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Abstract
Code smells are indicators of potential problems in software. They tend to have a negative impact on software quality. Sev-
eral studies use machine learning techniques to detect bad smells. The objective of this study is to systematically review and 
analyze machine learning techniques used to detect code smells to provide interested research community with knowledge 
about the adopted techniques and practices for code smells detection. We use a systematic literature review approach to 
review studies that use machine learning techniques to detect code smells. Seventeen primary studies were identified. We 
found that 27 code smells were used in the identified studies; God Class and Long Method, Feature Envy, and Data Class 
are the most frequently detected code smells. In addition, we found that 16 machine learning algorithms were employed to 
detect code smells with acceptable prediction accuracy. Furthermore, we the results also indicate that support vector machine 
techniques were investigated the most. Moreover, we observed that J48 and Random Forest algorithms outperform the other 
algorithms. We also noticed that, in some cases, the use of boosting techniques on the models does not always enhance their 
performance. More studies are needed to consider the use of ensemble learning techniques, multiclassification, and feature 
selection technique for code smells detection. Thus, the application of machine learning algorithms to detect code smells 
in systems is still in its infancy and needs more research to facilitate the employment of machine learning algorithms in 
detecting code smells.
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1  Introduction

Code smell detection can be defined as the task of identify-
ing potential code or design problems in a system [1–5]. 
Code smells occur due to programming and design mistakes 
caused by software developers during the software designing 
and programming state [2]. They can also occur for other 
reasons such as an incorrect analysis, incorrect integration 
of new models into the system, ignoring software develop-
ment principles, and writing codes in a complex way [1, 

2]. These smells may have a negative impact on the overall 
quality of the system, such as maintainability and under-
standability [6–10]. Therefore, the code smell detection 
process has motivated many researchers to propose differ-
ent methods to deal with the occurrence of code smells in 
systems. Refactoring is proposed to alleviate and overcome 
code-smell-related issues. Refactoring leads to high quality, 
high performance, low cost, reusability, implementation and 
the easy development of software [1, 11].

Undertaking the code smell detection process in a manual 
manner is considered to be subjective. Most of these tech-
niques mainly depend on object-oriented metrics that result 
in various outcomes [7]. Therefore, automated tools are pro-
posed [12–20]. Nowadays, machine learning techniques are 
utilized to address code smell issues with promising results. 
A machine learning classifier needs first to be trained using 
a set of code smell examples to generate a model. The gener-
ated models are then used to identify or detect code smells in 
unseen or new instances. The power of the generated model 
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relies on various criteria related to the dataset, the machine 
learning classifiers, the parameters of the classifier itself, etc.

A number of systematic literature reviews (SLRs) have 
been conducted in the area of bad smells. Zhang et al. [21] 
conducted an SLR on refactoring and code smells and 
reviewed papers published during the period of 2000–2009. 
They observed that most of the reviewed studies used a small 
number of code smells, and some of these smells are used by 
the participants in a bad way (for example, message chains). 
Likewise, Singh and Kaur [22] performed an SLR by review-
ing 238 papers. They concentrated on the methods used to 
detect code smells as well the tools used for refactoring these 
code smells. Sharma and Spinellis [23] conducted another 
SLR and presented the existing knowledge associated with 
code smells, identified the challenges and investigated the 
definitions of code smells, reasons for their occurrence, their 
impact, and the available detection tools. Santos et al. [3] 
conducted an SLR to synthesize the existing knowledge on 
code smells. They concentrated on empirical studies that 
investigated how code smells affect software development. 
Mariani and Vergilio [24] presented an SLR of the existing 
research that motivates or applies search-based methods in 
the software refactoring activity. Their SLR was conducted 
by reviewing 71 primary studies. Several mechanisms have 
been introduced to detect code smells. Rasool and Arshad 
[25] performed a review on the existing tools that are used 
to detect code smells and report their associated challenges. 
Furthermore, Fernandes et al. [26] conducted a comparison 
between 84 smell detection tools. Fontana et al. [27] con-
ducted a literature review that focused on code smells and 
automatic tools. They identified seven code smell detection 
tools and evaluated four of them in terms of their detection 
results. Garcia et al. [28] presented the code smells that are 
frequently recurring in software design which can have non-
clear and important detrimental impact on system lifecycle 
properties. A recent and related SLR was undertaken by 
Azeem et al. [29] in which they conducted a study to provide 
an overview of the use of machine learning approaches for 
code smell detection. They identified 15 primary studies that 
used machine learning approaches. Their study focused on 
addressing four issues: (1) the code smells considered, (2) 
the setup of the approach, (3) the design of the evaluation 
strategies, and (4) an analysis of the performance. However, 
in this paper, we further provide a detailed analysis of the 
datasets used in code smell detection studies. Furthermore, 
we investigate the tools used to detect code smells, the tools 
used to extract and compute software metrics (features) and 
the tools used to implement machine learning techniques 
applied to detect code smells. Moreover, we investigate the 
use of feature selection techniques and compare the stand 
alone and ensemble-based machine learning techniques.

Another recent SLR was developed by Caram et al. [30]; 
the authors in this study conducted a systematic mapping 

study of the use of machine learning techniques for code 
smells identification. twenty-five primary studies were 
identified. Their SLR concentrated on studying code smells 
detection using machine learning techniques from differ-
ent perspectives: (1) the detected code smells, (2) the used 
machine learning techniques, (3) the most used machine 
learning techniques for each code smell, and (4) and the 
performance of each of these techniques for the code smells. 
These perspectives are covered in this study; also we pre-
sent an extensive analysis of the used datasets in the litera-
ture from different viewpoints: (1) the size of each dataset 
(i.e., number of included systems), (2) dependent variables, 
(3) independent variables, (4) the used tools to compute or 
extract metrics (independent variables), (5) the used tools 
to assign dependent variables(smelly or not smelly), and (6) 
description analysis of each available dataset (i.e., number 
of features, instances and smelly, and non-smelly instances 
in each dataset). Further, we explore the setup of used tech-
niques such as, the used evaluation metrics, the used valida-
tion methods, and classification type (i.e., binary classifica-
tion or multiclassification). Furthermore, we investigate the 
use of ensemble machine learning techniques and compare 
them with stand-alone machine learning techniques. Moreo-
ver, we show the tools used to implement machine learning 
techniques. In addition, we investigate the use of feature 
selection techniques.

In this study, our main objective is to systematically 
review the studies carried out to detect code smells using 
machine learning algorithms from different perspectives. To 
achieve the study objectives, we carried out an SLR follow-
ing the general guidelines defined by Kitchenham and Char-
ters [31]. First, a wide literature search was conducted in five 
online databases to identify the relevant studies. Then, a set 
of inclusion and exclusion criteria and quality assessments 
were devised to obtain the primary studies. The selected 
studies were then analyzed, classified, and compared using 
our defined criteria including types of machine learning 
algorithms, prediction accuracy, detected code smells and 
datasets, resulting in the selection of 17 primary studies.

The results of this study provide knowledge for both 
practitioners and researchers about the most frequently code 
smells detected, and the machine learning technique used 
to detect them. The results also provide information about 
the accuracy measures used in the experimental studies that 
practitioners and researchers can use for comparison with 
the existing studies. The study also provides analysis about 
the tools used for code smell detection and correction. Fur-
thermore, the details of the datasets used in bad smell detec-
tion and correction studies are also reported.

The main contributions of this study are:

1.	 Identified 17 primary studies that use machine learning 
techniques to detect code smells.
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2.	 Conducted different analyses on these primary studies 
to provide knowledge about: (1) the applied techniques, 
(2) the detected code smells, (3) the accuracy measures, 
(4) the used datasets, and (5) the most commonly used 
tools.

3.	 Provide recommendations that can be used for the future 
research.

The rest of this study is organized as follows. A back-
ground of bad smells and machine learning techniques is 
presented in Sect. 2. The research methodology used is dis-
cussed in Sect. 3. Section 4 presents the results. Section 5 
discusses the main findings. In Sect. 6, we identify the 
potential threats to the validity of our study, while Sect. 7 
presents the conclusion.

2 � Background

In this section, we provide a brief background of code smells 
and machine learning techniques.

2.1 � Code Bad Smells

Code smells indicate potential code or design problems in 
a system [1, 2]. Code smells, also known as design flaws, 
refer to design situations that negatively influence the main-
tainability of the software [27]; therefore, they may impact 
the maintenance processes [32]. A number of code smells 
were presented in Fowler’s book [33]. Fowler also suggested 
guidelines to eliminate these smells from the system [25].

It is helpful if we identify a bad smell as early as possible 
in the development lifecycle [32, 34]. Detecting bad smells 
in code or in the design and then performing the appropri-
ate refactoring procedures when necessary is very useful 
to enhance the quality of the code. These smells make the 
system more difficult to maintain, probably also increasing 
its fault proneness [35]. Bad smells are unlikely to result in 
failure directly but might do so indirectly which still nega-
tively impacts software quality [36].

Code metrics are used by different code smell detection 
tools to detect code smells. These tools either compute the 
metrics from the code itself or utilize the extracted metrics 
from the external party’s tools [7]. The bad smell detection 
process can either be manual or automatic, using detection 
strategies. Bad smells can be detected in source code or sys-
tem design.

