
Vol.:(0123456789)1 3

Arabian Journal for Science and Engineering (2020) 45:3091–3109 
https://doi.org/10.1007/s13369-019-04285-9

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

Hybrid Particle Swarm Optimization with Sine Cosine Algorithm 
and Nelder–Mead Simplex for Solving Engineering Design Problems

Hussam N. Fakhouri1   · Amjad Hudaib1 · Azzam Sleit1

Received: 22 June 2019 / Accepted: 3 December 2019 / Published online: 2 January 2020 
© King Fahd University of Petroleum & Minerals 2020

Abstract
This paper introduces a novel hybrid evolutionary algorithm that combines particle swarm optimization (PSO) algorithm 
with sine–cosine algorithm (SCA) and Nelder–Mead simplex (NMS) optimization technique. However, the algorithm of 
PSO has some drawbacks like locating local minima rather than global minima, low converge rate and low balance between 
exploration and exploitation. In this paper, the combination of PSO algorithm with update positions mathematical equation 
in SCA and NMS technique is presented in order to solve these problems. So a new hybrid strategy called PSOSCANMS 
is introduced. The SCA algorithm is based on the behavior of sine and cosine functions in the mathematical formula used 
for solutions. However, the NMS mathematical formulations attempt to replace the worst vertex with a new point, which 
depends on the worst point and the center of the best vertices. The combined effect of both mathematical formulations of 
PSO ensures a consistency of exploitation and exploration that makes the search in the search space more effective. Further, 
it escapes into the local minimum issue and resolves the low converge rate problem. In order to test PSOSCANMS’s perfor-
mance, a set of 23 well-known unimodal and multimodal functions have been benchmarked. Experimental results showed 
that PSOSCANMS is more successful than PSO and outperforms the other state-of-the-art compared algorithms over the 
tested optimization problems. Moreover, an engineering design problem such as spring compression, welded beam is also 
considered. The result of the problems in engineering design and application problems shows that the algorithm proposed 
is relevant in difficult cases involving unknown search areas.
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1  Introduction

In recent decades, several population-based random optimi-
zation techniques have been widely used for solving global 
optimization problems, for example evolutionary algorithms 
and swarm intelligence optimizations. The particle swarm 
optimization (PSO) meta-heuristic is part of a wider class of 
the swarm intelligence algorithms that aim to solve global 
optimization problems [1].

Meta-heuristic algorithms are needed for the optimization 
process in various fields of science including monitoring, 
classification, engineering, etc. In order to find optimum 
solutions, they try to satisfy the convergence needs. Fast 

and successful convergence is needed especially for online 
(real-time) applications [2]. Convergence time has been 
shortened by developing new or hybrid optimization algo-
rithms over time. In order to do this, two ways of achieving 
better results were used, new methods or a hybridizing of 
some optimization methods. An alternative (hybridization) 
is being followed in this study, and an effective method of 
benchmarking optimization is being examined. PSO is being 
used in several disciplines to many newly developed optimi-
zation algorithms [3]. An algorithm or inspirational formula 
can, however, increase the efficiency of the PSO standard. 
The hybrid or improved PSO architectures can therefore be 
developed. These modifications are necessary to improve 
convergence. The hybrid algorithm, however, is usually 
assessed by a set of benchmarking functions which examine 
the efficiency of the developed hybrid optimizer [2].

Many hybrid PSO algorithms were developed. The algo-
rithm for original particle swarm has been modified by 
Mendes et al. [4], and the fully informed particle swarm is 
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designed to fully inform individuals. Different topologies for 
numerical function optimization of fully informed PSO were 
also examined [5]. The results were better based on their 
study, and fully informed PSO performed canonical PSO on 
the optimization of the benchmarking function [6, 7].

A hybrid PSO, based on the sine–cosine algorithm 
(SCOSCALF), has been developed to address optimization 
problems [8]. The exploration capability of the original PSO 
algorithm is increased by combining SCA and Levy flight in 
the PSOSCALF algorithm and is also avoided in the local 
minimum.

This article proposes a combination of the Nelder–Mead 
simplex (NMS) position update equations and the cosine 
optimization of the scene algorithm (SCA). The proposed 
hybridization algorithm significantly speeds up the conver-
gence rate for a number of famous benchmark issues. It adds 
a user component to the algorithm for the optimization of 
particle swarming that maintains a suitable balance among 
exploration and exploitation. One of the population-based 
algorithms recently proposed for optimization solutions is 
the SCA optimization algorithm [9].

In the proposed PSOSCANMS algorithm, each new 
solution shall be calculated using sine and cosine function 
characteristics and then using Nelder–Mead simplex func-
tion characteristics. This algorithm enables exploration and 
exploitation capabilities to oscillate and change the value 
of these trigonometric functions. The Nelder–Mead sim-
plex technique hybridization SCA thus allows for a further 
research into the design space to find an optimal solution.

The position of the particle is updated at the proposed 
PSOSCANMS with the best value between the three meth-
ods PSO, SCA and NMS for each iteration; PSO is the first 
to acquire new location of the particle, SCA is updated to 
the position of the particle when SCA’s best value is better 
than the value found for PSO, and the new position of the 
particle is found by SCA equations. Otherwise, NMS will 
update the particle’s position.

The main advantages of the hybridization of NMS and 
SCA with PSO are that they are easy to implement determin-
istic local optimization techniques which use only function 
evaluations to direct their search, and hence, they do not 
require the computation of derivative. Further they increased 
the search capability of PSO. Another main advantage is that 
the hybrid that is to overcome the problems that PSO has 
such as locating local minima rather than global minima, low 
convergence rate and low balance between exploration and 
exploitation. However, these problems are solved by chang-
ing the direction of particle movement at each iteration.

