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Abstract
Early-stage detection of lesions is the best possible way to fight breast cancer, a disease with the highest malignancy ratio
among women. Though several methods primarily based on deep learning have been proposed for tumor segmentation, it is
still a challenging problem due to false positives and the precise boundary detection required for segmentation. In this paper,
we propose a Generative Adversarial Network (GAN) based algorithm for segmenting the tumor in Breast Ultrasound images.
The GAN model comprises of two modules: generator and discriminator. Residual-Dilated-Attention-Gate-UNet (RDAU-
NET) is used as the generator which serves as a segmentation module and a CNN classifier is employed as the discriminator.
To stabilize training, Wasserstein GAN (WGAN) algorithm has been used. The proposed hybrid deep learning model is called
the WGAN-RDA-UNET. The model is assessed with several quantitative metrics and is also compared with existing methods
both quantitatively and qualitatively. The overall Accuracy, PR-AUC, ROC-AUC and F1-score achieved were 0.98, 0.95, 0.89
and 0.88 respectively which are better than most conventional deep net models. The results also showcase the shortcomings
of CNN, RDA U-Net and other models and how they can be rectified using the WGAN-RDA-UNET model.

Keywords Breast Ultra Sound (BUS) images ·Residual-Dilated-Attention-Gate-UNet (RDAU-NET) ·GenerativeAdversarial
Network (GAN) · Tumor segmentation

1 Introduction

Breast cancer is the most common cancer among women
worldwide and is the second leading cause of death among
women. More than two million new cases were registered
in 2018 alone. The Breast Cancer Foundation estimates that
over 252,710 women will be diagnosed with breast cancer in
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the United States and more than 40,500 will die each year.
Although breast cancer is rare amongmen, it is approximated
that 2470 men will be diagnosed with breast cancer and 460
will die each year [1].

One way of considerably improving the survival rate is
by diagnosis at an early stage. Non-inivasive breast can-
cer diagnosis modalities primarily include X-ray, Magnetic
Resonance Imaging (MRI) or Ultrasound (US) imaging.
Other methods include invasive diagnosis such as biopsies
which can cause damage to the tissues. Ultrasound imag-
ing is the most commonly used modality for examination
as there is less exposure to ionizing radiations, combined
with low cost. Figure 1 presents a few Breast Ultrasound
Images (BUS) having both benign and malignant tumors. It
can be seen how the malignant tumors vary in shape and
complexity compared to benign tumors. It is needed that
early-stage detection and accurate tumor assessment be a
cost-effective and fast process. Unfortunately, diagnosing
lesion is a time-consuming and manual analysis and veri-
fication require visual interpretation of the breast lesion area
by an experienced professional.
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Fig. 1 Benign and malignant tumors (a, b are benign and c, d are
malignant tumors. The US image, mask, and lesion outline for each
have been presented for a clearer understanding and The images a and
b are obtained from the Gelderse Vallei Hospital dataset, and the images
c and d are obtained fromFirst AffiliatedHospital of ShantouUniversity
and Dataset B respectively)

Generally, US images suffer from speckle noise and low
contrast which makes visual analysis difficult. Due to this,
diagnosis can vary widely due to the subjectivity and com-
plexity of the task. Hence, the need for a comprehensive and
automated method of lesion localization and segmentation is
clearly recognized.

1.1 Literature Review

Several deep learning techniques, and algorithms have been
developed for medical imaging tasks such as localization and
segmentation. They have, over the years become state-of-
the-art technologies providing accurate results for medical
assistance. Convolutional Neural Networks (CNNs) have
shown remarkable performance in segmentation tasks of
medical images [2]. They have become the standard in seg-
mentation due to high representation power, filter sharing
properties and fast interference. However, CNNs rely on
pixel-wise functions between the model predicted image
and the standard image. Due to this, segmentation results
are often blurry and suffer from false positives. To over-
come this, Fully Convolutional Networks (FCNs) [3] and
the U-Net [4] architectures are being used widely nowadays.
Xide Xia [5] proposed a W-Net, a new architecture that ties

together two FCNs into an auto encoder and presented how
performance can be greatly improved compared to CNNs.
The PASCALVOC2012 dataset was used for training and the
Berkeley Segmentation Database (BSDS 300 and BSDS500)
was used for evaluation.

