
Vol.:(0123456789)1 3

Arabian Journal for Science and Engineering (2020) 45:2341–2369
https://doi.org/10.1007/s13369-019-04311-w

REVIEW ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

Bad Smell Detection Using Machine Learning Techniques: A Systematic
Literature Review

Ahmed Al‑Shaaby1 · Hamoud Aljamaan1 · Mohammad Alshayeb1

Received: 20 July 2019 / Accepted: 23 December 2019 / Published online: 7 January 2020
© King Fahd University of Petroleum & Minerals 2020

Abstract
Code smells are indicators of potential problems in software. They tend to have a negative impact on software quality. Sev-
eral studies use machine learning techniques to detect bad smells. The objective of this study is to systematically review and
analyze machine learning techniques used to detect code smells to provide interested research community with knowledge
about the adopted techniques and practices for code smells detection. We use a systematic literature review approach to
review studies that use machine learning techniques to detect code smells. Seventeen primary studies were identified. We
found that 27 code smells were used in the identified studies; God Class and Long Method, Feature Envy, and Data Class
are the most frequently detected code smells. In addition, we found that 16 machine learning algorithms were employed to
detect code smells with acceptable prediction accuracy. Furthermore, we the results also indicate that support vector machine
techniques were investigated the most. Moreover, we observed that J48 and Random Forest algorithms outperform the other
algorithms. We also noticed that, in some cases, the use of boosting techniques on the models does not always enhance their
performance. More studies are needed to consider the use of ensemble learning techniques, multiclassification, and feature
selection technique for code smells detection. Thus, the application of machine learning algorithms to detect code smells
in systems is still in its infancy and needs more research to facilitate the employment of machine learning algorithms in
detecting code smells.

Keywords Code smell · Software quality · Machine learning · Artificial intelligent · Anti-pattern · Bad smell

1 Introduction

Code smell detection can be defined as the task of identify-
ing potential code or design problems in a system [1–5].
Code smells occur due to programming and design mistakes
caused by software developers during the software designing
and programming state [2]. They can also occur for other
reasons such as an incorrect analysis, incorrect integration
of new models into the system, ignoring software develop-
ment principles, and writing codes in a complex way [1,

2]. These smells may have a negative impact on the overall
quality of the system, such as maintainability and under-
standability [6–10]. Therefore, the code smell detection
process has motivated many researchers to propose differ-
ent methods to deal with the occurrence of code smells in
systems. Refactoring is proposed to alleviate and overcome
code-smell-related issues. Refactoring leads to high quality,
high performance, low cost, reusability, implementation and
the easy development of software [1, 11].

Undertaking the code smell detection process in a manual
manner is considered to be subjective. Most of these tech-
niques mainly depend on object-oriented metrics that result
in various outcomes [7]. Therefore, automated tools are pro-
posed [12–20]. Nowadays, machine learning techniques are
utilized to address code smell issues with promising results.
A machine learning classifier needs first to be trained using
a set of code smell examples to generate a model. The gener-
ated models are then used to identify or detect code smells in
unseen or new instances. The power of the generated model

 * Mohammad Alshayeb
 alshayeb@kfupm.edu.sa

 Ahmed Al-Shaaby
 g201408620@kfupm.edu.sa

 Hamoud Aljamaan
 hjamaan@kfupm.edu.sa

1 Information and Computer Science Department, King Fahd
University of Petroleum and Minerals, Dhahran 31261,
Saudi Arabia

http://orcid.org/0000-0001-7950-0099
http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-019-04311-w&domain=pdf

2342 Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

relies on various criteria related to the dataset, the machine
learning classifiers, the parameters of the classifier itself, etc.

A number of systematic literature reviews (SLRs) have
been conducted in the area of bad smells. Zhang et al. [21]
conducted an SLR on refactoring and code smells and
reviewed papers published during the period of 2000–2009.
They observed that most of the reviewed studies used a small
number of code smells, and some of these smells are used by
the participants in a bad way (for example, message chains).
Likewise, Singh and Kaur [22] performed an SLR by review-
ing 238 papers. They concentrated on the methods used to
detect code smells as well the tools used for refactoring these
code smells. Sharma and Spinellis [23] conducted another
SLR and presented the existing knowledge associated with
code smells, identified the challenges and investigated the
definitions of code smells, reasons for their occurrence, their
impact, and the available detection tools. Santos et al. [3]
conducted an SLR to synthesize the existing knowledge on
code smells. They concentrated on empirical studies that
investigated how code smells affect software development.
Mariani and Vergilio [24] presented an SLR of the existing
research that motivates or applies search-based methods in
the software refactoring activity. Their SLR was conducted
by reviewing 71 primary studies. Several mechanisms have
been introduced to detect code smells. Rasool and Arshad
[25] performed a review on the existing tools that are used
to detect code smells and report their associated challenges.
Furthermore, Fernandes et al. [26] conducted a comparison
between 84 smell detection tools. Fontana et al. [27] con-
ducted a literature review that focused on code smells and
automatic tools. They identified seven code smell detection
tools and evaluated four of them in terms of their detection
results. Garcia et al. [28] presented the code smells that are
frequently recurring in software design which can have non-
clear and important detrimental impact on system lifecycle
properties. A recent and related SLR was undertaken by
Azeem et al. [29] in which they conducted a study to provide
an overview of the use of machine learning approaches for
code smell detection. They identified 15 primary studies that
used machine learning approaches. Their study focused on
addressing four issues: (1) the code smells considered, (2)
the setup of the approach, (3) the design of the evaluation
strategies, and (4) an analysis of the performance. However,
in this paper, we further provide a detailed analysis of the
datasets used in code smell detection studies. Furthermore,
we investigate the tools used to detect code smells, the tools
used to extract and compute software metrics (features) and
the tools used to implement machine learning techniques
applied to detect code smells. Moreover, we investigate the
use of feature selection techniques and compare the stand
alone and ensemble-based machine learning techniques.

Another recent SLR was developed by Caram et al. [30];
the authors in this study conducted a systematic mapping

study of the use of machine learning techniques for code
smells identification. twenty-five primary studies were
identified. Their SLR concentrated on studying code smells
detection using machine learning techniques from differ-
ent perspectives: (1) the detected code smells, (2) the used
machine learning techniques, (3) the most used machine
learning techniques for each code smell, and (4) and the
performance of each of these techniques for the code smells.
These perspectives are covered in this study; also we pre-
sent an extensive analysis of the used datasets in the litera-
ture from different viewpoints: (1) the size of each dataset
(i.e., number of included systems), (2) dependent variables,
(3) independent variables, (4) the used tools to compute or
extract metrics (independent variables), (5) the used tools
to assign dependent variables(smelly or not smelly), and (6)
description analysis of each available dataset (i.e., number
of features, instances and smelly, and non-smelly instances
in each dataset). Further, we explore the setup of used tech-
niques such as, the used evaluation metrics, the used valida-
tion methods, and classification type (i.e., binary classifica-
tion or multiclassification). Furthermore, we investigate the
use of ensemble machine learning techniques and compare
them with stand-alone machine learning techniques. Moreo-
ver, we show the tools used to implement machine learning
techniques. In addition, we investigate the use of feature
selection techniques.

In this study, our main objective is to systematically
review the studies carried out to detect code smells using
machine learning algorithms from different perspectives. To
achieve the study objectives, we carried out an SLR follow-
ing the general guidelines defined by Kitchenham and Char-
ters [31]. First, a wide literature search was conducted in five
online databases to identify the relevant studies. Then, a set
of inclusion and exclusion criteria and quality assessments
were devised to obtain the primary studies. The selected
studies were then analyzed, classified, and compared using
our defined criteria including types of machine learning
algorithms, prediction accuracy, detected code smells and
datasets, resulting in the selection of 17 primary studies.

The results of this study provide knowledge for both
practitioners and researchers about the most frequently code
smells detected, and the machine learning technique used
to detect them. The results also provide information about
the accuracy measures used in the experimental studies that
practitioners and researchers can use for comparison with
the existing studies. The study also provides analysis about
the tools used for code smell detection and correction. Fur-
thermore, the details of the datasets used in bad smell detec-
tion and correction studies are also reported.

The main contributions of this study are:

1. Identified 17 primary studies that use machine learning
techniques to detect code smells.

2343Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

2. Conducted different analyses on these primary studies
to provide knowledge about: (1) the applied techniques,
(2) the detected code smells, (3) the accuracy measures,
(4) the used datasets, and (5) the most commonly used
tools.

3. Provide recommendations that can be used for the future
research.

The rest of this study is organized as follows. A back-
ground of bad smells and machine learning techniques is
presented in Sect. 2. The research methodology used is dis-
cussed in Sect. 3. Section 4 presents the results. Section 5
discusses the main findings. In Sect. 6, we identify the
potential threats to the validity of our study, while Sect. 7
presents the conclusion.

2 Background

In this section, we provide a brief background of code smells
and machine learning techniques.

2.1 Code Bad Smells

Code smells indicate potential code or design problems in
a system [1, 2]. Code smells, also known as design flaws,
refer to design situations that negatively influence the main-
tainability of the software [27]; therefore, they may impact
the maintenance processes [32]. A number of code smells
were presented in Fowler’s book [33]. Fowler also suggested
guidelines to eliminate these smells from the system [25].

It is helpful if we identify a bad smell as early as possible
in the development lifecycle [32, 34]. Detecting bad smells
in code or in the design and then performing the appropri-
ate refactoring procedures when necessary is very useful
to enhance the quality of the code. These smells make the
system more difficult to maintain, probably also increasing
its fault proneness [35]. Bad smells are unlikely to result in
failure directly but might do so indirectly which still nega-
tively impacts software quality [36].

Code metrics are used by different code smell detection
tools to detect code smells. These tools either compute the
metrics from the code itself or utilize the extracted metrics
from the external party’s tools [7]. The bad smell detection
process can either be manual or automatic, using detection
strategies. Bad smells can be detected in source code or sys-
tem design.

2.1.1 Code smell categories

There are several categories of bad smells, and each category
contains several types. In our study, we selected the category
proposed in [33, 37–39], as they include the most common

code smells types. The code bad smells are very closely rel-
evant. Consequently, we consider that the taxonomy makes
the smells more recognizable and understandable. Figure 1
details these categories.

• Bloaters In this category, the code or classes are
expanded to such a large extent that they are difficult to
work with. These smells do not manifest immediately,
rather they aggregate after some time as the program
develops, particularly when no one endeavors to elimi-
nate them. The first type of code smell in this category
is the Long Method, which contains too many lines of
code, making it difficult to reuse, change, and understand.
The best solution for this smell is to divide this method
into separate methods. The second type of code smell in
this category is Large Class. This occurs when a single
class attempts to do too much, and it usually contains
several instances and has various responsibilities. This
smell makes the reusability and maintainability of this
class more difficult. The best solution for this smell is
splitting this class, by applying extract class. The third
type of code smell in this category is Primitive Obsession
used in software. We should use small classes instead of
primitive types in some situations. For instance, primi-
tives are used in place of small objects for simple tasks,
for example, special strings for phone numbers, ranges,
and currency. The fourth type of code smell in this cat-
egory is Long Parameter List. This type of smell occurs
if any method has more than four parameters, making
parameter lists more difficult to understand and use and
also inconsistent. The final type of code smell in this
category is Data Clumps. Occasionally, various parts of
the code contain identical groups of variables, for exam-
ple, parameters to connect to a database. These clumps
should be turned into their own classes.

• Object-Orientation Abusers All the smells in this cat-
egory involve the incomplete or incorrect application of
the principles of object-oriented programming. The first
type of bad smell in this category is the Switch State-
ments. This smell appears in the code when it contains a
sequence of if statements or a complex switch operator.
The second type of bad smell in this category is tempo-
rary field. Usually, temporary fields are created for use in
an algorithm that requires a lot of parameters. Therefore,
instead of creating a large number of parameters, the pro-
grammer creates fields for these data in the class. These
fields are utilized only in the algorithm and go unused
the rest of the time. This kind of smell is difficult to dis-
cover. Removing this smell enhances code clarity and
organization. The third type of bad smell in this category
is Refused Bequest. This smell occurs when program-
mers create inheritance between two completely different
classes, but the subclass uses only a few of the methods

2344 Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

and properties inherited from the superclass. The best
way to treat this smell is to use delegation instead of
inheritance. The fourth type of bad smell in this category
is alternative classes with different interfaces. This code
smell occurs when programmers create two classes with
identical functionality, but these methods have different
names.

• Change Preventers These smells occur if you need to
modify something in one place in your code, and then
you have to make many modifications in other places
too. Therefore, the development process of the software
is more complicated and costly. In this category, there are
three types of bad smells. The first type of bad smell in
this category is Divergent Change. This bad smell occurs
when many changes are made to a single class. The best
way to remove this smell is to split the class’s behavior.
For instance, in the case where different classes have the
same behavior, the classes should be combined through
inheritance. This will improve the organization of the
code as well as reduce code duplication. The second type
of bad smell in this category is Shotgun Surgery. This
occurs when a single change is made to multiple classes
simultaneously. The reason this smell occurs is because
one responsibility has been split up among a large num-
ber of classes. The best way to remove this smell is to
move the existing class behaviors into a single class. This
will improve the organization of the code, reduce code
duplication, and make it easier to maintain. The third

type of bad smell in this category is Parallel Inheritance
Hierarchies. This smell occurs when you create a sub-
class for a class and then discover that you need to create
a subclass for another class.