The novelty of this work is that the hybrid algorithm of 
NMS and SCA with PSO will offer five solutions at each 
step of the optimization process. The particle can choose the 
best solution between all these points rather than one point 
and one movement direction in PSO. This will extend the 

exploration feature of particles to cover most of the search 
space. Moreover, NMS will cover three points around each 
particle in the search space and SCA will cover two more 
points using sine and cosine functions. This expansion will 
make each particle to choose the best position between five 
points rather than heading in one direction using one global 
point. However, if one of the five points has better solution 
than the one that PSO has, then the particle direction will be 
toward this area which contains a better value and possibly 
has the global minimum solution and not local minimum.

The next sections of this article are as follows: Sect. 2 
describes the basics of the PSO algorithm. The SCA and the 
Nelder–Mead simplex algorithms are presented in the third 
and fourth sections. The details of the PSOSCANMS algo-
rithm proposed are described in Sect. 3. Section 4 compares 
the ability of the suggested algorithm to optimize bench-
marking functions with family PSO and other algorithms. 
Section 5 has been assessed for the ability of the PSOS-
CANMS method to resolve engineering problems. In Sect. 6, 
the paper is finalized.

2 � Optimization Algorithms

2.1 � Particle Swarm Optimization (PSO) Algorithm

The overall PSO’s idea of how birds or fish schools move is 
based. The population is called a swarm in this algorithm 
and every spot is a particle. These swarms are solutions that 
are possible. The particles in the search area of the objec-
tive function are randomly initialized. Each particle makes 
a compromise between its own best position in history (i.e., 
pbest), its strongest position and its random look (i.e., gbest) 
in the course of consecutive iterations following initializa-
tion. In PSO, every particle has two characteristics (velocity 
vector V and vector X) and moves in the search space at a 
time of velocity adjustment based on the experience of the 
particle and the experience of the particle companion. The 
speed and position of the part according to Eqs. 1 and 2 shall 
be updated mathematically [10]:

where Vid(t + 1) and Vid are particle velocities at iterations 
t and t + 1. Pid is particle’s best position. Pgd is neighbor-
hood’s best position at iteration t. c1 and c2 are acceleration 
coefficients that reflect the weight of stochastic accelera-
tion terms pulling each particle to pbest and gbest positions, 
respectively. r1 and r2 denote two uniformly distributed 

(1)
Vid(t + 1) = w ∗ vid(t) + c1 ∗ r1 ∗ (pid(t)−xid(t))

+ c2 ∗ r2 ∗ (pgd(t)−xid(t))

(2)Xid(t + 1) = xid(t) + vid(t + 1)
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random numbers (0, 1). ω is the weight of inertia used in 
global and local search balance. A large weight of inertia 
generally makes global exploration easier while a small 
weight of inertia facilitates local use. And xid is the position 
of the t-iterative particle.PSO starts by generating particles 
randomly in the search space [11].

The disadvantage of PSO is that the convergence of 
the swarm is slow. This problem is based on the fact that 
particles converge for the global best, because all particles 
move to a single point between the best global position and 
the best personal position. This is not ensured for to be the 
global optimum value [3]. The rapid flow of information 
between particles is another reason for this problem, result-
ing in the creation of similar particles with a loss of diversity 
which increases the risk of trapping them in local optima. 
However, PSO is likely to pre-converge over multimodal 
fitness areas and PSO is relatively weak in local search 
capacities. Moreover, numerous studies have demonstrated 
that PSO can easily be stored in an optimal solution region in 
the local market and that its complex multimodal functions 
are slowly converging. It is important to balance exploration 
and exploitation to overcome those disadvantages, and we 
thus use the PSO hybrid strategy with SCA and NMS to 
improve the performance of PSO [12].

2.2 � Sine–Cosine Algorithm (SCA)

In 2016, Mirjalili proposed sine–cosine algorithm (SCA) 
to solve problems related to optimization. SCA produces 
a variety of random solutions and then approaches them 
with the optimum solution using equations such as sine and 
cosine functions [9]. Of course, apart from the characteris-
tics of these functions, the distance between the best par-
ticle of the population and each of the alternatives affects 
their motion. The SCA algorithm offers fewer operators than 
other algorithms in terms of operation and exploration. This 
algorithm applies sine and cosine functions to update solu-
tions for exploration and exploitation using equations (Eqs. 3 
and 4) [9]:

where Xi(t) is the position of the current solution in ith 
dimension at tth iteration, r1, r2 and r3 are random numbers, 
Pi is position of the destination point in ith dimension and | 
| symbol indicates the absolute value.

Equations (3) and (4) indicate the space defined by the 
proposed equations by the two search solution solutions. The 
cyclical synthetics and cosine make it possible to rearrange 
a solution around another one. There can be guaranteed 
space use between two solutions. In order to explore the 

(3)Xi(t + 1) = Xi(t) + r1 sin
(
r2
)|| r3P

t−Xi (t)
||

(4)Xi(t + 1) = Xi(t) + r1 cos
(
r2
)|| r3P

t−Xi(t)
||

search area, solutions must also be able to look outside the 
space between their destinations. Yet changes in the range 
of sine and cosine functions require a solution to change the 
range of sine and cosine functions outside or inside the space 
between oneself and another alternative. If the random num-
ber is defined for r2 in [0, 2β] in Eq. 3, the changed position 
inside and outside can be achieved [13].

2.3 � Nelder–Mead Simplex

A very popular multi-dimensional optimization search 
method, the Nelder–Mead simplex algorithm (31), was 
released in 1965. However, Spendley et al. [14] and Nelder 
and Mead [15] subsequently developed the simplex search 
method [15, 16]. This algorithm, which only uses the basic 
operations of reflection, expansion, contract and shrink to 
find the solution directly, does not need to obtain the first 
or second derivative for the property of derivative-free. The 
Nelder–Mead algorithm keeps a simple, optimum point 
approximation. The vertices are sorted by the value of the 
objective function. The algorithm tries to replace the worst 
corner with a new point, depending on the worst and middle 
of the best corners [17].

