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Abstract
This paper presents a simple novel intelligent control scheme. The devised control scheme is a Takagi Sugeno Kang (TSK)-
based type-2 neural fuzzy system (NFS) with a self-tuning mechanism optimized via a conjugate gradient (CG) method.
Defuzzification phase of the NFS comprises T-norms rather than the conventional product–sum combination. The proposed
control scheme is incorporated with a two-link flexible manipulator (TLFM), which belongs to the class of multi-body
discrete/distributed, nonlinear, infinite-dimensional and highly coupled systems. The finite-dimensional model is acquired by
using an assumed mode method (AMM). The truncated model has uncertainties, which makes it a difficult control problem.
The control objective is to accomplish angular maneuvering of the TLFM links while regulating their intrinsic fluctuations.
For an extensive analysis, the proposed control scheme is compared with a TSK model-based type-1 NFS and an adaptive
proportional integral derivative (APID) control scheme. The simulation results demonstrate that the proposed control scheme
exhibits better position tracking and vibration regulation capabilities compared to the other intelligent control schemes.

Keywords Neural fuzzy systems · Takagi sugeno kang · Flexible manipulator · Assumed mode method · Steepest descent ·
Conjugate gradient

1 Introduction

Conventional manipulators are manufactured to have max-
imum stiffness for the purpose of diminishing the effects
of vibrations. This leads to a bulky and heavy design with
intensive energy requirements and significant speed limi-
tations. Unfortunately, vibrations in the rigid manipulators
still cannot be avoided during fast movements. This results
in an imprecision of the end-effector position [1]. Flexible
manipulators are preferred because of theirs lightweight and
insignificant energy requirements. The main problem is to
control the flexible manipulator in the presence of an uncer-
tain fluctuation.

In the literature, there are various control schemes incor-
poratedwith flexiblemanipulators.Mahamood and Pedro [2]
have used a PID control scheme on the TLFM based on an

B Muhammad Umair Khan
engr.m.umair.khan@gmail.com

Tolgay Kara
kara@gantep.edu.tr

1 Department of Electrical and Electronics Engineering, Faculty
of Engineering, Gaziantep University, Gaziantep, Turkey

assumed mode method (AMM) model. Performance of the
controller is evaluated on the basis of tracking and vibration
suppression capabilities. PID control scheme is incapable of
making adjustments to the changes in the process parameters.
Ahmad [3] has designed a control scheme that is a combina-
tion of linear quadratic regulator (LQR) andPID. The scheme
is used efficiently in reducing the vibrations of the flexible
manipulator. Miyasato [4] has developed an adaptive H∞-
based control scheme for a flexible arm. The controller is
robust to model uncertainties and is insensitive to parameter
variations.

The development of an accurate mathematical model is a
cumbersome task, particularly considering the uncertainties
associated with the flexible manipulators. This encourages
the use of self-tuning adaptive control strategies as well as
fuzzy logic control and neural networks. Fuzzy logic con-
troller (FLC), when applied to a nonlinear control system,
gives a robust performance. This is because the FLC does
not require an explicit mathematical model of the system,
but is designed based on human expertise and knowledge, so
it directly handles uncertainty in the system [5–7]. Li et al.
[8] have designed an adaptive fuzzy system for the control of
a single-link flexible manipulator. The designed controller is

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-020-04341-9&domain=pdf
http://orcid.org/0000-0002-4505-207X
http://orcid.org/0000-0003-3991-8524


1950 Arabian Journal for Science and Engineering (2020) 45:1949–1960

based on the Takagi Sugeno modeling and the linear matrix
inequality analysis. The backstepping technique is used for
tuning of the parameters. Tinkir et al. [9] have used a neuro-
fuzzy control scheme for a single-link flexible manipulator.
Pedro and Tshabalala [10] have developed a more complex
hybrid strategy using model predictive, neural network and
PID control. AMM is used for the modeling of the TLFM.
PID is used for the vibration control, while model predictive-
based neural network is used for the position control of the
manipulator. Different payloads are considered for assessing
the robustness of the control scheme, and the results have
revealed the effectiveness of the proposed control scheme.
Subudhi and Morris [11] have developed a neuro-fuzzy con-
trol based on the radial basis functions. AMM is used for
the dynamic modeling of the TLFM. The performance of the
proposed control scheme is compared with a PD adaptive
control and a fuzzy control scheme.