• Dispensables These smells occur when part of the code
is not needed and where it to be removed, the code would
be cleaner, more efficient and easier to understand. There
are six types of bad smells in this category. The first type
of bad smell in this category is Comments. This smell
occurs when the program is filled with explanatory com-
ments. The second type of bad smell in this category is
the Duplicate Code. This smell occurs when the same
or very similar code appears in several parts of the pro-
gram, making the program code large. This bad smell can
be removed by creating a new method that encapsulates
the duplicated code. The third type of bad smell in this
category is Lazy Class which is a useless class. Every
class which is built takes effort and is time-consuming
to understand and maintain. The best way to remove this
smell is to eliminate these classes. The fourth type of bad
smell in this category is Data Class. This is a class that
contains only fields but there is seldom any logic to it.
The Data Class has getters and setters methods for fields.
The fifth type of bad smell in this category is Dead Code.
This occurs when a code is never executed. The sixth
type of bad smell in this category is Speculative Gen-
erality. This occurs when there is an unused parameter,
field, method, or class. The reason this bad smell occurs

Fig. 1 Code smell categories

2345Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

is because sometimes, code is created to support antici-
pated future features that are never actually implemented.
Consequently, the code becomes difficult to understand
and support.

• Couplers All the smells in this category contribute to
an excessive coupling between classes or show what
happens if coupling is replaced by excessive delegation.
There are six types of bad smells in this category. The
first type of bad smell in this category is Feature Envy.
This bad smell occurs a method accesses the data of
another object more than its own data. It generally occurs
when fields are moved to a Data Class. If this happens,
the operations on data should be moved to this class as
well. The second type of bad smell in this category is
Inappropriate Intimacy. This occurs when one class uses
the internal methods and fields of another class to do its
work. The third type of bad smell in this category is Mes-
sage Chains. This occurs when a client requests another
object, and that object requests yet another object and
so on. The fourth type of bad smell in this category is
Middle Man. This occurs if a class performs only one
action and delegates work to another class, hence there is
little point in its existing. This smell can be the result of
the overzealous elimination of Message Chains. The fifth
type of bad smell in this category is Incomplete Library
Class. This occurs when libraries no longer meet user
requirements.

2.2 Machine learning

Machine learning is a discipline where computer systems
are able to learn and perform their work even if they were
not explicitly programmed [40]. The most commonly used
machine learning techniques in the literature on software
quality prediction are supervised learning, reinforcement
learning, and unsupervised learning. This subsection
describes the investigated classification models.

• Multilayer Perceptron (MLP) [41, 42] This is an artificial
neural network (ANN) model that consists of a layer as
an input, at least one hidden layer, and an output layer.
Every node is a neuron that utilizes a nonlinear activation
function, and it associates with other nodes in the next
layer with a specific weight. MLP constantly utilizes the
backpropagation technique for training.

• Support Vector Machines (SVMs) [43, 44] These are
supervised learning models with related learning tech-
niques, and these learning algorithms can be used for
regression or classification. SVM was defined by Vapnik
[45] based on the principle of structured risk minimi-
zation. The main objective of SVM is empirical error
minimization and geometric margin maximization. Com-
monly, the extent to which deviations are tolerated, the

complexity parameter C, and the kernel are the param-
eters that are used to define the SVM model.

• Radial Basis Function Networks (RBFs) [46, 47] This is
a type of neural network that has three layers, one being
an input layer, the second being a hidden layer, and the
third being a linear output layer. Three types of RBFs are
multiquadric, polyharmonic spline, and Gaussian. RBF
networks are used for classification, function approxima-
tion, and system control.

• Bayesian Belief Networks (BBNs) [48] This is a con-
venient graphical model for representing a collection of
variables and their probabilistic independencies. In this
model, a random variable is represented by a node in the
graph, whereas the probabilistic dependencies among the
corresponding random variables are represented by the
edges connecting the nodes.

• Naive Bayes (NB) [47, 49] This is a supervised learn-
ing algorithm that employs the Bayes algorithm with the
“naive” assumption of conditional independence among
each pair of attributes.

• Random Forests (RF) is a supervised learning algorithm
that contains many unpruned classifications or regression
trees such that every tree is based on the values of a ran-
dom vector experimented individually and with the same
distribution for all trees in the forest. RF can be employed
for both classification and regression problems [50, 51].

• Linear Regression (LR) is a modeling method that is
applied to find the correlation between the target and
independent variables in the dataset by utilizing the lin-
ear predictor functions [52–54].

• Multinomial Naive Bayes (MNB) Multinomial naive
Bayes is a version of NB that is introduced for text classi-
fication. In MNB, the data samples follow a multinomial
distribution [49, 55].

• Decision Tree (DT) [56] This is one of the most suc-
cessful options for the supervised learning method for
regression and classification. The C4.5 algorithm is the
most commonly used technique to generate decision trees
[57].

3 Research Methodology

The main objective of this study is to identify and analyze
all relevant studies that use machine learning to detect code
smells. As previously mentioned, we followed the SLR
guidelines suggested by Kitchenham and Charters [31]. An
SLR is a well-defined and systematic way of finding, assess-
ing, and analyzing published primary research [58–61].
The SLR gives a strong basis on which to make claims on
research questions, but it needs considerably more effort
than a traditional literature review [62]. The SLR process
involves six phases, followed in sequence as shown in Fig. 2:

2346 Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

• Research questions
• Search strategy design
• Study selection
• Quality assessment
• Data extraction
• Data synthesis

In the first phase, a number of research questions based
on the goal of the current SLR are defined. Then, a search
strategy is built to find all the studies relevant to the research
questions. Next, the search string, the digital libraries and
the inclusion and the exclusion criteria are identified, and
in the fourth phase, a set of quality assessment criteria are
identified and applied to the selected papers. In the data
extraction phase, the data extraction cards are created and
employed to obtain data from the selected papers. Finally,
in the data synthesis phase, appropriate methodologies are
defined to synthesize the extracted data.

3.1 Research questions

Constructing the research questions is a significant step
in the SLR process. Five research questions are defined to
achieve our research objective:

RQ1: Which machine learning techniques have been
applied to detect code smells?

The objective of RQ1 is to identify the machine learn-
ing techniques that have been applied to detect code smells.
Researchers can use the outcomes of this question to iden-
tify the most applied machine learning techniques for code
smells detection and to investigate the possibility of imple-
menting unused techniques.

RQ2: Which code smells are most commonly detected
using machine learning techniques?

Several studies have been conducted to address the issue
of code smells, so our objective in relation to this question
is to identify the code smells that have been detected using
machine learning and why researchers have chosen these
code smells. The findings of this question can be used to
determine the code smells that have not been investigated yet
or got less attention by current studies. Hence, researchers
can address them in the future work.

RQ3: What are the accuracy measures of the machine
learning techniques that have been used for code smell
detection?

To answer this question, we identify the performance
metrics used to evaluate the machine learning techniques
in terms of the detection of code smells. Then, based on
these performance metrics, we identify the accuracy of the
machine learning techniques that have been used for code
smell detection. Next, we compare the machine learning
techniques that have been used to detect code smells in order
to find the most efficient. The findings of this question can be
useful to identify the accuracy measures used to evaluate the

Fig. 2 Systematic literature review process phases

2347Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

performance of the used machine learning techniques. Such
knowledge enables researches to use the most appropriate
accuracy measure in their studies.

RQ4: What datasets have been used for code smell detec-
tion?

The objective of this question is to investigate the attrib-
utes of these datasets, such as: the dataset name, size (num-
ber of systems in each dataset, the size of each system), type
(commercial, student, open source), availability of the data-
sets (available online or not), the language of the selected
systems, the inputs of the datasets, the tools used to obtain
the values of dataset inputs, and an analysis of the available
datasets. Researchers can use the outcomes of this question
to build their datasets in a good way.

RQ5: What are the most commonly used machine learn-
ing tools in the context of bad smell detection?

Many tools are used to implement machine learning algo-
rithms. To answer this question, we investigate the tools that
are used to implement machine learning algorithms and
explain why they have been selected. The findings of this
question can be useful to identify the most used tool; thus,
researchers can select the most suitable tool for their needs.

3.2 Search strategy

This involves three phases: search terms, online databases,
and the search process. These are described in the following
subsections.

3.2.1 Search strategy

The common strategies applied to construct the search terms
are described in this subsection as follows:

1. Obtaining the main terms from the research questions.
2. Finding the alternate synonyms and spelling for the main

terms.
3. Verifying the above steps by matching the keywords

from any relevant research paper.
4. Managing the Boolean operator “OR” to link the alter-

native synonyms and spellings and “AND” to link the
major terms and the Boolean operator.

The search terms are built based on population, interven-
tion, outcome, and experimental design.

• Population Code smells.
• Intervention The existing machine learning techniques

for detecting code smells.

• Outcomes Improve software quality.
• Experimental Design Empirical studies, case studies, and

experimental studies.

After applying the previous steps along with several tests
results, the following complete search terms are employed
in our research.

((((Code OR Bad) AND Smell*) OR Antipatterns OR
Refactoring) AND (Detect* OR Predict* OR Estimat* OR
Forecast*) AND ((“Machine learning” AND (Model OR
Technique OR Algorithm OR Method OR approach)) OR
“artificial intelligence” OR “Ensemble learning”)).

3.2.2 Research Resources

Five online databases are used to find relevant conference
and journal papers using our defined search terms. Table 1
presents these online databases. These databases were
selected as they are the popular venues for publishing papers
on machine learning and bad smell detection studies. Other
researchers have also used these databases in their SLR stud-
ies [3, 63–65].

The search terms are modified to be compatible with each
online database since each has its own search engine syntax.
Furthermore, the grammars for searching differ from one to
another. The start date of the searching process was open
until December 2018.

In order to collect relevant material avoiding bias, a broad
range of research databases are considered which includes
all journal papers and conference papers.

3.2.3 Search Process

In general, the SLR process involves a comprehensive search
of all the studies that fit the selection criteria. The search
process comprises the following two phases:

• Phase 1 The five online databases are searched separately
using the constructed search string. The identified studies
are then collected to establish a set of candidate studies.
Table 2 presents the results of this phase.

Table 1 Online databases

Number Name URL

1 IEEE Xplore http://ieeex plore .ieee.org
2 Springer Link http://link.sprin ger.com
3 Science Direct http://www.scien cedir ect.com
4 Scopus https ://www.scopu s.com
5 ACM Digital Library http://dl.acm.org

http://ieeexplore.ieee.org
http://springerlink.bibliotecabuap.elogim.com
http://www.sciencedirect.com
https://www.scopus.com
http://dl.acm.org

2348 Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

• Phase 2 For each relevant study, the reference lists are
scanned to find other relevant studies to be included into
our candidate list.

It is expected that many references will be collected dur-
ing the whole SLR process. EndNote is used to keep a record
of all the references. Consequently, 1429 relevant studies
are retrieved.

3.3 Study Selection

The inclusion and exclusion criteria are defined in this sub-
section. A total of 1429 candidate studies are retrieved as
described in Table 2 and Fig. 3. Most of them do not pro-
vide valuable information to fit the defined research ques-
tions. Therefore, more filtering is recommended in order
to identify relevant studies. The study selection process is
illustrated in Fig. 3. The selection process is performed by
one researcher, and another two researchers verify the selec-
tion process at random. The selection process is carried out
in two phases:

• Initial Selection Studies found during the initial search
are assessed for relevance. This is done by analyzing the
title and abstract as recommended by [66] and by apply-
ing the inclusion and exclusion criteria (defined below) to
identify the relevant studies, which provide information
to answer the research questions.

• Final Selection Studies found in the initial selection
underwent further analysis (i.e., reading full text), and
the quality assessment criteria were applied. This is done
so that no important information or data with respect to
the research question are missed. These studies will be
eventually used for data extraction.

3.3.1 Inclusion Criteria

For a paper to be included in the SLR, it needs to meet vari-
ous inclusion criteria.

• Studies that propose and discuss the use of machine
learning techniques to detect code smells.

• Studies that motivate and describe the benefits of using
machine learning techniques to detect code smells.

• Studies that provide an empirical basis for their find-
ings.

• In the case of duplicate studies, only the most complete
and recent will be selected.

• Papers which have been published in a journal or in
conference proceedings.

3.3.2 Exclusion Criteria

Several exclusion criteria were established to make certain
studies ineligible for inclusion in the SLR.

• Studies that are not applicable to the research ques-
tions.

• Studies that do not use or propose machine learning tech-
niques to detect code smells.

• Studies that are not written in the English language.
• Publications that do not have an empirical analysis or

findings from applying machine learning models to
detect code smells.

As a result, 56 relevant studies were obtained, as
described in Table 2. Next, we scanned the references in
these relevant studies, but we did not find any additional
relevant studies.

3.4 Study Quality Assessments

After applying the selection criteria, we define the quality
assessment criteria for the selected papers according to the
objectives of this research. These quality assessments are
used to weight the selected studies. In this subsection, we list
the quality assessment questions used for quantitative assess-
ment of the quality of the selected papers where Yes = 1,
No = 0, and partly = 0.5. The quality assessment questions
are listed in Table 3. The final score is computed by sum-
ming the values assigned to each question, where the higher
the score, the higher the quality of the study. In our research,
we selected only those papers with a quality score greater
than 4.5. We used the same threshold (50%) that was used in
[67]. Two researchers conducted these quality assessments
of the selected studies separately. In the case of disagree-
ment between the researchers, it was discussed and resolved.
Table 4 shows the quality scores of the selected studies.
Seventeen studies were identified as the final papers for the
data extraction process. These 17 studies are described in
Table 5.

Table 2 Number of collected studies

Name #Collected studies Selection
criteria
results

IEEE Xplore 147 20
Springer Link 247 5
Science Direct 166 5
Scopus 169 20
ACM Digital Library 700 6
Total 1429 56

2349Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

Fig. 3 Selection process phase

Table 3 Quality assessment
questions

Q# Quality questions Yes No Partly

Q1 Are the research objectives clearly stated and well motivated?
Q2 Is the experiment design clearly defined?
Q3 Are the performance measures used to measure the machine learning

models clearly explained?
Q4 Is the dataset size sufficiently stated?
Q5 Are the detected code smells clearly defined?
Q6 Are the machine learning models employed sufficiently defined?
Q7 Are the independent variables clearly defined?
Q8 Are the findings of the study sufficiently defined well motivated?
Q9 Does the study discuss threats to validity or limitations?

