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Abstract
Indoor navigation has been increasingly popular over the last few years. However, it still faces plenty of challenges and 
remains a conundrum. This paper proposes a novel improved WiFi/MEMS integration solution for indoor navigation. In 
WiFi fingerprinting scheme, a novel searching space limiting method is originally presented and associated with a mean 
filter to improve computation efficiency and positioning accuracy, compared with the traditional weighted K-nearest neigh-
bors method. In pedestrian dead-reckoning part, an attitude determination extended Kalman filter with correlated process 
and measurement noise is presented to obtain an accurate long-term heading and the average positioning error decreases 
significantly as a result. Furthermore, the self-calibration Kalman filter approach is introduced into indoor navigation field 
in WiFi/MEMS integration stage and a novel Kalman filter system is originally designed to fuse the information effectively. 
The navigation performance of the proposed WiFi/MEMS algorithm has been validated by indoor experiments, and the 
average positioning error is less than 0.6 m when the number of selected APs is optimal.

Keywords Indoor navigation · WiFi · MEMS · Self-calibration Kalman filter · Weighted K-nearest neighbors

1 Introduction

In recent years, indoor navigation has gained a significant 
attention from researchers. Indoor navigation can be traced 
back before smartphones came into existence [1]. RADAR 
[2] and Horus [3] were examples. Since people spend about 
70% of their time indoors [4], the demand of indoor naviga-
tion is increasing rapidly. However, signals from the widely 
used Global Navigation Satellite Systems (GNSS) are often 
not hearable in indoor environments [5]. As a result, indoor 
navigation remains a difficult problem. To overcome this 
conundrum, researchers have developed various approaches 
using inertial measurement unit (IMU) [6], magnetic field 
[7], ultrasonic [8], radio-frequency (RF) ID tags [9], FM 
[10], WiFi [11], etc.

Among the above methods, WiFi-based positioning tech-
nique has been much favored in indoor environments. The 

advantages of WiFi are low device cost, wide infrastructure 
deployment and high positioning accuracy [5]. WiFi indoor 
navigation approaches are essentially divided into two cat-
egories: trilateration and fingerprinting [12]. In the former, 
a radio propagation model (RPM) is established and the 
distance between WiFi access points (AP) and the mobile 
user (MU) is estimated through RPM and the received sig-
nal strength (RSS) [13]. Due to the complexity of indoor 
environments, an accurate RPM cannot be found to describe 
propagation characteristics of WiFi signals inside buildings 
[14]. In the fingerprinting method, there are usually two 
phases: offline and online phases. In the offline stage, the 
main work is setting the locations of many reference points 
(RPs) as the shape of the square grid (each RP receives sig-
nal strength data from multiple APs) and storing the signal 
strength data with position coordinates of RPs in the data-
base. In the online stage, the MU detects RSSs at positioning 
points and uses various matching algorithms to identify his 
locations by comparing RSS measurements with the refer-
ence data [12, 14]. Although fingerprinting approach needs 
to establish fingerprint database at the early stage, it can 
effectively avoid the influence of building structure. Besides, 
it does not require WiFi APs to be known in advance [15]. 
Therefore, it has gained much attention [16]. In this paper, 
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a novel WiFi fingerprinting method with searching space 
limiting and mean filtering is proposed to achieve better 
performance (including higher computation efficiency and 
higher positioning accuracy) than traditional ones.

Since most of the current smartphones are equipped with 
inertial sensors (including accelerometers and gyroscopes), 
microelectromechanical system (MEMS) sensor-based nav-
igation is becoming a popular relative and self-contained 
positioning technique [5]. MEMS sensors have the virtue of 
lower cost and small form factor [17]. For consumer port-
able devices, dead reckoning (DR) is commonly the algo-
rithm applied to position with inertial sensors [16]. There 
are two categories of DR algorithms: inertial navigation sys-
tem (INS) mechanism and pedestrian dead reckoning (PDR). 
INS is a system of calculating velocity by integration of 
the total acceleration and computing position by integra-
tion of the resultant velocity [18]. It has a simple structure 
and strong autonomy and is commonly used in vehicle 
navigation [19]. However, the navigation error of INS will 
appear unconstrained divergence over time [20]. In order to 
improve the navigation performance for pedestrians, PDR is 
developed to reduce the accumulated errors [21]. The basic 
principle of PDR is that the current location can be found 
out by calculating moved distance with heading angle from 
initial location [22]. PDR uses IMU to detect when the MU 
takes footsteps and how the direction changes between foot-
steps [23]. So far, calculating an accurate long-term heading 
remains the most challenging problem in PDR [24]. In this 
paper, a novel integrated MEMS solution applying Kalman 
filtering with correlated process and measurement noise is 
proposed to achieve better performance (much higher posi-
tioning accuracy) than traditional ones.

