VS

3 L T S

4 S VS VS

5 M VS S

6 L VS SM

7 S S S

8 M S SM

9 L S ML

10 S SM S

11 M SM SM

12 L SM M

13 S M SM

14 M M M

15 L M ML

16 S ML SM

17 M ML M

18 L ML ML

19 S L ML

20 M L ML

21 L L L

22 S VL ML

23 M VL L

24 L VL VL

25 S H ML

26 M H L

27 L H H

MOO design of the bridge mechanism. The reasons are as
follows: The displacement and safety factor are found larger
than two remain cases. Besides, the equivalent stress IS also
under the yield strength of polypropylene. All criteria satis-
fied the design requirements. The optimal design variables
are at T� 0.47 mm, H1 � 6.6 mm, H2� 1.44 mm, and
L2 � 13.75. Other remain parameters are constant values.
The achieved results demonstrate that the proposed hybrid
approach is a robust optimization tool and effectiveness for
solving the MOO design for the BAM. The results of this
article can be extended for complex optimization fields and
other compliant mechanisms.

6 Comparison with Other Metaheuristic
Optimization Algorithms

As discussed above, the proposed methodology is outper-
formed the TMFL for solving MOO design for the BAM.
In this section, the proposed algorithm is compared with

Table 20 Results of fuzzy output for case study 3

No. Desirability for F1 (X) Desirability for F2 (X) MPCI

1 0.380999704 0.459061168 0.461

2 0.810112854 0.557212568 0.596

3 0.198083485 0.325262982 0.284

4 0.753991796 0.560825817 0.565

5 0.14750929 0.347946921 0.255

6 0.18798522 0.475020102 0.379

7 0.578318684 0.00252121 0.125

8 0.19803483 0.998197693 0.659

9 0.589696877 0.44889922 0.449

10 0.754902024 0.310745122 0.504

11 0.162643545 0.109405715 0.138

12 0.782613384 0.816597757 0.772

13 0.156359989 0.573108682 0.385

14 0.230938186 0.725249585 0.558

15 0.181671104 0.738663717 0.625

16 0.626016486 0.214616441 0.341

17 0.568588316 0.227499495 0.359

18 0.537466369 0.869201645 0.75

19 0.002994242 0.582633005 0.375

20 1 0.294148563 0.582

21 0.319208187 0.135888722 0.226

22 0.415518867 0.209348358 0.336

23 0.374175383 0.22288113 0.351

24 0.43823691 0.694510338 0.57

25 0.372885142 0.707274752 0.584

Table 21 ANFIS parameters for case study 3

Number of nodes 55

Number of linear parameters 80

Number of nonlinear parameters 24

Total number of parameters 104

Number of training data pairs 25

Number of testing data pairs 0

Number of fuzzy rules 16

recent less-parameter optimization algorithms such as Jaya
and TLBO.Case 3 is chosen as the final optimal candidate for
the BAM. Therefore, ANFIS structure of case 3 is also cou-
pled with Jaya and TLBO algorithms in comparison with the
performances.The results indicated that the optimal displace-
ment, safety factor, and MPCI are predicted by the proposed
algorithm which are greater than those estimated by the Jaya
and TLBO algorithms, as given in Table 24. On the other
hand, the proposed methodology has a prediction accuracy
better than other methods.

Furthermore, this section implements a statistical inves-
tigation in order to evaluate and valid the effectiveness of
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Table 22 Comparison of differential methods for case study 3

Method Optimal parameters (mm) Optimal results

Safety factor Displacement (mm) Stress (MPa) MPCI

Hybrid of Taguchi method and
Fuzzy logic

T� 0.45 F1 (X) � 1.5904 F2 (X) � 1.7454 F3 (X) � 318.163 0.8538

H1 � 6.5

H2� 1.44

L2 � 13.75

Proposed hybrid approach T� 0.47 F1 (X) � 1.5133 F2 (X) � 1.7610 F3 (X) � 341.234 0.9959

