
Arabian Journal for Science and Engineering (2020) 45:7371–7383
https://doi.org/10.1007/s13369-020-04551-1

RESEARCH ART ICLE -CHEMICAL ENGINEER ING

Experimental Study andModeling Approach of Response Surface
Methodology Coupled with Crow Search Algorithm for Optimizing
the Extraction Conditions of Papaya SeedWaste Oil

S. M. Z. Hossain1 · S. Taher1 · A. Khan1 · N. Sultana2 ·M. F. Irfan1 · B. Haq3 · S. A. Razzak4

Received: 23 November 2019 / Accepted: 16 April 2020 / Published online: 30 April 2020
© King Fahd University of Petroleum &Minerals 2020

Abstract
Papaya seed waste can be a reliable feedstock for producing valuable bioproducts (biodiesel, biolubricants, beauty products,
etc.) due to its high oil content. This article focuses to explore the effects of Soxhlet extraction process conditions (extraction
time and seed particle size) on the percent oil yield obtained from papaya seeds. Initially, two mathematical models were
developed using response surface methodology (RSM) via central composite design and regression analysis (generalized
linear model, GLM) to predict the oil yield. The prediction performance of RSM model was found to be superior than GLM.
The extracted oil was characterized by gas chromatography–mass spectrometry (GC–MS) analysis. The analysis of variance
results indicated that both factors were strongly significant. Later, crow search algorithm (nature-motivated metaheuristic
algorithm) articulated with RSM was utilized for global optimal solution. The maximum yield of 29.96% was obtained at
extraction time of 6.5 h and seed particle size of 0.85 mm. The similar results were obtained by desirability function-based
optimization approach. The predicted optimal set was also validated further by experimental yield of 31.1%with the variation
of <5%.
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1 Introduction

The leading contribution to the greenhouse effect is due
to the immense usage of fossil fuels in transportation and
power generation. The petroleum reserves are not long last-
ing, rather it has been stated that with the current production
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rate oil reserves will diminish in less than half a century [1,
2]. Therefore, the renewable and environmentally friendly
energy resources may take part important role to alleviate
the probable problems related to the fossil fuel (health haz-
ard, acid rain, global warming and reservoir exhaustion). In
this regard, biofuels, (ester-based oxygenated fuel, sulfur-
free, renewable, non-toxic and biodegradable) obtained from
seed oil could be the alternate solution that may save the uni-
verse [3–9] Extracted oil from seeds are the major source of
biofuel. In the last 10 years, more than 350 oil-containing
seeds (palm, coconut, jatropha, sunflower, rapeseed, soy-
bean, jojoba, karanja, neem, moringa, castor, cotton oil,
etc.) have been identified for feedstocks of biofuel. How-
ever, these feedstocks are edible food for human [10, 11].
Therefore, non-edible feedstocks (e.g., papaya seeds, dates
seeds, microalgae biomass and others) are recently attract-
ing attention worldwide since those do not combat with
human consumption [12–14]. Moreover, many studies were
conducted and proven that seeds oil can be used for the
production of a variety of other valuable products such as
biolubricants, biosolvents, cosmetics and beauty products
(e.g., demulcent skin care products, hair conditioners, bath
oils and makeup) [15–17].

The papaya (Carica papaya) is the fourth trading tropical
fruit worldwide. Almost 75% of the papaya produced in the
world comesmainly from India, Bangladesh, Brazil, Indone-
sia, Nigeria and Mexico [13]. Among these, India alone is
contributing 42% of world production (about 3 million tons
per year) [18]. The papaya fruit consists of many nutrients
like vitamin C and A, magnesium, folate, fiber and potas-
sium [16]. The seed is black or dark brown, soft and round
shape with a strong smell. The literature reveals that the dry
papaya seed contains around 30% lipids, 28% proteins and
22%fibers [19]. The component of the unsaturated fatty acids
(carbon ranging from C14 to C22) in the seeds consists of
mainly meristic acid, oleic acid, stearic acid, linoleic acid
and palmitic acid [20]. The weight of papaya fruit is usu-
ally from 200 to 3000 g and approximately 15% of the wet
weight of the fruit is seed. Since seeds are not eaten, 15% of
the seeds or biomass is thrown as waste material, which can
be used as the feedstock for valuable bioproducts syntheses
[21, 22]. Nonetheless, tomake papaya seedsmore useful, it is
imperative to examine and evaluate the production of papaya
seed oil through extraction methodology.