Type-1 FLC has been used extensively in several engi-
neering fields [12–14]. However, it performs poorly when
it encounters a higher degree of uncertainty [15]. This led
researchers to use the type-2 FLC, which is presented by
Zadeh [16], to better deal with uncertainties. In the litera-
ture, the supremacy of a type-2 NFS is affirmed compared
to a type-1 fuzzy system, in terms of dealing better with
the uncertainties [17–20]. Type-2 NFS has higher fuzzy set
dimensions; hence, it provides more degrees of freedom for
the direct processing of uncertain information [21]. Önen et
al. [22] have designed a neuro-fuzzy controller based on a
type-2 fuzzy control system.Lagrange andAMMare used for
the design of the flexiblemanipulator. Tracking and vibration
control of the flexible manipulator is carried out efficiently.
Juang and Tsao [23] have used a self-tuning fuzzy neural
network system with Gaussian membership functions hav-
ing fixed standard deviations and uncertain means for system
identification purposes. The proposed controller has shown
the capability of learning structures and parameters at the
same time. Abyayev and Kaynak [24] have proposed a fuzzy
neural structure based on the type-2TSKsystem.The scheme
proposed by the authors has the ability to adjust the ratio
of upper and lower membership bounds. Juang et al. [25]
have shown two types of NFS type-2 fuzzy sets: one with
uncertain means but fixed standard deviations, and the other
with fixed means but uncertain standard deviations. Lin et al.
[26] algorithm has reduced the computation complexity of
adjusting the upper-to-lower bound ratio. Gaussian member-
ship functions are used in the antecedent part with uncertain
means and fixed standard deviations, while TSK is used in
the consequent part. The results are also compared with other
type-1 and type-2 neural fuzzy systems. The control scheme
has shown better performance with lesser rules, compared to
the other schemes.

In addition to the above-mentioned uses of the type-2NFS,
the researchers have used it in many other engineering fields

as well [27–31]. The steepest descent (SD) method is used
in most of the aforementioned type-2 NFS for tuning of the
parameters. It uses partial derivatives to determine the new
update values of the NFS parameters. Learning speed of the
SDmethod is slow, especially when the search space is com-
plex, and it is widely known to have a poor convergence rate.
The performance of the method depends on the appropriate
selection of the parameters, such as learning rate and initial
weights. Even a slight deviation in these values can deterio-
rate the algorithm’s performance [32–34]. So the motivation
of this research is to look for an alternative parameter tun-
ing method for optimizing parameters of the type-2 NFS.
The conjugate gradient (CG) method used in this study has
never been used before in the type-2NFS. It adjusts the initial
search direction; consequently, achieving a faster and more
stable response. Compared to the SD method, the method
used in this study has a global convergence property, proof
of which is also given in this paper. Furthermore, the type-2
NFS in this study has T-norms in the defuzzification phase
rather than the commonly used product–sum combination,
so to speed up the convergence.

The paper is organized in five sections. Section 2 illus-
trates the modeling of a TLFM. Proposed control scheme
is explained in Sect. 3. The simulation results are presented
and discussed in Sect. 4. Section 5 gives the conclusion of
the paper.

2 TLFM

A planar flexible manipulator model by De Luca and Sicil-
iano [35] is shown in Fig. 1.

The following coordinate frames have been utilized:{
X̂0, Ŷ0

}
is the inertial coordinate frame, {Xi ,Yi } is the i th

link rigid body moving coordinate frame, and
{
X̂i , Ŷi

}
is the

i th link flexible bodymoving coordinate frame. Rigidmotion
is defined by joint angles θi , i th link flexible transversal

Fig. 1 Two-link flexible manipulator [35]
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deflection is defined by yi (χi ) at a spatial pointχi (0 ≤ χi ≤
li ), and li is the i th link length. The links are serially cascaded
and actuated by the jointswith individualmotors. The follow-
ing assumptions have beenmade for dynamicmodeling of the
flexible manipulator [36]. Each link movement is assumed in
the horizontal plane only. Consequently, the effects of cross-
shear and rotary inertia are insignificant. Link deflections are
assumed to be small. Rotor’s kinetic energy is assumed to be
because of its rotation only. The backlash in motor and fric-
tion effects are ignored. Continuous cross-sectional area and
uniform material of links are assumed, i.e., constant Young’s
modulus and mass density. Euler–Bernoulli beam theory is
used to model link with uniform density ρi , flexural rigidity
(EI)i and link deflection yi (χi , t) as follows [37].

(EI)i
∂4yi (χi , t)

∂χ4
i

+ ρi
∂2yi (χi , t)

∂t2
= 0, i = 1, . . . , g (1)

Without discretization of the flexible manipulator, the
Lagrangian function has an unlimited-dimensional model
with limited use for simulation and control purposes. AMM
[38,39] is used for the finite-dimensional solution of (1),
which represents the link deflections yi ∈ Rg (2) as a
truncated finite modal series comprising spatial mode shape
functions (3) and time-varying modal displacements (4).

yi (χi , t) =
di∑
j=1

φi j (χi )δi j (t) (2)

where the solution of (2) is,

φi j (χi ) =C1,i j sin(βi jχi ) + C2,i j cos(βi jχi )

+ C3,i j sinh(βi jχi ) + C4,i j cosh(βi jχi )
(3)

and,

δi j (t) = exp( jwi j t) (4)

where C1,i j , C2,i j , C3,i j and C4,i j are unknown coefficients,
which are to be determined by the boundary conditions, and

βi j =
4
√

ρi
√

wi j
4
√

(EI)i
(5)

where wi j is the i th link j th natural angular frequency of
the eigenvalue problem. Applying the boundary conditions,
given in [35,40], gives the homogeneous solution (6).