A U-Net is based on the principle of FCNs. It is com-
posed of an encoder to extract features and a decoder for
image reconstruction. Further, skip connections are added for
accurate localization by combining both low-level and high-
level features. Recently, several additions and modifications
have been explored with respect to U-Nets to further improve
performance. Goufeng Tong [6] employed a U-Net for pul-
monary nodule segmentation. Batch normalisation layer is
incorporated in the U-Net to speed up training and avoid
overfitting, and a residual network is also added to improve
the final predictions. The author used LUNA2016 contest
dataset to present the results and achieved a dice coefficient
of 0.736. Ozan Oktay [7] demonstrated the implementa-
tion of Attention Gates (AG) in U-Nets for segmentation on
Computed Tomography (CT) pancreas. This approach elim-
inated the need for using a localisation model. Evaluation is
done on TCIA Pancreas CT-82 and multi-class abdominal
CT-150 benchmarks. Zhuang et al. [8] proposes a modified
U-Net model called Grouped-Resaunet (GRA U-Net) for
nipple segmentation from Automatic Whole Breast Ultra-
sound (AWBUS) images with an aim to localize the nipple
region from the rest of the breast region. They used coro-
nal views of Automated Whole Breast Ultrasound Images
(AWBUS) obtained from the First Affiliated Hospital of
Shantou Medical College. Recently, Zhuang et al. [9] pre-
sented a RADU-Net model for accurate lesion segmentation
in BUS images. The model incorporates the ’advantages’
of residual networks, attention gate mechanism, and dila-
tion modules to present segmentation results close to ground
truths. An additional approach to further improve segmen-
tation in medical imaging and obtain precise results is to
employ Generative Adversarial Networks (GAN). This is
a current hot topic that is still at infancy. GANs are gen-
eration models composed of two networks, generator and
discriminator [10].Whilst the generator tries to generate real-
istic outputs as the provided gold standard, the discriminator
differentiates the generated outputs from the gold standard.
Salome Kazeminia [11] and Xin Yi [12] review a variety of
recent literature on the medical applications of GANs. They
show how GANs have been able to not only learn existing
computer vision tasks better but also synthesize images. They
thereby second the benefits of adversarial training in medical
image reconstruction, segmentation, detection and other such
tasks. Zeju Li [13] proposes a CNN-based GAN for brain
tumor segmentation. A dice score of 0.897 was achieved on
theBrats2017 dataset.WeixiangHong [14] integrated aGAN
with FCN to achieve a segmentation output which repre-
sents the target ground truth more accurately. The proposed
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model exceeded the mean IoU of state-of-the-art method by
12–20% on Cityscapes dataset. Zhongyi Han [15] also used
GANs for automatic segmentation and classification of spinal
structures from MRIs. They proposed a Recurrent Genera-
tive Adversarial Network called Spine-GAN and achieved
a high pixel accuracy of 96.2%. Jaemin et. al [16] show-
cases how generative adversarial training produces results
with less false positives with precise segmentation results.
The method employed successfully generates a precise map
of retinal vessels in fundoscopic images, even at the termi-
nal ends. A Dice Coefficient of 0.829 on DRIVE dataset
and 0.834 on STARE dataset was achieved. Although GANs
seem very promising, they are hard to train due to issues
of non-converging model parameters, model collapse dimin-
ishing gradient problem and unstable gradient. Choosing a
problem specific optimization cost function is one of themost
effective ways of stabilizing adversarial training. Arjovsky
et al. [17] proposed an alternative way to traditional GAN
training called Wasserstein GAN (WGAN). WGAN offered
improved optimization stability and the new loss metric that
correlates with the convergence of the generator. Enokiya et
al. [18] utilizedWGAN and proposed an automatic liver seg-
mentation method using U-Nets andWGAN. The dice value
was considerably improved on the two datasets using GAN.

