
Arabian Journal for Science and Engineering (2020) 45:3123–3132
https://doi.org/10.1007/s13369-019-04297-5

RESEARCH ART ICLE - COMPUTER ENGINEER ING AND COMPUTER SC IENCE

Information Flow Tracking and Auditing for the Internet of Things
Using Software-Defined Networking

Bander Alzahrani1

Received: 10 September 2019 / Accepted: 6 December 2019 / Published online: 11 December 2019
© King Fahd University of Petroleum &Minerals 2019

Abstract
Internet of Things (IoT) applications are expected to have access to sensitive data. On the other hand, IoT devices are not
powerful enough to implement complex security solutions. But even if this was not a problem, there are so many other
security challenges related to the IoT that a security breach should not be considered an exceptional case. In this paper, we
propose an information tracking mechanism that can be used as an audit tool in case of a security incidence. To achieve this
goal, we leverage software-defined networking (SDN). SDN is a promising technology that receives increasing attention,
since it enables network “programmability” and intelligent packet forwarding. In this paper, we consider the case of an SDN
deployment in the network of a single provider that interconnects various IoT devices. Furthermore, specialized network
attachments points are used for parsing IoT specific protocols and perform the necessary actions. Moreover, in order to make
our solution even more realistic and to facilitate deployment, we base our constructions and design solely on existing SDN
standards.

Keywords Information Centric Network · Software-defined networking · Internet of Things · Constrained Application
Protocol

1 Introduction

Nowadays, where the manufacturing cost of small, intelli-
gent devices has become very low, the Internet of Things
(IoT) is becoming a reality. The IoT envisions tiny, power-
less devices, often with sensing and actuation capabilities,
connected to the Internet. These IoT devices will be capable
of exchanging data with other devices or web application and
services. The IoT is expected to affect many aspects of our
life, since some of the predominant IoT use cases are: health-
care, home automation, food supply, road safety, intelligent
transportation, smart energy, manufacturing automation and
many others that are closely related to our daily routine.With
the IoT, the boundaries between cyber and real world become
blurred. However, in addition to the plethora of new possi-
bilities and opportunities, the IoT creates many security and
privacy concerns: IoT devices are expecting to have access
to sensitive and critical information and a security or privacy

B Bander Alzahrani
baalzahrani@kau.edu.sa

1 IS department, College of Computing and Information
Technology, King Abdulaziz University, Jeddah, Saudi
Arabia

breach not only may expose personal information but it may
also be life threatening (for a review on IoT security issues,
interested readers are referred to [1]). On the other hand,
securing IoT devices is hard and even in highly secured sys-
tems breaches are inevitable. The IoT possesses some unique
security challenges due to the nature of the IoT devices (i.e.,
the Things):

– Things lack the necessary computational power to per-
form complex tasks such as public-key encryption.

– Things are susceptible to tampering, hence long-lived
secret keys should not exist in a Thing.

– Things may also be physically exposed to attackers; for
example, they may be located in an outdoor location
unprotected.

– Things lack storage and memory; therefore, they cannot
store complex access control policies or big user datasets.

– Things may not be always connected; hence, a security
update may not always be possible.

– IoT use cases, assumes Things that will be used for a long
period. For example, in a building management system,
there might be sensors that are supposed to operate for
the whole lifetime of the building.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-019-04297-5&domain=pdf
http://orcid.org/0000-0002-7118-0761


3124 Arabian Journal for Science and Engineering (2020) 45:3123–3132

For those reasons, it is clear that a security breach in an IoT
system should not be treated as an unexpected event; instead,
special precautions should be considered, and in such case,
it should be possible to determine what caused that incident.

In this paper, we propose a security solution for the IoT
that operates in the network level and can be used for auditing
security breaches. In particular,we leverage software-defined
networking (SDN) [2] and information flow tracking, to pro-
vide an IoT security solution within the perimeter of the
network of an ISP. As an IoT protocol, we consider the
Constrained Application Protocol (CoAP) [3]. CoAP is an
emerging and lightweight protocol that can be implemented
directly on the IoT devices without requiring any interme-
diate service (as opposed for example to Message Queuing
TelemetryTransport (MQTT)). Furthermore, aswediscuss in
Sect. 2.2, CoAPuses the sameURI-based resource identifica-
tion mechanism as HTTP, and it follows a similar messaging
pattern; hence, we have selected CoAP as the underlay IoT
protocol in order to implement a solution that can be eas-
ily extended for HTTP. The proposed solution allows CoAP
service providers to “tag” sensitive information. These tags
are propagated inside the provider’s network and a logging
service records all operations related to sensitive tags. In case
of a security incidence, an end user will be able to audit the
logs and find out what caused the breach.

The contributions of our work are the following:

– We design a lightweight content tagging solution and an
algorithm that allows end users to tag sensitive informa-
tion, as well as amechanism that allows the incorporation
of the tags inside SDNmessages and their propagation in
the network. Furthermore, the same mechanism removes
the tags from the transmitted packets before delivery,
making them transparent to client applications.