2.1.1 � Code smell categories

There are several categories of bad smells, and each category 
contains several types. In our study, we selected the category 
proposed in [33, 37–39], as they include the most common 

code smells types. The code bad smells are very closely rel-
evant. Consequently, we consider that the taxonomy makes 
the smells more recognizable and understandable. Figure 1 
details these categories.

•	 Bloaters In this category, the code or classes are 
expanded to such a large extent that they are difficult to 
work with. These smells do not manifest immediately, 
rather they aggregate after some time as the program 
develops, particularly when no one endeavors to elimi-
nate them. The first type of code smell in this category 
is the Long Method, which contains too many lines of 
code, making it difficult to reuse, change, and understand. 
The best solution for this smell is to divide this method 
into separate methods. The second type of code smell in 
this category is Large Class. This occurs when a single 
class attempts to do too much, and it usually contains 
several instances and has various responsibilities. This 
smell makes the reusability and maintainability of this 
class more difficult. The best solution for this smell is 
splitting this class, by applying extract class. The third 
type of code smell in this category is Primitive Obsession 
used in software. We should use small classes instead of 
primitive types in some situations. For instance, primi-
tives are used in place of small objects for simple tasks, 
for example, special strings for phone numbers, ranges, 
and currency. The fourth type of code smell in this cat-
egory is Long Parameter List. This type of smell occurs 
if any method has more than four parameters, making 
parameter lists more difficult to understand and use and 
also inconsistent. The final type of code smell in this 
category is Data Clumps. Occasionally, various parts of 
the code contain identical groups of variables, for exam-
ple, parameters to connect to a database. These clumps 
should be turned into their own classes.

•	 Object-Orientation Abusers All the smells in this cat-
egory involve the incomplete or incorrect application of 
the principles of object-oriented programming. The first 
type of bad smell in this category is the Switch State-
ments. This smell appears in the code when it contains a 
sequence of if statements or a complex switch operator. 
The second type of bad smell in this category is tempo-
rary field. Usually, temporary fields are created for use in 
an algorithm that requires a lot of parameters. Therefore, 
instead of creating a large number of parameters, the pro-
grammer creates fields for these data in the class. These 
fields are utilized only in the algorithm and go unused 
the rest of the time. This kind of smell is difficult to dis-
cover. Removing this smell enhances code clarity and 
organization. The third type of bad smell in this category 
is Refused Bequest. This smell occurs when program-
mers create inheritance between two completely different 
classes, but the subclass uses only a few of the methods 



2344	 Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

and properties inherited from the superclass. The best 
way to treat this smell is to use delegation instead of 
inheritance. The fourth type of bad smell in this category 
is alternative classes with different interfaces. This code 
smell occurs when programmers create two classes with 
identical functionality, but these methods have different 
names.

•	 Change Preventers These smells occur if you need to 
modify something in one place in your code, and then 
you have to make many modifications in other places 
too. Therefore, the development process of the software 
is more complicated and costly. In this category, there are 
three types of bad smells. The first type of bad smell in 
this category is Divergent Change. This bad smell occurs 
when many changes are made to a single class. The best 
way to remove this smell is to split the class’s behavior. 
For instance, in the case where different classes have the 
same behavior, the classes should be combined through 
inheritance. This will improve the organization of the 
code as well as reduce code duplication. The second type 
of bad smell in this category is Shotgun Surgery. This 
occurs when a single change is made to multiple classes 
simultaneously. The reason this smell occurs is because 
one responsibility has been split up among a large num-
ber of classes. The best way to remove this smell is to 
move the existing class behaviors into a single class. This 
will improve the organization of the code, reduce code 
duplication, and make it easier to maintain. The third 

type of bad smell in this category is Parallel Inheritance 
Hierarchies. This smell occurs when you create a sub-
class for a class and then discover that you need to create 
a subclass for another class.

•	 Dispensables These smells occur when part of the code 
is not needed and where it to be removed, the code would 
be cleaner, more efficient and easier to understand. There 
are six types of bad smells in this category. The first type 
of bad smell in this category is Comments. This smell 
occurs when the program is filled with explanatory com-
ments. The second type of bad smell in this category is 
the Duplicate Code. This smell occurs when the same 
or very similar code appears in several parts of the pro-
gram, making the program code large. This bad smell can 
be removed by creating a new method that encapsulates 
the duplicated code. The third type of bad smell in this 
category is Lazy Class which is a useless class. Every 
class which is built takes effort and is time-consuming 
to understand and maintain. The best way to remove this 
smell is to eliminate these classes. The fourth type of bad 
smell in this category is Data Class. This is a class that 
contains only fields but there is seldom any logic to it. 
The Data Class has getters and setters methods for fields. 
The fifth type of bad smell in this category is Dead Code. 
This occurs when a code is never executed. The sixth 
type of bad smell in this category is Speculative Gen-
erality. This occurs when there is an unused parameter, 
field, method, or class. The reason this bad smell occurs 

Fig. 1   Code smell categories
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is because sometimes, code is created to support antici-
pated future features that are never actually implemented. 
Consequently, the code becomes difficult to understand 
and support.

•	 Couplers All the smells in this category contribute to 
an excessive coupling between classes or show what 
happens if coupling is replaced by excessive delegation. 
There are six types of bad smells in this category. The 
first type of bad smell in this category is Feature Envy. 
This bad smell occurs a method accesses the data of 
another object more than its own data. It generally occurs 
when fields are moved to a Data Class. If this happens, 
the operations on data should be moved to this class as 
well. The second type of bad smell in this category is 
Inappropriate Intimacy. This occurs when one class uses 
the internal methods and fields of another class to do its 
work. The third type of bad smell in this category is Mes-
sage Chains. This occurs when a client requests another 
object, and that object requests yet another object and 
so on. The fourth type of bad smell in this category is 
Middle Man. This occurs if a class performs only one 
action and delegates work to another class, hence there is 
little point in its existing. This smell can be the result of 
the overzealous elimination of Message Chains. The fifth 
type of bad smell in this category is Incomplete Library 
Class. This occurs when libraries no longer meet user 
requirements.

2.2 � Machine learning

Machine learning is a discipline where computer systems 
are able to learn and perform their work even if they were 
not explicitly programmed [40]. The most commonly used 
machine learning techniques in the literature on software 
quality prediction are supervised learning, reinforcement 
learning, and unsupervised learning. This subsection 
describes the investigated classification models.

•	 Multilayer Perceptron (MLP) [41, 42] This is an artificial 
neural network (ANN) model that consists of a layer as 
an input, at least one hidden layer, and an output layer. 
Every node is a neuron that utilizes a nonlinear activation 
function, and it associates with other nodes in the next 
layer with a specific weight. MLP constantly utilizes the 
backpropagation technique for training.

•	 Support Vector Machines (SVMs) [43, 44] These are 
supervised learning models with related learning tech-
niques, and these learning algorithms can be used for 
regression or classification. SVM was defined by Vapnik 
[45] based on the principle of structured risk minimi-
zation. The main objective of SVM is empirical error 
minimization and geometric margin maximization. Com-
monly, the extent to which deviations are tolerated, the 

complexity parameter C, and the kernel are the param-
eters that are used to define the SVM model.

•	 Radial Basis Function Networks (RBFs) [46, 47] This is 
a type of neural network that has three layers, one being 
an input layer, the second being a hidden layer, and the 
third being a linear output layer. Three types of RBFs are 
multiquadric, polyharmonic spline, and Gaussian. RBF 
networks are used for classification, function approxima-
tion, and system control.

•	 Bayesian Belief Networks (BBNs) [48] This is a con-
venient graphical model for representing a collection of 
variables and their probabilistic independencies. In this 
model, a random variable is represented by a node in the 
graph, whereas the probabilistic dependencies among the 
corresponding random variables are represented by the 
edges connecting the nodes.

•	 Naive Bayes (NB) [47, 49] This is a supervised learn-
ing algorithm that employs the Bayes algorithm with the 
“naive” assumption of conditional independence among 
each pair of attributes.

•	 Random Forests (RF) is a supervised learning algorithm 
that contains many unpruned classifications or regression 
trees such that every tree is based on the values of a ran-
dom vector experimented individually and with the same 
distribution for all trees in the forest. RF can be employed 
for both classification and regression problems [50, 51].

•	 Linear Regression (LR) is a modeling method that is 
applied to find the correlation between the target and 
independent variables in the dataset by utilizing the lin-
ear predictor functions [52–54].

•	 Multinomial Naive Bayes (MNB) Multinomial naive 
Bayes is a version of NB that is introduced for text classi-
fication. In MNB, the data samples follow a multinomial 
distribution [49, 55].

•	 Decision Tree (DT) [56] This is one of the most suc-
cessful options for the supervised learning method for 
regression and classification. The C4.5 algorithm is the 
most commonly used technique to generate decision trees 
[57].