A construction called a simplex is used in the 
Nelder–Mead approach. N + 1 solutions, X (k), k = {1, 2, 
n + 1} [6], are a simplex in n dimensions. This is like a two-
dimensional plane triangle. Each step assesses the solutions 
and identifies the worst solution. Simplex center is calcu-
lated as described in Eq. 5 [17].

A simplex S in Rn is defined as the convex hull of n + 1 ver-
tices x0,…,xn ∈ Rn. For example, a simplex in R2 is a triangle 
as shown in Fig. 1. However, a simplex-based direct search 
method begins with a set of n + 1 points x0,…,xn ∈ Rn that are 
considered as the vertices of a working simplex S, and the 
corresponding set of function values at the vertices fj: = f(xj), 
for j = 0,…,n. The initial working simplex S has to be non-
degenerate, i.e., the points x0,…,xn must not lie in the same 
hyperplane. The method then performs a sequence of trans-
formations of the working simplex S, aimed at decreasing 

(5)C = (�X(k))∕n

Fig. 1   Triangle simplex center
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the function values at its vertices. At each step, the transfor-
mation is determined by computing one or more test points, 
together with their function values, and by comparison of 
these function values with those at the vertices. This pro-
cess is terminated when the working simplex S becomes 
sufficiently small in some sense, or when the function values 
fj is close enough in some sense (provided f is continuous) 
[15, 17].

2.4 � Swarm Intelligence (SI) and Meta‑heuristics

Swarm intelligence (SI) inspired algorithms. SI describes 
the collective behavior of a decentralized self-organizing 
system. It is considered in the theory of artificial intelligence 
as an optimization method [18]. The term was introduced 
by Beni and Jin [18], in the context of a system of cellu-
lar robots. SI has very wide inspired meta-heuristics that 
increase every day taking into consideration the hybrid algo-
rithms that result from combining any two meta-heuristics. 
The first SI meta-heuristic was particle swarm optimization 
(PSO), a meta-heuristic proposed by Eberhart and Kennedy 
[10], and they took inspiration from flying birds in nature 
to propose the PSO meta-heuristic. PSO is based on the 
collaboration of individuals with each other; each particle 
moves and at each iteration the closest to the optimum and 
then communicates with other particles to send its position 
to change their position. After PSO, many SI meta-heuristics 
have been proposed and recent ones are: ant colony opti-
mizer (ACO) [19]; fast evolutionary programming (FEP) 
[20]; cuckoo search (CS) algorithm [21]; bees algorithm 
(BA) [13]; artificial bee colony (ABC) algorithm [22]; gravi-
tational search algorithm [23]; firefly algorithm (FA) [24]; 
grey wolf optimizer (GWO) [25]; dolphin echolocation (DE) 
[26]; fruit fly optimization algorithm (FFOA) [27]; glow-
worm swarm optimization (GSO) [28]; tree-seed algorithm 
(TSA) [29]; cuckoo optimization algorithm (COA) [30]; 
hunting search (HS) [31]; atom search optimization (ASO) 
[32]; butterfly optimization algorithm: a novel approach 
for global optimization (BOA) [33]; augmented grey wolf 
optimizer (AGWO) [34]; enhanced grey wolf optimizer 
(EGWO) [33]; bat algorithm (BA) [35]; moth swarm algo-
rithm (MSA) [36]; hybrid PSO–GWO [36]; and supernova 
optimizer [3].

3 � The Proposed Hybrid Particle Swarm 
Optimization with Sine–Cosine Algorithm 
and Nelder–Mead Simple (PSOSCANMS) 
Algorithm

Although PSO algorithm has the excellence of high-speed 
computation with a small number of parameters and sim-
plicity in implementation; it has two major deficiencies 

including slow convergence and falling into the local min-
ima. However, in recent studies such as Singh et al. [37], 
the PSO velocity and position updating equations have been 
enhanced by the behavior of sine and cosine [37]. Further, 
Chin et al. (2018) used hybridization with SCA, where new 
solutions are generated and the ability to examine the search 
space is increased [2]. In addition, the Nelder–Mead sim-
plex (NMS) technique was used to speed up the convergence 
rate [1]; the hybridization with Nelder–Mead simplex, as 
discussed in Sect. 3, has been a popular means of accelerat-
ing convergence, for example hybridization of NMS with 
evolutionary algorithms. This technique has been reported 
by several papers [2].

For hybridization of PSO and other optimization algo-
rithms, one of the two (I) tandem and (II) cascading methods 
has been widely used. If the approach is tandem, the entire 
population is divided into two subsets in tandem hybridiza-
tion strategy. One or more of the algorithms are used for a 
set of individuals. At the end, they combine the two subsets. 
However, when the approach is cascaded, the stochastic opti-
mization process is used for everyone in the population and 
the solutions obtained are further improved by the combined 
algorithm. We used cascade hybridization in this paper.

In this paper, the equations of position updating on SCA 
(Eqs. 3 and 4) are combined in Eq. 6 [9] and added to PSO. 
After that, the update position of Nelder–Mead simplex 
(Eqs. 7–9) [17] is secondly cascaded after SCA (Eq. 6). 
These two enhancements will modify the PSO particles 
movement strategy to be able for better search in the search 
space for better detecting the global optima and to speed up 
the converge rate.

where parameter r1 determines the region (or direction of 
motion) in the next position that might be either in or outside 
the space between the solution and the destination. The r2 
parameter defines the distance to and from the destination 
of the movement. Parameter r3 gives random weight to the 
destination, so that the effect of the destination in defining 
the distance is stochastically emphasized (r3 > 1) or decanted 
(r3 < 1). In conclusion, the r4 parameter switches equally 
between the sine and cosine components of Eq. 6 [9].

In Eq. 7, the summation is excluded and the worst point 
is reflected in the center; however, the worst point W shall 
be replaced with point r reflected in the simplexes, but the 
simplex will be extended further if the point reflected is bet-
ter than any simplex solution, as described in Eq. 8.