– We design a mechanism that allows server endpoints to
“announce” in the network the tags used for tagging sen-
sitive information. In return, the network logs the usage
of sensitive information and it provides audit services that
can be used by legitimate users to resolve security issues.

– We design a mechanism that prevents tag manipulation
by unauthorized users.

– We extend SDN operations to include tags, facilitating
this way information flow monitoring.

– Weprovide a reference implementation forCoAPservers,
CoAP clients, as well as log analysis mechanisms. The
implemented CoAP server is designed for constrained
devices.

– Our solution is based on existing SDN standards, and it
is deployable and extends the functionality of an existing
SDN controller.

The reminder of this paper is organized as follows. In
Sect. 2, we introduce SDN and the CoAP protocol. In Sect. 3,

we discuss related work in this area. We give a high-level
overview of our solution in Sect. 4 and in Sect. 5, we present
its design. We evaluate our implementation in Sect. 6 and
discuss our conclusion in Sect. 7.

2 Background

2.1 Software-Defined Networking

Software-Defined Networking (SDN) is a novel technology
that allows the centralized control of programmable switches.
SDN switches are controlled by a centralized entity, known
as the “network controller” (or simply controller) using a
protocol such as OpenFlow [4]. OpenFlow allows the defi-
nition of rules per network “flow:” Whenever a new packet
arrives in a switch, the switch checks its “flow table” for
a related processing rule; if such a rule exists it is applied,
otherwise the packet is forwarded to the controller, which
in return instructs the switch how to handle it. SDN enables
application-aware network configuration and facilitates the
development of novel services. For example, Jarschel et al.
[5] leveraged SDN to optimize the performance of YouTube
video streaming, Mekky et al. [6] implemented a firewall,
a load balancer and a content-aware server selection mecha-
nismusingSDN, andFotiou et al. [7] proposed anSDN-based
architecture that facilitates the deployment of new IoT ser-
vices.

Figure 1 illustrates an example of an SDN-based network
topology. In this figure, there are three virtual switches (VS1,
VS2 and VS3) fully connected (black lines). Furthermore,
all switches are connected to an SDN controller (red dotted
line). VS1 has a flow rule that says, “Packets with destination
10.0.0.2 will be forwarded to VS2.” For this reason, when
such a packet arrives, it is immediately forwarded toVS2, and
then to its final destination (blue lines). On the contrary, VS3
is not configured with any rule; hence, when a packet arrives,
it asks the controller where to forward it (green lines). The
controller responds and eventually VS3 forwards the packet
to the correct destination.

2.2 The Constrained Application Protocol

TheConstrainedApplicationProtocol (CoAP) canbe consid-
ered as a lightweight version of the HTTP protocol, designed
for the Internet of Things (IoT). Since the IoT will be
composed of lightweight devices with limited processing
capabilities, supporting a full-fledged version of HTTP is
not a viable option. CoAP is a binary protocol, implemented
over UDP, and allows a constrained device to act as “server”
and offer a “resource.” CoAP resources are identified using
a URI (similar to HTTP URIs). CoAP URIs are prefixed
with “CoAP://” and are composed of a host identifier part

123



Arabian Journal for Science and Engineering (2020) 45:3123–3132 3125

Fig. 1 An example of an SDN
architecture

VS1

Controller

VS2

VS3

10.0.0.1

10.0.0.3

10.0.0.2

10.0.0.2→VS2

10.0.0.2

10.0.0.1

10.0.0.1 ?

VS1

and a resource identifier part, separated by a slash (“/”). A
CoAP client may issue a CoAP GET/PUT/POST request for
a particular URI. Similar to HTTP, CoAP supports the use of
proxies, that is, a CoAP client may send a CoAP request to
a proxy and the proxy will handle it accordingly.

2.2.1 Messaging Model

The CoAP protocol specifies two kinds of messages: con-
firmable and non-confirmable. Confirmable messages must
be acknowledged, whereas non-confirmable must not. All
messages include a message ID so as to prevent duplicates.
A message acknowledgement includes the same message ID
as the message it acknowledges. There exists two cases of
request–response flows:

1. A request is sent as a confirmable message and the server
can respond immediately

2. A request is sent as a non-confirmable message or the
server can respond immediately

In the first case, the server’s response is “piggybacked” to
the acknowledgement message (see section 5.2.1 of [3]).
In the second case, we need a mechanism for matching
a received response to a request. In this case, the request
includes a token which is repeated in the response. In that
case the response may be transmitted as a confirmable mes-

sage (which needs to be acknowledgedby the client). Figure 2
shows a message sequence example. In this figure, a CoAP
client initially sends a confirmable request and the server
responds immediately; therefore, the response is included in
the acknowledgement message. After some time, the client
sends a confirmable request but the server cannot respond
immediately. Therefore, the server sends an empty acknowl-
edgement and after some time it sends the response. Since the
response is sent as a confirmable message the client sends an
acknowledgement.

2.2.2 CoAP Extensions

Various extensions enhance the CoAP protocol with addi-
tional functionalities. Two CoAP extensions are of interest
to this work, namely CoAP group communication [8] and
CoAP Observe [9]. The former extension allows a CoAP
client to send a request simultaneously to a group of CoAP
servers. The second extension allows a CoAP client to reg-
ister a “permanent” interest in a specific CoAP resource and
every time this resource changes value theCoAP server sends
an update to all interested clients. In order for a client to
stop receiving resource updates, he has to “deregister” his
interest.