Until now, several extraction techniques have been utilized
for the extraction of useful oils from seeds of various plants.
The method of extraction of oils from seeds is an important
factor to produce high-quality oils. Solvent extraction is one
of the choices, but it depends on the selectivity and needs
extreme heat [23]. Cold press extraction is the conventional
technique for oil extraction but have low yield [24]. Super-
critical fluid extraction (SFE) and enzyme-assisted aqueous
oil extraction are currently used techniques to extract plant

oils and provide convenient features [25–29]. The Soxhlet
extraction process with hexane is also mostly used for oil
extraction from seeds [23, 30–34]. However, in order to find
the high oil yield, the Soxhlet extraction process needs to be
operated at the optimal conditions including extraction time,
seed particle sizes, etc.

Most of the reports in the field of extraction of papaya
seeds oil adopt either one-factor-at-a-time (OFAT) or
response surface methodology (RSM) strategy via cen-
tral composite design (CCD)/Box–Behnken design(BBD) to
optimize the process variables [20, 35]. It is noteworthy that
optimization is the technique of getting the point that min-
imizes or maximizes a response or output. It is well known
that OFAT is a trial and error approach and it overlooks inter-
active effects within the process parameters and thereby,
and it is unable to optimize a process perfectly. Though
RSM is efficient, can solve problems with large numbers of
design variables, considers interaction effects and requires
little parameter tuning, it may give only local optimal solu-
tion [36–40]. To overcome this limitation, global optimum
solution is preferable.

Several popular algorithms utilized for global optimiza-
tion include genetic algorithm (GA) [41], simulated anneal-
ing (SA) [42, 43], ant colony optimization (ACO) [44], parti-
cle swarm optimization (PSO) [45], combinatorial optimiza-
tion [46] and harmony search (HS) [47]. However, the usage
of high number of tuning parameters with some disputes
makes these processes tiresome. Recently, a newmetaheuris-
tic optimization algorithm entitled ‘crow search algorithm
(CSA)’ has been documented, which can overcome the draw-
backs [48]. It is a nature-inspired metaheuristic algorithm for
solving global optimization problems in the areas of engi-
neering research [48–57]. It has only two variables and as
such it is remarkable to all other well-known algorithms.

RSM is a well-known effective method to explain the
relationships between input and output parameters. How-
ever, there is possibility of this method to provide suboptimal
solution. On the other hand, RSM coupled with CSA is a
very efficient platform to optimize the independent variables
for maximizing the response variables or outputs. This
integrated platform always provides true optimal solution.
A very limited number of past research investigations used
this integrated approach for optimizing process variables.
Water jet cutting process parameters are optimized by
RSM coupled with CSA [54]. However, to our knowledge,
this integrated platform has not been applied in any areas
of extraction-based optimization problems. As such, it is
very crucial for the scientists, engineers and researchers to
optimize the extraction conditions of papaya seed oil using
the RSM coupled with CSA.