(6)

xi(t + 1) =

{
Xi(t) + r1 sin (r2)

|
|r3pt − Xi(t)

|
|, r4 < .05

Xi(t) + r1 cos (r2)
||r3pt − Xi(t)

||, r4 ≥ .05

(7)R = C + (C−W)
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where W is the worst solution. C is the simplex center cal-
culated in Eq. 5, and the expansion coefficient is called η. R 
is the reflected solution.

If the reflected R solution was worse than W, however, 
the simplexes would be contracted and the reflected solution 
would be positioned on the same center. When solution R is 
not worse than solution W, but worse than any other solution, 
simplex still contracts but reflection is permitted to remain 
on the other side of the centroid. Reflection is done accord-
ingly as described in Eq. 9 [10].

where κ is the contraction coefficient in the above equation. 
In the next step, the new [17] R, Re or Rc will replace solu-
tion W. It is possible to run the simplex algorithm several 
steps prior to completion. Every step of the simplex shall be 
referred to as a reverse.

In the new proposed hybrid algorithm, at each iteration 
the particles position is first updated according to PSO equa-
tions. The particles at this point will move toward the global 
optimum point (gbest). Then its motion will be affected by 
SCA and NMS equations, respectively. However, if the solu-
tion found by any of the two algorithms gives better opti-
mum solution than PSO then the particles will move toward 
the better solution. However, if the particle position does 
not improve at the end of every iteration of the optimization 
process, then the combination of SCA and Nelder–Mead 
simplex will generate a new position for every particle in 
the search space.

3.1 � PSOSCANMS Algorithm

The PSOSCNSM steps are described in Algorithm 1. The 
populations are represented in the same set as the actual 
parameter vectors xi = (x1,…, xD), I = 1,…, N, in which D 
is a problem dimension and NOP the population size. At 
the beginning of the search, the single vectors xi are ran-
domly initialized. MaxIt is the maximum iteration, the lower 
and upper bounds in search space are Xmin and Xmax. At the 

(8)Re = C + �(C−W)

(9)Rc = C ± �(C−W)

start of the proposed algorithm are those parameters set. 
The position and velocity of particles are initially generated 
randomly.

However, by calculating the objective function value, 
the best local (XpBesti) for each particular and the global 
(Xgbest) of the whole population is determined. During 
each iteration, the value of the constants c1, c2 and w is 
determined. Before updating the vector for the velocity 
of each particle, the limit value of the particle is checked. 
Firstly, particle velocity and position are updated by the 
simple PSO Eqs. 1 and 2. Secondly, Eq. 6 which is the 
SCA algorithm shall determine the next position of the 
particle. The fitness value of applying the equations is bet-
ter than the value obtained from Eqs. 1 and 2. However, 
in this case, this particle has a random value. When rand 
(0.5), in Eq. 6 the particle position is calculated.

Thirdly, the algorithm then applies to Eqs. 7–9, respec-
tively, which constitutes to Nelder–Mead simplex. Then, 
the global value is chosen among the three equations if the 
founded solution is better than the previous founded solu-
tion. The algorithm then saves the best solutions, assigns 
them to the destination and updates further solutions. In 
the meantime, the upper and lower search space range is 
updated so that search space is used to achieve the global 
optimal point at each iteration.

New particles are produced in the design space by 
upgrading the speed and position of all particles. After 
that, all new particles will have an objective function 
determined. Then, each new particle’s objective value is 
compared with its best personal experience (Xpbesti). If 
the location is improved, Xpbesti will be updated and its 
index resets to zero and the index will increase by one 
piece, otherwise. Finally, for all particles Xgbest is deter-
mined. The process above is repeated up to the MaxIt 
iteration number.

PSOSCANMS has increased the search capacity to 
include more particle positions during the motion of par-
ticles, which increased the possibility of finding the global 
minimal and avoiding local minimal problems rather than 
stuck in a local lowest point.
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Algorithm 1 Hybrid Particle Swarm Optimization with Sine Cosine Algorithm and Nelder Mead Simplex

Input: particles, MaxIt , dimension D, number of population (N), Xmin, Xmax., constant (c1), constant (c2)
Output: Gbest 
initial: P        rand

MaxIt M , % Where M The maximum iteration
Xi = (X1, ..., XD), i = 1, ..., N
XPi             RandP % Where RandP is random positions 
Vi             RandV % Where Randv is random velocity 

for i 1: N
Fitness (Xi)  = fobj (Fxi)   % Where F is the objective function of the optimization problem
End for
Set Xi        XpBest 
gbest min(Fitness (Xi) ) 

Begin:
for i         1: N
Vid(t + 1)=w * vid(t)+ c1 *r1 * ( pid(t) – xid(t)) + c2 * r2 * (pgd(t) – xid(t))     
Xid(t + 1)= xid(t) + vid(t+ 1)
Fitness (Xi)  = fobj (Fxi)
End for
for i 1: N
XP XPi % Where XPi is the updated position of the particle
Fitness (Xi)  = fobj (F)
End for
if f(XpBest) < f(XgBest) 
XgBest = XpBest 
End if
for i         1: N
if trial(i)< 0.5 
Xi (t+1) = Xi (t) + r1 sin (r2) | r3Pt – Xi (t) |  
else 
Xi(t+1) = Xi(t) + r1 cos(r2) | r3Pt – Xi(t) |                             
end if 
Fitness (Xi) = fobj (Fxi)
if f(Xi (t)) < f(XpBest) 
trial(i) = 0 
XpBest = Xi 
end if 
if f(XpBest) < f(XgBest) 
XgBest = XpBest 
end if 
for i 1: N
R = C + (C – W)                          
Fitness (Xi) = fobj (Fxi)
if f(XpBest) < f(XgBest) 
XgBest = XpBest 
end if 
End for
for i 1: N
Re = C + η(C – W)                      
Fitness (Xi)  = fobj (Fxi)
if f(XpBest) < f(XgBest) 
XgBest = XpBest 
end if 
End for
for i 1: N
Rc = C ± κ(C – W)                          
Fitness (Xi) = fobj (Fxi)
End for
if f(XpBest) < f(XgBest) 
XgBest = XpBest 
end if 
Xmin < XgBest <(Xmax) 
End for
End Begin 
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When the termination condition is archived, the PSOS-
CANMS algorithm terminates the optimization process and 
the iteration number reaches its maximum limit by default. 
However, every other termination condition, such as the 
maximum number of function assessments or the accuracy 
of the global optimal achieved, can be considered. In order 
to avoid local minimum standards, and for the following 
reasons, the proposed algorithm can theoretically identify 
the global optimum for optimization problems first and then 
improves the PSO algorithm.