123



3126 Arabian Journal for Science and Engineering (2020) 45:3123–3132

Fig. 2 CoAP messaging
sequence. On the left part of the
figure, the symbol tx represents
the time

CoAP ServerCoAP Client

CON MessageID=ah27 GET coap://server1/temperature

ACK ah27, <data>

CON MessageID=ah28 GET coap://server1/humidity Token=85

ACK ah28

CON MessageID=dl22 Token=85 <data>

ACK dl22

...

...

t1

t2

tn
t(n+1)

tk
t(k+1)

3 RelatedWork

3.1 Information FlowTracking

Information flow tracking has been considered for similar
purposes in other contexts.

3.1.1 Flow Tracking in Operating Systems

Information flow tracking has been widely studied in the
context of operating systems. It has been used for analyz-
ing malwares [10], for detecting zero-day attacks [11], for
detecting unauthorized access to sensitive information [12],
for detecting and analyzing software programming bugs [13],
and in many other cases. A typical flow tracking mechanism
(e.g., [14]) implements mechanisms that allow “tagging” of
sensitive information directly in the computer memory. Then
the tagged memory locations are continuously monitored:
If a process modifies or moves the data stored in a moni-
tored memory location, then this operation is recorded and,
depending on the context, further actions are taken. More-
over, in case of (tagged) data transfer, the new location of the
data is also monitored.

3.1.2 Flow Tracking in Mobile Devices

Mobile devices are another area where information flow
tracking has received increased attention. TaintDroid [15] is
an information flow tracking solution for the Android mobile
operating system.TantDroid distinguishes between two types
of applications: trusted and untrusted. A trusted applica-
tion adds “tags” to sensitive data which are then monitored
and managed the operating system’s Java virtual machine.
Untrusted applications are oblivious about the use of tags;
hence, they cannot view them neither modify them. Droid-

Safe [16] has a similar goal. It achieves information flow
monitoring by tagging data generated by “privacy sensitive”
API calls (e.g., anAPI call that retrievesGPSmeasurements).
All tags are then managed by the DroidSafe middleware in a
transparent (for the applications) way.

3.1.3 Flow Tracking in Cloud Systems

Although the SDN technology has been used for implement-
ing security solutions in Cloud systems, (e.g., Bawany et
al. [17] develop a framework for detecting and mitigating
DDoS attacks in large-scale networks built on SDN infras-
tructure, and Khaled et al. [18] build an overlay network
that provides security services including intrusion detection
systems, antivirus and DDoS prevention), flow tracking in a
Cloud system is both a timely and hard problem. It is timely
because more and more services are using shared infrastruc-
ture provided by Cloud providers.But it is hard since Cloud
systems are multitenant environments and often one tenant
is not aware of the rest. In particular, tracking and monitor-
ing of IoT devices workload require efficient mechanisms for
Cloud resource allocation (e.g., Al-Haidari et al. [19], lever-
age CPU scaling mechanisms to optimize Cloud resource
allocation, whereas Calyam et al. [20] develop a tool that
can capture various critical quality metrics and apply them
in a resource allocation algorithm). CloudFence [21] tries to
solve this problem by providing “flow tracking as a service.”
In particular, a Cloud tenant is allowed to tag sensitive data.
Then a middleware, implemented by the Cloud provider, is
responsible for monitoring the tagged data and record its
usage: In case of a security incident, the data owner can audit
the logsmaintained by theCloud provider and detect howand
when sensitive data were accessed in an unauthorized way.

123



Arabian Journal for Science and Engineering (2020) 45:3123–3132 3127

Fig. 3 Bloom filter-based
forwarding

VS1 VS2

VS3

EP1 EP2

VS4
EP3

00000001 00001000

00000100

00010000

00011111

4 SystemOverview

4.1 Underlay Architecture

Our underlay architecture is based on the work published
in [22]. The key characteristic of this architecture is that
packet forwarding takes place using bloom filters stored in
the IPv6 address fields (as proposed by Reed et al. [23]).
Hence, all other packet fields can be used for defining Open-
Flow rules. As we discuss in Sect. 6, we take advantage of
this feature in order to store tags in the ethernet destination
address field.

An simplified example of Bloom filter-based forwarding
is illustrated in Fig. 3. In this type of forwarding, all links
are identified by a unique binary array of fixed size. When-
ever an entity wishes to send a packet to some endpoints, it
constructs with the help of the SDN controller a Bloom filter
by ORing the link identifiers of the links that compose the
path from itself to the destination(s). For example, in Fig. 3
an endpoint, EP1 wants to send a packet to two other end-
points, EP2 and EP3; it creates a packet that includes in its
header a Bloom filter (depicted in a red square); all interme-
diate switches examine the Bloom filter and decide in which
links to forward it (this procedure is detailed in [23]). The
work in [22] leverages this type of forwarding to decrease
the network overheadwhenCoAP group communication and
CoAP observe are used (i.e., the CoAP extension discussed
in Sect. 2.2.2). In particular, CoAPgroup communication can
be easily implemented without relying on IP-based multicast
solutions. Similarly, when CoAP observe is used, resource
updates are broadcasted to all interestedCoAP clients, simul-
taneously, using a single packet.