3 � Research Methodology

The main objective of this study is to identify and analyze 
all relevant studies that use machine learning to detect code 
smells. As previously mentioned, we followed the SLR 
guidelines suggested by Kitchenham and Charters [31]. An 
SLR is a well-defined and systematic way of finding, assess-
ing, and analyzing published primary research [58–61]. 
The SLR gives a strong basis on which to make claims on 
research questions, but it needs considerably more effort 
than a traditional literature review [62]. The SLR process 
involves six phases, followed in sequence as shown in Fig. 2:
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•	 Research questions
•	 Search strategy design
•	 Study selection
•	 Quality assessment
•	 Data extraction
•	 Data synthesis

In the first phase, a number of research questions based 
on the goal of the current SLR are defined. Then, a search 
strategy is built to find all the studies relevant to the research 
questions. Next, the search string, the digital libraries and 
the inclusion and the exclusion criteria are identified, and 
in the fourth phase, a set of quality assessment criteria are 
identified and applied to the selected papers. In the data 
extraction phase, the data extraction cards are created and 
employed to obtain data from the selected papers. Finally, 
in the data synthesis phase, appropriate methodologies are 
defined to synthesize the extracted data.

3.1 � Research questions

Constructing the research questions is a significant step 
in the SLR process. Five research questions are defined to 
achieve our research objective:

RQ1: Which machine learning techniques have been 
applied to detect code smells?

The objective of RQ1 is to identify the machine learn-
ing techniques that have been applied to detect code smells. 
Researchers can use the outcomes of this question to iden-
tify the most applied machine learning techniques for code 
smells detection and to investigate the possibility of imple-
menting unused techniques.

RQ2: Which code smells are most commonly detected 
using machine learning techniques?

Several studies have been conducted to address the issue 
of code smells, so our objective in relation to this question 
is to identify the code smells that have been detected using 
machine learning and why researchers have chosen these 
code smells. The findings of this question can be used to 
determine the code smells that have not been investigated yet 
or got less attention by current studies. Hence, researchers 
can address them in the future work.

RQ3: What are the accuracy measures of the machine 
learning techniques that have been used for code smell 
detection?

To answer this question, we identify the performance 
metrics used to evaluate the machine learning techniques 
in terms of the detection of code smells. Then, based on 
these performance metrics, we identify the accuracy of the 
machine learning techniques that have been used for code 
smell detection. Next, we compare the machine learning 
techniques that have been used to detect code smells in order 
to find the most efficient. The findings of this question can be 
useful to identify the accuracy measures used to evaluate the 

Fig. 2   Systematic literature review process phases
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performance of the used machine learning techniques. Such 
knowledge enables researches to use the most appropriate 
accuracy measure in their studies.

RQ4: What datasets have been used for code smell detec-
tion?

The objective of this question is to investigate the attrib-
utes of these datasets, such as: the dataset name, size (num-
ber of systems in each dataset, the size of each system), type 
(commercial, student, open source), availability of the data-
sets (available online or not), the language of the selected 
systems, the inputs of the datasets, the tools used to obtain 
the values of dataset inputs, and an analysis of the available 
datasets. Researchers can use the outcomes of this question 
to build their datasets in a good way.

RQ5: What are the most commonly used machine learn-
ing tools in the context of bad smell detection?

Many tools are used to implement machine learning algo-
rithms. To answer this question, we investigate the tools that 
are used to implement machine learning algorithms and 
explain why they have been selected. The findings of this 
question can be useful to identify the most used tool; thus, 
researchers can select the most suitable tool for their needs.

3.2 � Search strategy

This involves three phases: search terms, online databases, 
and the search process. These are described in the following 
subsections.

3.2.1 � Search strategy

The common strategies applied to construct the search terms 
are described in this subsection as follows:

1.	 Obtaining the main terms from the research questions.
2.	 Finding the alternate synonyms and spelling for the main 

terms.
3.	 Verifying the above steps by matching the keywords 

from any relevant research paper.
4.	 Managing the Boolean operator “OR” to link the alter-

native synonyms and spellings and “AND” to link the 
major terms and the Boolean operator.

The search terms are built based on population, interven-
tion, outcome, and experimental design.

•	 Population Code smells.
•	 Intervention The existing machine learning techniques 

for detecting code smells.

•	 Outcomes Improve software quality.
•	 Experimental Design Empirical studies, case studies, and 

experimental studies.

After applying the previous steps along with several tests 
results, the following complete search terms are employed 
in our research.

((((Code OR Bad) AND Smell*) OR Antipatterns OR 
Refactoring) AND (Detect* OR Predict* OR Estimat* OR 
Forecast*) AND ((“Machine learning” AND (Model OR 
Technique OR Algorithm OR Method OR approach)) OR 
“artificial intelligence” OR “Ensemble learning”)).

3.2.2 � Research Resources

Five online databases are used to find relevant conference 
and journal papers using our defined search terms. Table 1 
presents these online databases. These databases were 
selected as they are the popular venues for publishing papers 
on machine learning and bad smell detection studies. Other 
researchers have also used these databases in their SLR stud-
ies [3, 63–65].

The search terms are modified to be compatible with each 
online database since each has its own search engine syntax. 
Furthermore, the grammars for searching differ from one to 
another. The start date of the searching process was open 
until December 2018.

In order to collect relevant material avoiding bias, a broad 
range of research databases are considered which includes 
all journal papers and conference papers.

3.2.3 � Search Process

In general, the SLR process involves a comprehensive search 
of all the studies that fit the selection criteria. The search 
process comprises the following two phases:

•	 Phase 1 The five online databases are searched separately 
using the constructed search string. The identified studies 
are then collected to establish a set of candidate studies. 
Table 2 presents the results of this phase.

Table 1   Online databases

Number Name URL

1 IEEE Xplore http://ieeex​plore​.ieee.org
2 Springer Link http://link.sprin​ger.com
3 Science Direct http://www.scien​cedir​ect.com
4 Scopus https​://www.scopu​s.com
5 ACM Digital Library http://dl.acm.org

http://ieeexplore.ieee.org
http://springerlink.bibliotecabuap.elogim.com
http://www.sciencedirect.com
https://www.scopus.com
http://dl.acm.org
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•	 Phase 2 For each relevant study, the reference lists are 
scanned to find other relevant studies to be included into 
our candidate list.

It is expected that many references will be collected dur-
ing the whole SLR process. EndNote is used to keep a record 
of all the references. Consequently, 1429 relevant studies 
are retrieved.

3.3 � Study Selection

The inclusion and exclusion criteria are defined in this sub-
section. A total of 1429 candidate studies are retrieved as 
described in Table 2 and Fig. 3. Most of them do not pro-
vide valuable information to fit the defined research ques-
tions. Therefore, more filtering is recommended in order 
to identify relevant studies. The study selection process is 
illustrated in Fig. 3. The selection process is performed by 
one researcher, and another two researchers verify the selec-
tion process at random. The selection process is carried out 
in two phases:

•	 Initial Selection Studies found during the initial search 
are assessed for relevance. This is done by analyzing the 
title and abstract as recommended by [66] and by apply-
ing the inclusion and exclusion criteria (defined below) to 
identify the relevant studies, which provide information 
to answer the research questions.

•	 Final Selection Studies found in the initial selection 
underwent further analysis (i.e., reading full text), and 
the quality assessment criteria were applied. This is done 
so that no important information or data with respect to 
the research question are missed. These studies will be 
eventually used for data extraction.

3.3.1 � Inclusion Criteria

For a paper to be included in the SLR, it needs to meet vari-
ous inclusion criteria.

•	 Studies that propose and discuss the use of machine 
learning techniques to detect code smells.

•	 Studies that motivate and describe the benefits of using 
machine learning techniques to detect code smells.

•	 Studies that provide an empirical basis for their find-
ings.

•	 In the case of duplicate studies, only the most complete 
and recent will be selected.

•	 Papers which have been published in a journal or in 
conference proceedings.

3.3.2 � Exclusion Criteria

Several exclusion criteria were established to make certain 
studies ineligible for inclusion in the SLR.

•	 Studies that are not applicable to the research ques-
tions.

•	 Studies that do not use or propose machine learning tech-
niques to detect code smells.

•	 Studies that are not written in the English language.
•	 Publications that do not have an empirical analysis or 

findings from applying machine learning models to 
detect code smells.

As a result, 56 relevant studies were obtained, as 
described in Table 2. Next, we scanned the references in 
these relevant studies, but we did not find any additional 
relevant studies.

3.4 � Study Quality Assessments

After applying the selection criteria, we define the quality 
assessment criteria for the selected papers according to the 
objectives of this research. These quality assessments are 
used to weight the selected studies. In this subsection, we list 
the quality assessment questions used for quantitative assess-
ment of the quality of the selected papers where Yes = 1, 
No = 0, and partly = 0.5. The quality assessment questions 
are listed in Table 3. The final score is computed by sum-
ming the values assigned to each question, where the higher 
the score, the higher the quality of the study. In our research, 
we selected only those papers with a quality score greater 
than 4.5. We used the same threshold (50%) that was used in 
[67]. Two researchers conducted these quality assessments 
of the selected studies separately. In the case of disagree-
ment between the researchers, it was discussed and resolved. 
Table 4 shows the quality scores of the selected studies. 
Seventeen studies were identified as the final papers for the 
data extraction process. These 17 studies are described in 
Table 5.