Given the rapid advancement of GANs in medical image
segmentation, this paper employs a new approach for lesion
segmentation in BUS images with adversarial networks. The
paper extends the work of [9] which proposes a Residual-
Dilated-Attention-Gate-UNet (RDAU-NET) and combines
it with aWGAN, to obtain a reliable and accurate lesion seg-
mentation technique. The developed deep learning model
is called RDA-UNET-WGAN. We show that adversarial
training improves the quality of segmentation and generates
outputs indistinguishable to those by professionals. The rest
of the paper is organized as follows: Sect. 2 describes the pro-
posed architecture in detail and the parameters on which the
experiment results have been evaluated, Sect. 3 presents the
results and comparison with existingmethodologies. Finally,
Sect. 4 presents the conclusion.

2 Methodology

2.1 Architecture

GANs are deep neural networks comprising of two networks
called the generator and discriminator, pitting against each
other. The generator captures data distribution to be able to
generate new instances like the learning data. The discrimina-
tor estimates the probability of the sample being authentic i.e.
from the training set or generated by the generator. Figure 2
illustrates the traditional architecture of GANs. Training of
the networks is an iterative process and defined as a minmax-

type of competitive learning between the generatorG and the
discriminator D, as represented in Eq. (1).

min
G

max
D

V (G, D) =Ex∼pdata(x)[log D(x)]
+Ez∼pz(z)[log(1 − D(G(z)))]

(1)

where z is a random number, pdata is the real data distri-
bution, pz is the generated data distribution and D(x) is the
discriminator output value showing the probability of x being
real.

The proposed RDA-UNET-WGAN architecture utilizes
the above-mentioned idea and for segmenting lesions in BUS
images. The trained segmentation model acts as the gener-
ator along with an adversarial network which discriminates
segmentation results from the ground truths.

Here we employ the RDA-UNET [9] as the segmentation
model (Generator) and a fully connected CNN network is
used as the discriminator. Both these networks collectively
form the RDA-UNET-WGAN. Figure 3 illustrates the out-
line of the RDA-UNET-WGAN architecture which enables
detecting and correcting higher-order discrepancies between
segmented lesion results from the generator and the ground
truths provided. Due to this correction mechanism, the seg-
mentation results generated by the RDA-UNET-WGAN are
more accurate and closer to ground truths annotated by
experts.

2.1.1 Generator

The generator serving as a segmentation model is a combina-
tion of Residual nets, Dilation convolution modules and an
Attention Gate (AG) mechanism composed within a U-Net
architecture. BUS images and their corresponding ground
truths serve as input, and the predicted segmentation mask
as outputs of the RDA-U-Net. The objective of a generator
is to generate fake images such that they are mistaken as
authentic by the discriminator. The fake images, in this case,
are the lesion segmented maps of the input BUS images.

Figure 4 shows the network architecture of the generator.
The architecture is similar to themodel discussed in [9]. It has
6 residual nets that extract significant features from the BUS
images and the down-sampled feature maps at the end of the
forward pass are fed to a dilated convolution module. Resid-
ual units and dilation convolutions were employed to avoid
accuracy saturation (vanishing gradients) during training and
to improve the receptive field respectively. The output from
the forward pass was fed to an up-sampler comprising five
residual nets, each having an individual AG to pay scrutiny to
the lesion region rather than the non-lesion regions. The out-
put of the generator is a binary segmentation mask produced
by the final convolution layer representing the classification
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Fig. 2 Architecture overview of a traditional GAN

Fig. 3 Proposed RDA-U-Net-WGAN architecture

label for each pixel. For the generators loss function, the cost
function which is stated in Eq. 11 was employed.