In this work, we consider a single network provider (NP)
that has deployed SDN-enabled switches in its core network
and an SDN controller. The SDN network is managed using
standard OpenFlow. Moreover, at the edges of this network,
there existNetwork Attachment Points (NAPs). In each NAP,
there are devices connected to them (directly or indirectly),
including IoT devices as well as more powerful nodes (e.g.,
PCs and Servers). For simplicity reasons, we assume that the
NP provides only services related to our system.

4.2 System Entities

The main network entities of our architecture are CoAP end-
points. CoAP endpoints are distinguished to CoAP clients
and servers. CoAP servers provide resources identified by
well-known CoAP URIs. Similarly, CoAP clients perform
requests for resources. A CoAP URI may be mapped to a
single resource or to multiple resources (this is the case of
CoAP group communication).

Our system extends NAPs with CoAP proxies that allow
them to parse CoAP messages and extract useful informa-
tion. In order to force CoAP requests and responses to be
routed through a NAP, CoAP endpoints are configured to use
those proxies. Furthermore, the NAPs and the controller are
extended with an information tagging and auditing system
discussed in detail in the following section.

CoAP resources are owned by real world entities, i.e., the
resource owners. Owners are responsible for selecting which
resources should be monitored, as well as for configuring the
appropriate entities for this purpose. Owners interact with
the system entities through a network endpoint connected
(directly or indirectly) to NAP (e.g., a PC, a mobile device,
etc). Therefore, whenever we mention in the following that
an owner interacts with a particular entity, we always mean
through his network endpoint.

4.3 High-Level Operation

From a high-level perspective, our system operates as fol-
lows. Owners decide which CoAP resources are sensitive
and register a tag prefix for each CoAP host identifier (see
Sect. 2.2) they own. Then, they configure the appropriate
NAPs with the corresponding tags. Whenever some data
associatedwith a protected resource flows through aNAP, the
NAP tags it accordingly. Furthermore, SDN switches located
at the edges of the network report to the SDN controller the
tagged flows they observe. These reports are recorded by an
auditing service. Finally, before a tagged flow is delivered to
an end user, its tag is removed. Therefore, all operations are
transparent to end users. This process is illustrated in Fig. 4.

123



3128 Arabian Journal for Science and Engineering (2020) 45:3123–3132

Fig. 4 High-level overview of
the proposed system

NAP NAP

CoAP Server

CoAP Client

VS1

Controller

VS2

4.4 Security Considerations

For our solution, we are making the following security-
related assumptions. NAPs are considered trusted and they
always behave according to the specified procedures. NAPs
are owned, controlled and protected by the network opera-
tor. They are physically isolated from end users and attackers
cannot connect a random NAP to a network. Moreover, we
assume an authentication process between NAPs and the
endpoints connected to them (e.g., they are configured with
a pre-shared secret key). This process, which is out of the
scope of this paper, ensures that attackers: (i) cannot connect
to an arbitrary NAP and (ii) cannot modify the NAP config-
uration (related to our system) of another user. Finally, we
assume that the communication channel between a CoAP
endpoint and a NAP, as well as the NP internal network,
are secured (e.g., using “Distributed security for multi-agent
systems” [24]).

At a higher layer, our design assumes a secure mechanism
that is used by a tag registration service for verifying CoAP
host identifier ownership by a particular owner. Additionally,
each owner is identified by an NP-specific identifier which
can be verified by the tag registration service and the NAPs.
We refer to this identifier as the owner identifier. The owner
identifier can have any form, it can even be a network related
identifier.

Given the above security assumptions, our security threat
model considers attackers that try to “pollute” the tagging and
auditing system with invalid entries. Hence, these attackers
are legitimate resource owners that can connect to a NAP and
can configure it accordingly.

5 SystemDesign

5.1 Tag Registration

The purpose of the tag registration process is to protect our
system from the attacks mentioned in Sect. 4.4.

Prior any operation, each owner must receive a tag prefix
(for each CoAP host identifier they wish to protect) with a
tag registration service. This service is operated by the NP
(network provider). The owner communicates with that ser-
vice securely and verifies his identity and the host identifier
ownership (using–as discussed–a mechanism which is out
of the scope of this paper). The output of the registration
process is a unique tag prefix and a cryptographic access
token that binds the tag prefix to: (i) a particular owner iden-
tifier and (ii) to a particular CoAP host identifier. The token
is digitally signed by the registration service with a signa-
ture that can be verified by all NAPs. This token must be
kept secret by owners. For additional security, an access
token may have an expiration time so that owners refresh it
periodically.