H1 � 6.6

H2� 1.44

L2 � 13.75

Table 23 Comparison of the optimal results for three cases

Case study Method Optimal factors (mm) Optimal responses

Safety factor Displacement (mm) Stress (MPa) MPCI

Case 1 Hybrid of Taguchi
method and fuzzy logic

L2 � 13.75 Predicted Predicted Predicted 0.860

T� 0.45 F1 (X) � 1.598 F2 (X) � 1.745 F3 (X) � 316.244

H2� 1.44 FEA FEA FEA

F1 (X) � 1.582 F2 (X) � 1.746 F3 (X) � 317.940

1� 1.03% 1� 0.03% 1� 0.53%

Proposed hybrid
approach

L2 � 13.80 Predicted Predicted Predicted 0.9458

T� 0.50 F1 (X) � 1.511 F2 (X) � 1.768 F3 (X) � 329.940

H2� 1.44 FEA FEA FEA

F1 (X) � 1.451 F2 (X) � 1.721 F3 (X) � 346.590

1� 4.12% 1� 2.75% 1� 4.8%

Case 2 Hybrid of Taguchi
method and Fuzzy logic

L1� 3.3 Predicted Predicted Predicted 0.6447

L2� 13.75 F1 (X) � 1.744 F2 (X) � 1.782 F3 (X) � 289.017

T � 0.45 FEA FEA FEA

H2 � 1.44 F1 (X) � 1.734 F2 (X) � 1.782 F3 (X) � 290.030

1� 0.58% 1� 0.033% 1� 0.35%

Proposed hybrid
approach

L1� 3.2 Predicted Predicted Predicted 0.8510

L2� 13.75 F1 (X) � 1.751 F2 (X) � 1.853 F3 (X) � 287.127

T � 0.45 FEA FEA FEA

H2 � 1.44 F1 (X) � 1.685 F2 (X) � 1.770 F3 (X) � 298.500

1� 3.95% 1� 4.68% 1� 3.81%

Case 3 Hybrid of Taguchi
method and fuzzy logic

T� 0.45 Predicted Predicted Predicted 0.8538

H1 � 6.5 F1 (X) � 1.590 F2 (X) � 1.745 F3 (X) � 318.163

H2� 1.44 FEA FEA FEA

L2 � 13.75 F1 (X) � 1.596 F2 (X) � 1.749 F3 (X) � 315.130

1� 0.35% 1� 0.21% 1� 0.96%

Proposed hybrid
approach

T� 0.47 Predicted Predicted Predicted 0.9959

H1 � 6.6 F1 (X) � 1.513 F2 (X) � 1.761 F3 (X) � 341.234

H2� 1.44 FEA FEA FEA

L2 � 13.75 F1 (X) � 1.528 F2 (X) � 1.736 F3 (X) � 329.040

1� 1.00% 1� 1.41% 1� 0.00%

123



5828 Arabian Journal for Science and Engineering (2020) 45:5803–5831

Table 24 Comparison between
other algorithms with the
proposed hybrid approach

Approaches Displacement (mm) Safety factor MPCI

TMFL (T� 0.45 mm, H1 � 6.5 mm, H2� 1.44 mm, L2 �
13.75 mm)

1.745 1.590 0.8538

ANFIS-Jaya (T� 0.45 mm, H1 � 6.59 mm, H2� 1.44 mm,
L2 � 13.74 mm)

1.751 1.5243 0.9041

ANFIS-TLBO (T� 0.45 mm, H1 � 6.6 mm, H2�
1.44 mm, L2 � 13.75 mm)

1.748 1.515 0.9041

Proposed algorithm (T� 0.47 mm, H1 � 6.6 mm, H2�
1.44 mm, L2 � 13.75 mm)

1.761 1.640 0.9959

Table 25 Wilcoxon signed rank
test for the displacement Number of tests Proposed algorithm versus ANFIS-Jaya

Wilcoxon statistic p value Estimated median difference

45 0.0 0.000 − 0.01

Number of tests Proposed algorithm versus ANFIS-TLBO

Wilcoxon statistic p value Estimated median difference

45 0.0 0.000 − 0.013

Table 26 Wilcoxon signed rank
test for the safety factor Number of tests Proposed algorithm versus ANFIS-Jaya