[
F

(
βi j

)] [
C1,i j

C2,i j

]
= 0 (6)

where F
(
βi j

)
is defined as,

(1 + cos(βi j li ) cosh(βi j li )) − MLiβi j

ρi
(sin(βi j li ) cosh(βi j li )

− cos(βi j li ) sinh(βi j li ) − JLiβ3
i j

ρi
(sin(βi j li ) cosh(βi j li )

+ cos(βi j li ) sinh(βi j li )) + MLi JLiβ4
i j

ρ2
i

(1 − cos(βi j li ) cosh(βi j li )) = 0 (7)

where JLi and MLi are the moment of inertia and mass,
respectively, at the end of the i th link and are defined in [35].

The Euler–Lagrange equation gives s generalized coordi-
nate qi solutions,

d

dt

(
∂L

∂ q̇i

)
− ∂L

∂qi
= fi , i = 1, . . . , s (8)

where s = g + ∑
i
di , g represents the number of links and

di represents the modes considered for each link. L is the
Lagrangian, and fi is the force performing work on qi . From
theEuler–Lagrange equation (8), TLFMclosed formof equa-
tions can be written in the form as (9). Complete modeling
and detailed equations of motion of the TLFM can be found
in [35,36].

B (q) q̈ + h (q, q̇) + Kq = Qu (9)

where B ∈ Rs×s is the inertia positive definitematrix,h ∈ Rs

is the vector of centrifugal and Coriolis forces, K ∈ Rs×s is
the stiffness matrix, u ∈ Rg is the input vector and Q is the
input weighting matrix defined as

[
Ig×g 0g×(s−g)

]
.

3 Control Scheme

This section introduces the proposed adaptive neural fuzzy
control (ANFC) scheme. The objective of the scheme is
to control the angular positions of the TLFM links while
regulating their intrinsic fluctuations. Themulti-input single-
output (MISO) structure of an ANFC system is shown in
Fig. 2.

The structure comprises many layers. Layer 1 is the input
layer, where values are in the crisp form. Layer 2 is the
membership function layer, where the fuzzification process
converts crisp values into fuzzy values. For fuzzification,
fuzzy sets can be triangular, trapezoidal, sigmoidal, sinc and
many other functions. Mitaim and Kosko [41] have used dif-
ferent membership functions and have achieved fast function
approximations with the sinc membership function. The sinc
membership function is defined as
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Fig. 2 ANFC structure

ηi j (x j ) =
sin

(
x j − νi j

ςi j

)

(
x j − νi j

ςi j

) (10)

= N (νi j , ςi j , xi ), νi j ∈ [
νi j1, νi j2

]
(11)

where i = 1, . . . , r , j = 1, . . . , n, r denotes the number of
rules, n denotes the number of inputs, x j ∈ Rn is the input
vector, νi j ∈ Rr×n is the mean vector and ςi j ∈ Rr×n is the
variance vector of the membership function. Fuzzy type-2
membership functions are considered with uncertain means
and fixed variances. The antecedent part’s upper and lower
membership functions are represented as:

η̄i j (x j ) =
⎧⎨
⎩

N
(
νi j1, ςi j ; x j

)
, x j < νi j1

1 νi j1 ≤ x j ≤ νi j2
N

(
νi j2, ςi j ; x j

)
, x j > νi j2

(12)

η
i j

(x j ) =
{
N

(
νi j2, ςi j ; x j

)
, x j <

νi j1+νi j2
2

N
(
νi j1, ςi j ; x j

)
, x j >

νi j1+νi j2
2

(13)

The fuzzy set covers the input–output region, and the
correspondent consequent part defines the mathematical
functions of that region. The i th rule of NFS is defined as
[42–44]:

i f x1 is ηi1(x1) · · · and xn is ηin(xn) THEN

ci = bi0 + bi1x1 + · · · + binxn (14)

Layer 3 determines the firing strength of antecedent part’s
rules. The outputs of the layer 2 are multiplied in this layer,
so to represent the firing strength; hence, upper (μ̄i ∈ Rr )
and lower firing strengths (μi ∈ Rr ) are determined in this
layer.

