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Abstract
Predictive maintenance of machine tools is gaining wide attention in the manufacturing sector for achieving higher production
rates and closer tolerance of machined parts. However, the implementation of predictive maintenance requires additional
instrumentation and computation software, causing huge installation costs. Hence, the application of predictive maintenance
is limited to the most critical subsystems of the machinery. The present investigation puts forward a scientific methodology
to identify the subsystems of a computer numerical control (CNC) lathe that must be considered for predictive maintenance.
The field failure data for CNC lathe collected from various industries are subjected to fuzzy modified failure mode, effects
and criticality analysis (fuzzy FMECA). A unique fuzzy risk priority number (fuzzy RPN) is assigned to every subsystem
of the CNC lathe. This fuzzy RPN is used to prepare a maintenance priority ranking of the CNC lathe subsystems. The
subsystems with higher fuzzy RPN are considered for predictive maintenance, and the subsystems with lower fuzzy RPN
are considered for preventive or reactive maintenance. It is observed that the spindle unit has the highest fuzzy RPN 848.2,
followed by the turret and chuck with fuzzy RPNs 527.5 and 475.7, respectively. FMECA also identifies potential failure
modes associated with critical subsystems. This information is necessary for sensor selection in predictive maintenance.
Further, the improvement of fuzzy FMECA over conventional FMECA is discussed. This study paves a path for identifying
and prioritizing the critical subsystems of a machine tool for predictive maintenance.

Keywords Predictive maintenance · Computer numeric control (CNC) Lathe · Failure mode effects and criticality analysis
(FMECA) · Fuzzy logic · Risk priority number (RPN)

1 Introduction

In the manufacturing industry, increased productivity and
product quality are constant goals. The operating condition
of the machine tools reflects the production rate and qual-
ity of machined parts [1, 2]. Computer numerical control
(CNC) machine tools are key production equipment for the
manufacturing industry. CNC machine tools, with lots of
mechanical moving parts and precise control systems, are
prone to malfunctioning and breakdowns [3]. Employing an
efficient maintenance strategy for CNC machine tool sys-
tems can reduce or avoid the possibility of such unscheduled
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downtimes [3, 4]. The selection of an appropriate mainte-
nance strategy is extremely complicated considering various
cost and risk factors associated [5]. A reactive or preventive
maintenance strategy is usually followed in the industry, but
these maintenance practices cause unscheduled downtimes
and consume resources and time, which could otherwise be
gainfully used for production [4–7]. The advancement in
digital technologies and computational methods has given
manufacturing industries an opportunity to implement a pre-
dictive maintenance strategy for machine tool systems [4,
8]. The predictive maintenance strategy uses condition mon-
itoring tools to track the performance of the machine tool
components, and this information is used to predict when a
machine tool will fail or go out of tolerance [9]. This involves
the application of different sensors, data acquisition systems,
data processing, and computation techniques [8–10]. Identifi-
cation of themost critical components of themachine system
and associated failuremodes are the pre-requisite for employ-
ing predictive maintenance. Predictive maintenance involves

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-020-04397-7&domain=pdf
http://orcid.org/0000-0002-0713-1965


5260 Arabian Journal for Science and Engineering (2020) 45:5259–5271

huge installation costs of data collection and computational
algorithms, and therefore, it is limited to the most critical
subsystems of the machinery. The information on potential
failure modes associated with these critical subsystems is
necessary for the selection of the most suitable sensors for
condition monitoring.

Recently, a few research studies have focused on estab-
lishing the necessity of criticality analysis of a mechanical
system to support maintenance decision making, point-
ing out the lack of strong machine criticality analysis
methodologies in the industry for maintenance prioritiza-
tion [11–16]. Gopalakrishnan et al. [12] were critical of the
current maintenance prioritization practices in the industry,
which is operator influenced and thus non-factual. He has
also interpreted the connection between machine critical-
ity and maintenance prioritization in an industrial context
for productivity improvement. Singh et al. [13] performed
a criticality analysis of distribution transformers to identify
critical components that are prone to failure andpotential fail-
ure modes. Medjaher et al. [14] illustrated the importance of
identifying critical machinery components and their poten-
tial failure modes in predictive maintenance and remaining
useful life (RUL) prediction. Elbadawi et al. [15] performed
the criticality analysis of computer integrated manufacturing
conveyors to determine the effect of various failures on the
conveyor belt system by ranking and prioritizing each fail-
ure according to the risk priority number (RPN). Márquez
et al. [16] presented criticality analysis for maintenance pur-
poses of complex engineering assets. Identifying the critical
components of complex machinery is increasingly difficult
when multiple failure modes of the system components are
considered [16]. Therefore, a systematic analysis of failure
modes of the machine system is required to identify the crit-
ical components and subsystems.