For the integration of WiFi and MEMS, there are a num-
ber of existed researches. Tian et al. [5] proposed a novel 
smartphone-based integrated WiFi/MEMS positioning algo-
rithm based on the robust extended Kalman filter (EKF) in 
a multi-floor environment. Zhuang and El-Sheimy [25] 
originally proposed a pedestrian navigator based on tightly 
coupled integration of low-cost MEMS sensors and WiFi 
for handheld devices. Zhuang et al. [26] presented a two-
filter integration for MEMS sensors and WiFi fingerprinting 
where a smoothed constrained fingerprinting was obtained. 
In our previous research [27], we proposed a novel WiFi/
MEMS integration structure for indoor navigation using 
two-stage EKF. Using the same data from WiFi/MEMS 
sensors, different information fusion structures may lead to 
various results [16]. In the current study, the self-calibration 
Kalman filter (SKF) approach is introduced into indoor navi-
gation field for WiFi/MEMS integration and a novel Kalman 
filter system is designed to fuse the information effectively. 
As a result, satisfactory navigation performance is achieved.

The rest of this paper is organized as follows. Section 2 
presents the system overview. The WiFi solution and PDR 

solution are illustrated in Sects. 3 and 4, respectively. In 
Sect. 5, the SKF-based integration of WiFi and MEMS is 
analyzed. Section 6 provides details of experiments and 
results. Section 7 makes the conclusion.

2  System Overview

The block diagram of the proposed WiFi/MEMS structure 
for indoor navigation is shown in Fig. 1.

The proposed system mainly includes three modules: 
WiFi-based navigation, PDR-based navigation, and WiFi/
MEMS integration. In WiFi solution, RSS values pass to 
the fingerprinting scheme to generate the MU position and 
a novel searching space limiting method is originally pre-
sented. In PDR solution, an attitude determination EKF with 
correlated process and measurement noise is presented using 
the gyroscope and accelerometer data, and then PDR algo-
rithm is applied to calculate the position of the MU. In WiFi/
MEMS integration, the SKF approach is applied to fuse the 
above information and finally achieve high-accuracy indoor 
navigation.

3  WiFi‑Based Navigation

In WiFi fingerprinting scheme, to estimate the position of the 
MU, different matching algorithms have been presented [28]. 
There are probabilistic approaches [29, 30], deterministic 
approaches [31, 32], and neural networks [33, 34]. Among 
them, K-nearest neighbor (KNN) is one of the top algorithms 
in data mining [35]. As an effective method to determine the 
most important objects of interests, the KNN query is designed 
to find the top k closest objects to a specified query point, 
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given a set of objects and a distance metric [36]. There are dif-
ferent types of distance metrics [12, 32, 37, 38]. Furthermore, 
weighted K-nearest neighbor (WKNN) method [39] has been 
developed. According to WKNN, the MU position is calcu-
lated utilizing the weighted mean of position coordinates of the 
k RPs. There are various methods to determine weights [14].

In KNN and WKNN algorithms, it is necessary to search 
the overall space and go through the whole database finger-
prints, which usually means low efficiency and unacceptable 
computation time. In addition, this increases the probability 
of mismatching and thereby reduces the navigation accuracy. 
In the current study, the searching space is limited into a 
circle determined with the information of the latest posi-
tioning point. Firstly, as a single position may correspond 
to several RSS measurements, the method of inverse regres-
sion analysis and data fusion proposed in the literature [40] 
is introduced into WiFi fingerprinting navigation for a more 
accurate estimation as follows.

Let x be the argument and y be the random variable. 
There is a relationship between x and y as follows:

where a , b , and �2 are undetermined parameters independ-
ent of x.

Suppose 
(
x′
1
, y′

1

)
,
(
x′
2
, y′

2

)
,⋯ ,

(
x′
n′
, y′

n′

)
 are a sample 

obtained through n′ independent trials. Then, the estimates 
of a , b , and � can be obtained as follows:

where

(1)y = a + bx + �
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Assume n independent measurements are conducted under 
the same condition, and n values of variable y ( y1, y2,… , yn ) 
are gained. Then, the estimate of x can be obtained as 
follows:

where

When b > 0 , the one-side lower and upper confidence limits 
of x at the confidence level of P can be calculated by

where xL and xU are the one-side lower and upper confidence 
limits of x , respectively; uP is the P percentage point of the 
standard normal distribution; S is given by

When b < 0 , the one-side lower and upper confidence limits 
of x at the confidence level of P can be calculated by

In this paper, a novel searching space limiting method is 
proposed based on the above approach. In the proposed 
method, a probability circle of the MU’s position is deter-
mined with the information of the latest positioning point 
and the searching space is limited into the circle. The center 
of the circle is located at the latest positioning point, and its 
radius is determined through the following analysis.