Wilcoxon statistic p value Estimated median difference

45 0.0 0.000 − 0.1157

Number of tests Proposed algorithm versus ANFIS-TLBO

Wilcoxon statistic p value Estimated median difference

45 0.0 0.000 − 0.125

the proposed hybrid algorithm in comparison with the Jaya
algorithm and TLBO algorithm. In this study, two criteria
are employed, including the Wilcoxon’s signed rank test and
Friedman test [63–65]. The computational simulations are
conducted with 45 runs for each algorithm. The Wilcoxon’s
signed rank test is performed for safety factor and displace-
ment at 5% significant level and 95% confidence intervals.
As given in Tables 25 and 26, a null hypothesis is assumed
that there is no significant difference betweenmean values of
the two algorithms. This statistical analysis is implemented
in Minitab 18 software. The results revealed that p value is
less than 0.05 (5% significance level). On the other hand, it
is a useful evidence against the null hypothesis. As a result,
there is a statistical difference between the proposed algo-
rithm and Jaya and TLBO algorithms. Also, it confirms that
the proposed hybrid algorithm has a performance effective-
ness greater than other algorithms.

Subsequently, Friedman test is analyzed, and the results
showed that the p value is less than 0.05. It means that the
null hypothesis is rejected. It also confirms that there is a dif-
ference between the proposed hybrid optimization approach

Table 27 Friedman test for displacement

Algorithm Number of tests Median Sum of ranks

ANFIS-Jaya 45 1.75100 90

ANFIS-TLBO 45 1.74800 45

Proposed
algorithm

45 1.76100 135

Overall 135 1.75333

DF Chi Square p value

2 90 0.000

Null hypothesis H0: All treatment effects are zero

Alternative
hypothesis

H1: Not all treatment effects are zero

and the two other algorithms, as given in Tables 27 and 28.
Moreover, the effectiveness of the proposed hybrid algorithm
is better thanANFIS-based Jaya algorithm andANFIS-based
TLBO algorithm. Besides, the median responses for the
proposed algorithm are greater than those of two other algo-
rithms. So, the proposed approach is more effective tool than
the other algorithms.
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Table 28 Friedman test for safety factor

Algorithm Number of tests Median Sum of ranks

ANFIS-Jaya 45 1.52430 90

ANFIS-TLBO 45 1.51500 45

Proposed
algorithm

45 1.64000 135

Overall 135 1.55977

DF Chi-square p value

2 90 0.000

Null hypothesis H0: All treatment effects are zero

Alternative
hypothesis

H1: Not all treatment effects are zero

7 Conclusions

This paper developed a new hybrid optimization method-
ology to solve a MOO design for compliant mechanism.
The BAM with three numerical cases is studied to confirm
the performance efficiency of the proposed hybrid approach.
The hybrid optimizing method is a combination of statis-
tical technique, FEM, desirability function approach, fuzzy
logic system, ANFIS, and LAPO algorithm. It is considered
as a statistical-based intelligent computation. The proposed
approach is recommended to search a global solution to over-
come limitation of the TMFL.

A 3D FEM model is created, and BBD is used to build
experimental matrix. Numerical data are then collected
through FEM simulations. Based on the numerical results,
a sensitivity investigation is analyzed by using ANOVA and
Taguchi method. The refinement process for design variables
is carried out to redetermine the searching spaces of design
parameters. Next, the desirability values of the safety fac-
tor and the displacement are computed, and the results are
put into the FIS. The ANFIS technique is then developed to
map the refined design variables and the MPCI. The LAPO
algorithm is extended to maximize the MPCI.

The results showed that the predicting accuracy of pro-
posed hybrid methodology is better than that of the con-
ventional TMFL. Case study 3 is considered as the optimal
candidate of the BAM since it satisfies all design’s demands.
Finally,Wilcoxon signed rank test and Friedman test are ana-
lyzed to compare the performances of the proposed approach
with the ANFIS-based Jaya algorithm and ANFIS-based
TLBO algorithm. The results showed the performance effi-
ciency of proposed approach is better than those of other
approaches. The proposed methodology is expected to be an
efficient technique for related complex optimization prob-
lems and related compliant mechanisms.

Future work will focus on the time and space of the pro-
posed hybrid approach. Besides, a few physical prototypes
are fabricated and extra experimentations are conducted to

verify the predicted simulation results and the proposed
hybrid method.
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