The manufacturing sector has implemented different
methodologies for decades to perform a reliability and failure
analysis of machine tools. Keller et al. [17] usedWeibull and
lognormal distributions for the failure characterization and
Duane plots for reliability growth analysis of CNCmachines.
Rao et al. [18] presented a digraph andmatrixmethod for fail-
ure cause analysis of machine tools, where a machine tool
failure causality function is defined to identify the contribut-
ing failure events in a machine tool system.

Recently, many researchers have employed failure mode
and effects analysis (FMEA) and failure mode, effects and
criticality analysis (FMECA) techniques for investigation
of potential failure modes and reliability-centered mainte-
nance of machine tools [19–25]. Lo et al. [19] introduced a
risk assessment framework for themanufacturing ofmachine
tools using amodifiedFMEA technique.Gupta et al. [20] pre-
sented reliability-centered maintenance with fuzzy FMEA
for a milling machine. FMEA was used to identify critical
failure modes of components and subsystems of the CNC

turning center [21]. Wang et al. [22] used FMECA for CNC
lathe with the criticality factor modified for considering the
cost required for reducing failure rates. Du et al. [23] pre-
sented FMECAof a remanufacturedmachine toolwith a case
study of the hobbing machine. Zhou et al. [24] presented a
reliability allocation method based on the cubic transformed
functions of FMEA. Kim et al. [25] presented a reliability
assessment ofmachine tools usingFMEAwith a case studyof
the machining center, which includes web-based main-axis
vibration data analysis program and a failure mode estima-
tion algorithm.

FMEA has a wide range of applications from equipment
failure analysis to nuclear power product designs for the
identification of different failure modes and risks associ-
ated with [26, 27]. FMEA is a 70-year-old technique, first
introduced by the US Army and modified several times
for improved analysis and for specific applications [28].
Standards like MIL-STD-1629A (1980), SAE-J-1739 and
SMC REGULATION 800-31 were defined for implement-
ing FMEA/FMECA techniques [20, 27]. MIL-STD-1629A
[29] is the most widely used standard in failure analysis
using FMEA/FMECA. FMEA technique with added criti-
cality analysis and ranking of failure modes or components
is termed FMECA [30]. FMECA is a traditional approach
adopted to improve the design and reliability of a system.

FMEA proceeds with the failure mode identification and
calculation of risk priority number (RPN). RPN is an indi-
cator of the risk associated with the failure mode of the
component. RPN is commonly calculated as the product of
severity (S), occurrence (O) and detection (D) [28, 29].

RPN � S × O × D (1)

S, O, and D are indicated by values on a scale from 1 to
10. S is the indication of how severe is the cause of failure
mode, O is the frequency of occurrence of the failure mode,
and D is the non-detection rating of the failure mode. RPN
can range from 1 to 1000, where minimum RPN 1 indicates
the least risk priority, and the maximum RPN 1000 indicates
the highest risk priority. RPN is used for risk prioritization
of failure modes of components [28, 29].

In spite of its successful implementation in an extensive
range of applications, many researchers have criticized con-
ventional FMEAmethodology pointing out a few drawbacks
[28]. The following are the major drawbacks of FMEA.

1. The concept ofRPNcalculation is an extension of the risk
matrix defined inMIL-STD-1629A. There is no rationale
for considering RPN as a product risk factor [19, 30].

2. Different sets of S, O, and D give the same RPN. But
in real practice, the risk associated may not be identical
[31].
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3. There is the erroneous assumption that S,O, andD values
have the same significance. This may not be reasonable
in practical applications [32, 33].

4. RPN is not continuous from 1 to 1000. The product of
S, O, and D will never make a few values in this range.
This creates serious interpretation problems [34].

Many researchers have presented various modifications
to overcome the drawbacks of conventional FMEA [19–22,
30–37]. A hybrid FMEA Multi-Criteria Group Decision-
Making (MCGDM) model is introduced in [19], which
weaves the cost factor into the conventional FMEAmodel for
the prioritization of failuremodes.Wang et al. [35] illustrated
the concept of fuzzy logic where Choquet integral is used to
aggregate the prospect value of failure modes to include the
interaction relationships among risk factors.

The fuzzy logic computational technique is extensively
applied to improve FMEA/FMECA [30, 32–37]. The fuzzy
logic computational technique is used to establish the corre-
lation between S, O, and D with RPN. The fuzzy modified
FMEA/FMECAis successfully implemented in various areas
of risk assessment like LNG storage facility [30], purchas-
ing process in a hospital [32], etching of an integrated circuit
wafer [33], sterilization unit [34], aircraft landing system
[35], emergency department in a hospital [36], medical prod-
uct development [37], etc.