Table 2   Number of collected studies

Name #Collected studies Selection 
criteria 
results

IEEE Xplore 147 20
Springer Link 247 5
Science Direct 166 5
Scopus 169 20
ACM Digital Library 700 6
Total 1429 56
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Fig. 3   Selection process phase

Table 3   Quality assessment 
questions

Q# Quality questions Yes No Partly

Q1 Are the research objectives clearly stated and well motivated?
Q2 Is the experiment design clearly defined?
Q3 Are the performance measures used to measure the machine learning 

models clearly explained?
Q4 Is the dataset size sufficiently stated?
Q5 Are the detected code smells clearly defined?
Q6 Are the machine learning models employed sufficiently defined?
Q7 Are the independent variables clearly defined?
Q8 Are the findings of the study sufficiently defined well motivated?
Q9 Does the study discuss threats to validity or limitations?
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3.5 � Data Extraction

The selected papers are used to gather data that address our 
research questions. In order to make this process easier, 
cards are created with the form described in Table 6. This 
form is refined by pilot data extraction with many of the 
selected papers. To make the process of data synthesis as 
easy as possible, we group the items based on the association 
between the research questions, as shown in Table 6.

Table 7 demonstrates that the data extracted to address 
RQ3, RQ4, and RQ5 are associated with the experiments 
conducted in the chosen papers. Generally, in the software 
engineering field, the word experiment has diverse mean-
ings. Consequently, to avoid confusion, we explicitly define 
the word “experiment” as a process in which an algorithm 
or a model is assessed with suitable performance metrics 
depending on a specific dataset.

The data extraction cards were employed to obtain data 
from the chosen papers. Three researchers undertook this 
process. One extracted the data and then inserted these data 
into the cards, while the others examined the collected data. 
If there was disagreement between the researchers about the 
results, a discussion was conducted to resolve the conflict. 
Finally, the examined extracted data are documented in a 
file, to be utilized in the next process.

As shown in Table 7, all our research questions were 
answered by the primary studies except five studies (S5, 
S11, S14, S16, and S17) which did not address RQ5 
because they did not mention the tools used to implement 
the machine learning techniques. To facilitate the tracking 
of the extracted data, we marked every paper with an ID, 
Table 7 presents more detail.

3.6 � Data Synthesis

Data synthesis aims at aggregating the extracted data from 
the selected papers to answer our research questions. In this 
study, the data extracted comprise qualitative data (e.g., a 
list of the employed machine learning techniques, the size 
of each dataset, and a list of the detected code smells) and 
quantitative data (e.g., the values of the prediction accuracy). 

Table 4   Quality scores of 
selected studies

Study Reference Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Score

S1 [68] 1 1 1 1 1 0.5 1 1 1 8.5
S2 [69] 1 1 0.5 1 1 0.5 1 0.5 0 6.5
S3 [70] 1 1 1 0.5 1 1 0.5 0.5 0.5 7
S4 [7] 1 1 1 1 1 1 0.5 1 1 8.5
S5 [52] 1 1 0.5 0.5 0 1 1 0.5 0 5.5
S6 [71] 1 1 1 0.5 1 1 1 0.5 0 7
S7 [72] 1 1 1 0.5 1 1 1 0.5 0 7
S8 [73] 1 1 1 1 1 1 1 0.5 1 8.5
S9 [74] 1 1 1 1 1 1 0.5 0.5 0.5 7.5
S10 [32] 1 1 1 1 1 1 0.5 0 0 6.5
S11 [75] 1 1 0.5 0 1 0.5 0 0.5 0.5 5
S12 [6] 1 1 1 0.5 1 0.5 0.5 0..5 0 6
S13 [76] 1 1 0.5 0.5 1 0.5 0.5 0.5 0 5.5
S14 [77] 1 1 1 0.5 1 1 0.5 0.5 0.5 7
S15 [78] 1 1 0.5 0.5 1 1 1 0.5 0.5 7
S16 [79] 1 0.5 1 0.5 1 1 0.5 0.5 0.5 6.5
S17 [80] 1 1 0.5 0.5 0 1 1 0.5 0 5.5

Table 5   Selected primary studies

# Type Online database Year Reference

S1 Journal Scopus& Science Direct 2018 [68]
S2 Journal Scopus 2017 [69]
S3 Conference Scopus & IEEE 2017 [70]
S4 Journal Springer Link 2016 [7]
S5 Conference Scopus & IEEE& Science 

Direct
2016 [52]

S6 Conference Scopus & IEEE 2015 [71]
S7 Conference Scopus & IEEE 2013 [72]
S8 Conference IEEE & ACM& Digital Library 2012 [73]
S9 Journal Science Direct 2011 [74]
S10 Conference Scopus & IEEE 2011 [32]
S11 Conference Scopus & IEEE 2010 [75]
S12 Conference Scopus & IEEE 2009 [6]
S13 Conference Scopus 2005 [76]
S14 Journal Springer Link 2015 [77]
S15 Conference ACM 2012 [78]
S16 Conference IEEE 2010 [79]
S17 Conference IEEE 2009 [80]
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As only 17 papers were selected, we employed canonical 
meta-analysis [31] as the synthesis methodology because of 
its solid theoretical background. Employing standard meta-
analysis with this number of studies would be inappropriate 
[31].

To synthesize the extracted data relating to various 
research questions, we set the narrative synthesis strategy 
for RQ1, RQ2, and RQ5. We tabulated the data in a style 
compatible with the questions.

4 � Results

In this section, we present the main results of this review. 
First, a summary of the selected papers is presented. Then, 
we document the main findings of our work based on the 
research questions.

Table 6   Data extraction card

Name of extractor
Date of extraction
Data checker
Paper ID
Title of paper
Authors name
Publication year
Source
Reference type (Journal/Conference)
Study type (experiment, case study) publisher
RQ1: Which machine learning techniques have been applied to detect code smells?
 Machine learning techniques applied to detect code smells.
RQ2: Which code smells are most commonly detected using machine learning techniques?
 The selected code smells in the field of using machine learning techniques to detect code smells, and why they have selected these smells?
RQ3: What are the accuracy measures of the machine learning techniques that have been used for code smell detection?
 Metrics employed to estimate the detection performance, detection accuracy values and validation mechanism.
RQ4: What datasets have been used for code smell detection?
 Datasets used in the experiments. Dataset name, size, type (commercial, student, open source), availability, language, metrics used, and tools 

used to compute metric value.
RQ5: What are the most commonly used machine learning tools used in the context of bad smell detection?
 Tools used to implement machine learning techniques to detect code smells.

Table 7   Addressed questions ID Authors The addressed research 
questions

S1 D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. 
De Lucia.

1 2 3 4 5

S2 D. K. Kim. 1 2 3 4 5
S3 A. Kaur, S. Jain, and S. Goel. 1 2 3 4 5
S4 F.A. Fontana, M. V. Mantyla, M. Zanoni, and A. Marino. 1 2 3 4 5
S5 Tarwani, Sandhya, and Anuradha Chug. 1 2 3 4 –
S6 L. Amorim, E. Costa, N. Antunes, B.Fonseca, and M. Ribeiro. 1 2 3 4 5
S7 F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mantyla. 1 2 3 4 5
S8 A. Maiga, N. Ali, N. Bhattacharya, A. Sabane. 1 2 3 4 5
S9 F. Khomh, S. Vaucher, Y.-G. Gueheneuc, and H. Sahraoui. 1 2 3 4 5
S10 N. Maneerat and P. Muenchaisri. 1 2 3 4 5
S11 S. Bryton, F. B. e Abreu, and M. Monteiro. 1 2 3 4 –
S12 F. Khomh, S. Vaucher, Y.-G. Gueheneuc, and H. Sahraoui. 1 2 3 4 5
S13 J. Kreimer. 1 2 3 4 5
S14 Yang et al. 1 2 3 4 –
S15 Wang et al. 1 2 3 4 5
S16 Hassaine et al. 1 2 3 4 –
S17 Vaucher et al. 1 2 3 4 –
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4.1 � Overview of Selected Studies

The issue of detecting code smells [81] has drawn the atten-
tion of many researchers over recent years [26]. The research 
literature can be categorized into two: empirical studies and 
prediction models. Empirical studies conduct research with 
the intention of knowing code smell growth [82–85], their 
perception [86–88], and their influence on the quality attrib-
utes of source code [89–91]. Studies on prediction models 
depend on the analysis of structural information of the code 
itself [14, 15, 92]. The recent studies focus on the analysis 
of other sources of information [93, 94] or the utilization 
of software engineering techniques which are search based 
[21, 36]. In the context of our research, we concentrate on 
machine learning techniques for detecting bad smells. There-
fore, we review studies which utilize machine learning tech-
niques to predict bad smells.

In our study, we identified 17 primary studies (PSs), listed 
in Table 4, that relate to bad smell detection using machine 
learning techniques, published between 2005 and 2018.

As shown in Table 8, five of the PSs were published 
as journal articles, and 12 were published in conference 
proceedings. The distribution of the publication venues is 
presented in Tables 4 and 8. All the selected studies are 
experiment papers. The number of PSs published per year is 
shown in Fig. 4. It can be observed that the number of stud-
ies published between 2009 and 2012, and between 2015 and 
2017 remained stable with two studies published per year, 

whereas in 2005, 2013, and 2018, one study was published 
each year. Furthermore, there is a slight increase in the num-
ber of published studies in this area in recent years, which 
indicates that research attention in this area is growing.