This paper focuses on the optimization of the Soxhlet
extraction parameters (extraction time and seed particle size)
on papaya oil yield using RSM articulated with CSA. Ini-
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tially, RSM integrated with CCD approach was adopted for
development of the quadratic regression model to predict oil
yield. The performance of RSMmodel is also compared with
that ofwidely usedgeneralized linearmodel (GLM) [58]. The
GLM allows to fit regression models for univariate response
data that follow a very general distribution called the expo-
nential family. The exponential family includes the normal,
binomial, Poisson, geometric, negative binomial, exponen-
tial, gamma and inverse normal distributions [59]. Later, the
developed best regression model was used to investigate the
optimumcombination of the input variables usingCSA to get
global optimum solution and these results were compared
with those of the desirability function-based optimization
approach. The desirability function approach is used widely
for factor optimization in engineering research [60–62]. In
this function, the characteristics of each anticipated output
are converted into a unitless value (d), which varies from 0
to 1. The desirability of output raises with the value of d.
Finally, the predicted operating conditions have been veri-
fied by conducting triplicate experiments. The produced oil
was then analyzed by using a GC–MS method.

2 Materials andMethods

2.1 Seed Preparation

The raw ripe papaya seeds were obtained from Al-Jazira
supermarket in Bahrain. The seeds were dehydrated in the
laboratory at 50 ˚C for 24 h in an oven. After drying, the seeds
were ground into five different sizes using a coffee grinder.
Four sieves of the following sizes were used to isolate the
seed particles: 0.85 mm, 1.18 mm, 1.40 mm and 2.00 mm.
The fifth size was the full seed size which is approximately
3.75 mm. The grounded seeds with each size was placed in
small bottles and stored in a refrigerator until use.

2.2 Papaya Seed Oil Extraction

The seed oil was extracted using Soxhlet apparatus via
hexane as a solvent at 80 °C. Hexane (purity≥99%) was
obtained from Sigma-Aldrich. A typical Soxhlet apparatus is
composed of: (1) a percolator (boiler and reflux) that allows
the flow of solvent, (2) a thimble (porous thick filter paper)
that holds the solid to be extracted and (3) a siphon mech-
anism that systematically empties the thimble. Briefly, in
working principle, initially the grounded seed of each size
(2 g) is added in a thimble, which is placed inside the extrac-
tion chamber. 125 mL of hexane (in a 250 mL distillation
flask) can evaporate at 80 °C. The hexane vapor travels up
the distillation arm, condenses while passing through the
condenser and drips on the grounded seeds in the thimble.
The chamber containing the seed powder slowly fills with

warm hexane, and the seed oil mixes in the hexane. As soon
as the Soxhlet chamber is full, the chamber is devoided by
the siphon. The oil–hexanemixture is then returned to the dis-
tillation flask. The thimble acts a filter, and thereby, no solid
material moves to the still pot. This cycle is repeated many
times.

2.3 Oil Separation

The oil–hexane mixture was poured in a conical flask and
clamped in awater bath at 80˚C.The entire separation process
takes place in a fume hood. The mixture was evaporated
until it resulted in a viscous yellow residue. The volume and
weight of the extract (oil) were measured by using pipette
and an electric balance, respectively. The percentage yield of
oil extraction was determined by using Eq. (1).

%Yield � Mass of the oil

Mass of the intial sample
× 100 (1)

2.4 Response Surface Methodology (RSM)

The RSM is a bias-less statistical method to investigate the
relationship between the output (response) and input vari-
ables, as well as to optimize the relevant processes [13,
63–66]. The central composite design (CCD), one of the
RSMs, was employed in this study. The size of seeds and
the extraction time were considered two independent (input)
factors, while the percentage yield of oil extraction was taken
as response. The behavior of the process is characterized by
the second-order multiple regressions model as Eq. (2):

y � β0 +
N∑

i�1

βi xi +
N∑

i�1

βi i x
2
i +

∑

i< j

∑
βi j xi x j + ε (2)

where y denotes the predicted output, xi denotes the coded
factors,βo denotes the intercept term,β i designates the linear
effect, β ii denotes the squared effect, β ij denotes the interac-
tion effect and 2denotes the residual.

The relationship between natural and coded variables can
be expressed as Eq. (3).