2350 Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

3.5 Data Extraction

The selected papers are used to gather data that address our
research questions. In order to make this process easier,
cards are created with the form described in Table 6. This
form is refined by pilot data extraction with many of the
selected papers. To make the process of data synthesis as
easy as possible, we group the items based on the association
between the research questions, as shown in Table 6.

Table 7 demonstrates that the data extracted to address
RQ3, RQ4, and RQ5 are associated with the experiments
conducted in the chosen papers. Generally, in the software
engineering field, the word experiment has diverse mean-
ings. Consequently, to avoid confusion, we explicitly define
the word “experiment” as a process in which an algorithm
or a model is assessed with suitable performance metrics
depending on a specific dataset.

The data extraction cards were employed to obtain data
from the chosen papers. Three researchers undertook this
process. One extracted the data and then inserted these data
into the cards, while the others examined the collected data.
If there was disagreement between the researchers about the
results, a discussion was conducted to resolve the conflict.
Finally, the examined extracted data are documented in a
file, to be utilized in the next process.

As shown in Table 7, all our research questions were
answered by the primary studies except five studies (S5,
S11, S14, S16, and S17) which did not address RQ5
because they did not mention the tools used to implement
the machine learning techniques. To facilitate the tracking
of the extracted data, we marked every paper with an ID,
Table 7 presents more detail.

3.6 Data Synthesis

Data synthesis aims at aggregating the extracted data from
the selected papers to answer our research questions. In this
study, the data extracted comprise qualitative data (e.g., a
list of the employed machine learning techniques, the size
of each dataset, and a list of the detected code smells) and
quantitative data (e.g., the values of the prediction accuracy).

Table 4 Quality scores of
selected studies

Study Reference Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Score

S1 [68] 1 1 1 1 1 0.5 1 1 1 8.5
S2 [69] 1 1 0.5 1 1 0.5 1 0.5 0 6.5
S3 [70] 1 1 1 0.5 1 1 0.5 0.5 0.5 7
S4 [7] 1 1 1 1 1 1 0.5 1 1 8.5
S5 [52] 1 1 0.5 0.5 0 1 1 0.5 0 5.5
S6 [71] 1 1 1 0.5 1 1 1 0.5 0 7
S7 [72] 1 1 1 0.5 1 1 1 0.5 0 7
S8 [73] 1 1 1 1 1 1 1 0.5 1 8.5
S9 [74] 1 1 1 1 1 1 0.5 0.5 0.5 7.5
S10 [32] 1 1 1 1 1 1 0.5 0 0 6.5
S11 [75] 1 1 0.5 0 1 0.5 0 0.5 0.5 5
S12 [6] 1 1 1 0.5 1 0.5 0.5 0..5 0 6
S13 [76] 1 1 0.5 0.5 1 0.5 0.5 0.5 0 5.5
S14 [77] 1 1 1 0.5 1 1 0.5 0.5 0.5 7
S15 [78] 1 1 0.5 0.5 1 1 1 0.5 0.5 7
S16 [79] 1 0.5 1 0.5 1 1 0.5 0.5 0.5 6.5
S17 [80] 1 1 0.5 0.5 0 1 1 0.5 0 5.5

Table 5 Selected primary studies

Type Online database Year Reference

S1 Journal Scopus& Science Direct 2018 [68]
S2 Journal Scopus 2017 [69]
S3 Conference Scopus & IEEE 2017 [70]
S4 Journal Springer Link 2016 [7]
S5 Conference Scopus & IEEE& Science

Direct
2016 [52]

S6 Conference Scopus & IEEE 2015 [71]
S7 Conference Scopus & IEEE 2013 [72]
S8 Conference IEEE & ACM& Digital Library 2012 [73]
S9 Journal Science Direct 2011 [74]
S10 Conference Scopus & IEEE 2011 [32]
S11 Conference Scopus & IEEE 2010 [75]
S12 Conference Scopus & IEEE 2009 [6]
S13 Conference Scopus 2005 [76]
S14 Journal Springer Link 2015 [77]
S15 Conference ACM 2012 [78]
S16 Conference IEEE 2010 [79]
S17 Conference IEEE 2009 [80]

2351Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

As only 17 papers were selected, we employed canonical
meta-analysis [31] as the synthesis methodology because of
its solid theoretical background. Employing standard meta-
analysis with this number of studies would be inappropriate
[31].

To synthesize the extracted data relating to various
research questions, we set the narrative synthesis strategy
for RQ1, RQ2, and RQ5. We tabulated the data in a style
compatible with the questions.

4 Results

In this section, we present the main results of this review.
First, a summary of the selected papers is presented. Then,
we document the main findings of our work based on the
research questions.

Table 6 Data extraction card

Name of extractor
Date of extraction
Data checker
Paper ID
Title of paper
Authors name
Publication year
Source
Reference type (Journal/Conference)
Study type (experiment, case study) publisher
RQ1: Which machine learning techniques have been applied to detect code smells?
 Machine learning techniques applied to detect code smells.
RQ2: Which code smells are most commonly detected using machine learning techniques?
 The selected code smells in the field of using machine learning techniques to detect code smells, and why they have selected these smells?
RQ3: What are the accuracy measures of the machine learning techniques that have been used for code smell detection?
 Metrics employed to estimate the detection performance, detection accuracy values and validation mechanism.
RQ4: What datasets have been used for code smell detection?
 Datasets used in the experiments. Dataset name, size, type (commercial, student, open source), availability, language, metrics used, and tools

used to compute metric value.
RQ5: What are the most commonly used machine learning tools used in the context of bad smell detection?
 Tools used to implement machine learning techniques to detect code smells.

Table 7 Addressed questions ID Authors The addressed research
questions

S1 D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A.
De Lucia.

1 2 3 4 5

S2 D. K. Kim. 1 2 3 4 5
S3 A. Kaur, S. Jain, and S. Goel. 1 2 3 4 5
S4 F.A. Fontana, M. V. Mantyla, M. Zanoni, and A. Marino. 1 2 3 4 5
S5 Tarwani, Sandhya, and Anuradha Chug. 1 2 3 4 –
S6 L. Amorim, E. Costa, N. Antunes, B.Fonseca, and M. Ribeiro. 1 2 3 4 5
S7 F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mantyla. 1 2 3 4 5
S8 A. Maiga, N. Ali, N. Bhattacharya, A. Sabane. 1 2 3 4 5
S9 F. Khomh, S. Vaucher, Y.-G. Gueheneuc, and H. Sahraoui. 1 2 3 4 5
S10 N. Maneerat and P. Muenchaisri. 1 2 3 4 5
S11 S. Bryton, F. B. e Abreu, and M. Monteiro. 1 2 3 4 –
S12 F. Khomh, S. Vaucher, Y.-G. Gueheneuc, and H. Sahraoui. 1 2 3 4 5
S13 J. Kreimer. 1 2 3 4 5
S14 Yang et al. 1 2 3 4 –
S15 Wang et al. 1 2 3 4 5
S16 Hassaine et al. 1 2 3 4 –
S17 Vaucher et al. 1 2 3 4 –

2352 Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

4.1 Overview of Selected Studies

The issue of detecting code smells [81] has drawn the atten-
tion of many researchers over recent years [26]. The research
literature can be categorized into two: empirical studies and
prediction models. Empirical studies conduct research with
the intention of knowing code smell growth [82–85], their
perception [86–88], and their influence on the quality attrib-
utes of source code [89–91]. Studies on prediction models
depend on the analysis of structural information of the code
itself [14, 15, 92]. The recent studies focus on the analysis
of other sources of information [93, 94] or the utilization
of software engineering techniques which are search based
[21, 36]. In the context of our research, we concentrate on
machine learning techniques for detecting bad smells. There-
fore, we review studies which utilize machine learning tech-
niques to predict bad smells.

In our study, we identified 17 primary studies (PSs), listed
in Table 4, that relate to bad smell detection using machine
learning techniques, published between 2005 and 2018.

As shown in Table 8, five of the PSs were published
as journal articles, and 12 were published in conference
proceedings. The distribution of the publication venues is
presented in Tables 4 and 8. All the selected studies are
experiment papers. The number of PSs published per year is
shown in Fig. 4. It can be observed that the number of stud-
ies published between 2009 and 2012, and between 2015 and
2017 remained stable with two studies published per year,

whereas in 2005, 2013, and 2018, one study was published
each year. Furthermore, there is a slight increase in the num-
ber of published studies in this area in recent years, which
indicates that research attention in this area is growing.

4.2 Types of machine learning techniques used
(RQ1)

Eighteen types of machine learning algorithms were
employed to detect code smells. Table 9 presents our find-
ings. We found that 12 of our PSs applied a single machine
learning technique per code smell detection, while the
remaining 5 studies applied more than one machine learn-
ing technique. The table presents the machine learning tech-
niques used in descending order from the highest frequency
to the lowest. Study S10 used seven machine learning tech-
niques which was the highest.

We observe that some of the applied machine learning
techniques are related to the same family, for example, J48
and Decision Trees C5.0 are from the same decision tree
family, as shown in Table 10; the family of the decision
tree is the most commonly applied to detect code smells. In
addition, we found that the authors of studies S1, S4, and
S7 used the same machine learning techniques. The authors
of S4 and S7 are the same, whereas the authors of study S1
replicated study S4.

The process of identifying the machine learning methods
that were used to detect code smells is based on the general
name of the machine learning technique. For example, in
the studies of [7, 68], they used SVM and sequential mini-
mal optimization (SMO) with different kernels and they
also used boosting techniques for all the used techniques, as
shown in Table 11. We identify only the general name of the
techniques, so we identify six machine learning techniques

Table 8 Distribution of
publication venues

Publication type # of studies

Conference 12
Journal 5

Fig. 4 Number of PSs published
per year

2353Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

Ta
bl

e
9

 D
ist

rib
ut

io
n

of
 m

ac
hi

ne
 le

ar
ni

ng
 te

ch
ni

qu
es

 in
 th

e
se

le
ct

ed
 st

ud
ie

s

U
se

d
M

L/
stu

di
es

S1
S2

S3
S4

S5
S6

S7
S8

S9
S1

0
S1

1
S1

2
S1

3
S1

4
S1

5
S1

6
S1

7
C

ou
nt

Fr
eq

ue
nc

y
%

Su
pp

or
t v

ec
to

r m
ac

hi
ne

s (
SV

M
)

√
√

√
√

√
√

6
35

.2
9

J4
8

√
√

√
√

4
23

.5
2

N
ai

ve
 B

ay
es

√
√

√
√

4
23

.5
2

R
an

do
m

 F
or

es
t (

R
F)

√
√

√
√

4
23

.5
2

B
ay

es
ia

n
B

el
ie

f N
et

w
or

ks
 (B

B
N

)
√

√
√

√
4

23
.5

2
JR

IP
√

√
√

3
17

.6
4

Se
qu

en
tia

l m
in

im
al

 O
pt

im
iz

at
io

n
(S

M
O

)
√

√
√

3
17

.6
4

D
ec

is
io

n
Tr

ee
s C

5.
0

√
√

2
11

.7
6

B
in

ar
y

Lo
gi

sti
c

Re
gr

es
si

on
 (B

LR
)

√
√

2
11

.7
6

M
ul

til
ay

er
 P

er
ce

pt
ro

n
(M

LP
)

√
√

2
11

.7
6

R
ad

ia
l B

as
is

 F
un

ct
io

n
N

eu
ra

l N
et

w
or

ks
 (R

B
FN

)
√

1
5.

88
D

ec
is

io
n

tre
e

Fo
re

st
(D

FT
)

√
1

5.
88

Li
ne

ar
 R

eg
re

ss
io

n
(L

R
)

√
1

5.
88

In
st

an
ce

-B
as

ed
 L

ea
rn

in
g

w
ith

 P
ar

am
et

er
 k

 (I
B

K
)

√
1

5.
88

Vo
tin

g
Fe

at
ur

e
In

te
rv

al
s (

V
FI

)
√

1
5.

88
In

st
an

ce
-B

as
ed

 L
ea

rn
in

g
(I

B
L)

√
1

5.
88

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

√
1

5.
88

A
rti

fic
ia

l I
m

m
un

e
Sy

ste
m

s (
A

IS
)

√
1

5.
88

#U
se

d
m

ac
hi

ne
 le

ar
ni

ng
 te

ch
ni

qu
es

6
1

1
6

5
1

6
1

1
7

1
1

1
1

1
1

1

2354 Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

which are SVM, J48, Naive Bayes, Random Forest, SMO,
and JRIP.

SVM was the most commonly used, being applied in 6 of
the 17 studies (35.29%) and the second most commonly used
machine learning techniques are J48, Naive Bayes, Bayes-
ian Belief Networks, and Random Forest, being applied in
4 of the 17 studies (30.77%). Table 9 shows the detailed
information.

We can observe that SVM, J48, Naive Bayes, Random
Forest, SMO, JRIP received the most attention in 2013,
2016, and 2018 while in 2017, only Neural Networks
received attention. We further observe that the authors of the
primary studies applied the most commonly used machine
learning techniques.

In general, the machine learning technique is catego-
rized into two types: supervised and unsupervised. Figure 5
shows this taxonomy [95, 96]. According to our findings,
we observe that all the applied techniques in the field of
code smell detection were supervised machine learning tech-
niques. The findings were expected since the application of
supervised techniques is the most often applied in studies
[97, 98].

4.3 Detected Smells (RQ2)

Twenty-eight types of code smells were used in the PSs.
Table 12 presents our findings. We found that 12 of the PSs
detected more than one code smell, while the other five stud-
ies detected one code smell. The table lists the used code
smells in descending order from the highest frequency to
the lowest.

We found that the authors of studies S1, S3, S4, and S7
not only used the same code smells, they also used the same
number of code smells. The authors of S4 and S7 are the
same, whereas the authors of study S1 replicated study S4.
S5 used the highest number of code smells, using 11 code
smells.