4.2 � Types of machine learning techniques used 
(RQ1)

Eighteen types of machine learning algorithms were 
employed to detect code smells. Table 9 presents our find-
ings. We found that 12 of our PSs applied a single machine 
learning technique per code smell detection, while the 
remaining 5 studies applied more than one machine learn-
ing technique. The table presents the machine learning tech-
niques used in descending order from the highest frequency 
to the lowest. Study S10 used seven machine learning tech-
niques which was the highest.

We observe that some of the applied machine learning 
techniques are related to the same family, for example, J48 
and Decision Trees C5.0 are from the same decision tree 
family, as shown in Table 10; the family of the decision 
tree is the most commonly applied to detect code smells. In 
addition, we found that the authors of studies S1, S4, and 
S7 used the same machine learning techniques. The authors 
of S4 and S7 are the same, whereas the authors of study S1 
replicated study S4.

The process of identifying the machine learning methods 
that were used to detect code smells is based on the general 
name of the machine learning technique. For example, in 
the studies of [7, 68], they used SVM and sequential mini-
mal optimization (SMO) with different kernels and they 
also used boosting techniques for all the used techniques, as 
shown in Table 11. We identify only the general name of the 
techniques, so we identify six machine learning techniques 

Table 8   Distribution of 
publication venues

Publication type # of studies

Conference 12
Journal 5

Fig. 4   Number of PSs published 
per year
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which are SVM, J48, Naive Bayes, Random Forest, SMO, 
and JRIP.

SVM was the most commonly used, being applied in 6 of 
the 17 studies (35.29%) and the second most commonly used 
machine learning techniques are J48, Naive Bayes, Bayes-
ian Belief Networks, and Random Forest, being applied in 
4 of the 17 studies (30.77%). Table 9 shows the detailed 
information.

We can observe that SVM, J48, Naive Bayes, Random 
Forest, SMO, JRIP received the most attention in 2013, 
2016, and 2018 while in 2017, only Neural Networks 
received attention. We further observe that the authors of the 
primary studies applied the most commonly used machine 
learning techniques.

In general, the machine learning technique is catego-
rized into two types: supervised and unsupervised. Figure 5 
shows this taxonomy [95, 96]. According to our findings, 
we observe that all the applied techniques in the field of 
code smell detection were supervised machine learning tech-
niques. The findings were expected since the application of 
supervised techniques is the most often applied in studies 
[97, 98].

4.3 � Detected Smells (RQ2)

Twenty-eight types of code smells were used in the PSs. 
Table 12 presents our findings. We found that 12 of the PSs 
detected more than one code smell, while the other five stud-
ies detected one code smell. The table lists the used code 
smells in descending order from the highest frequency to 
the lowest.

We found that the authors of studies S1, S3, S4, and S7 
not only used the same code smells, they also used the same 
number of code smells. The authors of S4 and S7 are the 
same, whereas the authors of study S1 replicated study S4. 
S5 used the highest number of code smells, using 11 code 
smells.

We observe that the God Class was the most used bad 
smell, being used in 13 studies (76.47%). The second most 
used bad smell was the Long Method which was used in nine 
studies (52.94%). The Feature Envy code smell was used in 
seven studies (41.17%), and the Data Class was used in five 
studies (29.41%). The remaining code smells were used in a 
smaller number of studies ranging from one to three.

4.4 � The Accuracy of Machine Learning Techniques 
(RQ3)

To answer this question, we explore the evaluation metrics 
used in the PSs to evaluate the performance of the machine 
learning techniques used in code smell detection. Then, we 
compare the machine learning techniques that were used in 
code smell detection to identify the techniques that achieved 
the highest detection performance.

Several evaluation metrics were used by the PSs to evalu-
ate the performance of the machine learning techniques used 
in code smell detection. These evaluation metrics are pre-
sented in Table 13 in descending order according to their 
frequency in the PSs. We notice that the recall metric was 
the most frequently used metric, being used in 9 of the 17 

Table 10   Machine learning family

Technique family Techniques

Artificial Neural Network RBFN, MLP
Decision Tree J48, Decision trees C5.0, Deci-

sion tree forest (DFT), Random 
Forest

Support Vector Machines SVM, SMO
Instant-Based Learning IBL, IBK

Table 11   The ML techniques used

Machine learning techniques used in the selected studies Study

B-J48 Pruned, B-J48 Unpruned, B-J48 Reduce Error Prun-
ing, B-JRip, Random Forest,

B-Random Forest, Naive Bayes, B-Naive Bayes, B-SMO 
RBF Kernel, B-SMO Poly Kernel,

B-LibSVM C-SVC Poly Kernel, B-LibSVM C-SVC Linear 
Kernel, B-LibSVM C-SVC Radial Kernel,

B-LibSVM C-SVC Sigmoid Kernel, J48 Pruned, J48 
Unpruned, J48 Reduce Error Pruning, JRip, SMO Polyno-
mial, SMO RBF, LibSVM C-SVC Poly Kernel, LibSVM 
C-SVC Linear Kernel, LibSVM C-SVC Radial Kernel, 
LibSVM C-SVC Sigmoid Kernel.

S1, S4

B-LibSVM ν-SVC Linear Kernel, B-LibSVM ν-SVC Poly 
Kernel, B-LibSVM ν-SVC Radial Kernel, B-LibSVM 
ν-SVC Sigmoid Kernel, LibSVM ν-SVC Linear Kernel, 
LibSVM ν-SVC Polynomial Kernel, LibSVM ν-SVC 
Radial Kernel, LibSVM ν-SVC Sigmoid Kernel.

S4

Fig. 5   Machine learning taxonomy [95, 96]
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studies, followed by the accuracy metric, which was used 
in 8 of the 17 studies. Different configurations were used 
in the PSs to validate the learning mechanism. We present 
these mechanisms in Table 14. We observe that, 7 studies 
(S1, S4, S5, S7, S10, S15 and S16) adapted the K-fold cross-
validation method. This method guarantees that each fold 
includes the same proportions of the smelly and non-smelly 
classes. Our findings show that only 2 studies (S1 and S4) 
used the grid-search algorithm.

The strategy which was followed to answer this question 
is presented in Tables 15 and 16. The main attributes of our 
evaluation are:

•	 The machine learning algorithm used
•	 The considered code smells
•	 The study source that mentions the evaluation
•	 A lower or a higher prediction (the sign of “+” means 

higher, while “−” is lower)

For example, in S4 [7], the J48 algorithm performs 
better than naive Bayes to detect the code smell of Data 
Class, Long method, and Feature Envy. However, this study 
found that the naive Bayes algorithm is better than the J48 
algorithm in terms of predicting the God Class code smell. 
Therefore, the algorithm in the row of the table is better 
than the algorithm in the column if the sign is “+” and the 
opposite in case the sign is “−.”

For more clarification, Table  17 compares the used 
machine learning techniques per the considered code smell. 
The best machine learning algorithm for detecting the Data 
Class smell is the J48 algorithm, followed by JRip. For the 
Long Method smell, the JRip algorithm is the best followed 
by J48. Random Forest is the best at detecting the Feature 
Envy code smell, whereas the Naive Bayes algorithm is the 
best at detecting God Class. In conclusion, the standalone 
machine learning algorithm that consistently exceeds the 
other standalone machine learning algorithms was the J48 
algorithm, whereas the worst algorithm was VFI. Table 17 
sorts these algorithms for each code smell based on the 
reported accuracy.

The remainder of the studies applied one standalone 
machine learning technique to detect the type of code smell. 
Table 18 depicts the evaluation conducted by these studies. 
In study S3 [70], the authors applied SVM to detect God 
Class, Data Class, Long Method, and Feature Envy. The 
results of this study show that the SVM achieved the highest 
accuracy in detecting the God Class code smell. Addition-
ally, S8 [73] applied SVM to detect four types of code smells 
namely: Spaghetti Code, Functional Decomposition, Swiss 
Army Knife. Their results support S3 [70] in the case of 
detecting God Class. Consequently, the SVM algorithm has 
a good estimation of the God Class code smell. In S13 [76], 
the Decision Tree Forest is more accurate for detecting God 
Class than the Long Method.

Some studies used ensemble techniques. Therefore, we 
need to compare the performance of these techniques to find 
the machine learning technique that performs better than the 
others. We follow the same strategy to compare the stan-
dalone machine learning techniques. Table 19 shows the 
studies which used the boosting techniques.

Three of the 17 selected studies used boosting techniques 
(S1 [68], S4 [7], S7 [72]). They applied the same algorithm 
and detected the same types of code smell, and there is also 
a high similarity in the datasets used, especially S1 [68], S4 
[7]. The authors in study S1 [68] replicated the experiment 
conducted in study S4 [7] and made some modifications to 
the datasets that were built in S4 [7].