μ̄i =
n∏
j=1

η̄i j , μi =
n∏
j=1

η
i j

(15)

T-normandT-conormcombination introduced byWeber [45]
is used rather than the widely used product–sum combina-
tion. T-norm is simple product, while T-conorm is T (λ̄, h̄) =
λ̄+ h̄−λ̄h̄. Using suitable T-norms enhances the performance
of NFS [46].

pi = μ
i

Ti {μi
} , p̄i = μ̄i

Ti {μ̄i } (16)

where p̄i ∈ Rr and pi ∈ Rr are normalized degree of ful-
fillment. Layer 4 has consequent parameters, i.e., ci ∈ Rr

defined in (14), whereas bi0 to bin are the variables. Layer
5 calculates an output by using the centroid defuzzification
method.

u = (1 − ω)u + (ω)ū (17)

where ω is the scalar variable that determines the proportion
of upper and lower output, u = ∑

i pi ci and ū = ∑
i p̄i ci .

3.1 Self-Tuning Algorithm

The parameters in the antecedent and consequent layers are
needed to be optimized. The cost function, namely mean
squared error (MSE), (18) is used to optimize these parame-
ters.

E = 1

2
(u − ua)

2 (18)

where u and ua in (18) are the actual and desired output,
respectively. The objective of the algorithm is tominimize the
cost function by optimizing the parameters. The CG method
is used for tuning of the parameters, which requires the
gradient of the required parameters to be evaluated. The back-
propagationmethod is used to find out the gradient vectors of
the required parameters. The gradient vectors are the deriva-
tives ofMSEwith respect to the required updated parameters.
A general form of the gradient of MSE with respect to the
antecedentmembership functionmean is definedby the chain
rule as:

∂E

∂νi j
= ∂E

∂u
.
∂u

∂μi
.
∂μi

∂νi j
(19)

A general form of the gradient of MSE with respect to the
antecedent membership function variance is

∂E

∂ςi j
= ∂E

∂u
.
∂u

∂μi
.
∂μi

∂ςi j
(20)
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Gradient of MSE with respect to the consequent parameters
is

∂E

∂bi0
=∂E

∂u
.
∂u

∂ci
.
∂ci
∂bi0

(21)

∂E

∂bi j
=∂E

∂u
.
∂u

∂ci
.
∂ci
∂bi j

(22)

Gradient of MSE with respect to ω is

∂E

∂ω
= ∂E

∂u
.
∂u

∂ω
(23)

where ∂E
∂u = e, ∂u

∂ci
= μi

T {μi } ,
∂u
∂μi

=
ci−

(
1−

r∏
i=1

μi/μi

)
u

Ti {μi } , ∂ci
∂bi0

=
1, ∂u

∂ω
= (ū − u), ∂ci

∂bi j
= x j , and specific upper and lower

membership functions mean and variance are defined as:

∂μ̄

∂νi j1
= ∂μ̄

∂η̄i j (x j )

∂η̄i j (x j )

∂νi j1
(24)

=
{[

η̄i j (x j ) − cos
(
x j−νi j1

ςi j

)]
1

x j−νi j1
, x j ≤ νi j1

0, otherwise
(25)

∂μ̄

∂νi j2
= ∂μ̄

∂η̄i j (x j )

∂η̄i j (x j )

∂νi j2
(26)

=
{[

η̄i j (x j ) − cos
(
x j−νi j2

ςi j

)]
1

x j−νi j2
, x j > νi j2

0, otherwise
(27)

∂μ

∂νi j1
= ∂μ

∂η
i j

(x j )

∂η
i j

(x j )

∂νi j1
(28)

=
{[

η
i j

(x j ) − cos
(
x j−νi j1

ςi j

)]
1

x j−νi j1
, x j >

νi j1 + νi j2

2
0, otherwise

(29)

∂μ

∂νi j2
= ∂μ

∂η
i j

(x j )

∂η
i j

(x j )

∂νi j2
(30)

=
{[

η
i j

(x j ) − cos
(
x j−νi j2

ςi j

)]
1

x j−νi j2
, x j ≤ νi j1 + νi j2

2
0, otherwise

(31)

∂μ̄

∂ςi j
= ∂μ̄

∂η̄i j (x j )

∂η̄i j (x j )

∂ςi j
(32)

=

⎧
⎪⎪⎨
⎪⎪⎩

1
ςi j

[
η̄i j (x j ) − cos

(
x j−νi j1

ςi j

)]
, x j ≤ νi j1

1
ςi j

[
η̄i j (x j ) − cos

(
x j−νi j2

ςi j

)]
, x j > νi j2

0, otherwise

(33)

∂μ

∂ςi j
= ∂μ

∂η
i j

(x j )

∂η
i j

(x j )

∂ςi j
(34)