We observe that the God Class was the most used bad
smell, being used in 13 studies (76.47%). The second most
used bad smell was the Long Method which was used in nine
studies (52.94%). The Feature Envy code smell was used in
seven studies (41.17%), and the Data Class was used in five
studies (29.41%). The remaining code smells were used in a
smaller number of studies ranging from one to three.

4.4 The Accuracy of Machine Learning Techniques
(RQ3)

To answer this question, we explore the evaluation metrics
used in the PSs to evaluate the performance of the machine
learning techniques used in code smell detection. Then, we
compare the machine learning techniques that were used in
code smell detection to identify the techniques that achieved
the highest detection performance.

Several evaluation metrics were used by the PSs to evalu-
ate the performance of the machine learning techniques used
in code smell detection. These evaluation metrics are pre-
sented in Table 13 in descending order according to their
frequency in the PSs. We notice that the recall metric was
the most frequently used metric, being used in 9 of the 17

Table 10 Machine learning family

Technique family Techniques

Artificial Neural Network RBFN, MLP
Decision Tree J48, Decision trees C5.0, Deci-

sion tree forest (DFT), Random
Forest

Support Vector Machines SVM, SMO
Instant-Based Learning IBL, IBK

Table 11 The ML techniques used

Machine learning techniques used in the selected studies Study

B-J48 Pruned, B-J48 Unpruned, B-J48 Reduce Error Prun-
ing, B-JRip, Random Forest,

B-Random Forest, Naive Bayes, B-Naive Bayes, B-SMO
RBF Kernel, B-SMO Poly Kernel,

B-LibSVM C-SVC Poly Kernel, B-LibSVM C-SVC Linear
Kernel, B-LibSVM C-SVC Radial Kernel,

B-LibSVM C-SVC Sigmoid Kernel, J48 Pruned, J48
Unpruned, J48 Reduce Error Pruning, JRip, SMO Polyno-
mial, SMO RBF, LibSVM C-SVC Poly Kernel, LibSVM
C-SVC Linear Kernel, LibSVM C-SVC Radial Kernel,
LibSVM C-SVC Sigmoid Kernel.

S1, S4

B-LibSVM ν-SVC Linear Kernel, B-LibSVM ν-SVC Poly
Kernel, B-LibSVM ν-SVC Radial Kernel, B-LibSVM
ν-SVC Sigmoid Kernel, LibSVM ν-SVC Linear Kernel,
LibSVM ν-SVC Polynomial Kernel, LibSVM ν-SVC
Radial Kernel, LibSVM ν-SVC Sigmoid Kernel.

S4

Fig. 5 Machine learning taxonomy [95, 96]

2355Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

Ta
bl

e
12

D

ist
rib

ut
io

n
of

 d
et

ec
te

d
co

de
 sm

el
ls

 o
ve

r s
tu

di
es

D
et

ec
te

d
sm

el
ls

/st
ud

ie
s

S1
S2

S3
S4

S5
S6

S7
S8

S9
S1

0
S1

1
S1

2
S1

3
S1

4
S1

5
S1

6
S1

7
To

ta
l

Fr
eq

ue
nc

y
%

G
od

 c
la

ss
√

√
√

√
√

√
√

√
√

√
√

√
√

13
76

.4
7

Lo
ng

 M
et

ho
d

√
√

√
√

√
√

√
√

√
9

52
.9

4
Fe

at
ur

e
En

vy
√

√
√

√
√

√
√

7
41

.1
7

D
at

a
C

la
ss

√
√

√
√

√
5

29
.4

1
La

zy
 C

la
ss

√
√

√
3

17
.6

4
Sp

ag
he

tti
 C

od
e

In
st

an
ce

s
√

√
√

3
17

.6
4

Fu
nc

tio
na

l D
ec

om
po

si
tio

n
(F

D
)

√
√

√
3

17
.6

4
La

rg
e

C
la

ss
√

√
2

11
.7

6
M

es
sa

ge
 C

ha
in

s
√

√
2

11
.7

6
Lo

ng
 P

ar
am

et
er

 li
st

√
√

2
11

.7
6

Sw
is

s A
rm

y
K

ni
fe

 (S
A

K
)

√
√

2
11

.7
6

D
up

lic
at

ed
 C

od
e

√
√

2
11

.7
6

Pa
ra

lle
l I

nh
er

ita
nc

e
H

ie
ra

rc
hi

es
√

1
5.

88
Ty

pe
 C

he
ck

in
g

√
1

5.
88

A
nt

iS
in

gl
et

on
√

1
5.

88
Re

fu
se

d
Pa

re
nt

 R
eq

ue
st

√
1

5.
88

Sp
ec

ul
at

iv
e

G
en

er
al

ity
√

1
5.

88
Pr

iv
at

e
C

la
ss

 D
at

a
√

1
5.

88
M

id
dl

e
M

an
√

1
5.

88
C

om
pl

ex
 C

la
ss

√
1

5.
88

Em
pt

y
ca

tc
h

bl
oc

k
√

1
5.

88
C

ar
el

es
s c

le
an

up
√

1
5.

88
D

um
m

y
ha

nd
le

r
√

1
5.

88
U

np
ro

te
ct

ed
 m

ai
n

√
1

5.
88

N
es

te
d

try
 st

at
em

en
t

√
1

5.
88

Ex
ce

pt
io

n
th

ro
w

n
in

 fi
na

lly
 b

lo
ck

√
1

5.
88

Sw
itc

h
St

at
em

en
t

√
1

5.
88

O
ve

r l
og

gi
ng

√
1

5.
88

D

et
ec

te
d

sm
el

ls
4

6
4

4
11

12
4

4
3

7
1

1
2

1
1

3
1

2356 Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

studies, followed by the accuracy metric, which was used
in 8 of the 17 studies. Different configurations were used
in the PSs to validate the learning mechanism. We present
these mechanisms in Table 14. We observe that, 7 studies
(S1, S4, S5, S7, S10, S15 and S16) adapted the K-fold cross-
validation method. This method guarantees that each fold
includes the same proportions of the smelly and non-smelly
classes. Our findings show that only 2 studies (S1 and S4)
used the grid-search algorithm.

The strategy which was followed to answer this question
is presented in Tables 15 and 16. The main attributes of our
evaluation are:

• The machine learning algorithm used
• The considered code smells
• The study source that mentions the evaluation
• A lower or a higher prediction (the sign of “+” means

higher, while “−” is lower)

For example, in S4 [7], the J48 algorithm performs
better than naive Bayes to detect the code smell of Data
Class, Long method, and Feature Envy. However, this study
found that the naive Bayes algorithm is better than the J48
algorithm in terms of predicting the God Class code smell.
Therefore, the algorithm in the row of the table is better
than the algorithm in the column if the sign is “+” and the
opposite in case the sign is “−.”

For more clarification, Table 17 compares the used
machine learning techniques per the considered code smell.
The best machine learning algorithm for detecting the Data
Class smell is the J48 algorithm, followed by JRip. For the
Long Method smell, the JRip algorithm is the best followed
by J48. Random Forest is the best at detecting the Feature
Envy code smell, whereas the Naive Bayes algorithm is the
best at detecting God Class. In conclusion, the standalone
machine learning algorithm that consistently exceeds the
other standalone machine learning algorithms was the J48
algorithm, whereas the worst algorithm was VFI. Table 17
sorts these algorithms for each code smell based on the
reported accuracy.

The remainder of the studies applied one standalone
machine learning technique to detect the type of code smell.
Table 18 depicts the evaluation conducted by these studies.
In study S3 [70], the authors applied SVM to detect God
Class, Data Class, Long Method, and Feature Envy. The
results of this study show that the SVM achieved the highest
accuracy in detecting the God Class code smell. Addition-
ally, S8 [73] applied SVM to detect four types of code smells
namely: Spaghetti Code, Functional Decomposition, Swiss
Army Knife. Their results support S3 [70] in the case of
detecting God Class. Consequently, the SVM algorithm has
a good estimation of the God Class code smell. In S13 [76],
the Decision Tree Forest is more accurate for detecting God
Class than the Long Method.

Some studies used ensemble techniques. Therefore, we
need to compare the performance of these techniques to find
the machine learning technique that performs better than the
others. We follow the same strategy to compare the stan-
dalone machine learning techniques. Table 19 shows the
studies which used the boosting techniques.

Three of the 17 selected studies used boosting techniques
(S1 [68], S4 [7], S7 [72]). They applied the same algorithm
and detected the same types of code smell, and there is also
a high similarity in the datasets used, especially S1 [68], S4
[7]. The authors in study S1 [68] replicated the experiment
conducted in study S4 [7] and made some modifications to
the datasets that were built in S4 [7].

Table 20 shows which strategy was applied in each of the
studies. The main attributes of our evaluation are the name
of the machine learning algorithm used, the detected code
smell, the study source that mentioned the evaluation, and a

Table 13 Performance evaluation methods

Validation Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 Frequency

Recall √ √ √ √ √ √ √ √ √ 9
Accuracy √ √ √ √ √ √ √ √ 8
Precision √ √ √ √ √ √ √ 7
F-measure √ √ √ √ 4
ROC Area √ √ √ 3
Specificity √ 1
Mean absolute error (MAE) √ 1
Root mean square error (RMSE) √ 1

Table 14 Validation of the learning mechanism

Validation mechanism Studies

k-fold cross-validation S1, S4, S5, S7,
S10, S15,
S16

Leave-one-out method S13

2357Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

Ta
bl

e
15

St

an
da

lo
ne

 m
ac

hi
ne

 le
ar

ni
ng

 a
cc

ur
ac

y
co

m
pa

ris
on

G
C

 G
od

 c
la

ss
, D

C
 D

at
a

cl
as

s,
LM

 L
on

g
m

et
ho

d,
 F

E
Fe

at
ur

e
en

vy
, S

S
Sw

itc
h

st
at

em
en

t,
LP

 L
on

g
pa

ra
m

et
er

 li
st,

 M
C

 M
as

sa
ge

 c
ha

in
s,

M
M

 M
id

dl
e

m
an

, L
C

 L
az

y
cl

as
s

N
ai

ve
 B

ay
es

R
an

do
m

 F
or

es
t

JR
IP

SV
M

SM
O

+
−

+
−

+
−

+
−

+
−

J4
8

(S
1,

 S
4)

D
C

, F
E,

(S
4)

LM

(S
1,

 S
4)

G
C

,
(S

1)
 L

M

(S
1,

 S
4)

 G
C

,
(S

1)
 D

C
,

G
C

, F
E,

(S
1)

 L
M

(S
4)

 D
C

,
LM

, F
E

(S
1,

 S
4)

D
C

, G
C

,
FE

,
(S

1)
 L

M

(S
4)

 L
M

, F
E

(S
1,

 S
4)

D
C

, G
C

,
FE

, L
M

(S
1,

 S
4)

D
C

, G
C

,
FE

, L
M

N
ai

ve
 B

ay
es

(S
1)

, D
C

,
LM

, F
E,

(S
1,

 S
4)

 G
C

(S
4)

, D
C

,
LM

, F
E

(S
1,

 S
4)

 G
C

,
(S

1)
 L

M
, F

E
(S

1,
 S

4)
 D

C
,

(S
4)

 L
M

, F
E

(S
1,

 S
4)

D
C

, G
C

(S
1)

LM
, F

E

(S
4)

LM
, F

E
(S

1,
 S

4)
 G

C
,

(S
1)

 D
C

,
LM

, F
E

(S
4)

D
C

, L
M

, F
E

R
an

do
m

 F
or

es
t

(S
4)

 D
C

, L
M

, F
E,

 G
C

(S
1)

 D
C

, L
M

, F
E,

 G
C

(S
4)

 D
C

,
LM

, F
E,

G

C

(S
1)

 D
C

,
LM

, F
E,

G

C

(S
4)

D
C

, L
M

,
FE

, G
C

(S
1)

D
C

, L
M

,
FE

, G
C

JR
IP

(S
1,

 S
4)

D
C

, L
M

,
FE

, G
C

(S
1,

 S
4)

D
C

, L
M

,
FE

, G
C

SV
M

(S
1,

 S
4)

 G
C

,
(S

1)
D

C
, L

M
,

FE

(S
4)

D
C

, L
M

,
FE

2358 Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

Ta
bl

e
16

St

an
da

lo
ne

 m
ac

hi
ne

 le
ar

ni
ng

 a
cc

ur
ac

y
co

m
pa

ris
on

 c
on

tin
ue

d

N
ai

ve
 B

ay
es

R
an

do
m

 F
or

es
t

B
in

ar
y

lo
gi

sti
c

re
gr

es
si

on

(B
LR

)
IB

K
V

FI
IB

L

+
−

+
−

+
−

+
−

+
−

+
−

J4
8

(S
1,

 S
4)

D
C

, (
S1

0)
 F

E,
(S

10
)

LM
,

(S
10

) L
C

,
SS

, L
P,

 M
M

(S
10

) M
C

(S
10

) L
M

,
LC

,
SS

, M
M

(S
10

) F
E,

LP
, M

C
, S

S,

M
M

(S
10

) L
M

,
FE

,
LC

, S
S,

M
M

(S
10

) L
P,

 M
C

(S
10

)
LC

, S
S,

M
M

(S
10

) L
M

, F
E,

LP
, M

C
(S

10
) L

C
, S

S,
M

M
, L

M
, F

E,
LP

, M
C

(S
10

) L
C

, S
S,

M
M

(S
10

) L
M

, F
E,

LP
, M

C

N
ai

ve
 B

ay
es

(S
10

) L
M

, F
E,

LC
, S

S,
M

M
, L

P,
 M

C

(S
10

) L
C

,
SS

, M
M

,
LM

, F
E,

 L
P,

M

C

(S
10

) L
C

,
SS

, M
M

,
LM

, F
E,

 L
P,

M

C

(S
10

) L
C

,
SS

, M
M

,
LM

, F
E,

 L
P,

M

C

(S
10

) L
C

,
SS

, M
M

,
LM

, F
E,

 L
P,

M

C
R

an
do

m
 F

or
-

es
t

(S
10

) L
C

,
SS

, M
M

,
LM

, F
E,

LP

(S
10

),
M

C
(S

10
)

LC
, F

E,
 L

P
(S

10
) L

M
,

SS
, M

M
, M

C
(S

10
) L

C
,

SS
, M

M
,

LM
, F

E,
 L

P,

M
C

(S
10

)
SS

,
LC

, F
E,

LP

(S
10

) L
M

M
M

, M
C

B
LR

(S
10

) F
E

(S
10

) L
M

,
LC

, L
P,

SS
, M

M

(S
10

)
FE

, L
M

,
LC

, L
P,

SS
, M

M

(S
10

)
FE

, L
M

,
LC

, L
P,

SS
, M

M
IB

K
(S

10
)

FE
, L

M
,

LC
, L

P,
SS

, M
M

(S
10

)
LM

,
LC

, L
P,

SS
, M

M

(S
10

) F
E

IB
L

(S
10

)
FE

, L
M

,
LC

, L
P,

SS
, M

M

2359Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

lower or a higher detection (“+” indicates higher while “−”
indicates lower).