To the best of authors’ information, the available literature
merely discussed anymethodology for the criticality analysis
of CNC lathe for maintenance prioritization of its compo-
nents for predictive maintenance. In the present work, the
authors undertook an investigation to implement fuzzy logic
modified FMECA for the identification of potential failure
modes and maintenance prioritization of CNC lathe subsys-
tems and components for predictive maintenance. Various
risk parameter classifications have been defined for damage
severity, failure occurrence probability, and fault detection
capability of the CNC lathe control systems. Fuzzy linguis-
tic terms and fuzzy ratings are used to define S, O and D
scales for the failure analysis CNC lathe. RPN is modeled on
a fuzzy logic platform to generate a fuzzy RPN for criticality
analysis. The fuzzy RPN based criticality ranking is used to
prioritize the components and subsystems of a CNC lathe.
A comparison of conventional RPN and fuzzy RPN with the
respective priority ranking of components and subsystems is
also included in the study. The failuremodes identified for the
critical components aids in the selection of sensor systems
for condition monitoring of the component operations.

2 Data andMethodology

In this work, fuzzy FMECA is performed for the identifica-
tion andprioritization ofCNC lathe subsystems for predictive

maintenance. The methodology begins with the collection of
field failure data of CNC lathe machine tools followed by
defining the structure of the CNC lathe system, identifying
the potential failure modes, framing of S, O and D scales for
rating the failure modes and criticality analysis using con-
ventional and fuzzy modified FMECA.

2.1 Field Failure Data of CNC Lathe

Industrial field failure data and expert elicitation constitute
the foundation for failure analysis using fuzzy FMECA [38,
39]. The field failure data of 30 CNC lathe machines over 7-
years of duration are collected from various industries. The
data are in the form of history cards of individual CNC lathe
machines, which details all the maintenance works, repairs
and replacements of the components and subsystems with
the date of action and total downtime of the machine tool for
each failure. The expert elicitation is an aggregate of opin-
ions of various industry experts. The major causes of failure
were due to the structural and material failure of the compo-
nent. The structural failure includes design and maintenance
faults, manufacturing defects, mechanical overload, the pres-
ence of debris and collision of components. The material
failure includes fatigue, wear, corrosion, overheating, and
insufficient lubrication.

The field failure data and expert elicitation collected from
industries are used to identify the potential failure modes of
CNC lathe at the component level. Further, this information
is used to assign S, O and D rating values and in developing
the fuzzy FMECA engine. The potential failure modes are
identified at the component level and the corresponding risk
factor is defined. In FMECA, the aggregate risks allied with
failure modes of components in a subsystem represents the
risk associated with that particular subsystem [21, 29].

2.2 Structure of CNC Lathe

CNC lathes are machine tools with a composite structure
having mechanical, hydraulic and electrical subsystems [3,
38]. In the present study, the prioritization of components for
predictivemaintenance is limited to onlymechanical compo-
nents and subsystems. Electronics and electrical subsystems,
which are very frequent to failures like electronic damages
of sensors, relays, blown fuse, etc., are not included [19–25].
Therefore, only seven mechanical subsystems of the CNC
lathe machine are investigated using fuzzy FMECA. Individ-
ual components of theCNC lathemachine are groupedwithin
different subsystems for failure analysis. Figure 1 shows the
CNC lathe hierarchy with subsystems and the respective
components in each subsystem. The hierarchy structure of
a CNC lathe is defined based on expert elicitation and field
failure data from industries.
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Fig. 1 Hierarchy of a CNC lathe machine

2.3 FMECA of CNC Lathe

FMEA with an added criticality analysis and risk prior-
itization of failure modes and components is termed as
FMECA [30, 40]. The procedures for performing conven-
tional FMECA [41] are as follows:

1. Identification of various failure modes, its potential
effects, potential causes and machine controls for detec-
tion at the component level.

2. Assigning S, O and D ratings for each of the failure
modes.

3. Calculation of RPN from S, O and D rating values.
4. Classification of failure modes based on the criticality

ranking.

S, O and D ratings for CNC lathe machine failure are
defined following the MIL-STD-1629A [29] guidelines and
expert elicitation. The rating scales illustrated in various lit-
erature on the application of FMEA/FMECA for CNC lathe
machine tool failure analysis are also considered [19–21].
Furthermore, to determine the RPN for each failure mode
the Eq. (1) is utilized, which takes the product of S, O, and
D. The sum of the RPNs of each failure mode of a compo-
nent gives the RPN of that particular component. The sum
of the RPNs of all individual components under a subsys-
tem gives the RPN of that particular subsystem. RPN is just
a number having no units. It is always measured relative to
the RPNs of other components of the system [28, 29]. These
RPNs indicate the criticality of the CNC lathe components
and subsystems, which is further utilized to prepare a criti-
cality ranking for maintenance prioritization.