=
⎧⎨
⎩

1
ςi j

[
η
i j

(x j ) − cos
(
x j−νi j2

ςi j

)]
, x j ≤ νi j1+νi j2

2

1
ςi j

[
η
i j

(x j ) − cos
(
x j−νi j1

ςi j

)]
, x j >

νi j1+νi j2
2

(35)

Dong, Liu, Xu andYang CG algorithm, which is named as
DHS [47], is the upgraded version of Hestenes–Stiefel (HS)
[48] algorithm. This CG algorithm has the form,

ξi j (κ + 1) = ξi j (κ) + α(k)ϕ(κ) (36)

where ξi j is any required parameter that is needed to be
updated and α is the learning rate. The search direction for
the algorithm is

ϕ(κ) =
{ −ψ(κ) condition 1
−ψ(κ) + β(κ)ϕ(κ − 1) condition 2,

(37)

whereas
condition 1 = ∣∣ψ(κ)Tλ(κ − 1)

∣∣ ‖ϕ(κ − 1)‖ ≥ τ ‖ψ(κ)‖,
condition 2 = ∣∣ψ(κ)Tλ(κ − 1)

∣∣ ‖ϕ(κ − 1)‖ < τ ‖ψ(κ)‖,
and

β(κ) =max

{
0,

ψ(κ)Tλ(κ − 1)

ϕ(κ − 1)T λ(κ − 1)

− ι
ψ(κ)Tϕ(κ − 1)

‖ψ(κ)‖2
(

ψ(κ)Tλ(κ − 1)

ϕ(κ − 1)T λ(κ − 1)

)2}
(38)

where ψ(κ) = ∂E
∂ξi j (κ)

is the gradient vector, λ(κ − 1) =
(ψ(κ) − ψ(κ − 1)) and ι and τ are the constants.

3.1.1 Algorithm of the Proposed Control Scheme

As mentioned earlier, the main objective of the control
scheme is to control the angular positions of the TLFM links
and to regulate the deflections associatedwith them. The con-
trol scheme achieves this by generating the desired control
action with its self-tuning algorithm. The control scheme and
the TLFM are connected in a closed loop system. Direct con-
trol model is used, so the control law is based on producing
the control output (17) and sending it directly to the TLFM
(9). The operating procedure of the closed loop system is
mentioned below.
Step 1 In the forward pass of theANFC, all the parameters are
initially defined arbitrarily and the output (17) of the ANFC
is calculated.
Step 2 The error between the desired and actual output of
the TLFM is measured, which is then propagated back to the
earlier layers of the ANFC.
Step 3 Based on the error, the suitable control action is gen-
erated by optimizing the parameters in the antecedent and
consequent layers. The update equations for each parameter
(19)–(35) minimizes the cost function (18).
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Step 4 The algorithm updates the search direction by calcu-
lating ϕ(κ) (37) and β(κ) (38) so that ‖ψ(κ)‖ ≤ ε̄, where
ε̄ ∈ (0, 1).
Step 5 The control scheme proceeds to the next iteration, and
the process repeats from step 2 until the solution converges.

3.1.2 Assumptions

This section presents the general assumptions that are often
considered for the CG method convergence analysis [49].
The set Δ = { z ∈ Rn| E(z) ≤ E(z0)} is bounded, where
z0 is a given point. In some region Δo of Δ, E function is
continuously differentiable, and its gradient ψ is Lipschitz
continuous. Moreover, a constant s̄ > 0 exists, so that

‖ψ(z1) − ψ(z2)‖ ≤ s̄ ‖z1 − z2‖ , ∀ z1, z2 ∈ Δo (39)

3.1.3 Sufficient Descent Condition

Theorem 1 Consider the CG method (36) and (37) with the
parameter βk defined by (38). Then,

ϕ(κ)Tψ(κ) ≤ −
(
1 − 1

4ι

)
‖ψ(κ)‖2 (40)

The algorithm should satisfy the necessary descent condition,
which is ϕ(κ)Tψ(κ) ≤ −c̄‖ψ(κ)‖2, where c̄ > 0 [50,51].
This theorem shows that the proposed algorithm satisfies this
condition.

Proof For all κ > 1, the following two cases are considered
from (37),
Case (i):

If ψ(κ)T λ(κ−1)
ϕ(κ−1)T λ(κ−1)

≤ ι
ψ(κ)T ϕ(κ−1)

‖ψ(κ)‖2
(

ψ(κ)T λ(κ−1)
ϕ(κ−1)T λ(κ−1)

)2
, then

β(κ) = 0 (38), and therefore, ϕ(κ)Tψ(κ) = −‖ψ(κ)‖2.
Case (ii):

If ψ(κ)T λ(κ−1)
ϕ(κ−1)T λ(κ−1)

> ι
ψ(κ)T ϕ(κ−1)

‖ψ(κ)‖2
(

ψ(κ)T λ(κ−1)
ϕ(κ−1)T λ(κ−1)