Table 21 presents the code smell and which machine
learning algorithm has performed better than the others in
relation to detecting the code smell. Table 21 shows that the
best machine learning algorithm to detect Data Class smell
is the B-J48 pruned algorithm. The second most effective
algorithm is the B-JRip, followed by the B-Random For-
est algorithm. The B-J48 unpruned algorithm was the best
at detecting the Long Method smell, followed by B-JRip.
The B-J48 algorithm and the B-JRip algorithm were the two

most effective in detecting all code smells except for God
Class where B-Random Forest was the second most effective
algorithm. We conclude that the family of J48 techniques
and B-Random Forest are the top techniques for all types
of code smells, while the SVM techniques are the worst.
Furthermore, we note that, in some cases, using the boost-
ing technique on the models does not always enhance their
performance, and in fact, it could make the model worse.
For instance, in S4 [7], using naive Bayes to predict the God
Class code smell without using boosting techniques was the
best algorithm but after applying boosting techniques, its
performance declined. This was also the case when using
Random Forest with boosting techniques to detect God
Class.

We observe that the highest performance results in all
PSs obtained by B-J48 unpruned as it achieved 99.63% of
F-Measure value when it was used to detect Long method
code smell, followed by B-J48 pruned which achieved
99.26% of F-Measure value when it was used to detect Data
Class code smell.

4.5 The Used Datasets (RQ4)

In this section, we analyze the datasets that were used for
code smell detection and identify several attributes of these
datasets, such as the dataset name, size, type (commercial,
student, open source), availability, and language.

Table 22 presents general information on the datasets
used in the 17 studies. Fourteen studies used open-source
systems, while three studies (S10, S13, and S15) used indus-
trial systems. All studies used systems written in the Java
except for S14, S15, they used systems written in C and C#,
respectively. Most studies used software metrics as the inde-
pendent variables, as shown in Table 23, except for S14 they
used textual metrics called string tokenization. Two studies
of the 17 made their dataset available. Table 22 presents the
number of systems used to build their datasets, the dataset

Table 17 Suitable machine learning technique to detect a specific code smell

Code smell Suitable machine learning technique

Data Class J48, JRIP, Random Forest, Naive Bayes, SMO, SVM.
Long Method J48, JRIP, IBK, Naive Bayes, Random Forest, IBL, Binary Logistic Regression, SMO, SVM, VFI.
Feature Envy Random Forest, J48, IBK, Naive Bayes, JRIP,

IBL, SMO, SVM, Binary Logistic Regression, VFI.
God Class Naive Bayes, J48, Random Forest, JRIP, IBK, SMO, SVM, IBL, Binary Logistic Regression, VFI.
Long Parameter List Random Forest, IBK, Binary Logistic Regression, J48, IBL, Naive Bayes, VFI.
Middleman J48, IBK, IBL, Random Forest,

Binary Logistic Regression, Naive Bayes, VFI.
Message Chains IBL, IBK, Binary Logistic Regression,

Random Forest, Naive Bayes, J48, VFI.
Lazy class J48, Random Forest, IBK, Binary Logistic Regression, IBL, Naive Bayes, VFI.
Switch Statement J48, IBK, Random Forest, Binary Logistic Regression, IBL, Naive Bayes, VFI.

Table 18 Standalone machine learning accuracy comparison

Model Suitable for

SVM (S3, God Class, Data Class,
Long Method, Feature Envy),

(S8, God Class, Spaghetti Code,
Swiss Army Knife,

Functional Decomposition)
Decision Tree Forest (S13, God Class, Long Method)
Binary Logistic Regression (S11, Long Method)
Bayesian Belief Networks (S11, God Class), (S9, God

Class, Swiss Army Knife,
Functional Decomposition,

Spaghetti Code),
(S15, Duplicated Code), (S17,

God Class)
Natural language processing (S14, Duplicated Code)

Table 19 Application of boosting techniques

Techniques Studies

Standalone machine learning S1, S2, S3, S4, S5, S6, S7, S8, S9,
S10, S11, S12, S13, S14, S15, S16,
S17

Boosting S1, S4, S7

2360 Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

Ta
bl

e
20

C

om
pa

ris
on

 o
f a

cc
ur

ac
y

of
 b

oo
sti

ng
 te

ch
ni

qu
es

B
-n

ai
ve

 B
ay

es
B

-r
an

do
m

 fo
re

st
B

-J
R

IP
B

-S
V

M
B

-S
M

O

+
−

+
−

+
−

+
−

+
−

B
-J

48
(S

1,
 S

4,
 S

7)
D

C
, G

C
,

(S
4,

 S
7)

LM
, F

E

(S
1)

LM
, F

E
(S

1,
 S

4)
 D

C
,

FE
, G

C
,

(S
1)

 L
M

(S
7,

 S
4)

LM
, (

S7
)

D
C

,
FE

, G
C

(S
1,

 S
4,

S7
)

D
C

, G
C

,
LM

, F
E

(S
1,

 S
4,

S7
)

D
C

, G
C

,
LM

, F
E

(S
1,

 S
4,

S7
)

D
C

, G
C

,
LM

, F
E

B
-N

ai
ve

 B
ay

es
(S

1)
D

C
, G

C
,

LM
, F

E

(S
4,

 S
7)

D
C

, G
C

,
LM

, F
E

(S
1)

G
C

, F
E

(S
1,

 S
4,

S7
)

D
C

, L
M

,
(S

4,
 S

7)
G

C
, F

E

(S
1,

 S
4,

S7
) D

C
,

(S
1,

 S
4)

LM
, (

S4
) G

C
,

(S
1)

 F
E.

(S
7)

 L
M

,
(S

1,
 S

7)
G

C
(S

4,
 S

7)
FE

,
(S

1)
 D

C
.

(S
1,

 S
4)

LM
, F

E,
(S

1)
 G

C

(S
1,

 S
4,

S7
)

D
C

(S
4,

 S
7)

 G
C

,
(S

7)
 L

M
, F

M

B
-R

an
do

m
 F

or
es

t
(S

4,
 S

7)
G

C
,

(S
4)

 L
M

,
(S

7)
 D

C

(S
1,

 S
7)

LM
,

(S
1,

 S
4,

S7
)

FE
, (

S1
, S

4)
D

C
,

(S
1)

 G
C

(S
4,

 S
7)

D
C

, L
M

,
G

C
, F

E

(S
1)

D
C

, L
M

,
G

C
, F

E

(S
4,

 S
7)

D
C

, L
M

,
G

C
, F

E

(S
1)

D
C

, L
M

,
G

C
, F

E

B
-J

R
IP

(S
1,

 S
4,

S7
)

D
C

, L
M

,
FE

,
(S

4,
 S

7)
G

C

(S
1)

G
C

(S
1,

 S
4,

S7
)

D
C

, L
M

,
FE

,
(S

4,
 S

7)
G

C

(S
1)

G
C

B
-S

V
M

(S
1)

 L
M

,
FE

, G
C

(S
1,

 S
4,

 S
7)

D
C

,
(S

4,
 S

7)
G

C
, L

M
, F

E

2361Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

input type, dataset type, language, and the number of used
metrics.

Table 24 shows the size of each dataset in terms of
three attributes: the number of used systems, the number
of classes, and the number of lines of code. We note that
only three studies used more than 20 systems. Therefore,
we can report these as reliable datasets. Some of the studies
did not mention the size (number of classes and the num-
ber of lines of code) of their datasets such as (S3, S6) but
they mentioned the number of systems. In S3, there are 20
systems, and in S7, there are 76 systems. The authors of
S10 did not mention the attributes (the number of used sys-
tems, the number of classes and the number lines of code)
as they only collected 7 datasets from the previous literature.
We observe that 14 PSs used open-source systems. There-
fore, they are freely available and can be used to replicate
the research. Furthermore, other researchers who utilized
the same systems allow comparison. Additionally, previ-
ous studies reported that commercial systems may provide
higher code quality than open-source systems [99].

Table 25 shows the four most used systems used in the 17
PSs, while Table 23 presents the software metrics used as
independent variables in the datasets. We can see that only

eight of the seventeen studies mentioned the software met-
rics. These metrics include the metrics proposed by Chid-
amber and Kemerer in 19911 [100, 101], the MOOD metrics
proposed by Abreu and Carapua in 19942 [102–104], and the
QMOOD metrics proposed by Bansiya and Davis in 20023
[105–107]. We observe that the C&K software metrics were
used in five of the eight studies that mentioned software
metrics as C&K metrics cover different object-oriented
properties, while the QMOOD software metrics were used
in two studies. The MOOD software metrics were used in
one study. To obtain the values of these metrics from the
systems, several tools were used. These tools are shown in
Table 26. From Table 26, we observe that the tools POM and
design features and metrics for Java (DFMC4 J) were used in
three of the seventeen studies. The DFMC4J tool was used
in two studies S4 and S7 which have the same authors, and
it was also used in S1 which replicated the experiment in S4.

Table 21 Suitable machine
learning algorithm to detect a
specific Code smell

Code smell Suitable machine learning algorithm

Data Class B-J48, B-JRIP, B-Random Forest, B-SMO, B-SVM, B-Naive Bayes.
Long Method B-J48, B-JRIP, B-Random Forest, B-Naive Bayes, B-SMO, B-SVM.
Feature Envy B-J48, B-JRIP, B-Random Forest, B-Naive Bayes, B-SMO, B-SVM.
God Class B-J48, B-JRIP, B-Random Forest, B-SMO, B-SVM, B-Naive Bayes.

Table 22 A summary of
previous studies

Study Dataset # Systems Dataset inputs Dataset type Language #Used metrics

S1 – 74 Object-oriented metrics Open source Java 36
S2 – 20 Object-oriented metrics Open source Java 8
S3 – 2 Object-oriented metrics Open source Java –
S4 Available 74 Object-oriented metrics Open source Java 82
S5 – 4 Object-oriented metrics Open source Java 17
S6 – 4 Object-oriented metrics Open source Java 62
S7 – 76 Object-oriented metrics Open source Java 82
S8 Available 3 Object-oriented metrics Open source Java 50
S9 – 2 Goal Question Metric (GQM) Open source Java –
S10 – - Object-oriented metrics Industrial Java 27
S11 – 1 Expert’s knowledge &

Object-oriented metrics
Open source Java –

S12 – 2 Rule based Open source Java –
S13 – 2 Object-oriented metrics Industrial Java 9
S14 – 4 Textual Open source C –
S15 – 2 Object-oriented metrics Industrial C# 21
S16 – 2 Goal Question Metric (GQM) Open source Java –
S17 – 2 Object-oriented metrics Open source Java –

1 C&K metrics (DIT, NOC, CBO, RFC, WMC, LCOM).
2 MOOD metrics (MHF, AHF, MIF, AIF, POF, COF).
3 QMOOD metrics (DSC, NOH, ANA, DAM, DCC, CAM, MOA,
MFA, NOP, NOM, CIS).

2362 Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

Regarding the dependent variables in each dataset, 12
studies used binary classification (“0” or “1”) or (“smelly”
or “non-smelly”), while only two studies S1 and S16 used
multiclassification.