The following section examines the efficacy of PSOS-
CANMS with a variety of standard functions representing 
problems known for testing optimization algorithms. The 
efficiency of PSOSCANMS algorithm is investigated, ana-
lyzed and confirmed.

4 � Results and Discussion

In order to evaluate the performance of the proposed PSOS-
CANMS algorithm, extensive simulations have been carried 
out. For comparison, several state-of-the-art optimization 
algorithms (PSO, BOA, GSA, FEP, GWO, ASO, CHPSO) 
have been applied.

4.1 � Benchmark Functions and Parameter Setting

PSOSCANMS has been experimented over 23 benchmark 
functions utilized by many researchers to test performance 
for global optimization algorithms [3, 6, 9, 30, 33, 34, 36, 
37].

These benchmark functions are listed in Tables 1 [5]. 
Further function descriptions are available in Arora and 
Singh [37]. However, the unimodal functions are functions 

{F1–F7}. Functions {F8–F13} represent multimodal basic 
functions, and fixed-dimension multimodal functions are 
from function {F14–F23}.

The unimodal {F1—F7} functions have only one opti-
mum global point, no local optimum points, and they are 
therefore suited for benchmarking algorithms exploitation 
feature. However, the functions {F8–F13} are classified as 
multimodal to test the exploration feature and to avoid local 
optima optimization algorithms because they have many 
local optima points. The algorithms tested should avoid fall-
ing at those points to reach the global optimum point. The 
functions {F14–F23} are functions of a fixed multimodal 
dimension, where the fixed-dimension functions mathemati-
cal formulations do not allow us to adjust the number of 
design variables, but offer different search spaces in con-
trast to multimodal test functions. Graphical representation 
for certain benchmark functions that are considered in this 
research is shown in Fig. 2.

4.2 � Experiment and Comparison

The experiment must be performed up to n number of times 
in order to produce stable statistic results for the perfor-
mance of meta-heuristic algorithms. And for testing the sta-
bility of the algorithm every run must be carried out to m 
number of iterations [37]. The same experimental procedure 
was followed to produce and report and then verify the per-
formance of PSOSCANMS algorithm, including statistical 
measurement (mean, standard deviation, Min and Max). A 
population size and a maximum iteration of 51 and 10,000, 
respectively, were used for all algorithms.

Results of the comparing PSOSCANMS with state-
of-the-art meta-heuristic algorithms (BOA, ASO, GWO, 
CHPSO, SCA, PSOGWO and MSA) as well as PSO over 

Table 1   Benchmark functions (F1–F23)

No. Function name No. Function name

F1 Shifted sphere F12 Schwefel’s problem 2.13
F2 Shifted Schwefel’s problem 1.2 F13 Griewank’s plus Rosenbrock’s function
F2 Shifted rotated high conditioned elliptic function F14 Shifted rotated expanded Scaffer’s F6
F3 Shifted rotated high conditioned elliptic function F15 Hybrid composition
F4 Schwefel’s problem 2.6 with global optimum on bounds F16 Rotated hybrid composition space function
F5 Schwefel’s problem 2.6 with global optimum on bounds F17 Rotated hybrid composition function with noise in fitness
F6 Shifted Rosenbrock’s F18 Rotated hybrid composition function
F7 Shifted rotated Griewank’s function without bounds F19 Rotated hybrid composition function with a narrow basin for the 

global optimum
F8 Shifted rotated Ackley’s function with global optimum on 

bounds
F20 Rotated hybrid composition function with the global optimum on 

the bounds
F9 Shifted Rastrigin’s F21 Rotated hybrid composition
F10 Shifted rotated Rastrigin’s F22 Rotated hybrid composition function with high condition number 

matrix
F11 Shifted rotated Weierstrass F23 Non-continuous rotated hybrid composition
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1 3

tested benchmark are described in Table 2. The grouped 
statistical test results for the 23 functions are also dem-
onstrated. As seen in the table, the results show that the 
hybrid strategy in PSOSCANMS has clearly enhanced 
PSO. The results over six of the tested unimodal test 

functions (F1–F7) show that the improved method has 
successfully contributed to PSOSCANMS performance 
over PSO. However, in traditional PSO all of the particles 
update their position to move toward one point that may be 
a local minima and not a global minimum, PSOSCANMS 

Fig. 2   Representation of benchmark mathematical functions
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update the particle positions simultaneously at each itera-
tion to new position according to the mathematical equa-
tions in SCA and NMS which overcome the problem of 
local minima.

Table 5 presents a summary of the results. The aggregated 
results of statistical testing over the functions are shown in 
Table 5. The symbols (B) and (W) indicate that a given algo-
rithm performed better (B), worse (W), in comparison with 
PSOSCANMS after the compared algorithm had reached 
the termination criteria. The maximum number of objective 
function evaluations is 10,000. All results are based on 51 
runs.

4.3 � Discussion of the Results Presented in Tables 2, 
3 and 4 and Summary Table 5

This section is divided into two parts, and the first part dis-
cusses the evaluation of exploitation capability, which is 
presented in Tables 2, 3 and 4 for the functions (F1–F7). 
However, the second part presents evaluation of exploration 
capability and the balance between exploration and exploi-
tation for functions (F8–F23). In addition, it explains the 
summary of mean results presented in Table 5.