Coded value � Natural value − Mean

Range/2
(3)

The experimental design matrix (total number of runs,
coded/un-coded variables, range and levels of two inde-
pendent variables, combination of two variables, etc.) was
generated using Minitab v.18 as shown in Table 1.
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Table 1 CCD for optimizing size of seed and time of extraction. For
each parameter, five coded levels of extremely low (− 1.414), low (−
1), center (0), high (+ 1) and extremely high (− 1.414) were considered

Experiment number Time (T )
Actual (coded)

Particle size (S)
Actual (coded)

1 6.5 h (+ 1) 2 mm (+ 1)

2 5.5 h (0) 1.4 mm (0)

3 7 h (+ 1.414) 1.4 mm (0)

4 4.5 h (− 1) 2 mm (+ 1)

5 4.5 h (− 1) 1.18 mm (− 1)

6 5.5 h (0) 1.4 mm (0)

7 5.5 h (0) 1.4 mm (0)

8 4 h (− 1.414) 1.4 mm (0)

9 5.5 h (0) 0.85 mm (− 1.414)

10 5.5 h (0) 3.75 mm (+ 1.414)

11 6.5 h (+ 1) 1.18 mm (− 1)

2.5 Generalized Linear Model (GLM)

The GLM can be written as:

g(μi ) � g[E(yi )] � x′
iβ (4)

where E(y) is the expected value (or expectation function)
of the response y, xi is a vector of covariates for the ith
observation and β is the vector of regression coefficients.
Every generalized linear model has three components: a
response variable distribution, a linear predictor that involves
the covariates and a link function g (identity, logit, log, etc.)
that connects the linear predictor to the natural mean of the
response variable [59]. Depending on the choice of the link
function g, a GLM can include a nonlinear model.

2.6 Crow Search Algorithm (CSA)

The best developed regressionmodel (obtained fromRSMor
GLM) was utilized to find the global optimum combination
of the input factors via crow search algorithm (CSA) using
MATLAB v.16. The optimization codes of CSA were based
on the following steps [36, 49, 50]:

1. Initialization of parameters: The parameters include the
flock size (N), flight length (fl), awareness probability
(AP), iteration number (itermax) and any other parame-
ters that are considered constants.

2. Initialization of memory and position: The N crows
are positioned randomly in the following matrix of
dimension (d) where d denotes the number of decision

parameters. Each crow in the matrix represents a viable
solution to the problem.

Crows �
⎡

⎢⎣
x11 x12 · · · x1d
...

. . .
...

xN1 xN2 · · · xNd

⎤

⎥⎦ (5)

The memory of the crow is initialized. Since the crow
has no experience, the food is assumed to be hidden in
the initial position.

Memory �
⎡

⎢⎣
m1

1 m
1
2 · · · m1

d
...

. . .
...

mN
1 mN

2 · · · mN
d

⎤

⎥⎦ (6)

3. Evaluation of the fitness function: The quality of the ini-
tialized position is computed in the fitness function using
the decision variables for each crow.

4. Generation of new positions: A crow of the generated
matrix (crow i, for example) selects a random crow in
the flock to follow (crow j). Crow i either reaches to the
position of the food of crow j, or crow j notices that crow
i is following and generates new position according to
(Eq. 7).

xi,iter+1 �

⎧
⎪⎨

⎪⎩

xi,iter + ri × f li,iter

×
(
m j,iter − xi,iter

)
when r j ≥ AP j,iter

a random position otherwise
(7)

5. Testing the viability of the new positions: The feasibility
of the new positions of the crows is checked within the
constrain or limit. If it is feasible, then the crow updates
the position or otherwise stays in the old position.

6. Evaluation of the fitness function, given the new posi-
tions.

7. Memory update: The crow updates its memory as fol-
lows:

mi,iter+1 �
{
xi,iter+1 if f

(
xi,iter+1

)
is better than f

(
mi,iter

)

mi,iter otherwise
(8)

where f (·) is the objective function value.
8. Termination benchmark: The steps from 4 to 7 are reit-

erated until the maximum iteration (itermax) is reached.
The best positions of the memory give the best objective
function and the solution of the optimization problem.