4.6 The Tools Used to Implement the Machine
leArning Algorithms (RQ5)

In the PS, we found that two kinds of tools were used to
implement the machine learning algorithms to detect code
smells: WEKA and Tensor Flow implemented in Python.
Table 27 shows these tools which were used in the PSs to

Table 23 Software metrics used in previous studies

Authors Software metrics

Kim [69] LOC, CC, C&K metrics
Fontana et al. [7] C&K metrics except (LCOM), LOC, LOCNAMM, NOPK, NOCS, NOM, NOMNAMM, NOA, CYCLO, WMCNAMM,

AMW, AMWNAMM, MAXNESTING, CLNAMM, NOP, NOAV, ATLD, NOLV, FANOUT, FANIN, ATFD, FDP,
CFNAMM, CINT, MaMCL, MeMCL, NMCS, CC, CM, NOAM, NOPA (NOAP), LAA, NOI, NMO, NODM, NOPM,
NOPRM, NOPLM, NONAM, NOSM, NIM, NOII, NODA, NOPVA, NOPRA, NOFA, NONCM, NOFM, NOFNSM,
NOFSM, NONFNABM, NOFSA, NOFNSA, NONFNSA, NOSA, NONFSA, NONFNSA, NOSA, NONFSA, NOABM,
NOCM, NONFNSM, NONFSM

Tarwani et al. [52] LOC, C&K metrics, CC, Cyclomatic complexity (Ocavg), Dependencies (Dcy &Dcy), Javadoc function (jf), Javadoc Line
of code (jLOC), Javadoc methods (jm), MHF, AHF

Amorim et al. [71] C&K metrics, QMOOD metrics except (CAM, ANA, CIS), ACAIC, ACMIC, AID, AMC, CA, CAM, CE, CLD, COHE-
SIONATTRIBUTES, CONNEC-

TIVITY, DCAEC, DCMEC, DIT 1, IC, ICHCLASS, IR, LCOM1, LCOM2, LCOM3, LCOM5, LOC, LOC 1, MCCABE,
MLOCSUM, NAD, NADEXTENDED, NCM, NMA, NMD, NMDEXTENDED, NMI, NMO, NOA, NOC 1, NOD,
NOF, NOPARAM, NOPM, NOTC, NOTI, NPM, RFC NEW, SIX, VGSUM, WMC NEW, WMC1, CBM

Maiga et al. [73] C&K metrics, QMOOD metrics, ACAIC, ACMIC, AID, CBOin, CBOout, CLD, DCAEC, DCMEC, ICHClass, IR,
LCOM2, LCOM5, LOC, McCabe, NAD, NADExtended, NCM, NMA, NMD, NMDExtended, NMI, NMO, NOA,
NOD, NOPM, NOParam, NOTI, NPrM, SIX, USELESS, WMC1, cohesionAttributes, connectivity

Maneerat et al. [32] MOOD metrics, NA, NC, NM, NO, NP, C PARAM, RFC, WAC, WMA, D APPEAR, DIT, NOC, NAI, NOI, ACT,
COMP, NS, CBC, ABSTR R, ASSOC R, DEPEND R

Kreimer [76] Number of statements of a method, NOLV, NOP, CYCLO, Number of instance variables of a class, Median of the number
of statements of all methods of a class, Number of internal connected components, Median of complexities of all meth-
ods of a class, Number of external connected components

Wang et al. [78] “Whether it is a Local Clone, Method Name Similarity, Masked File Name Similarity, Sum of Parameter Similarities, Dif-
ference on Only Post

x Number, Maximal Parameter Similarity, Fine Name Similarity, LOC, Number of Library Invocations Number of Other
Invocations, Number of Local Invocations, Number of Invocations, Number of Library Invocations, Number of Invoca-

tions, Number of Other Invocations, Number of Field Accesses, Number of Local Invocations, Number of Recent
Changes, Number of Changes, Existence Time, File Existence Time, Number of Recent File Changes, Number of File
Changes”

Table 24 Dataset size

#Systems #Classes #LOC Study

74 51,826 6,785,568 S1, S4
2 5,594,000 S15
20 53,000 3,000,000 S2
4 13,700 4,070,000 S6
4 1089 S5
3 3192 113,017 S8
2 777 271,000 S9, S12, S16
2 688 96,889 S13
1 193 20 S11

Table 25 Used systems System S1 S2 S3 S4 S6 S7 S8 S9 S12 S13 S14 S15 S16 S17 Frequency

Xercesv √ √ √ √ √ √ √ √ √ 9
ArgoUML √ √ √ √ √ √ √ 7
WEKA √ √ √ √ 4
junit-4.10 √ √ √ √ 4

2363Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

implement machine learning algorithms. Eleven of the 17
studies used Weka, and only one study S2 utilized Tensor
Flow written in Python. Five studies S5, S11, S14, S16, and
S17 did not provide details on the tool that was used.

5 Discussion

In this section, we discuss the main results of this study
based on the research questions. Furthermore, we report
some recommendations that can be used as a start point for
the future research.

5.1 Types of Machine Learning Techniques Used
(RQ1)

Our findings show that 28 of the most commonly used
machine learning techniques were used to detect code
smells. The reasons behind using these techniques in many
studies are: the high performance these techniques provide
and the availability of these techniques in tools. Only 5 out
of 17 PSs used more than one machine learning algorithms;
this reveals a lack in the application of machine learning to
address the issue of smells in the software. Therefore, more
studies are needed in this field. Future studies may need to
use more than one machine learning technique to explore

the capability of each technique to detect code smells on the
same dataset.

Ensemble learning is proposed to improve the perfor-
mance of weak classifiers by combining several single
classifiers using different methods. However, most of the
reviewed studies applied a single classifier whereas three
studies out of the seventeen used boosting-based ensemble
techniques (homogenous ensemble techniques). Ensem-
ble techniques were found to outperform single learning
techniques in predicting software defects [108]; thus, more
studies that use ensemble techniques to detect code smells
should be conducted.

5.2 Detected Smells (RQ2)

Twenty-eight types of code smells were detected in the
PSs. God Class, Long Method, Feature Envy, and Data
Class were the most detected smells; they also got more
attention in the recent studies, as shown in Table 12. The
possible reasons behind selecting these code smells are:

• They cover different design problems.
• Their critical influence on software quality.
• They are the most frequently occurring code smells.
• These code smells are well known and easy to under-

stand.
• The availability of these code smells in the automated

tools.

In terms of using machine learning to detect code
smells, we observe that most of the PSs used a small
number of code smells. Furthermore, not all code smells
proposed by Fowler [33] are covered by the previous stud-
ies so some of these code smells that might have an effect
on the software quality have not been studied yet; hence,
more studies can be conducted to study these code smells.

Table 26 Tools used to compute
the metrics

Tool S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 Frequency

POM √ √ √ 3
Design Features and

Metrics for Java
(DFMC4J)

√ √ √ 3

Eclipse Plugin √ √ 2
SciTools Understand √ 1
Analyst 4J √ 1
IntelliJ IDEA √ 1
CKJM √ 1
Design Program

Dependence Graph
(DPDG)

√ 1

Table 27 Tools used to implement experiments

Tool Studies #Studies

Weka S1, S3, S4, S6, S7, S8, S9, S10,
S12, S13, S15

11

Tensor flow S2 1
Not mentioned S5, S11, S14, S16, S17 5

2364 Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

5.3 The Accuracy of Machine Learning Techniques
(RQ3)

We observe that the recall metric was the most frequently
used metric followed by the accuracy and precision met-
rics. However, some researchers (for instance the authors of
[7]) claim that the metrics accuracy, F-measure, and ROC
Area show several points of views of the performances of
predictive models and showed that using only one of these
measures can show the whole performance measure; there-
fore, these metrics should also be used to evaluate the per-
formance of applied machine learning techniques for code
smells detection; however, recall and precision should be
used together to adequately assess the performance of a
model. In addition, they reported that it is not recommended
to use accuracy metric alone especially in the case of having
unbalanced datasets (negative and positive classes are unbal-
anced). We observed that most of the used performance met-
rics are important measures for the classification models:
recall, accuracy, precision, F1-score, AUC, and specificity
[109–111]. Only two metrics used for a regression problem
which are RMSE and MAE measures. These two metrics
were proposed to use for regression models [112, 113].
Furthermore, only two studies applied the grid-search algo-
rithm. This algorithm used to search and find the optimal
parameters of machine learning algorithms that yield the
highest performance. Therefore, we believe that more stud-
ies are needed to address this issue to generate more efficient
code smell detection models.

5.4 The Used Datasets (RQ4)

Based on our findings, the Java language got more atten-
tion from the previous studies. Most of the PSs tested their
approaches using systems written in java. For this reason,
more studies are needed to investigate the capabilities of
machine learning techniques to detect code smells in other
programming languages such as C#, C ++. Moreover, we
found that, five studies (S1, S2, S4, S7 and S6) build their
datasets from different systems, while the other studies build
their datasets based on one system. Building datasets from
different systems is the best way to avoid the issue of bias. In
addition, most of PSs used software metrics as the independ-
ent variables, while recent studies [114, 115] have reported
that software metrics are insufficient to optimize software
quality. To address this issue, the implementation of other
resources should be used for identifying the characteristic of
smelly code such as dynamic, historical, and textual aspects.
In addition, the manual validation process of the dataset is
an important step to have an effective dataset.

Feature selection is an essential preprocessing step in
machine learning that aims to select a small subset of the
relevant features from the original dataset by eliminating

redundant, irrelevant or noisy features in order to achieve
better learning performance, i.e., enhances accuracy, lower
computational cost and time [116]. Our findings show that
only one study S1 used Gain Ratio Feature Evaluation tech-
nique as feature selection techniques. Thus, more studies
are needed to investigate the use feature selection in code
smells detection. On the other hand, only two studies applied
multiclassification. Therefore, future studies should consider
multiclassification.

5.4.1 Dataset Analysis

In this subsection, we analyze the available datasets that
were used in S4 [7] and S8 [73]. The first dataset was built
by Arcelli Fontana et al. [7] who collected systems from one
of the massive curated benchmark datasets, called Quali-
tas Corpus [117], release 20120401r. 74 systems out of 111
Java systems of the corpus were selected. Thirty-seven sys-
tems were ignored since they could not be compiled; conse-
quently, bad smell detection could not be achieved. In these
74 software systems, there are 6,785,568 lines of code, 3420
packages, 51,826 classes, and 404,316 methods.

The software metrics presented in Table 23 were used as
independent variables in their machine learning approaches
for detecting class and method level smells. At the class
level, there were two smells: Data Class and God Class and
at the method level, there were also two smells: Feature Envy
and Long Method. At the method level, 82 software metrics
were computed for each system, while at the class level, only
61 software metrics were computed. The computed opera-
tion was done using a tool developed by the authors called
“design features and metrics for Java (DFMC4J).”

Four datasets were built by the authors of S5, one for
every smell, i.e., every dataset included code that has smelly
and non-smelly parts. Table 28 shows the set of automatic
detectors that were employed by the authors to detect each
code smell to establish the dependent variable for the bad
smell detection methods.

Generally, achieving 100% recall is unusual in this field,
meaning that an automatic detection method might not
recognize real bad smell instances even when combining

Table 28 Bad smell detection tools

Detectors Code Smell

iPlasma Long Method, Data
Class, Feature Envy,
God Class

Marinescu Long Method
Fluid Tool Feature Envy, Data Class
Antipattern Scanner Data Class
PMD Long Method, God Class

2365Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

multiple detectors. A stratified random sampling of the
methods/classes of the studied systems was utilized to
enhance their confidence in validity of the dependent
variable and address the false positives: this sampling
performed 1,986 instances as shown in Table 29, the bal-
ance of the training set being 2/3 negative and 1/3 positive
instances, where positive means the system is affected by a
code smell, while negative means it is not affected. Later,
a manual validation of these instances was conducted by
three master students to check the detection results.

The authors made a normalization of the sampled data-
set: by removing the non-smelly and smelly elements and
building four separate datasets using every kind of soft-
ware smell, containing 280 non-smelly and 140 smelly
instances; hence, there were 420 instances in each dataset.
The training set for the machine learning methods was
represented by these four datasets.

The second dataset was built by Maiga et al. [73,
118] who analyzed three open-source systems that are
freely available and have been utilized in several studies:
Azureus v2.3.0.6, Xerces v2.7.0, and ArgoUML v0.19.8.

The software metrics presented in Table 23 were used
as independent variables in their machine learning tech-
nique for detecting four code smells: God Class, Swiss
Army Knife (SAK), Functional Decomposition (FD), and
Spaghetti Code (SC). These metrics were used as training
inputs. They calculated the values of the software metrics
to use them as independent variables, and the computed
operation was done using a tool called POM. This tool is
an extensible framework that depends on the PADL meta-
model [119] and contains more than 60 software metrics
[120].

Maiga et al. built three datasets for every system and
every code smell. These datasets comprise two parts:
smelly or non-smelly classes in equal numbers. They used
30 functional decomposition classes in Azureus v2.3.0.6 to
build each dataset and added 30 non-functional decompo-
sition classes by selecting them randomly in the remaining
classes of Azureus v2.3.0.6. After this, they divided the 60
classes randomly into the three datasets: Dataset1, Data-
set2, and Dataset3, making sure that each dataset contains
10 functional decomposition instances and 10 functional
decomposition instances. Therefore, every dataset has 20
instances. Finally, they used practitioners’ feedback on the
results as input for the training dataset.

5.5 The Tools Used to Implement the Machine
Learning Algorithms (RQ5)

We observe that most of the studies used Weka because this
tool is the most common and widely used for implementing
machine learning algorithms [7, 32]. In addition, this tool
contains 37 algorithms for classification problems [32] and
is considered a reliable tool [68]. Furthermore, it is freely
available. However, based on our findings, we can claim
that using only two tools in this field is not enough since
the used tools do not provide all types of machine learning
techniques. This is a clear opportunity for many researchers
to improve the detection of code smells by using other appli-
cation environments which are considered as in the top of
ranking for implementing machine learning techniques and
also have numerous libraries which are the implementations
of recent machine learning techniques, for example, Python,
R, and Julia.

6 Threats to Validity

In this section, we identify some potential threats to validity
which might have biased our systematic literature review.
The potential threats to the validity of our research are
searching and choosing the relevant studies and the data
extraction processes.

The authors in [31, 121] reported that a common threat
to SLR is the process of finding all the relevant research.
To find the relevant research, one threat is the process of
selecting online databases. To mitigate this threat, five
online research databases were selected. We selected the
well-known online databases that cover all journal papers
and conferences: ACM, IEEE, Scopus, Springer, and Sci-
ence Direct.

In order to mitigate the threat of excluding a relevant
study or including an irrelevant study in the study selection
phase, three researchers undertook the selection process and
resolved all conflicts in the case of disagreement.

To mitigate bias in the data extraction phase, data extrac-
tion cards were constructed. Three researchers performed
this process, one of them extracting the data then inserting
this into the cards, while the others examined the collected
data. In the case of disagreement, a discussion was con-
ducted to resolve these conflicts.

7 Conclusion

In this study, we performed an SLR for empirical studies on
the machine learning techniques used to detect code smells.
The main objective was to systematically review and ana-
lyze the machine learning techniques applied to detect code

Table 29 Sampling procedure Code case Instances

Smelly 826
Non-smelly 1160
Total 1986

2366 Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

smells from different perspectives: the code smells that were
employed in the experiments, the types of machine learn-
ing techniques applied to detect code smells, a compari-
son between these models in terms of prediction accuracy
and performance, the datasets used, and the tool utilized to
implement the machine learning models.