5.2 NAP Configuration

Each owner is responsible for configuring the appropriate
NAP(s). NAPs are accessed using a remote procedure call
(RPC) backend over HTTPS. Owners configure NAPs by
modifying a tags table that contains tuples of the form
[URI , tag, policy], where URI is the CoAP URI of the
protected resource, tag is the tag that should be used for
tagging it, and policy is a URI matching policy. Currently,
our system considers two policies: prefix match, and exact
match. As the name implies, with the first policy, a resource
is protected if its URI is prefixed with the URI included in
the tags table, whereas with the second policy, a resource is
protected if its URI is included in the tags table. If there
are two entries in the tags table with the same URI but
with different policy, then the exact match policy has higher
priority.

NAPconfiguration is a two-step process: Firstly, the owner
connects to the NAP, and then he configures the tags table.
In the first step, the NAP should accept a connection only
if the owner is authorized to connect to that NAP. This is
achieved using NP-specific mechanisms that are out of the
scope of this paper. When this step is completed, the NAP is

123



Arabian Journal for Science and Engineering (2020) 45:3123–3132 3129

assumed to have learned the owner identifier. In the second
step, the NAP must verify that the owner has the right to
perform the requested action to the tags table (add a new line,
or delete/modify an existing one). This is achieved using the
following procedure:

1. The owner requests to perform a specific action. His
request includes the CoAP URI, the access token, and, if
required by the action a tag and a policy.

2. The NAP verifies the digital signature of the token, and if
the token includes an expiration time, it verifies that the
token is still valid.

3. If the requested action includes a tag (e.g., create a new
entry in the tags table), the NAP verifies that its prefix is
included in the provided access token.

4. The NAP verifies that the token is bound to the owner
identifier, as well as to the CoAP host identifier of the
URI specified in the action request.

At the end of this procedure, and if all checks are successful,
the NAP performs the requested action.

5.3 Message Flows

Since CoAP responses do not include the requested CoAP
URI, a NAP should keep track of the CoAP requests. In our
system, we assume that all CoAP requests include a token.1

Whenever a CoAP request that concerns a protected resource
is forwarded by a NAP to a CoAP server, the NAP updates
a pending responses table that contain tuples of the form
[token, tag, t ype], where token is the token included in the
CoAP request, tag is the tag that corresponds to the requested
CoAP URI, as retrieved from the tags table, and t ype is the
type of message flow. Types affect when an entry is removed
from the pending responses table and are discussed in more
detail later on in this section. Hence, when a NAP forwards a
CoAP request from the network to aCoAP server, it performs
the following procedure:

1. It retrieves the CoAP URI and the token from the request
message

2. It checks if the CoAP URI is included in the tags table
(which means that this is a protected URI which should
be monitored)

3. If the CoAP URI is protected, it retrieves the tag from
the tags table, and creates a new entry in the pending
responses table

Whenever a CoAP response is forwarded from a NAP to
the network, the NAP retrieves the token from the response,

1 This assumption can be easily fulfilled since all CoAP requests are
sent through our proxy, which can add a token if there is not one.

examines the pending responses table, and if it includes the
retrieved token it tags the transmitted packet and forwards it
to the network.When a tagged packet reaches the destination
NAP, the NAP removes that tag.

We distinguish five types of messages flows: (i) con-
firmable requests followed by piggybacked responses, (ii)
non-confirmable group communication requests followed by
non-confirmable responses, (iii) non-confirmable requests or
confirmable requests followed by separated non-confirmable
response, (iv) non-confirmable requests or confirmable requests
followed by separated confirmable response, and (v) CoAP
observe request followed by resource updates. For the first
three types, a NAP removes immediately the corresponding
entry in the pending responses table. For type IV, the NAP
removes the entry when it received the acknowledgement
from the CoAP client. Finally, for type V, the NAP removes
the entry when the client sends a deregister message.

5.4 Tracking and Auditing

Each SDN switch connected to a NAP is configured with
OpenFlow rules that instruct it to send a copy of the tagged
packets they forward to the SDN controller (we provide
details how this is achieved in Sect. 6). The SDN controllers
store this information in an audit table the rows of which are
composed of tuples that contain the tag, the identifier of the
incoming switch, the identifier(s) of the outgoing switch(es),
a time stamp as well as a hash of the packet. Furthermore,
each NAP that forwards a (tagged) response to a CoAP
client informs the auditing service about the destination IP
address(es). This information is also recorded in the audit
table.

In case of a security incident, an owner can consult the
auditing service and determine the addresses of the CoAP
clients that received a packet. In order to achieve that he
must query the audit table using the access token and the tag
of the item in question (since the audit table does not contain
the CoAP URI of the tracked packets).

6 Implementation and Evaluation

We have implemented the proposed solution using the Open
vSwitch software SDN switch [25] and the POX SDN con-
troller [26]. As NAPs, we used standard Linux-based PCs
and we implement our CoAP endpoints and CoAP prox-
ies using the libcoap library.2 Since packet forwarding takes
place using aBloomfilter stored in the IPv6 address fields, the
Ethernet address fields are not used at all. For this reason, we
are storing our tags in the Ethernet destination address field,
which gives us space for 248 tags.

2 https://github.com/obgm/libcoap.