In certain applications, the criticality is calculated as the
product of severity and occurrence [28]. Basically, there are
two approaches to determine the criticality of a failure mode
of a component, qualitative analysis, and quantitative analy-
sis [42]. Qualitative analysis is used when the data available
are limited or insufficient. Whereas, quantitative analysis is

used when enough failure data of the system is available,
and these data are used to calculate the criticality number.
The failure data required for calculating criticality number
include failure modes, failure rates, failure ratios, and fail-
ure effect probabilities. The method proceeds by calculating
the failure mode criticality (Cm) for each failure mode fol-
lowed by summing up all failure mode criticalities to obtain
the component criticality (Cr) [41, 42]. The formulation is
adopted from MIL-STD 1629A [29]. The failure mode crit-
icality is calculated as;

Cm � βαλpt (2)

whereβ is the conditional probability of occurrence of failure
mode, α is the failure mode ratio, λp is part failure rate, and
t is total operating time.

Then, the component criticality is calculated as;

Cr �
∑

(Cm) (3)

Since these failure data and probabilities are not avail-
able for the considered CNC lathe machine, the inference on
available data from history card and the expert elicitation are
used to make criticality ranking subjectively based on the
calculated RPN number following the qualitative analysis
method. The mathematical formulation of RPN is reported
as the major drawback of conventional FMEA, which can
be rectified by the application of fuzzy logic computational
techniques [30–37].

2.4 Fuzzy FMECA of CNC Lathe

The key part of FMECA is to determine the RPN for failure
modes of components, which depends on S, O and D rating
values. The computation in conventional FMECA is based
on the assumption that the input variables are crisp values.
Although, due to several uncertainties, these variables are
non-crisp in nature, which is the primary cause of disputes
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about the conventional FMECA technique [19, 37]. These
rating values basically represent linguistic variables indi-
cating different risk classifications. Linguistic variables are
input/output variables whose values are words or sentences.
The qualitative FMECA approach uses linguistic variables
to express the risk classification category of severity, occur-
rence, and detection rating scales. The linguistic terms like
certain, uncertain, moderate, low, very low, high, etc. are
used to indicate various risk classifications. Fuzzy logic is
used to assign non-crisp values to these linguist variables.
Zadeh [42] in the year 1965 introduced fuzzy sets to assign
the linguistic variables to different fuzzy sets. Amembership
(characteristic) function was defined to correlate the fuzzy
sets with linguistic variables. The fuzzy logic was further
evolved from this concept. The fuzzy logic computation is
used when there are uncertainties in risk factor calculations.

The fuzzy inference engine mostly uses Mamdani’s
method or Takagi–Sugeno’s method [31, 43]. The present
work utilizes Mamdani’s method to define a fuzzy FMECA
engine, where both the precedent and the succedent are fuzzy
propositions. A typical fuzzy logic algorithm proceeds as fol-
low [39, 44]:

1. Fuzzification of quantities
2. Establishment of fuzzy sets
3. Establishment of fuzzy rules
4. Defuzzification of quantities

Fuzzy FMECA is basically a fuzzy decision support sys-
tem, which offers a more realistic framework for qualitative
risk rating scales than traditional crisp values. The method-
ology for performing fuzzy FMECA is as follows:

1. Create all input and output variables of FMECA in the
fuzzy logic platform.

2. Develop the input membership functions to represent S,
O, and D.

3. Develop the output membership functions to represent
RPN

4. Establish rules to correlate the Fuzzy RPNwith the fuzzi-
fied S, O, and D linguistic variables.

The membership function for a fuzzy set is a gener-
alization of the characteristic function of crisp sets [42].
Membership functions are used to solve practical problems
by experience rather than knowledge. It represents the degree
of truth of a valuation. The membership function associates
each element with a value in the interval [0, 1]. In fuzzy sets,
each element is mapped to the interval [0, 1] using a mem-
bership function. This makes the degree of the truthiness of
a statement in fuzzy logic not constrained to either 0 or 1,
but to have any values in the range [0, 1]. Consequently, the
fuzzy set with a vague boundary is used to represent crisp

Fig. 2 Typical Gaussian membership function

values. The establishment of this correlation is known as
fuzzification [31]. This fuzziness is best characterized by its
membership function. The membership function allows the
graphical representation of the fuzzy set.