A literature search was conducted using five online data-
bases to retrieve the relevant studies. As a result, seventeen
primary studies relating to the five research questions in
this study were selected. The results show that God Class
and Long Method, Feature Envy, and Data Class are the
most frequently detected code smells. We also observed
that machine learning algorithms SVM, J48, Naive Bayes,
Random Forest, BBN, SMO, and JRIP are used the most.
We also observed that the standalone machine learning algo-
rithms that consistently outperform the other standalone
machine learning algorithms are the J48 algorithm, Random
Forest, JRip, Naive Bayes, IBk, IBL, SVM, SMO, and BLR.
The algorithm with the worst performance is VFI.

Our review also indicated that the family of J48 tech-
niques and B-Random Forest are the top techniques for
detecting all types of code smells, while the SVM techniques
are the worst. As well, we noticed that, in some cases, the
use of boosting techniques on the models does not always
enhance their performance. With respect to the dataset, it
was found that most of the PSs used Java-based case studies
and most of them used software metrics as independent vari-
ables. Only two of the 17 studies made the dataset available.
Finally, we found that Weka is the most commonly used
machine learning tool in the PSs, while one study employed
Tensor Flow in Python. Even though R is popular for imple-
menting the ML algorithms with excellent library support,
none of the primary studies used it; hence, R could be used
in future studies.

As a result of this study, we make the following observa-
tions to be considered when conducting new research that
uses machine learning for bad smell detection: (1) B-J48
unpruned achieved the highest performance results in all
PSs, it got 99.63% of F-Measure value when it was applied
for Long method detection, followed by B-J48 pruned which
achieved 99.26% of F-Measure value when it was applied
for Data Class detection, (2) some code smells have not been
investigate, (3) the use of ensemble learning techniques for
code smells detection has gained less attention as it was used
in two studies only, (4) only two studies used the grid-search
algorithm to configure the machine learning algorithms
parameters to find optimal parameters, (5) five studies built
their datasets from different systems, (6) only two studies
used multiclassification, and (7) only one study used feature
selection technique.

It can be seen that the application of machine learning
techniques to detect code smells is still a new area and needs
further investigation. Therefore, more research effort should

be focused to facilitate the employment of machine learning
techniques to address the issue of predicting code smells.

Acknowledgement The authors acknowledge the support of King Fahd
University of Petroleum and Minerals in the development of this work.

References

 1. Guzel, A.; Aktas, Ö.: A survey on bad smells in codes and usage
of algorithm analysis. Int J Comput Sci Softw Eng (IJCSSE)
5(6), 114 (2016)

 2. Danphitsanuphan, P.; Suwantada, T.: Code smell detecting tool
and code smell-structure bug relationship. In: 2012 Spring Con-
gress on Engineering and Technology, pp. 1–5

 3. Santos, J.A.M.; Rocha-Junior, J.B.; Prates, L.C.L.; Do Nasci-
mento, R.S.; Freitas, M.F.; De Mendonça, M.G.: A systematic
review on the code smell effect. J. Syst. Softw. 144, 450–477
(2018)

 4. Kruchten, P.; Nord, R.L.; Ozkaya, I.J.I.S.: Technical debt: from
metaphor to theory and practice. IEEE Softw. 29(6), 18–21
(2012)

 5. Seaman, C.; Guo, Y.: Measuring and Monitoring Technical Debt,
vol. 82, pp. 25–46. Advances in ComputersElsevier, Amsterdam
(2011)

 6. Khomh, F.; Vaucher, S.; Guéhéneuc, Y.G.; Sahraoui, H.: A bayes-
ian approach for the detection of code and design smells. In:
2009 Ninth International Conference on Quality Software, pp.
305–314

 7. Fontana, F.A.; Mäntylä, M.V.; Zanoni, M.; Marino, A.: Com-
paring and experimenting machine learning techniques for code
smell detection. Empir. Softw. Eng. 21(3), 1143–1191 (2016)

 8. Sjøberg, D.I.; Yamashita, A.; Anda, B.C.; Mockus, A.; Dybå,
T.: Quantifying the effect of code smells on maintenance effort.
IEEE Trans. Softw. Eng. 39(8), 1144–1156 (2012)

 9. Yamashita, A.; Moonen, L.; (2012) Do code smells reflect impor-
tant maintainability aspects?. In: 2012 28th IEEE international
conference on software maintenance (ICSM), IEEE, pp. 306–315

 10. Banker, R.D.; Datar, S.M.; Kemerer, C.F.; Zweig, D.: Software
complexity and maintenance costs. Commun. ACM 36(11),
81–95 (1993)

 11. Roy, R.; Stark, R.; Tracht, K.; Takata, S.; Mori, M.: Continuous
maintenance and the future–foundations and technological chal-
lenges. CIRP Ann. 65(2), 667–688 (2016)

 12. Bavota, G.; Oliveto, R.; Gethers, M.; Poshyvanyk, D.; De Lucia,
A.: Methodbook: recommending move method refactorings via
relational topic models. IEEE Transactions on Software Engi-
neering 40(7), 671–694 (2013)

 13. Marinescu, R.: Detection strategies: Metrics-based rules for
detecting design flaws. In: 20th IEEE International Confer-
ence on Software Maintenance, 2004. Proceedings, IEEE, pp.
350–359

 14. Moha, N.; Gueheneuc, Y.-G.; Duchien, L.; Le Meur, A.-F.:
Decor: a method for the specification and detection of code and
design smells. IEEE Trans. Softw. Eng. 36(1), 20–36 (2010)

 15. Palomba, F.; Bavota, G.; Di Penta, M.; Oliveto, R.; Poshyvanyk,
D.; De Lucia, A.: Mining version histories for detecting code
smells. IEEE Trans. Softw. Eng. 41(5), 462–489 (2015)

 16. Palomba, F.; Tamburri, D.A.A.; Fontana, F.A.; Oliveto, R.;
Zaidman, A.; Serebrenik, A.: Beyond technical aspects: How do
community smells influence the intensity of code smells? IEEE
Trans. Softw. Eng. 99, 1 (2018)

 17. Palomba, F.; Zaidman, A.; De Lucia, A.: Automatic test smell
detection using information retrieval techniques. In: 2018 IEEE

2367Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

International Conference on Software Maintenance and Evolu-
tion (ICSME), IEEE, pp. 311–322

 18. Tsantalis, N.; Chatzigeorgiou, A.: Identification of move
method refactoring opportunities. IEEE Trans. Softw. Eng.
35(3), 347–367 (2009)

 19. Munro, M.J.: Product metrics for automatic identification of”
bad smell” design problems in java source-code. In: 11th IEEE
International Software Metrics Symposium (METRICS’05),
IEEE, pp. 15

 20. Morales, R.; Soh, Z.; Khomh, F.; Antoniol, G.; Chicano, F.:
On the use of developers’ context for automatic refactoring of
software anti-patterns. J. Syst. Softw. 128, 236–251 (2017)

 21. Zhang, M.; Hall, T.; Baddoo, N.: Code bad smells: a review
of current knowledge. J. Softw. Evol. Process 23(3), 179–202
(2011)

 22. Singh, S.; Kaur, S.: A systematic literature review: Refactor-
ing for disclosing code smells in object oriented software. Ain
Shams Eng. J. 9(4), 2129–2151 (2017)

 23. Sharma, T.; Spinellis, D.: A survey on software smells. J. Syst.
Softw. 138, 158–173 (2018)

 24. Mariani, T.; Vergilio, S.R.: A systematic review on search-
based refactoring. Inf. Softw. Technol. 83, 14–34 (2017)

 25. Rasool, G.; Arshad, Z.: A review of code smell mining tech-
niques. J. Softw. Evol. Process 27(11), 867–895 (2015)

 26. Fernandes, E.; Oliveira, J.; Vale, G.; Paiva, T.; Figueiredo, E.:
A review-based comparative study of bad smell detection tools.
In: Proceedings of the 20th International Conference on Evalu-
ation and Assessment in Software Engineering, pp. 18–18

 27. Fontana, F.A.; Braione, P.; Zanoni, M.: Automatic detection
of bad smells in code: An experimental assessment. J. Object
Technol. 11(2), 1–5 (2012)

 28. Garcia, J.; Popescu, D.; Edwards, G.; Medvidovic, N.: Identify-
ing architectural bad smells. In: 2009 13th European Confer-
ence on Software Maintenance and Reengineering, IEEE, pp.
255–258

 29. Azeem, M.I.; Palomba, F.; Shi, L.; Wang, Q.: Machine learn-
ing techniques for code smell detection: A systematic literature
review and meta-analysis. Information and Software Technology
108, 115–138 (2019)

 30. Caram, F.L.; Rodrigues, B.R.; Campanelli, A.S.; Parreiras, F.S.:
Machine learning techniques for code smells detection: a system-
atic mapping study. J. Softw. Eng. Knowl. Eng. 29(02), 285–316
(2019)

 31. Kitchenham, B.; Charters, S.: Guidelines for performing Sys-
tematic Literature Reviews in Software Engineering. Technical
Report EBSE 2007-001, Keele University and Durham Univer-
sity Joint Report

 32. Maneerat, N.; Muenchaisri, P.: Bad-smell prediction from soft-
ware design model using machine learning techniques. In: 2011
Eighth International Joint Conference on Computer Science and
Software Engineering (JCSSE), pp. 331–336 (2011)

 33. Beck, K.; Fowler, M.; Beck, G: Bad smells in code: Refactoring:
Improving the design of existing code, pp. 75–88 (1999)

 34. Lehman, M.M.: Programs, life cycles, and laws of software evo-
lution. Proc. IEEE Spec. Issue Softw. Eng. 68(9), 1060–1076
(1980)

 35. Tufano, M et al.: When and why your code starts to smell bad.
In: Proceedings of the 37th International Conference on Software
Engineering, vol. 1, pp. 403–414 (2015)

 36. Kessentini, W.; Kessentini, M.; Sahraoui, H.; Bechikh, S.; Ouni,
A.: A cooperative parallel search-based software engineering
approach for code-smells detection. IEEE Trans. Softw. Eng.
40(9), 841–861 (2014)

 37. Marticorena, R.; López, C.; Crespo, Y.: Extending a taxon-
omy of bad code smells with metrics. In: Proceedings of 7th

International Workshop on Object-Oriented Reengineering
(WOOR), p. 6 (2006)

 38. Sourcemaking, Bad code smells
 39. Sourcemaking Refactoring (2018). https ://sourc emaki ng.com/

refac torin g
 40. Samuel, A.L.: Some studies in machine learning using the game

of checkers. IBM J. Res. Dev. 3(3), 210–229 (1959)
 41. Ruck, D.W.; Rogers, S.K.; Kabrisky, M.; Oxley, M.E.; Suter,

B.W.: The multilayer perceptron as an approximation to a Bayes
optimal discriminant function. IEEE Trans. Neural Netw. 1(4),
296–298 (1990)

 42. Rosenblatt, F.: Principles of neurodynamics. perceptrons and the
theory of brain mechanisms, 1961

 43. Cortes, C.; Vapnik, V.: Support-vector networks. Mach. Learn.
20(3), 273–297 (1995)

 44. Aljamaan, H.I.; Elish, M.O.: An empirical study of bagging
and boosting ensembles for identifying faulty classes in object-
oriented software. In: 2009 IEEE Symposium on Computational
Intelligence and Data Mining, pp. 187–194 (2009)

 45. Vladimir, N.V.: The Nature of Statistical Learning Theory.
Springer, Berlin (1995)

 46. Broomhead, D.S.; Lowe, D.: Radial basis functions, multi-vari-
able functional interpolation and adaptive networks, 1988

 47. Friedman, N.; Geiger, D.; Goldszmidt, M.: Bayesian network
classifiers. Mach. Learn. 29(2–3), 131–163 (1997)

 48. Castillo, E.; Gutierrez, J.M.; Hadi, A.S.: Expert Systems and
Probabiistic Network Models. Springer, Berlin (1996)

 49. Rish, I et al.: An empirical study of the naive Bayes classifier.
In: IJCAI 2001 Workshop On Empirical Methods In Artificial
Intelligence, vol. 3, pp. 41–46 (2001)

 50. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
 51. Zhang, Y.; Haghani, A.: A gradient boosting method to improve

travel time prediction. Transp. Res. Part C Emerg. Technol. 58,
308–324 (2015)

 52. Tarwani, S.; Chug, A.: Predicting maintainability of open source
software using Gene Expression Programming and bad smells.
In: 2016 5th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future Directions)
(ICRITO), pp. 452–459 (2016)

 53. Seber, G.A.; Lee, A.J.: Linear Regression Analysis. Wiley, Hobo-
ken (2012)

 54. Weisberg, S.: Applied Linear Regression. Wiley, Hoboken (2005)
 55. Stork, E.D.H.; Duda, R.O.; Hart, P.E.; Stork, D.G.: Pattern Clas-

sification. Academic Internet Publishers, New York (2006)
 56. Yuan, Y.; Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy

Sets Syst. 69(2), 125–139 (1995)
 57. Quinlan, J.R.: C4. 5: programming for machine learning. Morgan

Kauffmann 38, 48 (1993)
 58. Vilela, J.; Castro, J.; Martins, L.E.G.; Gorschek, T.: Integration

between requirements engineering and safety analysis: a system-
atic literature review. J. Syst. Softw. 125, 68–92 (2017)

 59. Gasparic, M.; Janes, A.: What recommendation systems for soft-
ware engineering recommend: A systematic literature review. J.
Syst. Softw. 113, 101–113 (2016)

 60. Tarhan, A.; Giray, G.: On the use of ontologies in software pro-
cess assessment: a systematic literature review. In: Proceedings
of the 21st International Conference on Evaluation and Assess-
ment in Software Engineering, ACM, pp. 2–11 (2017)

 61. Khan, S.U.; Azeem, M.I.: Intercultural challenges in offshore
software development outsourcing relationships: an explora-
tory study using a systematic literature review. IET Softw. 8(4),
161–173 (2014)