123

https://github.com/obgm/libcoap


3130 Arabian Journal for Science and Engineering (2020) 45:3123–3132

Packet tagging at NAPs takes place as follows. The
NAP replaces the packets Ethernet source address with
“00:00:00:00:00:01,” to indicate that this is a tagged packet,
and the Ethernet destination address with the tag. SDN
switches attached to a NAP are configured with an Open-
Flow rule that instructs them to forward flow to an SDN
controller as an Openflow PacketIn [27] message if: (i) The
flow originates from or has a destination a NAP,3 and (ii) its
Ethernet source address is 00:00:00:00:00:01. The NAP that
forwards the tagged response to the CoAP client replaces
the Ethernet source address with the NAP’s address and the
Ethernet destination address with the client’s address (or the
appropriate Ethernet destination address, in case the client is
not directly connected to the NAP).

6.1 Overhead Evaluation

The overhead imposed by our solution is mainly due to the
pending responses tables and the copies of the packets for-
warded from the SDN switches to the controllers. In order
to measure this overhead, we consider the workload of the
temperature measurement sensors deployed in the testbed of
SmartSantander, a large-scale smart city deployment located
in Santander, northern Spain. The workload, as reported
in [28], is composed of 70 temperature sensors, generating
a temperature measurement approximately every 5 min. We
consider the following extreme (and highly unlikely) case:
All sensors are connected to the network through the same
NAP, all sensors produce a new measurement simultane-
ously, for each sensor measurement a different tag is used,
and CoAP clients are using the CoaP observe extension and
have register their interest in all measurements. We assume
that each client-side NAP can accommodate up to 10 CoAP
clients (hence, if there are 10 clients in our experiments they
are connected through 10 NAPs). Furthermore, we consider
the following cases:

– Optimization 0: No optimization is applied
– Optimization 1: Client-side NAPs aggregate the requests
of itsCoAPclients (therefore, there is a single registration
per NAP)

– Optimization2:Theoptimizations of [22] are used (there-
fore, measurement updates are transmitted using a single
packet)

Figure 5 shows the size in bytes of the pending responses
table as a function of the number of CoAP clients. For this
experiment, we have set the size of tag to 6 bytes, the size
of a token to 8 bytes (this is the maximum value as specified
in [3]), and the size of a policy to 1 byte. The size of the
table when Optimization 2 is applied is not shown since it is

3 This is determined based on the incoming/outgoing network interface.

0

2000

4000

6000

8000

10000

12000

14000

16000

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Si
ze

 in
 b

yt
es

Number of CoAP clients

Op�miza�on 0 Op�miza�on 1

Fig. 5 Size of the pending responses table as function of the number
of CoAP clients

0

500

1000

1500

2000

2500

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Kb

Number of CoAP clients

Op�miza�on 0
Op�miza�on 1
Op�miza�on 2

Fig. 6 Size of total messages transmitted to the controller

constant and equal to 15 bytes (i.e., when this optimization is
applied the pending responses table includes a single entry).

Figure 6 shows the size of messages sent to the controller
with every update. For this experiment, we have set the size
of a packet to 128 bytes (based on the size of the packet head-
ers and the recommended maximum CoAP message size as
specified in [3]). It should be noted that these messages con-
cern bursty traffic; hence, although the average throughput of
the link to the controller should be low, its peakwill be almost
equal to the total size of messages per update (as depicted in
Fig. 6).

123



Arabian Journal for Science and Engineering (2020) 45:3123–3132 3131

7 Conclusions

This paper presented an SDN-based solution for information
flow tacking and auditing for the IoT. The presented solution
is lightweight since it addsminimum storage overhead (in the
order of Kbytes per NAP), as well as insignificant network
overhead (in our worst case, unrealistic scenario the network
overhead was measure to 2Mbytes per 5 min). Furthermore,
the proposed solution is realistic since it requires no mod-
ifications to CoAP endpoints and operates using standard
OpenFlow operations (i.e., no modifications are required to
the SDN switches).

In this work, we selected CoAP as our reference IoT pro-
tocol. However, this work can be extended to include other
IoT protocols such as Message Queuing Telemetry Trans-
port (MQTT). Of course, our solution can be considered
for similar protocols used in other contexts (e.g., HTTP),
as well as for emerging information-oriented communica-
tion paradigms (e.g., the Information-Centric Networking
paradigm). Our work considers only CoAP over UDP; how-
ever, other transport protocols can be considered for CoAP
(e.g., TCP or even SMS); in order to cope with this transport
protocols, our solution has to be modified accordingly. Fur-
thermore, many products consider CoAP over DTLS. This
approach prevents the use of our solution since it hides the
CoAP payload. For this reason, in order for our solution to be
usedwithDTLS, encryption interceptionmechanisms should
be used (as used for example in [29]).

Acknowledgements This Projectwas funded by theDeanship of Scien-
tific Research (DSR), King Abdulaziz University, Jeddah, under Grant
No. (D-311-611-1440). The author, therefore, gratefully acknowledge
the DSR for technical and financial support.