2.1.2 Discriminator

The discriminator is a vital component of the GAN. The
goal of a discriminator is to recognize the authenticity of
the instances given to it. The discriminator model in the
proposed architecture is a classification network. The dis-
criminator network is a CNN composed of ten convolution
layers and 1 fully connected layer for end classification. It
consists of repeated convolutions, each following a leaky rec-
tified linear unit and a maxpooling layer for down sampling.
Batch normalization is also added to regularise and speed
up the training process as the training of the discriminator is
directly proportional to the effectiveness of the adversarial
loss.

The segmented lesion result (fake/false) from the genera-
tor and the ground truth (real/true) serve as training samples
to the discriminator, in the form of one-hot encoding. This
means that the binary output from the discriminator indi-

cates if the input is a generated segmentation result from the
generator or a ground truth from the training set. The model
classifies the legitimacy of the input at an image level that
is the whole image is classified as 1 for real and 0 for fake.
The discriminator is presented in Fig. 5. A learning rate of
0.0001 and Adam optimizer is used for training the discrim-
inator. The loss function utilized is Binary Cross-Entropy
(BCE) [16] which corrects the deviation of the segmentation
result from the ground truth. It is calculated as follows:

BCE = −(y. log(p) + (1 − y). log(1 − p) (2)

where p is predicted value, y is the real value.

2.1.3 RDA-UNET-WGAN Network

The generator and the discriminator incorporated together
form the combined model, the RDA-UNET-W-GAN. In this
combined model, the BUS images and their corresponding
ground truths serve as the input and labels respectively. A
batch of BUS images is provided as input to the generator
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Fig. 4 Generator architecture overview

to create segmentation maps. Later the segmentation maps
along with their respective ground truth labels are given as
input to the discriminator. The discriminator presents the
overall output of the combined model. The data flow is pre-
sented in Fig. 3.

In adversarial training, the objective function plays a key
role. Here WGAN is used which differs from conventional
GANs in regards to its objective function. WGAN finds the
Wasserstein distance between the segmentation result and
the ground truth. As a result, learning is more stable than
that of a conventional GAN [18]. In contrast to Eq. 1, the

minmax-type of competitive learning of the generator G and
the discriminator D in WGAN can be expressed as:

min
G

max
D

V (G, D) =Ex∼pdata(x)[D(x)]
−Ez∼pz(z)[D(G(z))]

(3)

where z is a randomnumber, pdata is the real data distribution,
pz is the generated data distribution and D(x) is the discrimi-
nator output value showing the probability of x being real. In
our case, zwill be the input BUS image and x will be the seg-
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Fig. 5 Discriminator architecture overview

mented result from the generator. The loss function penalizes
the dissimilarities between the segmented results compared
to the ground truth, and the discriminator for incorrect clas-
sification. This ensures that both the networks are stable and
do not overpower the other.

2.2 Training Scheme

The primary goal of the proposed model is to produce state-
of-the-art segmentation results. If the training of both the
generator and the discriminator is started from scratch, the
effective adjustment of the parameters will be poor as the
networks by themselves will not be stable initially. To over-
come this, the generator model is partially trained separately.
For the combined model, the RDA-UNET-WGAN is adver-
sarial trained. The previously trained generator model is
loaded and the discriminator is built. Then, the combined
model is trained. The training scheme is an iterative process
with several rounds of alternated generator and discrimina-
tor training. First, the discriminator is trained for one step
and the parameters updated. The gradient is propagated and
forms the adversarial loss. The discriminator is then frozen
and the combined network is trained for one step. Finally,
both models are evaluated against the validation set. This
cycle executes for several rounds and depicts the min-max
of the proposed model as stated in Eq. 3. The adversarial
loss participates in training the generator network.With each
cycle, the segmentation becomes more accurate and reliable

with respect to the ground truth provided. This improvement
with each iterative cycle is illustrated in Fig. 6.