Simple functions are used to build the membership func-
tion for a fuzzy set. The most commonly used base functions
include the triangular function, trapezoidal function, Gaus-
sian function, generalized bell function, sigmoid function,
etc. [44]. In this work, the Gaussian membership function is
used to represent each linguistic variable. TheGaussian func-
tion is smooth, concise notation and nonzero at all points,
which makes it a popular method for specifying fuzzy sets
[42–44]. Moreover, polynomial-based curves are commonly
used to represent fuzzymembership functions. The Gaussian
function is defined using two parameters, mean (μ) and stan-
darddeviation (σ ),which indicates the center andwidthof the
membership function, respectively. Figure 2 illustrates a typ-
ical Gaussian function representation. Smaller the standard
deviation, the narrower will be the bell curve. The standard
deviation value is tuned so that the membership functions in
a fuzzy set have suitable overlapping to avoid any chance of
a gap in the linguistic variable domain. The Gaussian mem-
bership function can be represented by Eq. (4), where x can
be any of the crisp values of the FMECA input and output
variables [44].

f (x ;μ, σ) � e
− 1

2

(
x−μ
σ

)2
(4)

In fuzzy FMECA, the variables are not defined by sharp
boundaries. The crisp input values of S,O andD rating scales
are transformed into non-crisp fuzzy values from the linguis-
tic terms using membership functions. These linguistic input
variables are fed into the fuzzy engine. In order to represent
RPN using fuzzy membership functions, a risk classification
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Fig. 3 Flow diagram for fuzzy modeling of FMECA

must be made based on RPNs. RPNs are also represented
using linguistic variables. The fuzzy engine returns a linguis-
tic output variable representing RPN, which is defuzzified to
obtain a crisp value for RPN.

The input to the defuzzification stage is a fuzzy linguistic
variable and the output is a crisp value, which is denoted
as the fuzzy RPN. This is a reverse mapping of crisp values
frommembership functions. The centroidmethod is themost
commonly used defuzzification technique that returns the
central point of the area under the fuzzy set, which is a crisp
value [39, 41] The overall structure for the fuzzy modeling
of FMECA is illustrated in Fig. 3.

3 Results and Discussion

The risk classifications of failure modes of CNC lathe
machine components in respect of severity, occurrence, and
detection are defined using the industrial field failure data and
expert elicitation. The S,O, andD rating scales for CNC lathe
machine are presented in Tables 1, 2, and 3, respectively. S,
O and D rating varies from 1 to 10. The severity rating 1
indicates the least severity and 10 indicates the most severe
case.Theoccurrence rating is framedbasedon theoccurrence
probability of component failure, where the occurrence rat-
ing of 1 indicates an extremely unlikely occurrence of failure
and value 10 indicates the most frequent occurrence of fail-
ure, which might be serious. The detection rating represents
the chance of failure being undetected. The detection rat-
ing 1 indicates an almost certain chance for the detection of
component failure and value 10 indicates an almost uncertain
chance for the detection of component failure. S, O, and D
ratings are determined for all the components mentioned in
the CNC lathe hierarchy structure (refer Fig. 1).

The collated field failure data of CNC lathe are subjected
to criticality analysis using FMECA and fuzzy FMECA
methods. The major objective of the study is to identify the
most critical components and subsystems of a CNC lathe and
prepare a priority list for implementing a predictive mainte-

Table 1 Severity rating for CNC lathe

S. no. Failure effects
severity

Ranking criteria S scale

1 Serious Failure causing harm to the
operator without warning

10

2 Very Extreme Failure causing harm to the
operator with a warning

9

3 Extreme Failure occurring without
any warning and causing
no harm to the operator

8

4 Major Failure causing damage to
the machine with a
warning and causing huge
maintenance costs

7

5 Significant Failure has severe effects on
the functions of
subsystem/component of
the machine

Significant maintenance
costs and production loss

6

6 Moderate Moderately effect on the
performance of a
subsystem/component

Moderate maintenance
costs and production loss

5

7 Low Failure has no severe effect
on the function or
performance of a
subsystem/component

Low maintenance costs and
production loss

4

8 Minor Failure can be solved by
minor repair

Very low maintenance costs
and production loss

3

9 Very Minor Failure has a little effect on
machine performance

Negligible maintenance
costs and production loss

2

10 None Failure has a little or no
effect on the performance
of the machine

1

123



Arabian Journal for Science and Engineering (2020) 45:5259–5271 5265

Table 2 Occurrence rating for
CNC lathe S. no. Ranking level Ranking criteria Occurrence probability O scale