)2
, then

using this condition, multiplying (37) by ψ(κ)T and using
(38) gives

ψ(κ)Tϕ(κ) = −‖ψ(κ)‖2 + β(κ)ψ(κ)Tϕ(κ − 1) (41)

= −‖ψ(κ)‖2 +
(

ψ(κ)Tλ(κ − 1)

ϕ(κ − 1)T λ(κ − 1)

)
ψ(κ)Tϕ(κ − 1)

− ι

(
ψ(κ)Tϕ(κ − 1)

‖ψ(κ)‖
)2(

ψ(κ)T λ(κ − 1)

ϕ(κ − 1)T λ(κ − 1)

)2

(42)

ϕ(κ)Tψ(κ) ≤ −
(
1 − 1

4ι

)
‖ψ(κ)‖2

+ (−λ̄2 + 2λ̄ h̄ − h̄2) (43)

The inequality λ̄2 + h̄2 ≥ 2λ̄h̄ is used with λ̄ = ‖ψ(κ)‖
2
√

ι
and

h̄ = √
ι

(
ψ(κ)T ϕ(κ−1)

)
‖ψ(κ)‖

(
ψ(κ)T λ(κ−1)

ϕ(κ−1)T λ(κ−1)

)
, where ι >

1

4
. This

completes the proof. 	


3.1.4 Global Convergence

In this section, the Zoutendijk condition [52], which is often
used to prove the global convergence [53–55], is used to
prove the global convergence of the proposed scheme.

Theorem 2 Let ξ(κ) and ϕ(κ) are generated by algorithm
3.1.1. If ‖ψ(κ)‖ ≥ ε, where ε > 0 is a constant, then there
exists a constant ō > 0 such that

‖ϕ(κ)‖ ≤ ō ‖ψ(κ)‖ ∀ κ ∈ N (44)

Proof From (37), the following two cases are considered to
prove the theorem.
Case (i):
If

∣∣ψ(κ)Tλ(κ − 1)
∣∣ ‖ϕ(κ − 1)‖ ≥ τ ‖ψ(κ)‖, then ‖ϕκ‖ =

‖ψκ‖ holds.
Case (ii):
If |ψ(κ)Tλ(κ − 1)|‖ϕ(κ − 1)‖ < τ‖ψ(κ)‖, then using this
condition, β(κ) (38) and the Cauchy–Schwarz inequality
gives

|β(κ)| ≤ β̄(κ) (45)

≤ ‖ψ(κ)‖
‖ϕ(κ − 1)‖ [1 + ι] (46)

Using (37) and (46) gives

‖ϕ(κ)‖ ≤ ‖ψ(κ)‖ + |β(κ)| ‖ϕ(κ − 1)‖ (47)

≤ ‖ψ(κ)‖ [2 + ι] (48)

Letting ō = 2 + ι, the proof is completed. 	


Theorem 3 Let {ξ(κ)} be generated by algorithm 3.1.1.
Then, ψ(κ) = 0 for some κ or

lim
κ→∞ inf ‖ψ(κ)‖ = 0 (49)

This theorem shows the convergence result of the proposed
method.

Proof The Zoutendijk condition defined by (50) is used to
prove the theorem.

∑
κ≥1

(
ψ(κ)Tϕ(κ)

)2
‖ϕ(κ)‖2 < ∞ (50)
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Suppose if (49) does not hold, then there exists a constant
ε > 0, so that

‖ψ(κ)‖ ≥ ε,∀ κ ∈ N (51)

Using the inequalities from (40), (44) and (50) gives (52),

∑
κ≥1

(ō)−2‖ψ(κ)‖2 ≤
∑
κ≥1

‖ψ(κ)‖4
‖ϕ(κ)‖2

< h̄−2
∑
κ≥1

(
ψ(κ)Tϕ(κ)

)2
‖ϕ(κ)‖2 < ∞ (52)

where h̄ = (
1 − 1

4ι

)
. Taken into account the assumptions in

Sect. 3.1.2, (52) states that lim
κ→∞ ‖ψ(κ)‖ = 0, which contra-

dicts (51), and therefore proves the theorem. 	