2.7 Oil Characterization

In order to characterize oil components, the fatty acid con-
tents of the papaya oil were examined using GC–MS [67].
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Table 2 Oil yield (%) obtained in the central composite design (CCD) in duplicate sets of experiments

Experiment
number

Yield (%) Relative error
(RSM)

Relative error
(GLM)

Experimental
(set 1)

Experimental
(set 2)

Experimental
(ave)

Model
prediction
(RSM)

Model
prediction
(GLM)

1 17.10 12.50 14.80 14.86 15.55 0.131 0.091

2 21.50 13.50 17.50 16.27 17.98 0.243 0.164

3 15.00 12.85 13.93 14.58 21.85 0.028 0.457

4 17.00 13.70 15.35 13.83 13.28 0.186 0.219

5 21.00 17.15 19.08 15.47 17.22 0.263 0.180

6 13.50 15.00 14.25 16.27 17.98 0.205 0.332

7 17.00 17.15 17.08 16.27 17.98 0.043 0.058

8 4.20 5.00 4.60 7.49 14.12 0.783 2.361

9 27.00 21.00 24.00 27.25 23.03 0.009 0.147

10 17.00 21.00 19.00 19.30 12.94 0.135 0.239

11 27.50 25.50 26.50 24.47 25.88 0.110 0.059

The instrument is composed of a PerkinElmer Clarus® 600
GC coupled with an MSD and a capillary column (30 m
long ×0.25 mm ID and thickness of 0.25 µm). The sample
(1 µL) was introduced in split mode (40:1) at 240 °C with
1.2 mL/min of He flow. Prior to injection, the papaya oil was
diluted 25 times using pure hexane. A temperature program:
110 °C (4 min)–10 °C/min–150–3.9 °C/min–230 °C (5 min)
was used to separate fatty acids. The individual component
of the oil was identified using in-built chemical library and
quantified by normalizing of percent area.

2.8 Statistical Significance

Analysis of variance (ANOVA) was used to explain the
significance. A p value less than 0.1 denotes significant
at 10% level, while a p-value less than 0.05 denotes sig-
nificant at 5% level. All experiments were conducted in
duplicate. Minitab (version 18.0) and SPSS (version 17.0)
softwares were applied for RSM and GLM models devel-
opment, respectively, while MATLAB v.16 was utilized for
CRA-based analysis.

3 Results and Discussion

3.1 Development of RegressionModels

In order to find optimum combination of seed particle size
and extraction time for maximizing yield of papaya seed oil,
two predictive models using RSM with CCD and regression
analysis techniques were implemented. Table 2 shows the
highest values of oil yield obtained for each experimental
run. The results indicate different values, which are obvious

as the extraction modes were different for each run (except
for Runs 2, 6 and 7). For RSM-based model development,
the experimental data were analyzed by multiple regressions
using Minitab v.18. The predictive model for oil yield with
respect to coded variables was expressed by Eq (9), where y
denotes the yield, T is the time and S depicts the seed particle
size.

(9)
y � 16.27+2.508T −2.812S−2.619T 2+3.501S2−1.99T S

Table 3 demonstrates the ANOVA data for the second-
order response surface model. The F-value for the model was
high (F � 10.13) with a very low probability (p � 0.0000),
which indicates the very high significance of the model. The
significance of each termwas investigated by their respective
p-values. In the model, all the linear terms (T and S) and
quadratic terms (S2 andT2) were statistically significant. The
effect of the interaction is not significant, due to the p-value
being slightly>0.1. The significance effectswere also proven
using normal plot of standardized effects as shown in Fig. 1.
Generally, the terms located far from line are significant. It
can be seen from the figure that the terms T, S, T2 and S2

are located far from line, and thereby, they are significant.
From Fig. 2 which is a Pareto chart, it can be seen even
clearer the significance effect of the variables with square
of particle size being the best, followed by normal particle
size and extraction time. The interaction effect between the
particle size and extraction time falls even below the average
which is 2.120 as indicated in the chart.