The updation of the generator and discriminator parame-
ters is dependent on the discriminators classification result.
When the discriminator fails in discriminating real data from
generated data, its own parameters are updated. The genera-
tor is updated if the discriminator succeeds. The generators
parameters are optimized based on the discriminator and its
own loss, thus enabling the generator to segment with a high
accuracy rate such that the discriminator is fooled.

2.3 EvaluationMetrics

Evaluation metrics are mandatory to measure the suc-
cess of an experiment. The image segmentation perfor-
mance is quantitively evaluated using the following indices:
Accuracy, Sensitivity/Recall, Specificity, Precision, F1score,
Mean-Intersection-Over-Union (M-IOU), Dice Similarity
Coefficient (DSC), Precision-Recall (PR)Area-Under-Curve
(AUC) and Receiver Operating Characteristic (ROC) AUC.
These metrics evaluate region-based segmentation perfor-
mance from varied aspects and have values ranging between
0 and 1. False Negatives (FN), True Positives (TP), True
Negatives (TN), False Positives (FP) are basic values used to
compute the metrics.

– Accuracy is the quality of being correct and themost com-
mon evaluation index. It is the measurement of closeness
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Fig. 6 Segmentation maps
generated at different cycles.
(The image has been taken from
Dataset B. Block a, b, c, d, e, f,
g, h and i showcase the BUS
image, the ground truth mask,
ground truth outline and the
predicted segmentation maps at
cycle 0, 5, 10, 15, 20 and 25
respectively. Regions marked in
purple represent the intersection
of predicted segmentation and
the ground truth, red represents
the lesion area not predicted as
lesion and blue represents the
non-lesion regions classified as
lesion by the model)

of the predicted segmentation to the ground truth. It is
calculated as;

Accuracy = TP + TN

TP + TN + FP + FN
(4)

– Sensitivity/recall or True Positive Rate (TPR) is the pro-
portion of actual positives that are identified as such. It
is calculated as;

Sensitivity/Recall = TP

TP + FN
(5)

– Specificity or True Negative Rate (TNR) is the propor-
tion of actual negatives that are identified as such. It is
calculated as;

Specificity = TN

TN + FP
(6)

– Precision is the ratio of true positive values to all positive
values. It is calculated as,

Precision = TP

TP + FP
(7)

– F1 score is one of the most important evaluation metrics.
It especially serves as an evaluation measure for uneven
class distributions. It is the harmonic mean of precision
and sensitivity and calculated as;

F1score = 2 ∗ Precision ∗ Sensitivity

Precision + Sensitivity
(8)

– Mean-intersection-over-union (M-IOU) is a measure
coincidence between the ground truth and the predicted
segmentation result. It is the ratio between the intersec-
tion and union of the ground truth (G) and the predicted
segmentation result (P). Higher theM-IOU, greater is the

123



6406 Arabian Journal for Science and Engineering (2020) 45:6399–6410

Table 1 Dataset details . (Source of the dataset along with number of
images, usage and additional details are specified)

Number of imagesPurpose Details

Gelderse Vallei
Hospital in
Ede,
Netherlands

857 Training and
Validation

For training, the
original 730
images were
expanded to
2919 through
data
augmentation
techniques1 as
mentioned in
[9]. Validation:
127 images

First Affiliated
Hospital of
Shantou
University,
Guangdong
Province,
China

42 Testing Unseen during
the training
phase, contains
both malignant
and benign
tumours

Breast
Ultrasound
Lesions Dataset
(Dataset B)

163 Testing Unseen during
the training
phase, contains
both malignant
and benign
tumours

1The BUS images are first fused with their ground truth followed by the
application of 4 affine transform operations: symmetrical shifting along
the vertical and horizontal axis, shear transformation with an angle of
10 degrees and mirroring along the horizontal plane

segmentation accuracy. It is calculated as;