4 Simulation Results

The block diagram of a TLFM incorporated with the ANFC
scheme is shown in Fig. 3. The ANFC scheme has two inputs
(error and derivative of error) and one output (u). Actuators
are situated at the base of both links. The goal of both actu-
ators is to perform the desired angular maneuvering of the
flexible links. The intelligent scheme is not dependent on
concise system modeling. It has a self-tuning mechanism,
which performs suitable control actions based on the error
between the desired and actual output. In this research, two
AMM modes are considered for each TLFM link. There-
fore, coordinates are q = (θ1 θ2 δ11 δ12 δ21 δ22)

T; these are
link joint angle positions (1st and 2nd link, respectively) and
modal displacements (1st link 1st mode, 1st link 2nd mode,
2nd link 1st mode and 2nd link 2nd mode, respectively).
TLFM system parameters are given in [35]. For the TLFM
with normal payload (mp = 0.1 kg), the roots of frequency
equation (7) are β11 = 1.16, β12 = 2.24, β21 = 2.47 and
β22 = 6.687. Orthonormalization is performed by choos-
ing values of C1,i j and C2,i j that normalizes the mode shape

functions, so that
li∫
0

φ2
i j (χi )dχi = mi , where mi is the i th

Fig. 3 Block diagram of adaptive control schemes with RSFA

(a)

(b)

(c)

(d)

st

nd

st

nd

Fig. 4 Case 1: Link positions and deflections for normal payload

link mass. The mode shapes (3) evaluated for the TLFMwith
normal payload are φ11 = 0.143, φ

′
11 = 0.507, φ12 = 0.092,

φ
′
12 = −0.233, φ21 = 0.137, φ

′
21 = 0.410, φ22 = −0.007

and φ
′
22 = −1.135.

The performance of the proposed ANFC scheme (referred
to as modified TSK type-2 ANFC scheme (MTSK 2) from
hereafter) is compared with adaptive proportional integral
derivative (APID) control scheme [56] and TSK type-1
ANFC scheme [46] (referred to as TSK 1 from hereafter).
This comparison will provide a good analysis of strengths
and weaknesses of the proposed scheme and other intelli-
gent control schemes. MTSK 2 parameter τ is defined to be
106.
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Fig. 5 Case 2: Link positions and deflections for normal payload

The desired trajectory of 30 sec is described mathemati-
cally by (53). Simulations are carried out for the following
two cases: In the first case, the two links are desired to follow
opposite angular positions of equal magnitude, while in the
second case, desired angular positions for the two links are
identical. This can be achieved for the case 1 trajectory by
assigning D = 30 for the 1st link and D = −30 for the 2nd
link; while for the case 2 trajectory by assigning D = 30 for
the 1st and the 2nd link simultaneously.

θref(κ) =
⎧
⎨
⎩

−D κ < 10
D sin

(
πκ
2

)
10 ≤ κ < 20

D 20 ≤ κ ≤ 30
(53)
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Fig. 6 Case 1: Link positions and deflections for no payload

Figures 4 and 5 show the results of TLFM with control
schemes for case 1 and case 2, respectively. For the reader’s
convenience, in the following results (◦)APID−1, (◦)TSK1−1

and (◦)MTSK2−1 are the plots for 1st linkofTLFMwithAPID,
TSK 1 and MTSK 2 control schemes, respectively. Further-
more, (◦)APID−2, (◦)TSK1−2 and (◦)MTSK2−2 are the plots
for 2nd link of TLFM with APID, TSK 1 and MTSK 2 con-
trol schemes, respectively. Figure 4a, b shows the position
in degrees of 1st and 2nd link of TLFM for case 1. ANFC
schemes have faster convergence compared to APID control
scheme. APID control scheme is struggling to maintain the
desired position, while TSK 1 and MTSK 2 control schemes
have settled quickly andmore efficiently.MTSK2 has shown
better transient and steady-state response than all other con-
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Fig. 7 Case 2: Links positions and deflections for no payload

trol schemes. Figure 4c, d shows the deflections in both links
of TLFM for case 1, as expressed by (2). Despite the abrupt
changes in the desired trajectory and the fast convergence of
theMTSK2, the deflections are observed to bewell managed
by the proposed scheme.

Figure 5a, b shows the positions in degrees of 1st and
2nd link of the TLFM for case 2. In this case, the desired
trajectory is the same for both links. ANFC schemes have
faster convergence compared to APID control scheme. Fur-
thermore, Fig. 5c, d shows the deflections in both links of
TLFM for case 2. Again, MTSK 2 has better convergence
than all other control schemes. Angular positions of links are
quickly reaching theirs targets and deflections are quite well
managed by MTSK 2.
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Fig. 8 Case 1: Link positions and deflections for double payload

In order to observe the robustness of the proposed con-
trol scheme with a comparative view, the same simulation
tests should be carried out in the presence of uncertainty.
For this purpose, TLFM payloads are varied, but the control
schemes parameters are unchanged. Ideally, since the con-
trol schemes are adaptive, they should perform better, even
after the change in the TLFM parameters. In order to achieve
this goal, TLFM with no payload (mp = 0 kg) and dou-
ble payload (mp = 0.2 kg) is considered. Changing payload
affects the mode frequencies (7) of the structure, so deriva-
tions and calculations are carried out again to find out the
new values of the TLFM system. The roots for the TLFM
with no payload are: β11 = 1.206, β12 = 2.325, β21 = 3.6
and β22 = 6.72. With these values, the mode shapes are:
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Fig. 9 Case 2: Link positions and deflections for double payload