1 Frequent Failure is almost certain >0.0600 10

2 Very high 0.0500–0.0600 9

3 High Failure repetition is expected 0.0400–0.0500 8

4 High moderate 0.0300–0.0400 7

5 Moderate Failure occurs occasionally 0.0250–0.0300 6

6 Low 0.0200–0.0250 5

7 Very low 0.0175–0.0200 4

8 Remote Failure repetition is not
expected

0.0100–0.0175 3

9 Very remote 0.0080–0.0100 2

10 Extremely unlikely Failure is almost uncertain <0.0080 1

Table 3 Detection rating for CNC lathe

S. no. Likelihood of
detection

Ranking criteria D scale

1 Almost certain Design controls will almost
certainly detect the
potential failure modes

1

2 Very High Very likelihood that the
current design controls
will detect potential
failure modes/task error

2

3 High High chance that the current
design controls will detect
failure

3

4 Moderate-high Moderately high likelihood
that the current design
controls detect the
potential failure modes
before affecting the
system performance

4

5 Moderate Moderately likelihood that
the current design controls
detect the potential failure
modes before affecting
the system performance

5

6 Low Low likelihood that the
current design controls
will detect failure modes

6

7 Very Low Very low likelihood that the
current design controls
will detect failure

7

8 Remote Remote chance that the
design controls will detect
failure

8

9 Very remote Defect most likely remains
undetected

9

10 Almost uncertain Failures are not detected 10

nance strategy. The potential failure modes, potential effects,
potential causes, and design controls for detection are identi-
fied for every component of CNC lathe using the field failure
data and further, and Tables 1, 2, and 3 are used to assign S,

O and D ratings for each component. The conventional RPN
is calculated using Eq. (1). The fuzzy FMECA proceeds are
shown in Fig. 3. In order to determine the fuzzy RPNs for
failure modes of components, the input and output linguistic
variables are fuzzified.

Figure 4 shows the fuzzy representation of the severity,
occurrence and detection rating scales. This makes the basic
non-crisp inputs for a fuzzy FMECA. Similarly, the output
RPNs are fuzzified, but it requires an RPN rating scale for
CNC lathe. Table 4 presents the 10-scale risk classification
of RPN, which defines a set of RPNs to a particular risk
category. Risk classification and ranking criteria for RPN
are developed by integrating the conventional RPNs with
industrial expert elicitation. Each class is assigned the values
from 1 to 10, the value 10 indicates the category with the
highest risk and the value 1 indicates the category with the
least risk. Like the input membership functions, the Gaussian
membership function is used to transform RPN to a fuzzy
RPN. Figure 5 shows the output membership function for
fuzzy RPN. This fuzzy representation of RPNs is used for
the defuzzification of the linguistic output variables to give
crisp fuzzy RPNs.

The fuzzy rules are defined to correlate the input and
output membership function. The if –then rule is used to
establish the fuzzy relation between the inputs S, O, D and
the output RPN. Following the 10-scale ratings for S, O, and
D, 1000 if –then rules are developed using the information
extracted from expert elicitation. These rules are intended
to portray every possible combination of S, O and D rating
scales. If –then rules are defined as follows:

If Severity is Serious and Occurrence is Moderate and
Detection is Uncertain then RPN is VeryHigh
If Severity is Minor and Occurrence is Frequent and
Detection is Uncertain then RPN is High
If Severity is Major and Occurrence is Remote and
Detection is Certain then RPN is Low
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Table 4 Failure classification based on RPN rating scale

S. no. Linguistic variable Ranking criteria Rank

1 Very high 450≤RPN≤1000 10

2 High 300≤RPN≤449 9

3 Low high 217≤RPN≤299 8

4 High medium 141≤RPN≤216 7

5 Medium 81≤RPN≤140 6

6 Low medium 50≤RPN≤80 5

7 High low 30≤RPN≤49 4

8 Low 17≤RPN≤29 3

9 Very low 9≤RPN≤16 2

10 None 1≤RPN≤8 1

Similar 1000 rules are defined to represent the fuzzy
FMECA of CNC lathe. A typical worksheet for qualitative
FMECA is used to display the complete FMECA and fuzzy
FMECA of a CNC lathe machine as presented in Table 5.
Columns of the FMECAworksheet include part name, poten-
tial failure modes, the potential effects and causes of the

respective failure mode, the current machine controls detec-
tion, severity, occurrence and detection values for the failure
mode of the component and RPNs. An additional column is
included in the conventional FMECA worksheet to display
fuzzy RPNs. This could provide a clear comparison between
the conventional RPN and the fuzzy RPN. The FMECA
relates the potential failure modes to potential effects and
root causes, which give a clear knowledge about the failure
of a component.