When a test point is located, its position coordinates can be 
regarded as known values. Selecting n′ reference points which 
have the shortest RSS distances ( Di ) to the test point, their spa-
tial distances to the test point ( Li ) can be calculated. It is found 
that lnDi varies in good linearity with lnLi . Therefore, a line 
mode is established as shown in Eqs. (17) and (18):

(9)Lxy =

n�∑
i=1

(
x�
i
− x̄�

)(
y�
i
− ȳ�

)
.

(10)x̂ = (ȳ − â)
/
b̂,

(11)ȳ =
1

n

n∑
i=1

yi.

(12)â + b̂xL + uPS
�√

n = ȳ

(13)â + b̂xU − uPS
�√

n = ȳ,

(14)S2 =
1

n� + n − 3

[(
n� − 2

)
�̂�2 +

n∑
i=1

(
yi − ȳ

)2
]
.

(15)â + b̂xL − uPS
�√

n = ȳ

(16)â + b̂xU + uPS
�√

n = ȳ.

(17)lnD = a + b ln L + �
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where the parameters a , b , and � can be estimated according 
to Eqs. (3)–(5).

When locating the next test point, the RSS distance 
between next point and this point ( D∗ ) can be calculated 
easily. According to Eqs. (13) and (14), the one-side upper 
limit of lnL∗ is obtained as follows:

where

Therefore, we have the one-side upper limit of the spatial 
distance between these two points ( L∗

U
 ) as follows:

A circle with the radius of L∗
U

 at this point is a probability 
circle of the MU’s position at the next point. Then, the posi-
tion of the next point can be calculated within the scope of 
RPs in the circle plus this point. Thus, the position of this 
point is taken into account. Therefore, the area of searching 
space is significantly reduced and the navigation accuracy 
is increased.

In WiFi fingerprinting positioning, there is a common 
phenomenon named reciprocating motion, as shown in 
Fig. 2a. The positioning points often flock together and 
bounce around, resulting in poor positioning accuracy. In 

(18)� ∼ N(0, �2),

(19)(ln L∗)U =
1

b̂

(
lnD∗ + uPS − â

)
,

(20)S2 = �̂�2 =

n�∑
i=1

(
lnDi − â − b̂ ln Li

)2
n� − 2

.

(21)L∗
U
= exp

[
1

b̂

(
lnD∗ + uPS − â

)]
.

this paper, a seven-order mean filter is applied to the origi-
nal positioning results for smoothing. After filtered, the 
phenomenon of reciprocating motion has been eliminated 
greatly, as shown in Fig. 2b. The positioning points become 
consistent, and the positioning accuracy is increased.

4  PDR‑Based Navigation

Generally, a PDR system consists of three parts: step detec-
tion, step length estimation, and heading calculation. PDR 
algorithm is illustrated as follows [21]: 

where xi, yi are position coordinates of the MU at the ith 
step, si is the estimated step length of the ith step, and �i is 
the heading angle of the ith step.

As described above, calculating an accurate long-term 
heading is the most challenging issue in PDR. In this paper, 
the attitude determination EKF in [27] is applied to estimate 
the heading of the pedestrian using the data obtained from 
triaxial gyroscopes and accelerometers as follows.

The state vector is written as

where � is the heading angle, � is the pitching angle, and � 
is the roll angle.

The system model is as follows:

(22)
{

xi = xi−1 + si cos�i

yi = yi−1 + si sin�i

,

(23)�k =
[
�k �k �k

]T
,

Fig. 2  WiFi positioning results 
a before filtered, b after filtered

a

b
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where �x,�y,�z are angular velocities observed in the car-
rier coordinate system, w� ,w� ,w� are noise, and Δt is the 
sampling interval.

The measurement vector is written as

where ax, ay, az are accelerations observed in the carrier 
coordinate system.

The measurement model is as follows:

where �k is the direction cosine matrix calculated by 
Eq. (27) and �k is the noise.

Since perturbations while walking affect both gyroscopes 
and accelerometers, the process noise and measurement 
noise are correlated, which has been ignored by most previ-
ous studies. Therefore, in the current study, a novel naviga-
tion algorithm is proposed as follows based on the EKF with 
correlated process and measurement noise [41].

The navigation system is given by

where fk−1(⋅) is the system model defined in Eq.  (24), 
hk(⋅) is the measurement model defined in Eq.  (26), 
�k is the state vector, �k is the measurement vector, 
�k−1 =

[
�x,k−1 �y,k−1 �z,k−1

]T , �k−1 , and �k are noise. �k−j is 
the Kronecker delta function, �k−j = 1 if k = j , and �k−j = 0 
if k ≠ j.