M − IOU = G ∩ P

G ∪ P
= TP

TP + FP + FN
(9)

– Dice similarity coefficient (DSC) is the measure of over-
lap between the two samples. It is the most frequently
used metric for evaluating segmentation tasks. It repre-
sents the similarity between the ground truth (G) and the
predicted segmentation (P). Higher DSC signifies that
the segmentation result and the ground truth are identi-
cal. DSC is calculated as;

DSC = 2 | G ∩ P |
| G | ∪ | P | = 2 ∗ TP

TP + TN + FP + FN
(10)

DSCloss = 1 − DSC (11)

– Precision-recall (PR) area-under-curve (AUC) is the
area under the PR curve. The PR curve showcases the
precision-recall trade-offs at different thresholds. A high
PR-AUC indicates both low false-positive rate and low
false-negative rate. An ideal network has an PR-AUC of
1 that is 0 error probability.

Table 2 Parameter summaries of models

Model Trainable
parameters

Non trainable
parameters

Total parame-
ters

Generator 24,079,536 18,874 24,098,410

Discriminator 4,714,433 3968 4,718,401

RDA-
UNET-
WGAN
(Com-
bined
Model)

24,079,536 4,737,275 28,816,811

– Receiver operating characteristic (ROC) is the area under
the curve of Recall/TPR and FPR. It represents the
measure of separability and distinguishing capability of
lesion regions from non-lesion regions. Higher the ROC-
AUC, better is the predicted lesion segmentation. The
ideal ROC-AUC is one.

3 Experiment and Results

BUS images were segmented for lesions using the proposed
architecture. The dataset has a total of 1062 images obtained
from three different sources namely: Gelderse Vallei Hos-
pital in Ede, Netherlands [19], First Affiliated Hospital of
Shantou University, Guangdong Province, China, and BUS
images obtained from the Breast Ultrasound Lesions Dataset
(Dataset B) [20]. Information about the number of images
used for training, validation and testing from each source is
presented in Table. 1. For training and testing the images of
size 128 × 128 with a batch size of 32, an Adam optimizer
with a learning rate of 0.0001 was used to train the WGAN.
These were chosen in par to the system and memory con-
straints. The experiments were performed on a workstation
with 2× Intel Xeon E2620 v4 CPU, 64GB RAM, and Nvidia
Tesla K40 GPU. The summary of model parameters of the
generator, discriminator and RDA-UNET-WGAN are pre-
sented in Table 2.

Figure 7 presents the segmentation results on the test data
set. For more intuitiveness, various regions are differentiated
by colour on the BUS images to analyze the results as com-
pared to the ground truths. It canbe seen that the segmentation
results are remarkably close to the ground standards. To fur-
ther qualitatively appreciate the performance of the model, it
has been compared with the segmentation results of FCN8s
[3], Segnet [21], Unet [4] and RDA-U-net [9]. Figure 8
presents ground truths and the comparison between the seg-
mentation results of these models with the proposed model.
It can be clearly seen that the proposed models results are
close to the gold standards. The over-segmentation compared
to RDAU-net is reduced. Also, the results are smoother with
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Fig. 7 Segmentation results of
the RDA-UNET-WGAN (The
first three images are from the
First Affiliated Hospital of
Shantou University and the rest
are from Dataset B). Column a,
b and c denote the BUS image,
the ground truth mask and
predicted segmentation mask
with various regions marked
respectively. Regions marked in
purple represent the intersection
of predicted segmentation and
the ground truth, red represents
the lesion area not predicted as
lesion and blue represents the
non-lesion regions classified as
lesion by the model)
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Fig. 8 Comparison with
segmentation results of
state-of-the-art models (images
a, b and Malignant are from the
First Affiliated Hospital of
Shantou University, and images
d, e, f and g are obtained from
dataset B. Row a, b, c, d, e, f,
and g presents the BUS image,
the ground truth, the
RDA-UNET-WGAN,
RDAU-Net, Unet, Segnet, and
FCN8s predicted segmentation
maps respectively. Regions
marked in purple represent the
intersection of predicted
segmentation and the ground
truth, red represents the lesion
area not predicted as lesion and
blue represents the non-lesion
regions classified as lesion by
the model)
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Table 3 Evaluation metric
values for segmentation results
from different models on the
testing dataset (Combining the
dataset from First Affiliated
Hospital of Shantou University
and Dataset B. Abbreviations
used are: M-IOU
Mean-intersection-over-union,
DSC dice similarity coefficient,
AUC area under the curve,
PR-AUC Precision Recall AUC,
ROC AUC-receiver operating
characteristic AUC)