 62. Niazi, M.: Do systematic literature reviews outperform informal
literature reviews in the software engineering domain? An initial
case study. Arab. J. Sci. Eng. 40(3), 845–855 (2015)

https://sourcemaking.com/refactoring
https://sourcemaking.com/refactoring

2368 Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

 63. Muccini, H.; Sharaf, M.; Weyns, D.: Self-adaptation for cyber-
physical systems: a systematic literature review. In Proceedings
of the 11th international symposium on software engineering for
adaptive and self-managing systems, ACM, pp. 75–81 (2016)

 64. Mohammed, N.M.; Niazi, M.; Alshayeb, M.; Mahmood, S.:
Exploring software security approaches in software development
lifecycle: a systematic mapping study. Comput. Stand. Interfaces
50, 107–115 (2017)

 65. Mufti, Y.; Niazi, M.; Alshayeb, M.; Mahmood, S.: A readiness
model for security requirements engineering. IEEE Access 6,
28611–28631 (2018)

 66. Dieste, O.; Padua, A.G.: Developing search strategies for detect-
ing relevant experiments for systematic reviews. In First Inter-
national Symposium on Empirical Software Engineering and
Measurement (ESEM 2007), IEEE, pp. 215–224 (2007)

 67. Wen, J.; Li, S.; Lin, Z.; Hu, Y.; Huang, C.: Systematic literature
review of machine learning based software development effort
estimation models. Inf. Softw. Technol. 54(1), 41–59 (2012)

 68. Di Nucci, D.; Palomba, F.; Tamburri, D.A.; Serebrenik, A.;
De Lucia, A.: Detecting code smells using machine learning
techniques: are we there yet?. In: 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 612–621 (2018)

 69. Kim, D.K.: Finding bad code smells with neural network models.
Int. J. Electr. Comput. Eng. (IJECE) 7(6), 3613–3621 (2017)

 70. Kaur, K.; Jain, S.: Evaluation of machine learning approaches for
change-proneness prediction using code smells. In: Proceedings
of the 5th International Conference on Frontiers in Intelligent
Computing: Theory and Applications, pp. 561–572 (2017)

 71. Amorim, L.; Costa, E.; Antunes, N.; Fonseca B.; Ribeiro, M.:
Experience report: evaluating the effectiveness of decision trees
for detecting code smells. In: 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE), pp.
261–269(2015)

 72. Fontana, F.A.; Zanoni, M.; Marino, A.; Mantyla,M.V.: Code
smell detection: towards a machine learning-based approach. In:
2013 IEEE International Conference on Software Maintenance
pp. 396–399 (2013)

 73. Maiga, A.; Ali, N.; Bhattacharya, N.; Sabane, A.; Gueheneuc,
Y.G.; Aimeur, E.: SMURF: A SVM-based incremental anti-
pattern detection approach. In: 2012 19th Working Conference
on Reverse Engineering, pp. 466–475 (2012)

 74. Khomh, F.; Vaucher, S.; Guéhéneuc, Y.-G.; Sahraoui, H.:
BDTEX: a GQM-based Bayesian approach for the detection of
antipatterns. J. Syst. Softw. 84(4), 559–572 (2011)

 75. Bryton, S.; e Abreu, F.B.; Monteiro, M.: Reducing subjectivity in
code smells detection: Experimenting with the long method. In:
2010 Seventh International Conference on the Quality of Infor-
mation and Communications Technology, pp. 337–342 (2010)

 76. Kreimer, J.: Adaptive detection of design flaws. Electron. Notes
Theor. Comput. Sci. 141(4), 117–136 (2005)

 77. Yang, J.; Hotta, K.; Higo, Y.; Igaki, H.; Kusumoto, S.: Classifica-
tion model for code clones based on machine learning. Empir.
Softw. Eng. 20(4), 1095–1125 (2015)

 78. Wang, X.; Dang, Y.; Zhang, L.; Zhang, D.; Lan, E.; Mei, H.:
Can I clone this piece of code here?. In: Proceedings of the 27th
IEEE/ACM International Conference on Automated Software
Engineering, ACM, pp. 170–179 (2012)

 79. Hassaine, S.; Khomh, F.; Guéhéneuc, Y.G.; Hamel, S.: IDS: An
immune-inspired approach for the detection of software design
smells. In: 2010 Seventh International Conference on the Qual-
ity of Information and Communications Technology, IEEE, pp.
343–348 (2010)

 80. Vaucher, S.; Khomh, F.; Moha, N.; Guéhéneuc, Y.G.: Tracking
design smells: Lessons from a study of god classes. In: 2009

16th Working Conference on Reverse Engineering, IEEE, pp.
145–154 (2009)

 81. Fowler, M.; Beck, K.; Brant, J.; Opdyke, W.: Refactoring:
Improving the Design of Existing Code. Addison-Wesley, Boston
(1999)

 82. Olbrich, S.; Cruzes, D.S.; Basili, V.; Zazworka, N.: The evolu-
tion and impact of code smells: a case study of two open source
systems. In: 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, pp. 390–400 (2009)

 83. Peters, R.; Zaidman,a.: Evaluating the lifespan of code smells
using software repository mining. In: 2012 16th European
Conference on Software Maintenance and Reengineering, pp.
411–416 (2012)

 84. Tufano, M et al.: An empirical investigation into the nature of
test smells. In: 2016 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 4–15. (2016)

 85. Tufano, M.; et al.: When and why your code starts to smell bad
(and whether the smells go away). IEEE Trans. Softw. Eng.
43(11), 1063–1088 (2017)

 86. Taibi, D.; Janes, A.; Lenarduzzi, V.: How developers perceive
smells in source code: a replicated study. Inf. Softw. Technol.
92, 223–235 (2017)

 87. Yamashita, A.; Moonen, L.: Do code smells reflect important
maintainability aspects?. In: 2012 28th IEEE international con-
ference on software maintenance (ICSM), pp. 306–315 (2012)

 88. Palomba, F.; Zaidman, A.; Oliveto, R.; De Lucia, A.: An explora-
tory study on the relationship between changes and refactoring.
In: 2017 IEEE/ACM 25th International Conference on Program
Comprehension (ICPC), pp. 176–185 (2017)

 89. Palomba, F.; Bavota, G.; Di Penta, M.; Fasano, F.; Oliveto, R.;
De Lucia, A.: On the diffuseness and the impact on maintainabil-
ity of code smells: a large scale empirical investigation. Empir.
Softw. Eng. 23, 1–34 (2017)

 90. Palomba, F.; Bavota, G.; Di Penta, M.; Oliveto, R.; De Lucia,
A.: Do they really smell bad? a study on developers’ perception
of bad code smells. In: 2014 IEEE International Conference on
Software Maintenance and Evolution, pp. 101–110 (2014)

 91. Tamburri, D.A.; Palomba, F.; Serebrenik, A.; Zaidman, A.:
Discovering community patterns in open-source: a systematic
approach and its evaluation. Empir. Softw. Eng. 24, 1–49 (2018)

 92. Rapu, D.; Ducasse, S.; Girba, T.; Marinescu, R.: Using history
information to improve design flaws detection. In: Eighth Euro-
pean Conference on Software Maintenance and Reengineering,
CSMR Proceedings, pp. 223–232 (2004)

 93. Palomba, F.; Panichella, A.; De Lucia, A.; Oliveto, R.; Zaid-
man, A.: A textual-based technique for smell detection. In: 2016
IEEE 24th International Conference on Program Comprehension
(ICPC) pp. 1–10 (2016)

 94. Sahin, D.; Kessentini, M.; Bechikh, S.; Deb, K.: Code-smell
detection as a bilevel problem. ACM Trans. Softw. Eng. Meth-
odol. 24(1), 1–44 (2014)

 95. Ozgur, A.: İstanbul: Boğaziçi University, Supervised and unsu-
pervised machine learning techniques for text document catego-
rization (2004)

 96. Chaovalit, P.; Zhou, L.: Movie review mining: a comparison
between supervised and unsupervised classification approaches.
In: Proceedings of the 38th annual Hawaii international confer-
ence on system sciences, IEEE, pp. 112c (2005)

 97. Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P.: Supervised machine
learning: A review of classification techniques. Emerg. Artif.
Intell. Appl. Comput. Eng. 160, 3–24 (2007)

 98. Kotsiantis, S.B.; Zaharakis, I.D.; Pintelas, P.E.: Machine learn-
ing: a review of classification and combining techniques. Artif.
Intell. Rev. 26(3), 159–190 (2006)

2369Arabian Journal for Science and Engineering (2020) 45:2341–2369

1 3

 99. Stamelos, I.; Angelis, L.; Oikonomou, A.; Bleris, G.L.: Code
quality analysis in open source software development. Inf. Syst.
J. 12(1), 43–60 (2002)

 100. Chidamber, S.R.; Kemerer, C.F.: Towards a metrics suite for
object oriented design (1991)

 101. Chidamber, S.R.; Kemerer, C.F.: A metrics suite for object ori-
ented design. IEEE Trans. Softw. Eng. 20(6), 476–493 (1994)

 102. Desai, C.G.: Object oriented design metrics, frameworks and
quality models. Inf. Sci. Technol. 3(2), 66 (2014)

 103. Shaheen, M.R.; Du Bousquet, L.: Survey of source code metrics
for evaluating testability of object oriented systems (2010)

 104. Abreu, B.E.; Carapua, R.: Object-oriented software engineer-
ing: Measuring and controlling the development process. In: 4th
International Conference on Software Quality (ASQC). McLean,
VA, USA (1994)

 105. Radjenović, D.; Heričko, M.; Torkar, R.; Živkovič, A.: Software
fault prediction metrics: a systematic literature review. Inf. Softw.
Technol. 55(8), 1397–1418 (2013)

 106. Genero, M.; Piattini, M.; Calero, C.: A survey of metrics for
UML class diagrams. J. Object Technol. 4(9), 59–92 (2005)

 107. Bansiya, J.; Davis, C.G.: A hierarchical model for object-oriented
design quality assessment. IEEE Trans. Softw. Eng. 28(1), 4–17
(2002)

 108. Laradji, I.H.; Alshayeb, M.; Ghouti, L.: Software defect predic-
tion using ensemble learning on selected features. Inf. Softw.
Technol. 58, 388–402 (2015)

 109. Seliya, N.; Khoshgoftaar, T.M.; Van Hulse, J.: A study on the
relationships of classifier performance metrics. In: 2009 21st
IEEE International Conference On Tools With Artificial Intel-
ligence, IEEE, pp. 59–66 (2004)

 110. Cuadros-Rodríguez, L.; Pérez-Castaño, E.; Ruiz-Samblás,
C.: Quality performance metrics in multivariate classification
methods for qualitative analysis. TrAC Trends Anal. Chem. 80,
612–624 (2016)

 111. Wang, H.; Khoshgoftaar, T.M.; Seliya, N.: How many soft-
ware metrics should be selected for defect prediction? In:
Twenty-Fourth International FLAIRS Conference, Palm Beach,
pp. 69–74 (2011)

 112. Science, T.D.: 20 Popular Machine Learning Metrics. Part 1:
Classification & Regression Evaluation Metrics (2019)

 113. Hastie, T.; Tibshirani, R.; Friedman, J.: The elements of statisti-
cal learning. Springer series in statistics. Springer, Berlin (2001)

 114. Candela, I.; Bavota, G.; Russo, B.; Oliveto, R.: Using cohesion
and coupling for software remodularization: Is it enough? ACM
Trans. Softw. Eng. Methodol. 25(3), 24 (2016)

 115. Simons, C. Singer, J.; White, D.R.: Search-based refactoring:
Metrics are not enough. In: International Symposium on Search
Based Software Engineering, pp. 47-61, Springer, Berlin (2015)

 116. Chandrashekar, G.; Sahin, F.: A survey on feature selection meth-
ods. Comput. Electr. Eng. 40(1), 16–28 (2014)

 117. Tempero, E. et al.: The Qualitas Corpus: a curated collection of
Java code for empirical studies. In: 2010 Asia Pacific Software
Engineering Conference, pp. 336–345 (2010)

 118. Maiga, A. et al.: Support vector machines for anti-pattern detec-
tion. In: 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pp. 278–281
(2012)

 119. Guéhéneuc, Y.-G.; Antoniol, G.: Demima: a multilayered
approach for design pattern identification. IEEE Trans. Softw.
Eng. 34(5), 667–684 (2008)

 120. Guéhéneuc, Y.G.; Sahraoui, H.; Zaidi, F.: Fingerprinting design
patterns. In: 11th Working Conference on Reverse Engineering,
pp. 172–181 (2004)

 121. Nguyen-Duc, A.; Cruzes, D.S.; Conradi, R.: The impact of global
dispersion on coordination, team performance and software
quality–A systematic literature review. Inf. Softw. Technol. 57,
277–294 (2015)

	Bad Smell Detection Using Machine Learning Techniques: A Systematic Literature Review
	Abstract
	1 Introduction
	2 Background
	2.1 Code Bad Smells
	2.1.1 Code smell categories

	2.2 Machine learning

	3 Research Methodology
	3.1 Research questions
	3.2 Search strategy
	3.2.1 Search strategy
	3.2.2 Research Resources
	3.2.3 Search Process

	3.3 Study Selection
	3.3.1 Inclusion Criteria
	3.3.2 Exclusion Criteria

	3.4 Study Quality Assessments
	3.5 Data Extraction
	3.6 Data Synthesis

	4 Results
	4.1 Overview of Selected Studies
	4.2 Types of machine learning techniques used (RQ1)
	4.3 Detected Smells (RQ2)
	4.4 The Accuracy of Machine Learning Techniques (RQ3)
	4.5 The Used Datasets (RQ4)
	4.6 The Tools Used to Implement the Machine leArning Algorithms (RQ5)

	5 Discussion
	5.1 Types of Machine Learning Techniques Used (RQ1)
	5.2 Detected Smells (RQ2)
	5.3 The Accuracy of Machine Learning Techniques (RQ3)
	5.4 The Used Datasets (RQ4)
	5.4.1 Dataset Analysis

	5.5 The Tools Used to Implement the Machine Learning Algorithms (RQ5)

	6 Threats to Validity
	7 Conclusion
	Acknowledgement
	References