References

1. Khan, M.A.; Salah, K.: Iot security: review, blockchain solutions,
and open challenges. Future Gener. Comput. Syst. 82, 395–411
(2018)

2. Xia, W.; Wen, Y.; Foh, C.H.; Niyato, D.; Xie, H.: A survey on
software-defined networking. IEEE Commun. Surv. Tutor. 17(1),
27–51 (2015). https://doi.org/10.1109/COMST.2014.2330903

3. Shelby, Z.; Hartke, K.; Bormann, C.: The constrained application
protocol (CoAP). RFC 7252, IETF (2014)

4. Lara, A.; Kolasani, A.; Ramamurthy, B.: Network innovation using
openflow: a survey. IEEE Commun. Surv. Tutor. 16(1), 493–512
(2014). https://doi.org/10.1109/SURV.2013.081313.00105

5. Jarschel, M.; Wamser, F.; Hohn, T.; Zinner, T.; Tran-Gia, P.: Sdn-
based application-aware networking on the example of youtube
video streaming. In: 2013 SecondEuropeanWorkshop on Software
DefinedNetworks (EWSDN). IEEEComputer Society, LosAlami-
tos, CA, USA (2013). https://doi.org/10.1109/EWSDN.2013.21

6. Mekky, H.; Hao, F.; Mukherjee, S.; Zhang, Z.L.; Lakshman, T.:
Application-aware data plane processing in sdn. In: Proceedings of
the Third Workshop on Hot Topics in Software Defined Network-
ing, HotSDN ’14, pp. 13–18. ACM, New York (2014). https://doi.
org/10.1145/2620728.2620735.

7. Fotiou, N.; Siris, V.A.; Xylomenos, G.; Polyzos, G.C.; Katsaros,
K.V.; Petropoulos, G.: Edge-icn and its application to the internet
of things. In: 2017 IFIP Networking Conference (IFIP Network-
ing) and Workshops, pp. 1–6 (2017). https://doi.org/10.23919/
IFIPNetworking.2017.8264880

8. Rahman, A.; Dijk, E.: Group communication for the constrained
application protocol (CoAP). RFC 7390, IETF (2014)

9. Hartke, K.: Observing resources in the constrained application pro-
tocol (CoAP). RFC 7641, IETF (2015)

10. Portokalidis, G.; Slowinska, A.; Bos, H.: Argos: an emulator for
fingerprinting zero-day attacks for advertised honeypots with auto-
matic signature generation. SIGOPS Oper. Syst. Rev. 40(4), 15–27
(2006). https://doi.org/10.1145/1218063.1217938

11. Qin, F.; Wang, C.; Li, Z.; Kim, H.; Zhou, Y.; Wu, Y.: Lift:
A low-overhead practical information flow tracking system for
detecting security attacks. In: 2006 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’06), pp.
135–148 (2006). https://doi.org/10.1109/MICRO.2006.29

12. Zhu, D.Y.; Jung, J.; Song, D.; Kohno, T.;Wetherall, D.: Tainteraser:
protecting sensitive data leaks using application-level taint track-
ing. SIGOPS Oper. Syst. Rev. 45(1), 142–154 (2011). https://doi.
org/10.1145/1945023.1945039

13. Attariyan, M.; Flinn, J.: Automating configuration troubleshoot-
ing with dynamic information flow analysis. In: Proceedings
of the 9th USENIX Conference on Operating Systems Design
and Implementation, OSDI’10, pp. 237–250. USENIX Associa-
tion, Berkeley, CA, USA (2010). http://dl.acm.org/citation.cfm?
id=1924943.1924960. Accessed 22 July 2019

14. Kemerlis, V.P.; Portokalidis, G.; Jee, K.; Keromytis, A.D.: Libdft:
practical dynamic data flow tracking for commodity systems.
SIGPLAN Not. 47(7), 121–132 (2012). https://doi.org/10.1145/
2365864.2151042

15. Enck,W.; Gilbert, P.; Han, S.; Tendulkar, V.; Chun, B.G.; Cox, L.P.;
Jung, J.; McDaniel, P.; Sheth, A.N.: Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones. ACMTrans. Comput. Syst. 32(2), 5:1–5:29 (2014). https://
doi.org/10.1145/2619091

16. Gordon,M.I.;Kim,D.; Perkins, J.; Gilham,L.;Nguyen,N.; Rinard,
M.: Information-flow analysis of android applications in Droid-
Safe. In: Proceedings of Network and Distributed System Security
Symposium (NDSS) (2015)

17. Bawany, N.Z.; Shamsi, J.A.; Salah, K.: Ddos attack detection and
mitigation using sdn: methods, practices, and solutions. Arab. J.
Sci. Eng. 42(2), 425–441 (2017)

18. Salah, K.; Alcaraz Calero, J.M.; Zeadally, S.; Al-Mulla, S.; Alza-
abi, M.: Using cloud computing to implement a security overlay
network. IEEE Secur. Priv. 11(1), 44–53 (2013)

19. Al-Haidari, F.; Sqalli, M.; Salah, K.: Impact of cpu utilization
thresholds and scaling size on autoscaling cloud resources. In: 2013
IEEE 5th International Conference on Cloud Computing Technol-
ogy and Science, vol. 2, pp. 256–261 (2013)