RDA-UNET-WGAN RDA-UNET [9] Segnet [21] UNET [4] FCN8s

Loss 0.1159 0.1530 0.1830 0.1768 0.3527

Accuracy 0.9808 0.9791 0.9756 0.9779 0.9551

Sensitivity 0.8837 0.8363 0.8371 0.8445 0.7088

Specificity 0.9926 0.9926 0.9801 0.9907 0.9688

Precision 0.9117 0.8863 0.8143 0.8262 0.6127

F1Score 0.8975 0.8605 0.8255 0.8352 0.6572

M-IOU 0.8844 0.8053 0.8015 0.7983 0.7013

DSC 0.8841 0.8461 0.8120 0.8031 0.6472

PR-AUC 0.9542 0.9227 0.9538 0.9261 0.9148

ROC-AUC 0.8911 0.8551 0.8803 0.8892 0.8061

Fig. 9 PR-curve and ROC (a and b are the PR-curve and ROC of the RDA-UNET-WGAN on the testing dataset. The AUC values for each are also
mentioned. Abbreviations used are: PR Precision-Recall, ROC receiver operating characteristic and AUC area under the curve)

good boundaries as compared to the other models. Segnet
produces more generalized and rounded boundaries which
are not very reliable. The U-Net fails at segmenting the least
prominent tumor regions. FCN8s produces poor results are
spiky and uneven edges.

For quantitative evaluation, the proposed model has been
compared with results produced by FCN8s, Segnet, Unet
and RDAU-net. The metrics specified in Sect. 2.3 have been
used for evaluation. Table 3 presents the evaluation metric
results on the test dataset (combining the dataset from First
Affiliated Hospital of Shantou University and Dataset B) by
the above models. The size of the testing dataset used is
approximately 30% of the training dataset. In almost all the
metrics, the proposed model outperforms the others. It can
also be clearly seen that U-Net based architecture perform
better than FCNs in segmentation tasks. Figure 9 presents the
PR and ROC curve for the WGAN on the testing dataset.

From the segmentation results obtained and the compar-
isons, it is affirmed that the WGAN improves the segmenta-

tion results. This is perceived from both the qualitative and
quantitative analysis.

4 Conclusion

GANs have been used extensively to generate fake data
for several applications such as dataset creation and image
editing. Recently, GANs have been utilized for image seg-
mentation problems. Although GANs introduce the problem
of non-convergence and diminishing gradient, they signifi-
cantly improve the performance of segmentation tasks. With
adversarial training and discriminator inputs, more clear
and accurate segmentation results can be achieved. In this
paper, we address tumor segmentation from Breast Ultra-
sound images.Wepropose a novelWGAN-based approach to
this problem, and adversarial train the segmentationmodel to
generate tumormasks close to the ground truth. The proposed
model requires further optimisation to combat converging
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parameters after training. The proposed method outperforms
other state of the art approaches in both qualitative and quan-
titative analysis. Using GANs improved the precision by 3–
4%,Mean IOUby6%and thedice score by5%.Theproposed
model is highly sensitive to hyperparameter selections and
can be further optimised to get even improved results. Exper-
imenting the model with other medical imaging datasets and
making the performance robust still remains as future work.
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