Table 20 shows which strategy was applied in each of the 
studies. The main attributes of our evaluation are the name 
of the machine learning algorithm used, the detected code 
smell, the study source that mentioned the evaluation, and a 

Table 13   Performance evaluation methods

Validation Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 Frequency

Recall √ √ √ √ √ √ √ √ √ 9
Accuracy √ √ √ √ √ √ √ √ 8
Precision √ √ √ √ √ √ √ 7
F-measure √ √ √ √ 4
ROC Area √ √ √ 3
Specificity √ 1
Mean absolute error (MAE) √ 1
Root mean square error (RMSE) √ 1

Table 14   Validation of the learning mechanism

Validation mechanism Studies

k-fold cross-validation S1, S4, S5, S7, 
S10, S15, 
S16

Leave-one-out method S13
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lower or a higher detection (“+” indicates higher while “−” 
indicates lower).

Table 21 presents the code smell and which machine 
learning algorithm has performed better than the others in 
relation to detecting the code smell. Table 21 shows that the 
best machine learning algorithm to detect Data Class smell 
is the B-J48 pruned algorithm. The second most effective 
algorithm is the B-JRip, followed by the B-Random For-
est algorithm. The B-J48 unpruned algorithm was the best 
at detecting the Long Method smell, followed by B-JRip. 
The B-J48 algorithm and the B-JRip algorithm were the two 

most effective in detecting all code smells except for God 
Class where B-Random Forest was the second most effective 
algorithm. We conclude that the family of J48 techniques 
and B-Random Forest are the top techniques for all types 
of code smells, while the SVM techniques are the worst. 
Furthermore, we note that, in some cases, using the boost-
ing technique on the models does not always enhance their 
performance, and in fact, it could make the model worse. 
For instance, in S4 [7], using naive Bayes to predict the God 
Class code smell without using boosting techniques was the 
best algorithm but after applying boosting techniques, its 
performance declined. This was also the case when using 
Random Forest with boosting techniques to detect God 
Class.

We observe that the highest performance results in all 
PSs obtained by B-J48 unpruned as it achieved 99.63% of 
F-Measure value when it was used to detect Long method 
code smell, followed by B-J48 pruned which achieved 
99.26% of F-Measure value when it was used to detect Data 
Class code smell.

4.5 � The Used Datasets (RQ4)

In this section, we analyze the datasets that were used for 
code smell detection and identify several attributes of these 
datasets, such as the dataset name, size, type (commercial, 
student, open source), availability, and language.

Table 22 presents general information on the datasets 
used in the 17 studies. Fourteen studies used open-source 
systems, while three studies (S10, S13, and S15) used indus-
trial systems. All studies used systems written in the Java 
except for S14, S15, they used systems written in C and C#, 
respectively. Most studies used software metrics as the inde-
pendent variables, as shown in Table 23, except for S14 they 
used textual metrics called string tokenization. Two studies 
of the 17 made their dataset available. Table 22 presents the 
number of systems used to build their datasets, the dataset 

Table 17   Suitable machine learning technique to detect a specific code smell

Code smell Suitable machine learning technique

Data Class J48, JRIP, Random Forest, Naive Bayes, SMO, SVM.
Long Method J48, JRIP, IBK, Naive Bayes, Random Forest, IBL, Binary Logistic Regression, SMO, SVM, VFI.
Feature Envy Random Forest, J48, IBK, Naive Bayes, JRIP,

IBL, SMO, SVM, Binary Logistic Regression, VFI.
God Class Naive Bayes, J48, Random Forest, JRIP, IBK, SMO, SVM, IBL, Binary Logistic Regression, VFI.
Long Parameter List Random Forest, IBK, Binary Logistic Regression, J48, IBL, Naive Bayes, VFI.
Middleman J48, IBK, IBL, Random Forest,

Binary Logistic Regression, Naive Bayes, VFI.
Message Chains IBL, IBK, Binary Logistic Regression,

Random Forest, Naive Bayes, J48, VFI.
Lazy class J48, Random Forest, IBK, Binary Logistic Regression, IBL, Naive Bayes, VFI.
Switch Statement J48, IBK, Random Forest, Binary Logistic Regression, IBL, Naive Bayes, VFI.

Table 18   Standalone machine learning accuracy comparison

Model Suitable for

SVM (S3, God Class, Data Class, 
Long Method, Feature Envy),

(S8, God Class, Spaghetti Code, 
Swiss Army Knife,

Functional Decomposition)
Decision Tree Forest (S13, God Class, Long Method)
Binary Logistic Regression (S11, Long Method)
Bayesian Belief Networks (S11, God Class), (S9, God 

Class, Swiss Army Knife,
Functional Decomposition, 

Spaghetti Code),
(S15, Duplicated Code), (S17, 

God Class)
Natural language processing (S14, Duplicated Code)

Table 19   Application of boosting techniques

Techniques Studies

Standalone machine learning S1, S2, S3, S4, S5, S6, S7, S8, S9, 
S10, S11, S12, S13, S14, S15, S16, 
S17

Boosting S1, S4, S7
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input type, dataset type, language, and the number of used 
metrics.

Table  24 shows the size of each dataset in terms of 
three attributes: the number of used systems, the number 
of classes, and the number of lines of code. We note that 
only three studies used more than 20 systems. Therefore, 
we can report these as reliable datasets. Some of the studies 
did not mention the size (number of classes and the num-
ber of lines of code) of their datasets such as (S3, S6) but 
they mentioned the number of systems. In S3, there are 20 
systems, and in S7, there are 76 systems. The authors of 
S10 did not mention the attributes (the number of used sys-
tems, the number of classes and the number lines of code) 
as they only collected 7 datasets from the previous literature. 
We observe that 14 PSs used open-source systems. There-
fore, they are freely available and can be used to replicate 
the research. Furthermore, other researchers who utilized 
the same systems allow comparison. Additionally, previ-
ous studies reported that commercial systems may provide 
higher code quality than open-source systems [99].

Table 25 shows the four most used systems used in the 17 
PSs, while Table 23 presents the software metrics used as 
independent variables in the datasets. We can see that only 

eight of the seventeen studies mentioned the software met-
rics. These metrics include the metrics proposed by Chid-
amber and Kemerer in 19911 [100, 101], the MOOD metrics 
proposed by Abreu and Carapua in 19942 [102–104], and the 
QMOOD metrics proposed by Bansiya and Davis in 20023 
[105–107]. We observe that the C&K software metrics were 
used in five of the eight studies that mentioned software 
metrics as C&K metrics cover different object-oriented 
properties, while the QMOOD software metrics were used 
in two studies. The MOOD software metrics were used in 
one study. To obtain the values of these metrics from the 
systems, several tools were used. These tools are shown in 
Table 26. From Table 26, we observe that the tools POM and 
design features and metrics for Java (DFMC4 J) were used in 
three of the seventeen studies. The DFMC4J tool was used 
in two studies S4 and S7 which have the same authors, and 
it was also used in S1 which replicated the experiment in S4.

Table 21   Suitable machine 
learning algorithm to detect a 
specific Code smell

Code smell Suitable machine learning algorithm

Data Class B-J48, B-JRIP, B-Random Forest, B-SMO, B-SVM, B-Naive Bayes.
Long Method B-J48, B-JRIP, B-Random Forest, B-Naive Bayes, B-SMO, B-SVM.
Feature Envy B-J48, B-JRIP, B-Random Forest, B-Naive Bayes, B-SMO, B-SVM.
God Class B-J48, B-JRIP, B-Random Forest, B-SMO, B-SVM, B-Naive Bayes.

Table 22   A summary of 
previous studies

Study Dataset # Systems Dataset inputs Dataset type Language #Used metrics

S1 – 74 Object-oriented metrics Open source Java 36
S2 – 20 Object-oriented metrics Open source Java 8
S3 – 2 Object-oriented metrics Open source Java –
S4 Available 74 Object-oriented metrics Open source Java 82
S5 – 4 Object-oriented metrics Open source Java 17
S6 – 4 Object-oriented metrics Open source Java 62
S7 – 76 Object-oriented metrics Open source Java 82
S8 Available 3 Object-oriented metrics Open source Java 50
S9 – 2 Goal Question Metric (GQM) Open source Java –
S10 – - Object-oriented metrics Industrial Java 27
S11 – 1 Expert’s knowledge &

Object-oriented metrics
Open source Java –

S12 – 2 Rule based Open source Java –
S13 – 2 Object-oriented metrics Industrial Java 9
S14 – 4 Textual Open source C –
S15 – 2 Object-oriented metrics Industrial C# 21
S16 – 2 Goal Question Metric (GQM) Open source Java –
S17 – 2 Object-oriented metrics Open source Java –

1  C&K metrics (DIT, NOC, CBO, RFC, WMC, LCOM).
2  MOOD metrics (MHF, AHF, MIF, AIF, POF, COF).
3  QMOOD metrics (DSC, NOH, ANA, DAM, DCC, CAM, MOA, 
MFA, NOP, NOM, CIS).
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Regarding the dependent variables in each dataset, 12 
studies used binary classification (“0” or “1”) or (“smelly” 
or “non-smelly”), while only two studies S1 and S16 used 
multiclassification.