Similarly, for GLM development, the experimental data
have been assessed bymultiple linear regressions using SPSS
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Table 3 Analysis of variance (ANOVA) for response surface second-
order model

Source DF Adj SS Adj MS F value P value

Model 5 561.86 112.371 10.13 0.000

Linear 2 227.15 113.573 10.24 0.001

T 1 100.62 100.622 9.07 0.008

S 1 126.53 126.525 11.41 0.004

Square 2 302.91 151.455 13.65 0.000

T *T 1 77.44 77.443 6.98 0.018

S *S 1 138.41 138.414 12.48 0.003

Two-way interaction 1 31.80 31.800 2.87 0.110

T *S 1 31.80 31.800 2.87 0.110

Error 16 177.50 11.093

Lack-of-fit 3 77.81 25.936 3.38 0.051

Pure error 13 99.69 7.668

Total 21 739.35

Fig. 1 Normal plot for the standardized effects of seed particle size and
extraction time on percent oil yield. The significant terms (deep red in
color) are located far from the diagonal line, while insignificant term
(blue in color) is placed relatively closer to the line

Fig. 2 Pareto chart for significant effects of seed particle size and extrac-
tion time on percent oil yield. Each bar denotes specific term. The bars
for significant terms are crossed above the vertical red line (at an aver-
age value 2.120), while the bar for insignificant term falls below the
average value as shown in the chart

Table 4 Performance comparison between RSM and GLM

Parameter criteria RSM model GLM model Improvement of
RSM wrt GLM
(%)

Mean absolute
error (MAE)

2.63 4.04 34.9

Root mean
squared error
(RMSE)

3.12 4.71 33.75

(version 17.0). The model for oil yield via coded parameters
can be written as follows:

y � 17.982 + 2.734T − 3.568S − 1.600TS (10)

where y,T, S andTS represent the oil yield, time, seed particle
size and interaction between time and particle size, respec-
tively.

3.2 Evaluation andModels Comparison

Both the response surface and generalized linear models are
analyzed and compared with each other to find the best pre-
dictive model that leads better results with high accuracy.
The data in Table 2 indicated that the lowest relative error,
RE (%), was observed in RSM compared to GLM indicating
better performance in the response model. To evaluate the
models further, the results presented are compared based on
two-performance grading criterions that include root mean
squared error (RMSE) and mean absolute error (MAE). The
values of RMSE and MAE are presented in Table 4. Based
on RMSE, the RSM model performs better than GLM with
performance enhancement of 33.75%. Similarly, usingMAE
to examine the model achievement, the RSM model outper-
forms the GLM model with performance enhancement of
34.9%.

Figure 3 shows the Parity plot, which is the relationship
between anticipated and experimental data for oil yield. As
shown in Fig. 3a (for RSM), the points are scattered around
the line resulting in anR2 � 76%, indicating that the standard
deviations between experimental and model predicted data
are comparatively high. While it can be seen in Fig. 3b (for
GLM), the R2 value is comparatively low (41.3%), indicat-
ing that the model is unable to predict about 60% data. It has
been reported that the R2 value in the Parity plot for biolog-
ical system should not be <0.75 [68]. Accordingly, though
the results in RSM are satisfactory, a further investigation
is required with wide ranges of experimental data to attain
better predictions.
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Fig. 3 Model predicted versus experimental percent oil yield via response surface methodology (RSM) (a) and generalized linear model (GLM)
(b) approaches. The R2 value in RSM is shown to be higher in compare to that in GLM

Fig. 4 Main effect (a) and interaction (b) plots of independent parame-
ters (e.g., extraction time, seed particle size) on percent oil yield. Both
parameters seem important since different levels of each factor affect

the response (percent oil yield) differently. In interaction plot, factors
influence each other. In this figure, the interaction effect among factors
(e.g., T and S) is seemed to be low on the output