φ11 = 0.143, φ
′
11 = 0.501, φ12 = 0.089, φ

′
12 = −0.267,

φ21 = 0.136, φ
′
21 = 0.402, φ22 = −0.039 and φ

′
22 =

−1.441. Likewise, for the TLFM with double payload, the
roots of frequency equation of TLFM are: β11 = 1.123,
β12 = 2.183,β21 = 2.142 andβ22 = 6.68.Other parameters
for the TLFM are: φ11 = 0.144, φ

′
11 = 0.512, φ12 = 0.093,

φ
′
12 = −0.220, φ21 = 0.137, φ

′
21 = 0.410, φ22 = −0.004

and φ
′
22 = −1.103.

Figure 6a, b shows the positions in degrees of 1st and 2nd
link of the TLFM for case 1, whereas Fig. 6c, d shows the
deflections in both links of the TLFM for case 1. MTSK 2
has faster angular position tracking for both links. 2nd link
deflections of MTSK 2 are slightly higher than others, but
the magnitude of deflections is quite low. Figure 7a, b shows
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Fig. 11 Case 2: Position tracking IAE performance indices of TLFM

the positions in degrees of 1st and 2nd links of the TLFM
for case 2, whereas Fig. 7c, d shows the link deflections of
1st and 2nd links of the TLFM for case 2. Again, position
tracking of the MTSK 2 is superior than others.

Figure 8a, b shows the positions of 1st and 2nd links of
the TLFM for case 1, whereas Fig. 9a, b shows the posi-
tions of 1st and 2nd links of the TLFM for case 2. For both
cases, MTSK 2 has better convergence than all other control
schemes. Angular positions of links are quickly reached, and
the deflections for both cases are well managed by both links
of the TLFM, as shown in Figs. 8c, d, 9c, d.

For a more extensive and detailed analysis, IAE perfor-
mance index [57] is used to analyze the performances of
all the control schemes. Figure 10 shows the IAE perfor-
mance indices for case 1 profile trajectories. For any payload
conditions, the MTSK 2 has better performance compared
to all other control schemes. Compared to an APID control
scheme, the TSK 1 scheme has on average 50% and 70% bet-
ter performance for 1st and 2nd link, respectively, whereas
MTSK 2 scheme has on average 80% better performance
for both links. Figure 11 shows the IAE performance indices
for case 2 profile trajectories. Again, the MTSK 2 scheme is
better than APID and TSK 1 control schemes. Compared to
an APID control scheme, the TSK 1 scheme has on average
50% better performance for both links, respectively, whereas
MTSK 2 scheme has on average 80% better performance
for both links. The results show that the MTSK 2 scheme

123



Arabian Journal for Science and Engineering (2020) 45:1949–1960 1959

is more consistent with its performance. Overall, all these
results show that the MTSK 2 control scheme is the ideal
choice for the angular positional tracking of both TLFM links
while keeping the fluctuations of links in control also.

5 Conclusion

In this paper, a type-2 TSK ANFC scheme, designated
as MTSK 2, has been proposed. The scheme is using a
DHS-based CG algorithm instead of the traditional SD algo-
rithm for optimizing the control parameters; moreover, it is
using T-norms rather than conventional product–sum com-
bination at the NFS defuzzification phase. The proposed
control scheme is integrated with a TLFM, so to control
the flexible links and to regulate the vibrations associated
with them. Position control of the flexible mechanical sys-
tem is a complex control problem since it is a nonlinear
coupled system with infinite dimensions. The dynamics of
the system is defined by a hybrid coordinate system com-
prising ordinary, partial and integral differential equations.
AMM converts the infinite-dimensional model to finite-
dimensional model, but the truncated model of the system
has arbitrary dimensions and uncertainties. The proposed
control scheme has a self-tuning mechanism that has han-
dled the problem efficiently and delivered an exceptional
performance. The control scheme has effectively tracked the
position and regulated the vibrations of the flexible nonlin-
ear system. For further extensive robustness analysis, varying
payloads of the TLFM are considered. APID control and
type-1 TSK ANFC schemes are also incorporated with the
TLFM, so as to provide a comparison with the proposed
control scheme. The results demonstrate that the MTSK 2
scheme has achieved better performance than the TSK 1 and
APID control schemes in terms of regulation and tracking.
MTSK 2 has a better convergence rate and is robust in all
cases. As a result of this study, it has been affirmed that
DHS CG-based type-2 TSK ANFC scheme is more efficient
than other intelligent control schemes for position control of
highly nonlinear flexible systems, which require simultane-
ous suppression of vibrations.
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