4.6 � The Tools Used to Implement the Machine 
leArning Algorithms (RQ5)

In the PS, we found that two kinds of tools were used to 
implement the machine learning algorithms to detect code 
smells: WEKA and Tensor Flow implemented in Python. 
Table 27 shows these tools which were used in the PSs to 

Table 23   Software metrics used in previous studies

Authors Software metrics

Kim [69] LOC, CC, C&K metrics
Fontana et al. [7] C&K metrics except (LCOM), LOC, LOCNAMM, NOPK, NOCS, NOM, NOMNAMM, NOA, CYCLO, WMCNAMM, 

AMW, AMWNAMM, MAXNESTING, CLNAMM, NOP, NOAV, ATLD, NOLV, FANOUT, FANIN, ATFD, FDP, 
CFNAMM, CINT, MaMCL, MeMCL, NMCS, CC, CM, NOAM, NOPA (NOAP), LAA, NOI, NMO, NODM, NOPM, 
NOPRM, NOPLM, NONAM, NOSM, NIM, NOII, NODA, NOPVA, NOPRA, NOFA, NONCM, NOFM, NOFNSM, 
NOFSM, NONFNABM, NOFSA, NOFNSA, NONFNSA, NOSA, NONFSA, NONFNSA, NOSA, NONFSA, NOABM, 
NOCM, NONFNSM, NONFSM

Tarwani et al. [52] LOC, C&K metrics, CC, Cyclomatic complexity (Ocavg), Dependencies (Dcy &Dcy), Javadoc function (jf), Javadoc Line 
of code (jLOC), Javadoc methods (jm), MHF, AHF

Amorim et al. [71] C&K metrics, QMOOD metrics except (CAM, ANA, CIS), ACAIC, ACMIC, AID, AMC, CA, CAM, CE, CLD, COHE-
SIONATTRIBUTES, CONNEC-

TIVITY, DCAEC, DCMEC, DIT 1, IC, ICHCLASS, IR, LCOM1, LCOM2, LCOM3, LCOM5, LOC, LOC 1, MCCABE, 
MLOCSUM, NAD, NADEXTENDED, NCM, NMA, NMD, NMDEXTENDED, NMI, NMO, NOA, NOC 1, NOD, 
NOF, NOPARAM, NOPM, NOTC, NOTI, NPM, RFC NEW, SIX, VGSUM, WMC NEW, WMC1, CBM

Maiga et al. [73] C&K metrics, QMOOD metrics, ACAIC, ACMIC, AID, CBOin, CBOout, CLD, DCAEC, DCMEC, ICHClass, IR, 
LCOM2, LCOM5, LOC, McCabe, NAD, NADExtended, NCM, NMA, NMD, NMDExtended, NMI, NMO, NOA, 
NOD, NOPM, NOParam, NOTI, NPrM, SIX, USELESS, WMC1, cohesionAttributes, connectivity

Maneerat et al. [32] MOOD metrics, NA, NC, NM, NO, NP, C PARAM, RFC, WAC, WMA, D APPEAR, DIT, NOC, NAI, NOI, ACT, 
COMP, NS, CBC, ABSTR R, ASSOC R, DEPEND R

Kreimer [76] Number of statements of a method, NOLV, NOP, CYCLO, Number of instance variables of a class, Median of the number 
of statements of all methods of a class, Number of internal connected components, Median of complexities of all meth-
ods of a class, Number of external connected components

Wang et al. [78] “Whether it is a Local Clone, Method Name Similarity, Masked File Name Similarity, Sum of Parameter Similarities, Dif-
ference on Only Post

x Number, Maximal Parameter Similarity, Fine Name Similarity, LOC, Number of Library Invocations Number of Other
Invocations, Number of Local Invocations, Number of Invocations, Number of Library Invocations, Number of Invoca-

tions, Number of Other Invocations, Number of Field Accesses, Number of Local Invocations, Number of Recent 
Changes, Number of Changes, Existence Time, File Existence Time, Number of Recent File Changes, Number of File 
Changes”

Table 24   Dataset size

#Systems #Classes #LOC Study

74 51,826 6,785,568 S1, S4
2 5,594,000 S15
20 53,000 3,000,000 S2
4 13,700 4,070,000 S6
4 1089 S5
3 3192 113,017 S8
2 777 271,000 S9, S12, S16
2 688 96,889 S13
1 193 20 S11

Table 25   Used systems System S1 S2 S3 S4 S6 S7 S8 S9 S12 S13 S14 S15 S16 S17 Frequency

Xercesv √ √ √ √ √ √ √ √ √ 9
ArgoUML √ √ √ √ √ √ √ 7
WEKA √ √ √ √ 4
junit-4.10 √ √ √ √ 4
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implement machine learning algorithms. Eleven of the 17 
studies used Weka, and only one study S2 utilized Tensor 
Flow written in Python. Five studies S5, S11, S14, S16, and 
S17 did not provide details on the tool that was used.

5 � Discussion

In this section, we discuss the main results of this study 
based on the research questions. Furthermore, we report 
some recommendations that can be used as a start point for 
the future research.

5.1 � Types of Machine Learning Techniques Used 
(RQ1)

Our findings show that 28 of the most commonly used 
machine learning techniques were used to detect code 
smells. The reasons behind using these techniques in many 
studies are: the high performance these techniques provide 
and the availability of these techniques in tools. Only 5 out 
of 17 PSs used more than one machine learning algorithms; 
this reveals a lack in the application of machine learning to 
address the issue of smells in the software. Therefore, more 
studies are needed in this field. Future studies may need to 
use more than one machine learning technique to explore 

the capability of each technique to detect code smells on the 
same dataset.

Ensemble learning is proposed to improve the perfor-
mance of weak classifiers by combining several single 
classifiers using different methods. However, most of the 
reviewed studies applied a single classifier whereas three 
studies out of the seventeen used boosting-based ensemble 
techniques (homogenous ensemble techniques). Ensem-
ble techniques were found to outperform single learning 
techniques in predicting software defects [108]; thus, more 
studies that use ensemble techniques to detect code smells 
should be conducted.

5.2 � Detected Smells (RQ2)

Twenty-eight types of code smells were detected in the 
PSs. God Class, Long Method, Feature Envy, and Data 
Class were the most detected smells; they also got more 
attention in the recent studies, as shown in Table 12. The 
possible reasons behind selecting these code smells are:

•	 They cover different design problems.
•	 Their critical influence on software quality.
•	 They are the most frequently occurring code smells.
•	 These code smells are well known and easy to under-

stand.
•	 The availability of these code smells in the automated 

tools.

In terms of using machine learning to detect code 
smells, we observe that most of the PSs used a small 
number of code smells. Furthermore, not all code smells 
proposed by Fowler [33] are covered by the previous stud-
ies so some of these code smells that might have an effect 
on the software quality have not been studied yet; hence, 
more studies can be conducted to study these code smells.

Table 26   Tools used to compute 
the metrics

Tool S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 Frequency

POM √ √ √ 3
Design Features and 

Metrics for Java 
(DFMC4J)

√ √ √ 3

Eclipse Plugin √ √ 2
SciTools Understand √ 1
Analyst 4J √ 1
IntelliJ IDEA √ 1
CKJM √ 1
Design Program 

Dependence Graph 
(DPDG)

√ 1

Table 27   Tools used to implement experiments

Tool Studies #Studies

Weka S1, S3, S4, S6, S7, S8, S9, S10, 
S12, S13, S15

11

Tensor flow S2 1
Not mentioned S5, S11, S14, S16, S17 5
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5.3 � The Accuracy of Machine Learning Techniques 
(RQ3)

We observe that the recall metric was the most frequently 
used metric followed by the accuracy and precision met-
rics. However, some researchers (for instance the authors of 
[7]) claim that the metrics accuracy, F-measure, and ROC 
Area show several points of views of the performances of 
predictive models and showed that using only one of these 
measures can show the whole performance measure; there-
fore, these metrics should also be used to evaluate the per-
formance of applied machine learning techniques for code 
smells detection; however, recall and precision should be 
used together to adequately assess the performance of a 
model. In addition, they reported that it is not recommended 
to use accuracy metric alone especially in the case of having 
unbalanced datasets (negative and positive classes are unbal-
anced). We observed that most of the used performance met-
rics are important measures for the classification models: 
recall, accuracy, precision, F1-score, AUC, and specificity 
[109–111]. Only two metrics used for a regression problem 
which are RMSE and MAE measures. These two metrics 
were proposed to use for regression models [112, 113]. 
Furthermore, only two studies applied the grid-search algo-
rithm. This algorithm used to search and find the optimal 
parameters of machine learning algorithms that yield the 
highest performance. Therefore, we believe that more stud-
ies are needed to address this issue to generate more efficient 
code smell detection models.

5.4 � The Used Datasets (RQ4)

Based on our findings, the Java language got more atten-
tion from the previous studies. Most of the PSs tested their 
approaches using systems written in java. For this reason, 
more studies are needed to investigate the capabilities of 
machine learning techniques to detect code smells in other 
programming languages such as C#, C ++. Moreover, we 
found that, five studies (S1, S2, S4, S7 and S6) build their 
datasets from different systems, while the other studies build 
their datasets based on one system. Building datasets from 
different systems is the best way to avoid the issue of bias. In 
addition, most of PSs used software metrics as the independ-
ent variables, while recent studies [114, 115] have reported 
that software metrics are insufficient to optimize software 
quality. To address this issue, the implementation of other 
resources should be used for identifying the characteristic of 
smelly code such as dynamic, historical, and textual aspects. 
In addition, the manual validation process of the dataset is 
an important step to have an effective dataset.