In Table 5, it is observed that the same RPN is produced
for different combinations of S,O andD values with the con-
ventional FMECA, which is one of its major drawbacks. On
the other hand, all the fuzzy RPNs are unique. For example,
tool holder and ball screw have (S,O,D) combinations as (3,
5, 2) and (6, 1, 5), respectively, which give the same RPN
30 with conventional FMECA. The same set of input vari-
ables for tool holder and ball screw in fuzzy FMECA gives
fuzzy RPNs 40.1 and 27.8, respectively. Thus, fuzzy RPN
overcomes the major drawback of conventional FMECA in
calculating RPN and makes it better for risk prioritization.
This is due to the result of the fuzzification of the linguistic
variables of input and output parameters.

Fig. 4 Membership function for input variables a severity, b occurrence, c detection
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Fig. 5 Membership function for output variable-RPN

The RPN of a component is calculated as the aggregate of
RPNs of all failure modes of that component. A priority rank
is given to the CNC lathe components based on conventional
RPN and fuzzy RPNs from larger to smallest as presented
in Table 6. Due to the repetition of RPNs in conventional
FMECA, there is a chance of a tie between the priority ranks
of components. In such cases, the product of S and O is
considered and the component having a higher product value
is given a higher rank. However, this problem does not appear
when the ranking is based on a fuzzy RPN, where all values
are unique. Therefore, the risk priority ranking based on a
fuzzy RPN is considered for the predictive maintenance of
CNC lathe. It is observed that spindle bearing has the highest
RPN and the fuzzy RPN 490 and 568, respectively. Hence,
the spindle bearing is reported as themost critical component
of a CNC lathe machine, followed by turret and chuck.

Further, the RPNs of subsystems are calculated as the
sum of the RPNs of each component belonging to that sub-
system. Similarly, the fuzzy RPNs are also calculated for
the subsystems. These fuzzy RPNs are utilized to prepare
a maintenance priority ranking for CNC lathe subsystems
as presented in Table 7. A comparison of the conventional
and fuzzy RPN is provided and the subsystems are arranged
according to the fuzzy RPN priority ranking. It is observed
that the ranking based on fuzzy RPN is more in agreement
with industrial expert elicitation. The spindle unit of the CNC
lathemachine is identified as themost critical subsystemwith
the conventional and fuzzy RPNs 781 and 848.2, respec-
tively. The criticality analysis based on both conventional
and fuzzy RPNs has established the spindle unit as the most
critical subsystem. The most critical component, the spindle
bearing is also in this subsystem. Hence, beyond doubt, it
can be stated that the predictive maintenance strategy must
be implemented for the spindle unit of a CNC lathe machine
tool. The turret, chuck, and linear axis subsystems also have

high fuzzy RPNs. These subsystems can also be considered
for predictive maintenance. The other subsystems might be
considered for preventive or reactive maintenance.

4 Conclusions

Criticality analysis of CNC lathe is performed to identify the
most critical subsystems and their potential failure modes
from a maintenance perspective and hence limit the imple-
mentation of predictive maintenance to the identified critical
subsystems. One of the most widely used criticality analy-
sis techniques FMECA, which is improved with fuzzy logic
computation, is utilized for risk prioritization of the CNC
lathe machine tool. The failure modes of components and
subsystems of CNC lathe are identified, and the risk asso-
ciated with each component and subsystem is determined.
Furthermore, a maintenance priority rank is generated based
on the risk factor associatedwith the componentswith respect
to the failure modes. Industrial field failure data and expert
elicitation constitute major input for performing failure and
criticality analysis. These data are used to calculate the RPNs
following the conventional and fuzzy improved FMECA. A
comparison between conventional and fuzzy FMECA is also
included in the study.

In summary, the practical contributions of the study on
implementing fuzzy FMECA for CNC lathe are as follows:

1. Fuzzy FMECA can assist the maintenance team to pre-
cisely choose the critical components and subsystems,
which must be considered for predictive maintenance.

2. FMECA relates the potential failure modes to potential
effects and root causes. This knowledge can be utilized
in the phenomenon of sensors selection and installation
for the condition monitoring of critical components.
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Table 6 Criticality ranking of
CNC lathe components based on
RPN and fuzzy RPN