Table 5   Summary of the 
results of comparing the mean 
of PSOSCANMS over the 
benchmark functions

VS PSO VS BOA VS ASO VS GWO VS CHPSO VS SCA VS PSOGWO VS MSA

F1 B B B B B B B W
F2 B B B B B B W W
F3 B B B B B B B W
F4 B B B B B B B W
F5 B B B B B W B B
F6 B B B B W B B B
F7 B B B B B W B B
F8 W W W W W B W W
F9 B B B B B B B B
F10 B B B W B B W B
F11 B B B B B B B B
F12 B B B B B B B B
F13 W B B W B W B W
F14 B B B B W W B W
F15 B B B B B W B B
F16 B W B B B B B B
F17 W W W W W W W W
F18 B B B B B W B B
F19 W W B B W B B B
F20 W W B B B B B W
F21 B B B B B B B B
F22 W B B B W B B B
F23 B B B B W B B B

Fig. 3   Plot of the standard 
deviation vales for all functions: 
F1–F23
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Fig. 4   Convergence of PSOSCANMS algorithm (red color) compared to PSO (blue color)
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4.3.1 � Evaluation of Exploitation Capability (Functions F1–
F7)

The results of Tables 2, 3 and 4 and the summary presented 
in Table 5 show that the proposed algorithm is able to pro-
vide very competitive results on the unimodal test functions. 
These functions do not have a local solution but only one 
global optimum. However, PSOSCANMS outperformed pre-
vious state-of-the-art optimization algorithms (PSO, BOA, 
ASO and GWO) on all of the seven functions {F1–F7}. 
Moreover, the compared algorithms have shown the superior 
results of PSOSCANMS over CHPSO and PSOGWO algo-
rithm, with six functions. The reason for these results is that 
hybridization between the three algorithms allowed the func-
tion to reach the optimum global point. Since all of the seven 
unimodal testing functions have the best results with the 
PSOSCANMS algorithm, it proofs that it has strong exploi-
tation behavior which is important for numerous issues of 
optimization that need to be solved. As already mentioned, 

unimodal functions are appropriate for benchmarking algo-
rithms. The results therefore show that the PSOSCANMS 
algorithm is highly operational. Further, the superior of the 
results over both original PSO algorithm and SCA algorithm 
proves that the hybridization is very successful and very 
beneficial for solving the optimization problems with single 
objective point and in reaching the global optimum.

4.3.2 � Evaluation of Exploration Capability and the Balance 
Between Exploration and Exploitation (Functions 
F8–F23)

Tested benchmark functions {F8–F13} represent multimodal 
functions that include many local optima points whose num-
ber increases exponentially with the problem size. To evalu-
ate the exploration capacity of optimization algorithms, mul-
timodal functions are used. As shown in Tables 2, 3 and 4 
and the summary in Table 5, the PSOSCANMS algorithm 
highly outperforms (PSO, BOA, ASO, GWO, CHPSO, SCA, 

F16 F17 F18

F19 F20 F21

F22 F23

Fig. 4   (continued)
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PSOGWO and MSA) over at least eleven functions over the 
tested multimodal functions {F8–F13}. This proves that 
PSOSCANMS can well balance exploration and exploitation 
phases. This may be due to the fact that PSOSCANMS pro-
vides more exploring points in the search space for the reason 
of using the two equations of SCA algorithm and the three 
equations of NMS algorithm. It generates new positions for 
each particle at each iteration and updates the current particle 
position to the best position in the different dimensions that 

guide PSOSCANMS algorithm to reach the global optimum 
point in the search space. However, PSOSCANMS outper-
forms PSOGWO over fifteen functions and ASO over four-
teen tested functions indicating that PSOSCANMS has also 
a very good exploration capability. In fact, the present algo-
rithm always appeared the most efficient or the second best 
algorithm in the majority of test problems. Functions F8 to 
F23 are divided into two sections, the first is unimodal func-
tions and the second is fixed unimodal functions. However, 
Tables 2, 3 and 4 show that PSOSCANMS performance over 
the tested fixed-dimension functions {F14–F23} is better than 
the compared algorithms. PSOSCANMS outperforms (ASO, 
GWO and PSOGWO) over nine functions out of ten and out-
performs (PSO, BOA, SCA and MSA) in six functions.

These results show that PSOSCANMS can perform good 
at real-world problems which may not have uniform functions. 
Further it can be seen that in the fixed-dimension functions 
{F14-F23}, PSOSCANMS performs better than PSO. The mul-
timodal fixed-dimensional functions have very difficult search 
spaces and high exploration requirements for the accurate 
approximation of their global optimal. The results show that 
the PSOSCANMS algorithm has an excellent scan capability 
which leads to global optimization. Moreover, high local opti-
mum avoidance of this algorithm is from which these results 
can be deduced. In addition to multimodal functionality, the 
algorithm can further explore the search space and find promis-
ing search space areas, improving the number of local solutions.

4.4 � Stability of PSOSCANMS Algorithm

The plot of the standard deviation values for all functions 
from F1 to F23 is shown in Fig. 3. Except for F8, all other 
functions are near zero and this means that POLARPSO 
is stable over the 51 experiments that were performed, the 
reason for the high standard deviation value of F8 is due to 
the very large values in the search space.

4.5 � Convergence Curves Analysis and Discussion

The convergence curves of the tested benchmark functions 
of PSOSCANMS in comparison with PSO are shown in 
Fig. 4. Please note that the average best solution for every 
iteration indicates the average best solution obtained up to 
now in every iteration.