3.3 Effect of Environmental Conditions on Percent
Oil Yield

To examine the effect of environmental conditions (e.g.,
extraction time and seed particle size) on response, percent
oil yield by RSM, main effect and interaction plots were cre-
ated as depicted in Fig. 4. Figure 4a shows that the response
changes with the different levels of each factor, indicating
that both parameters are important for papaya oil production.
The data indicate that the percent oil yield increases with the
extraction time and reaches to a plateau. This is expected
since the contact time of solvent with the solute (seed parti-
cle) is longer, and diffusional mass transfer is favored, while
in the case of particle size (S), at very small size (coded
value of − 1), the percent oil yield (y) is maximum. Small
size means more surface area for the solvent and easier dif-

fusion. When the particle size increases, the solvent takes
longer time to diffuse through the particle and as a result the
percent yield decreases. As such, a minimum of extraction
yield was observed at a maximum particles size. Contrarily,
an interaction plot (Fig. 4b) is a visual image of the interac-
tion of two input variables, extraction time and seed particle
size on the percent oil yield. It shows three trends of different
seed particle sizes− 1, 0 and 1 which correspond to 1.18, 1.4
and 2 mm, respectively, with time and percent yield. From
figure it is clear that the two-way interaction effects among
factors (e.g., T and S) were low on the percent oil yield, and
the blue line (corresponding to the size of 1.18 mm, smallest
among the three) does not interact. The data agree well with
the ANOVA results in Table 3 (p value � 0.11).
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Fig. 5 Convergence rate of CSA
for finding the best optimal
solution. This plot assesses
simultaneously the combined
effects of all input factors and
caters a stable output. After 54
iterations, a stable as well as an
optimum point is achieved

Fig. 6 Response optimizer plot for finding the optimum conditions to
maximize percent oil yield. Optimum coded values for both parame-
ters are shown in red color (above the figure), while predicted percent
oil yield is presented in blue color (left side of the figure). The value
desirability function (d) is also mentioned in the left side of the figure

3.4 Crow Search Algorithm (CSA) Coupled with RSM
for Global Optimal Solution

In this study, the polynomial model obtained from RSM
(Eq. 8) was used as the fitness function to get the global opti-
mum solution since RSM model was found to be superior.
The codes were run on MATLAB v.16 using the awareness
probability (AP) of 0.1, flight length (fl) of 2, flock size (N)
of 100 and maximum iteration of 150. A convergence plot
of the fitness value and the iteration number were gener-
ated as shown in Fig. 5. It is well known that convergence
plot explains the combined effects of all independent fac-
tors simultaneously and provides a stable or uniform output.
The non-smooth line at the beginning is the result of ran-
dom generation of parameters at the early iteration that might
be far from each other. However, with further iterations the
results get closer and after 54 iterations the optimum point is

Table 5 Statistical result obtained at optimized conditions by CSA (100
runs)

Best Worst Mean Std.

29.949582 29.949257 29.949528 5×10−5

achieved. The optimum coded combination of S and T is −
1.414 and 1.013, which correspond 0.85 mm of particle size
and 6.5 h of extraction time, respectively, to maximize yield
of 29.95\%.

The results obtained from integrated RSM–CSA-based
approach have been compared with those of response surface
methodology coupled with desirability function (RSM–DF)-
based technique. In this regard, the transformation of oil yield
is considered as a higher-the-better characteristic. For search-
ing for a maximum, the desirability (di, denoted as the ith
targeted output), can be written as follows:

di �

⎧
⎪⎨

⎪⎩

0 yi < L(
yi−L
U−L

)w

L ≤ yi ≤ U

1 yi > U

, (11)

where w represents weight (assumed w � 1 in this study),
L and U denote lower and upper values, respectively, and yi
denotes ith response. The response is entirely unsatisfactory
when d � 0, while the response is ideal when d � 1. In order
to get a single optimal point, response optimizer plot (which
is the integrated RSM–DF-based approach) was constructed
using Minitab 18, as presented in Fig. 6. As clearly shown,
the particle size (S) and extraction time (T ) obtained by
RSM–DF approach give almost similar results as those found
in RSM–CSA technique with very high desirability value (d
� 1), indicating that the RSM–DF-based optimization was
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Table 6 Predicted versus
experimental oil yield data for:
(a) RSM and (b) GLM