20. Calyam, P.; Rajagopalan, S.; Seetharam, S.; Selvadhurai, A.; Salah,
K.; Ramnath, R.: Vdc-analyst: design and verification of virtual
desktop cloud resource allocations. Comput. Netw. 68, 110–122
(2014). Communications and Networking in the Cloud

21. Pappas, V.; Kemerlis, V.P.; Zavou, A.; Polychronakis, M.;
Keromytis, A.D.: Cloudfence: Data Flow Tracking as a Cloud
Service, pp. 411–431. Research in Attacks, Intrusions, andDefens-
esSpringer, Berlin (2013)

22. Fotiou, N.; Mendrinos, D.; Polyzos, G.C.: Edge-assisted traffic
engineering and applications in the iot. In: Proceedings of the 2018
Workshop on Mobile Edge Communications, MECOMM’18, pp.
37–42. ACM, New York (2018). https://doi.org/10.1145/3229556.
3229561.

23. Reed, M.J.; Al-Naday, M.; Thomos, N.; Trossen, D.; Petropoulos,
G.; Spirou, S.: Stateless multicast switching in software defined

123

https://doi.org/10.1109/COMST.2014.2330903
https://doi.org/10.1109/SURV.2013.081313.00105
https://doi.org/10.1109/EWSDN.2013.21
https://doi.org/10.1145/2620728.2620735
https://doi.org/10.1145/2620728.2620735
https://doi.org/10.23919/IFIPNetworking.2017.8264880
https://doi.org/10.23919/IFIPNetworking.2017.8264880
https://doi.org/10.1145/1218063.1217938
https://doi.org/10.1109/MICRO.2006.29
https://doi.org/10.1145/1945023.1945039
https://doi.org/10.1145/1945023.1945039
http://dl.acm.org/citation.cfm?id=1924943.1924960
http://dl.acm.org/citation.cfm?id=1924943.1924960
https://doi.org/10.1145/2365864.2151042
https://doi.org/10.1145/2365864.2151042
https://doi.org/10.1145/2619091
https://doi.org/10.1145/2619091
https://doi.org/10.1145/3229556.3229561
https://doi.org/10.1145/3229556.3229561


3132 Arabian Journal for Science and Engineering (2020) 45:3123–3132

networks. In: 2016 IEEE International Conference on Communi-
cations (ICC), pp. 1–7 (2016). https://doi.org/10.1109/ICC.2016.
7511036

24. Rashvand, H.F.; Salah, K.; Calero, J.M.A.; Harn, L.: Distributed
security formulti-agent systems—reviewand applications. IET Inf.
Secur. 4(4), 188–201 (2010). https://doi.org/10.1049/iet-ifs.2010.
0041

25. Pfaff, B.; Pettit, J.; Koponen, T.; Jackson, E.; Zhou, A.; Raja-
halme, J.; Gross, J.; Wang, A.; Stringer, J.; Shelar, P.; Amidon,
K.; Casado, M.: The design and implementation of open vswitch.
In: 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pp. 117–130. USENIX Association,
Oakland, CA (2015)

26. Gude, N.; Koponen, T.; Pettit, J.; Pfaff, B.; Casado, M.; McKeown,
N.; Shenker, S.: NOX: towards an operating system for networks.
SIGCOMM Comput. Commun. Rev. 38(3), 105–110 (2008)

27. OpenFlow Switch Specification v1.2.0 (2011). https://www.
opennetworking.org/. Accessed 18 July 2019

28. Siris, V.A.; Fotiou, N.; Mertzianis, A.; Polyzos, G.C.: Smart
application-aware iot data collection. J. Reliab. Intell. Environ.
5(1), 17–28 (2019)

29. Fotiou, N.; Xylomenos, G.; Polyzos, G.C.: Securing information-
centric networking without negating middleboxes. In: 2016 8th
IFIP International Conference on New Technologies, Mobility and
Security (NTMS), pp. 1–5 (2016)

123

https://doi.org/10.1109/ICC.2016.7511036
https://doi.org/10.1109/ICC.2016.7511036
https://doi.org/10.1049/iet-ifs.2010.0041
https://doi.org/10.1049/iet-ifs.2010.0041
https://www.opennetworking.org/
https://www.opennetworking.org/

	Information Flow Tracking and Auditing for the Internet of Things Using Software-Defined Networking
	Abstract
	1 Introduction
	2 Background
	2.1 Software-Defined Networking
	2.2 The Constrained Application Protocol
	2.2.1 Messaging Model
	2.2.2 CoAP Extensions


	3 Related Work
	3.1 Information Flow Tracking
	3.1.1 Flow Tracking in Operating Systems
	3.1.2 Flow Tracking in Mobile Devices
	3.1.3 Flow Tracking in Cloud Systems


	4 System Overview
	4.1 Underlay Architecture
	4.2 System Entities
	4.3 High-Level Operation
	4.4 Security Considerations

	5 System Design
	5.1 Tag Registration
	5.2 NAP Configuration
	5.3 Message Flows
	5.4 Tracking and Auditing

	6 Implementation and Evaluation
	6.1 Overhead Evaluation

	7 Conclusions
	Acknowledgements
	References