It can be seen in Fig. 4 that the convergence behaviors 
of PSOSCANMS fall into different categories: First, it tends 
to be accelerated as iteration increases; second it finds the 
optimum value at the later stages of the iterations. However, 
according to Van Den Berg et al. [38], this behavior can guar-
antee that a population-based algorithm eventually converges 
to a point and searches locally in a search space. This is an 
evidence that the proposed hybrid algorithm can successfully 

Table 6   Overall confusion matrix of PSOSCANMS using different 
dimensions over functions (F1)

Dimension Number of 
particles

Training 
accuracy (%)

Testing 
accuracy 
(%)

Overall 
accuracy 
(%)

10 100 95.5 94.2 94.85
30 100 94.7 93.1 93.9
50 100 88.8 83.7 86.25
100 100 82.9 79.3 81.1

Table 7   Overall confusion matrix of PSOSCANMS using different 
dimensions over functions (F3)

Dimension Number of 
particles

Training 
accuracy (%)

Testing 
accuracy 
(%)

Overall 
accuracy 
(%)

10 100 96.2 96.7 96.45
30 100 95.2 94.1 94.65
50 100 91.0 90.4 90.7
100 100 83.8 80.9 82.35

Table 8   Overall confusion matrix of PSOSCANMS using different 
dimensions over functions (F6)

Dimension Number of 
particles

Training 
accuracy (%)

Testing 
accuracy 
(%)

Overall 
accuracy 
(%)

10 100 93.5 92.8 93.15
30 100 94.6 90.3 92.45
50 100 87.5 86.1 86.8
100 100 80.2 77.3 78.75

Table 9   Overall confusion matrix of PSOSCANMS using different 
dimensions over functions (F9)

Dimension Number of 
particles

Training 
accuracy (%)

Testing 
accuracy 
(%)

Overall 
accuracy 
(%)

10 100 91.7 89.4 90.55
30 100 89.4 87.8 88.6
50 100 82.2 79.1 80.65
100 100 77.5 77.2 77.35
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improve the fitness of all particles and guarantee finding bet-
ter solutions as iteration increases. This can be discussed and 
reasoned according to the hybridization of the proposed algo-
rithm. Since the particles of the swarm tend to move from a 
high value to global minimum value, similarly to the evolution 
concepts in PSO, the whole particles and their fitness average 
tend to be improved over the course of iterations. In addition, 
we save the best value and move it to the next iteration, so the 
best value formed so far is always available to improve the 
fitness of other particles. It can be also observed that when 
comparing the behavior of PSOSCANMS with PSO, in most 
of the functions, PSOSCANMS has a higher success rate in 
finding the optimum global value than PSO and it is faster to 
reach the global value as it can be seen in {F1, F2, F3, F4 F5, 
F7, F9, F10, F11, F14, F15, F17, F18, F19, F21}.

The first behavior of the acceleration as iteration increases 
is due to the increasing number of search points resulted from 
the hybridization between the three algorithms, which help the 
particles in the initial stages of the iteration to search for new 
regions in the search space that speed up finding the optimal 
values with a minimal number of iterations. This performance 
of the algorithm can be seen in all of the unimodal functions 
as well as in most of the multimodal functions {F1, F2, F3, 
F4 F5, F7, F9, F10, F11, F14, F15, F17, F18, F19, F21}. The 
second behavior of PSOSCANMS convergence curve is to 
find the optimum value at the later stages of the iterations. 

This behavior can be seen in functions {F6, F8, F12, F15, 
F20, F21, F22}. The explanation of this is probably because 
PSOSCANMS exploits the solutions, and it has been found 
so far before exploring new search regions; it benefits from 
both exploration and exploitation features that are improved 
in PSOSCANMS, which helps this algorithm find the global 
optimum. It shows that PSOSCANMS is able to escape local 
minimum and find the global optimum in the search space.

4.6 � Confusion Matrix

The overall confusion matrix of PSOSCANMS using differ-
ent dimensions over four selected functions (F1, F3, F6, F9) 
has been calculated since these functions dimension is flex-
ible and not fixed. The results of applying the algorithm over 
(10, 30, 50) dimension are provided in Table 5. It is known 
in the optimization field that as the dimension increases 
the problem will be harder and the accuracy of reaching 
the optimal point will be lower; however, performance was 
good at high dimension as illustrated in the confusion matrix 
(Tables 6, 7, 8 and 9). The confusion matrix has been guided 
by the method used by [39, 40].

Fig. 5   Schematic of tension/compression spring design problem

Table 10   Comparison of results for tension/compression spring design problem

Algorithm Optimum variables Optimum

Wire diameter Mean coil diameter Number of active coils

PSOSCANMS 0.05072 0.334801 10.79431 0.012475
GWO 0.05169 0.356737 11.28885 0.012666
GSA 0.050276 0.323680 13.525410 0.0127022
PSO (Ha and Wang) 0.051728 0.357644 11.244543 0.0126747
ES (Coello and Montes) 0.051989 0.363965 10.890522 0.0126810
GA (Coello) 0.051480 0.351661 11.632201 0.0127048
HS (Mahdavi et al.) 0.051154 0.349871 12.076432 0.0126706
DE (Huang et al.) 0.051609 0.354714 11.410831 0.0126702
Mathematical optimization (Belegundu) 0.053396 0.399180 9.1854000 0.0127303
Constraint correction (Arora) 0.050000 0.315900 14.250000 0.0128334

Fig. 6   Welded beam design
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5 � PSOSCANMS for Solving Problems 
in Engineering Design

In this section, a traditional engineering design problem such 
as spring compression, welded beam is also considered. The 
PSOSCANMS should be fitted with a limiting technique 
to optimize restricted issues. These issues are restricted in 
equal and in inequality measure. In general, limit handling 
is very difficult when the fitness function directly impacts 
the search agent’s position update. However, any kind of 
restrictive constraint can be used for fitness algorithms 
without changing the algorithm system. While the PSOS-
CANMS algorithm searches, agents update their positions 
regarding alpha, beta and delta places. Between the search 
agents and fitness function, there is no immediate relation-
ship. For example, the simplest limit handling method may 
be used to effectively handle restrictions of PSOSCANMS 
when search agents are given high objective function values 
if they break one of the restrictions. If the alpha, beta or 
delta are restricted, then the next iteration will automatically 
replace them with a new search agent. Any kind of feature 
can be used to penalize search agents on the basis of the rate 
of infringement. If the penalty is lower than any other, the 
alpha, beta or delta are substituted automatically in the next 
iteration by a fresh search agent [41].