Optimum condition Oil yield (%)

Particle size (mm) Extraction time (h) Predicted by CSA Experimental value (ave of
triplicate data)

Error (%)

0.85 6.5 29.95 31.1 4.01

Table 7 Fatty acids found in papaya oil by GC–MS analysis

Fatty acid Lipid number Value (%)

Myristic acid C14:0 2.96

Palmitic acid C16:0 19.6

Oleic acid C18:1 n− 9 75

Linoleic acid C18:2 n− 6 1.85

extremely favorable and thereby supported the global opti-
mal conditions. Since CSA is based on random generation, a
little variation is observed for each run. Therefore, 100 runs
were conducted separately and the standard deviation and
mean of the results were taken as shown in Table 5. The very
low standard deviation of 5×10−5 indicates that the optimal
point obtained by CSA is robust and productive.

3.5 Validation in Optimal Conditions
and Characterization of Extracted Oil

To validate the optimal settings for the extracted oil yield, the
set of triplicate experiments were conducted with combina-
tion of seed particle size of 0.85 mm and extraction time of
6.5 h. The predicted and experimental yields were calculated
to be 29.95 and 31.1%, respectively,with <5%error as shown
in Table 6. Thus, the optimized conditions obtained by inte-
grated RSM–CSA-based platform to predict the oil yield are
robust and productive. The extracted oil was characterized
by profiling fatty acids composition using GC–MS (Supple-
mental Figure S1) and quantified values presented in Table 7.
The main fatty acids in the papaya oil were oleic (75.0%),
followed by myristic (19.6%), palmitic (2.95%) and lenoleic
(1.85%) acid. The data agreed well with those of previous
reports [16, 17]. The high oleic oil makes it enough stability
for food frying applications like those of high oleic vegetable
oils in the market such as safflower (77%) and canola (75%).
The intake of high oleic acid containing oils may have many
nutritional and health benefits including reduction in oxida-
tive stress in vivo [69]. In addition, for the production of
high-quality biodiesel, biolubricants or other beauty prod-
ucts, the amount of fatty acids especially oleic acid present
in oil play a very important key role [13].

4 Conclusions

The study demonstrated the effects of Soxhlet process vari-
ables on the percent yield of papaya seed waste oil. For this,
comparison studies between RSMwith CCD and GLM have
been carried out to develop predictive models for predict-
ing the oil yield. The performance of RSM model (based on
RE, R2, MAE, RMSE) was found to be superior compared
to GLM. The ANOVA analysis (in RSM) indicates that both
linear (T and S) and quadratic (T2, S2) terms are strongly
associated (significant) with the percent yield of oil (all p
values<0.05), while the interaction effect within factors (T
and S) was found to be insignificant (p value� 0.11). In order
to find global optimal solution of these two parameters, RSM
was then integrated with CSA. The optimal set of extraction
time of 6.5 h and particle size of 0.85 mm provides the max-
imum yield of 29.95%. The similar results were obtained
by desirability function-based optimization approach, indi-
cating that the integrated RSM–CSA approach is robust.
The predicted optimal conditions were validated experimen-
tally with <5% error. Finally, the GC–MS results confirmed
the oil composition. Overall, the application of CSA inte-
grated with RSM has been utilized successfully for the first
time in solving extraction-based factorial optimization prob-
lem. This integrated platform could easily be used in the
future as an ideal pivotal tool for extraction of oil from other
non-edible feedstocks such as dates seeds and microalgae
biomass. Further, this platform might plausibly be utilized
for other complex engineering processes where factors opti-
mization is required in order to maximize/minimize either
single or multiple objectives. Some of our current efforts are
aligned in these directions.
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