Feature selection is an essential preprocessing step in 
machine learning that aims to select a small subset of the 
relevant features from the original dataset by eliminating 

redundant, irrelevant or noisy features in order to achieve 
better learning performance, i.e., enhances accuracy, lower 
computational cost and time [116]. Our findings show that 
only one study S1 used Gain Ratio Feature Evaluation tech-
nique as feature selection techniques. Thus, more studies 
are needed to investigate the use feature selection in code 
smells detection. On the other hand, only two studies applied 
multiclassification. Therefore, future studies should consider 
multiclassification.

5.4.1 � Dataset Analysis

In this subsection, we analyze the available datasets that 
were used in S4 [7] and S8 [73]. The first dataset was built 
by Arcelli Fontana et al. [7] who collected systems from one 
of the massive curated benchmark datasets, called Quali-
tas Corpus [117], release 20120401r. 74 systems out of 111 
Java systems of the corpus were selected. Thirty-seven sys-
tems were ignored since they could not be compiled; conse-
quently, bad smell detection could not be achieved. In these 
74 software systems, there are 6,785,568 lines of code, 3420 
packages, 51,826 classes, and 404,316 methods.

The software metrics presented in Table 23 were used as 
independent variables in their machine learning approaches 
for detecting class and method level smells. At the class 
level, there were two smells: Data Class and God Class and 
at the method level, there were also two smells: Feature Envy 
and Long Method. At the method level, 82 software metrics 
were computed for each system, while at the class level, only 
61 software metrics were computed. The computed opera-
tion was done using a tool developed by the authors called 
“design features and metrics for Java (DFMC4J).”

Four datasets were built by the authors of S5, one for 
every smell, i.e., every dataset included code that has smelly 
and non-smelly parts. Table 28 shows the set of automatic 
detectors that were employed by the authors to detect each 
code smell to establish the dependent variable for the bad 
smell detection methods.

Generally, achieving 100% recall is unusual in this field, 
meaning that an automatic detection method might not 
recognize real bad smell instances even when combining 

Table 28   Bad smell detection tools

Detectors Code Smell

iPlasma Long Method, Data 
Class, Feature Envy, 
God Class

Marinescu Long Method
Fluid Tool Feature Envy, Data Class
Antipattern Scanner Data Class
PMD Long Method, God Class
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multiple detectors. A stratified random sampling of the 
methods/classes of the studied systems was utilized to 
enhance their confidence in validity of the dependent 
variable and address the false positives: this sampling 
performed 1,986 instances as shown in Table 29, the bal-
ance of the training set being 2/3 negative and 1/3 positive 
instances, where positive means the system is affected by a 
code smell, while negative means it is not affected. Later, 
a manual validation of these instances was conducted by 
three master students to check the detection results.

The authors made a normalization of the sampled data-
set: by removing the non-smelly and smelly elements and 
building four separate datasets using every kind of soft-
ware smell, containing 280 non-smelly and 140 smelly 
instances; hence, there were 420 instances in each dataset. 
The training set for the machine learning methods was 
represented by these four datasets.

The second dataset was built by Maiga et  al. [73, 
118] who analyzed three open-source systems that are 
freely available and have been utilized in several studies: 
Azureus v2.3.0.6, Xerces v2.7.0, and ArgoUML v0.19.8.

The software metrics presented in Table 23 were used 
as independent variables in their machine learning tech-
nique for detecting four code smells: God Class, Swiss 
Army Knife (SAK), Functional Decomposition (FD), and 
Spaghetti Code (SC). These metrics were used as training 
inputs. They calculated the values of the software metrics 
to use them as independent variables, and the computed 
operation was done using a tool called POM. This tool is 
an extensible framework that depends on the PADL meta-
model [119] and contains more than 60 software metrics 
[120].

Maiga et al. built three datasets for every system and 
every code smell. These datasets comprise two parts: 
smelly or non-smelly classes in equal numbers. They used 
30 functional decomposition classes in Azureus v2.3.0.6 to 
build each dataset and added 30 non-functional decompo-
sition classes by selecting them randomly in the remaining 
classes of Azureus v2.3.0.6. After this, they divided the 60 
classes randomly into the three datasets: Dataset1, Data-
set2, and Dataset3, making sure that each dataset contains 
10 functional decomposition instances and 10 functional 
decomposition instances. Therefore, every dataset has 20 
instances. Finally, they used practitioners’ feedback on the 
results as input for the training dataset.

5.5 � The Tools Used to Implement the Machine 
Learning Algorithms (RQ5)

We observe that most of the studies used Weka because this 
tool is the most common and widely used for implementing 
machine learning algorithms [7, 32]. In addition, this tool 
contains 37 algorithms for classification problems [32] and 
is considered a reliable tool [68]. Furthermore, it is freely 
available. However, based on our findings, we can claim 
that using only two tools in this field is not enough since 
the used tools do not provide all types of machine learning 
techniques. This is a clear opportunity for many researchers 
to improve the detection of code smells by using other appli-
cation environments which are considered as in the top of 
ranking for implementing machine learning techniques and 
also have numerous libraries which are the implementations 
of recent machine learning techniques, for example, Python, 
R, and Julia.

6 � Threats to Validity

In this section, we identify some potential threats to validity 
which might have biased our systematic literature review. 
The potential threats to the validity of our research are 
searching and choosing the relevant studies and the data 
extraction processes.

The authors in [31, 121] reported that a common threat 
to SLR is the process of finding all the relevant research. 
To find the relevant research, one threat is the process of 
selecting online databases. To mitigate this threat, five 
online research databases were selected. We selected the 
well-known online databases that cover all journal papers 
and conferences: ACM, IEEE, Scopus, Springer, and Sci-
ence Direct.

In order to mitigate the threat of excluding a relevant 
study or including an irrelevant study in the study selection 
phase, three researchers undertook the selection process and 
resolved all conflicts in the case of disagreement.

To mitigate bias in the data extraction phase, data extrac-
tion cards were constructed. Three researchers performed 
this process, one of them extracting the data then inserting 
this into the cards, while the others examined the collected 
data. In the case of disagreement, a discussion was con-
ducted to resolve these conflicts.

7 � Conclusion

In this study, we performed an SLR for empirical studies on 
the machine learning techniques used to detect code smells. 
The main objective was to systematically review and ana-
lyze the machine learning techniques applied to detect code 

Table 29   Sampling procedure Code case Instances

Smelly 826
Non-smelly 1160
Total 1986
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smells from different perspectives: the code smells that were 
employed in the experiments, the types of machine learn-
ing techniques applied to detect code smells, a compari-
son between these models in terms of prediction accuracy 
and performance, the datasets used, and the tool utilized to 
implement the machine learning models.

A literature search was conducted using five online data-
bases to retrieve the relevant studies. As a result, seventeen 
primary studies relating to the five research questions in 
this study were selected. The results show that God Class 
and Long Method, Feature Envy, and Data Class are the 
most frequently detected code smells. We also observed 
that machine learning algorithms SVM, J48, Naive Bayes, 
Random Forest, BBN, SMO, and JRIP are used the most. 
We also observed that the standalone machine learning algo-
rithms that consistently outperform the other standalone 
machine learning algorithms are the J48 algorithm, Random 
Forest, JRip, Naive Bayes, IBk, IBL, SVM, SMO, and BLR. 
The algorithm with the worst performance is VFI.

Our review also indicated that the family of J48 tech-
niques and B-Random Forest are the top techniques for 
detecting all types of code smells, while the SVM techniques 
are the worst. As well, we noticed that, in some cases, the 
use of boosting techniques on the models does not always 
enhance their performance. With respect to the dataset, it 
was found that most of the PSs used Java-based case studies 
and most of them used software metrics as independent vari-
ables. Only two of the 17 studies made the dataset available. 
Finally, we found that Weka is the most commonly used 
machine learning tool in the PSs, while one study employed 
Tensor Flow in Python. Even though R is popular for imple-
menting the ML algorithms with excellent library support, 
none of the primary studies used it; hence, R could be used 
in future studies.

As a result of this study, we make the following observa-
tions to be considered when conducting new research that 
uses machine learning for bad smell detection: (1) B-J48 
unpruned achieved the highest performance results in all 
PSs, it got 99.63% of F-Measure value when it was applied 
for Long method detection, followed by B-J48 pruned which 
achieved 99.26% of F-Measure value when it was applied 
for Data Class detection, (2) some code smells have not been 
investigate, (3) the use of ensemble learning techniques for 
code smells detection has gained less attention as it was used 
in two studies only, (4) only two studies used the grid-search 
algorithm to configure the machine learning algorithms 
parameters to find optimal parameters, (5) five studies built 
their datasets from different systems, (6) only two studies 
used multiclassification, and (7) only one study used feature 
selection technique.

It can be seen that the application of machine learning 
techniques to detect code smells is still a new area and needs 
further investigation. Therefore, more research effort should 

be focused to facilitate the employment of machine learning 
techniques to address the issue of predicting code smells.
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