Part no. Part name RPN RPN priority
rank

Fuzzy RPN Fuzzy RPN
priority rank

1 Spindle bearing 490 1 568 1

2 Turret 390 2 443 2

3 Chuck 300 3 280 3

4 X and Z axis servomotor 252 4 224.8 4

5 Drawbar 150 5 178 5

6 Spindle motor 135 7 131 6

7 Ball screw bearing 150 6 129 7

8 Spindle belt 96 8 83.2 8

9 Spindle cooling fan motor 60 10 66 9

10 Lubrication motor 73 9 63.9 10

11 Coolant motor 50 12 56.8 11

12 Turret motor 54 11 54.5 12

13 Axis slide 45 14 42.6 13

14 Oil seal 45 15 40.4 14

15 Tool holder 30 16 40.1 15

16 Oil tank and piping 48 13 40 16

17 Ball screw 30 17 27.8 17

18 Encoder coupling 25 18 23.7 18

19 Axis belt 24 19 22.7 19

20 Encoder belt 18 21 19.3 20

21 Pulley 20 20 17.7 21

22 Lubrication pump 12 22 13.3 22

23 Coolant tank and piping 10 23 5.41 23

24 Coolant pump 6 24 4.79 24

The bolded row indicates the component with the highest RPN values

Table 7 Criticality ranking of CNC lathe subsystem based on RPN and
fuzzy RPN

Subsystem RPN RPN priority
rank

Fuzzy RPN Fuzzy RPN
priority rank

Spindle 781 1 848.2 1

Turret 474 3 527.5 2

Chuck 470 4 475.7 3

Linear axis 501 2 446.9 4

Lubrication 178 5 157.6 5

Cooling 67 6 67 6

Encoder 43 7 43 7

The bolded row indicates the subsystem with the highest RPN values
and the bolded column indicates the end result of the work

3. The spindle unit of a CNC lathe is identified as the most
critical subsystem with the highest RPN, followed by the
turret, chuck, and linear axis.

4. The comparison of the results of conventional and fuzzy
FMECA highlights the benefits of fuzzy FMECA over
conventional methodology. The fuzzy FMECA results

seem to be more reasonable and in agreement with the
industrial data and expert elicitation.

5. The study proves that the primary drawbacks of conven-
tional FMECA are eliminated with the implementation
of fuzzy logic computational techniques.
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34. Dağsuyu, C.; Göçmen, E.; Narlı, M.; Kokangül, A.: Classical and
fuzzy FMEA risk analysis in a sterilization unit. Comput. Ind. Eng.
101, 286–294 (2016)

35. Wang, W.; Liu, X.; Qin, Y.; Fu, Y.: A risk evaluation and prioritiza-
tion method for FMEA with prospect theory and Choquet integral.
Saf. Sci. 110, 152–163 (2018)

36. Chanamool, N.; Naenna, T.: Fuzzy FMEA application to improve
the decision-making process in an emergency department. Appl.
Soft Comput. 43, 441–453 (2016)

37. Wang, L.; Hu, Y.P.; Liu, H.C.; Shi, H.: A linguistic risk prioritiza-
tion approach for failure mode and effects analysis: a case study
of medical product development. Qual. Reliab. Eng. Int. (2019).
https://doi.org/10.1002/qre.2472

38. Wang, Y.; Jia, Y.; Yu, J.; Yi, S.: Field failure database of CNC
lathes. Int. J. Qual. Reliab. Eng. Manag. 16, 330–343 (2017)

39. You, D.; Pham, H.: Reliability analysis of the CNC system based
on field failure data in operating environments. Qual. Reliab. Eng.
Int. 32, 1955–1963 (2016)

40. Bowles, J.B.; Peláez, C.E.: Fuzzy logic prioritization of failures in
a system failure mode, effects and criticality analysis. Reliab. Eng.
Syst. Saf. 50, 203–213 (1995)

41. Stamatis, D.H.: The ASQ Pocket Guide to FailureMode and Effect
Analysis (FMEA). American Society for Quality (ASQ), Milwau-
kee (2015)

42. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965). https://
doi.org/10.1016/S0019-9958(65)90241-X

43. Abadi, D.N.M.; Khooban, M.H.; Alfi, A.; Siahi, M.: Design of
optimal self-regulation mamdani-type fuzzy inference controller
for type I diabetes mellitus. Arab. J. Sci. Eng. 39, 977–986 (2014)

44. Tay, K.M.; Lim, C.P.: Fuzzy FMEA with a guided rules reduction
system for prioritization of failures. Int. J. Qual. Reliab.Manag. 23,
1047–1066 (2006). https://doi.org/10.1108/02656710610688202

123

http://dx.doi.org/10.1115/MSEC2011-50132
https://doi.org/10.1002/qre.2472
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1108/02656710610688202

	On the Criticality Analysis of Computer Numerical Control Lathe Subsystems for Predictive Maintenance
	Abstract
	1 Introduction
	2 Data and Methodology
	2.1 Field Failure Data of CNC Lathe
	2.2 Structure of CNC Lathe
	2.3 FMECA of CNC Lathe
	2.4 Fuzzy FMECA of CNC Lathe

	3 Results and Discussion
	4 Conclusions
	Acknowledgements
	References