5.1 � Tension/Compression Spring Design

This problem is aimed at reducing the voltage/pressure 
source weight as shown in Fig. 4. The minimization method 
is subject to certain restrictions, including shear stress, float-
ing frequency and minimum floating deflections. Both math-
ematical and heuristic methods have addressed this problem. 
A constantly limited issue lays in the tension/compression 
spring design (TCSD) issue as shown in Fig. 4. The issue is 
that a coil spring volume V is kept below a steady voltage 

compression load. Three design factors are as follows: num-
ber of spring coils that is active as shown in mathematical 
Eq. 10, winding diameter as shown in Eq. 11, wire diameter 
as shown in Eq. 12 [42].

The tension/compression spring design problem math-
ematically describes as the following (Fig. 5).

minimize subject to:

The upper and lower limit variables are design problems: 
2 ≤ X1 ≤ 15, 0.25 ≤ X2 ≤ 1.3, 0.05 ≤ X3 ≤ 2.

This is a convex optimization problem, and the closed-form 
optimum solution of the problem is f(X) = 0.0126652327883 
for X = [x1, x2, x3] = [0.051689156131, 0.356720026419, 
11.288831695483] [6].

The numerical optimization (continuous constraints) and 
mathematical optimization technique are the mathematical 
methods used to fix tension/compression spring design prob-
lem. The results are compared to PSOSCANMS in Table 10. It 
should be noted that PSOSCANMS uses the same penalty fea-
ture to make a fair comparison. It indicates that PSOSCANMS 
finds a design for this issue with the minimum weight.

(10)P = x1 ∈ [2, 15]

(11)D = x2 ∈ [0.25, 1.3]

(12)d = x3 ∈ [0.05, 2]
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Table 11   Comparison results 
of the welded beam design 
problem

Algorithm Optimum variables Optimum

h l t b

PSOSCANMS 0.167953 3.279103 6.17342 0.117935 1.34960
GWO 0.205676 3.478377 9.03681 0.205778 1.72624
GSA 0.182129 3.856979 10.00000 0.202376 1.879952
GA (Coello) N/A N/A N/A N/A 1.8245
GA (Deb) N/A N/A N/A N/A 2.3800
GA (Deb) 0.2489 6.1730 8.1789 0.2533 2.4331
HS (Lee and Geem) 0.2442 6.2231 8.2915 0.2443 2.3807
Random 0.4575 4.7313 5.0853 0.6600 4.1185
Simplex 0.2792 5.6256 7.7512 0.2796 2.5307
David 0.2434 6.2552 8.2915 0.2444 2.3841
APPROX 0.2444 6.2189 8.2915 0.2444 2.3815
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Experimental results showed that PSOSCANMS is more 
successful than PSO and outperforms the other state-of-the-art 
compared algorithms over the tested optimization problems [6].

5.2 � Welded Beam Design

This issue is aimed at reducing the price of manufactur-
ing a welded beam, as shown in Fig. 6. The figure shows a 
rigid component which is welded on a beam. At the end of 
the member, a load is applied. The complete manufacturing 
price corresponds to the labor costs (depending on the size 
of the sod) plus the price for the soldering and beams. By 
changing weld and member dimensions x1, x2, x3 and x4, 
the beam is to be optimized for minimal costs. Limits to 
shear stress, bending stress, hinge load and end deflection 
include restrictions. The x1 and x2 variables are generally 
0.0625-inch integer, but are presumed to be constant for this 
implementation [43].

The following restrictions apply: shear stress (s), beam 
bending stress (h), bar bending load (Pc), beam deflection 
end (d) and side constraint. This problem has four variables 
such as thickness of weld (h), length of attached part of bar 
(l), the height of the bar (t) and thickness of the bar (b). The 
mathematical formulation is as follows [44].

Consider minimize subject to [6]:

variable ranges: 0.1 ≤ X1 ≤ 2, 0.1 ≤ X2 ≤ 2, 0.1 ≤ X1 ≤ 10, 
0.1 ≤ X3 ≤ 10, 0.1 ≤ X4 ≤ 2.

where

The results of the comparison are shown in Table 11. It 
indicates that PSOSCANMS over the welded beam design 

(14)
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problem finds a design whose costs are minima when com-
paring it with other designs algorithms.

6 � Conclusion

In this paper, a novel hybrid evolutionary algorithm 
that combines particle swarm optimization (PSO) with 
sine–cosine optimizer and Nelder–Mead simplex optimi-
zation technique has been proposed in order to solve the 
drawbacks in PSO algorithm in locating local minima rather 
than global minima, low converge rate and low balance 
between exploration and exploitation. The proposed algo-
rithm is called PSOSCANMS. The solutions are updated by 
the proposed algorithm with the best position found by the 
three cascaded hybrid algorithms. The range of the search 
points has increased due to using the mathematical equa-
tions of SCA and NMS. These equations allow particles to 
continuously update their position and reassign the solutions 
that they already have found. Further, they enhance PSO 
to explore new areas and dimensions in the search space. 
The proposed algorithm is tested on 23 benchmark func-
tions in order to investigate its performance on the differ-
ent scale functions. The results showed that PSOSCANMS 
has high rate in finding the optimum global value and high 
exploration feature over the original PSO and the other 
compared algorithms. However, this is due to the fact that 
cascading the three hybrid algorithms allows particles to 
examine every possible solution from the initial iteration to 
the end of the optimization procedure in the different dimen-
sions. PSOSCANMS has demonstrated fast behavior, which 
simultaneously reaches the optimal global point and a high 
local optimum avoidance speed. Experimental results of 
comparison PSOSCANMS showed that PSOSCANMS has 
outperformed the other state-of-the-art compared algorithms 
over the compared algorithms and when applying to solve 
engineering design problems such as tension/compression 
spring design and welded beam design problems.
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