The EKF is initialized as

(24)
⎧
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,
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(28)
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For k = 1, 2,⋯ , perform the following steps:

(a) Compute the following partial derivative matrices:

(b) Perform the time update of the state estimate and esti-
mation error covariance as follows:

(c) Compute the following partial derivative matrices:

(d) Perform the measurement update of the state estimate 
and estimation error covariance as follows:

Figure 3 depicts the comparison of heading calculation 
utilizing filters with correlated noise and uncorrelated noise. 
As shown, the heading estimation using traditional attitude 
determination EKF (with uncorrelated noise) deviates from 
the actual value obviously. When applying the proposed 
PDR-based navigation algorithm (with correlated noise), 
the heading estimation fits the actual value well. Therefore, 
more accurate long-term heading calculation is obtained and 
positioning accuracy is improved.
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5  SKF‑Based Integration

The integration stage of the navigation algorithm is pro-
posed in this section utilizing the information from WiFi and 
MEMS positioning results. To obtain an accurate and stable 
estimation, the SKF method proposed in [42] is introduced 
into indoor navigation field as follows:

Suppose we have a system given by

where �k is the state vector, �k is the measurement vector, 
�k−1 is a known input, �k−1 is an unknown input, �k−1 and �k 

are noise. �k−j is the Kronecker delta function.
The SKF is initialized as

(34)
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E
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= 0,

For k = 1, 2 , the Kalman filter equations are given as

where � is an identity matrix.
For k = 3, 4,… , the SKF equations are given as

where �k−1 is calculated by Eq. (38):

Utilizing the SKF method described above, WiFi and MEMS 
positioning results can be integrated. In this paper, the cor-
responding Kalman filter system is originally designed as 
follows.

The state vector is written as

where x, y are position coordinates of the MU.
The system model is as follows:

where xWiFi, yWiFi are position coordinates from WiFi results, 
xMEMS, yMEMS are position coordinates from MEMS results, 
bx, by are unknown inputs, wx,wy are noise, and c is a con-
stant parameter ( 0 ≤ c ≤ 1).
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The measurement vector is written as

where d is a constant parameter ( 0 ≤ d ≤ 1, d ≠ c).
The measurement model is as follows:

where �k is the noise.

6  Experiment Description and Results

To evaluate the performance of the proposed indoor navi-
gation approach, several experiments were conducted. 
The experiments were performed in the second floor of 
Block C, New Main Building at Beihang University. The 
size of the test area is around 110 × 30 m2 . There were 
326 RPs and 319 positioning points in all. The position 
coordinates of the starting point of the MU are (0, 0), and 

(41)�k =

[
dxWiFi,k + (1 − d)xMEMS,k

dyWiFi,k + (1 − d)yMEMS,k

]
,

(42)�k = �k + �k,

the corresponding heading, pitching, and roll angles are 
(0, 0, 0).

In the WiFi part, the detailed positioning accuracy of 
different algorithms is listed in Table 1. As shown, the 
running time and average positioning error of traditional 
WKNN algorithm are 1.18 s and 1.3248 m, respectively. 
When using the searching space limiting method and mean 
filter, the running time on the same device and average 
positioning error are 0.79 s and 0.9528 m, respectively. 
Therefore, when applying the proposed WiFi-based navi-
gation algorithm, the running time decreases by 33% and 
the average positioning error decreases by 28%.

In the MEMS part, the detailed positioning accuracy of 
different algorithms is compared in Table 2. As depicted, the 
average positioning error of the proposed PDR-based naviga-
tion algorithm (using the EKF with correlated noise) reduces 
to 0.9534 m compared with 8.2852 m of traditional attitude 
determination EKF algorithm, showing great improvement.

In WiFi/MEMS integration, the SKF-based approach is 
applied to the originally designed Kalman filter system. The 
corresponding parameters are set at

�k = diag
([

1 1
])
;

�k = diag
([

1 1
])
;

�̂+

0
=
[
0 0

]T
;

Table 1  WiFi test results

Method Running time 
(s)

Average posi-
tioning error 
(m)

Traditional WKNN 1.18 1.3248
WKNN + searching space
limiting + mean filter

0.79 0.9528

Table 2  MEMS test results

Method Average posi-
tioning error 
(m)

Traditional EKF 8.2852
EKF + correlated noise 0.9534

Fig. 4  WiFi/MEMS positioning 
results
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Table 3  Positioning errors

Maximum (m) Mean (m) RMS (m)

WiFi 2.7507 0.9528 1.1682
MEMS 2.1610 0.9534 1.1574
WiFi/MEMS 1.5436 0.6086 0.7015
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WiFi/MEMS positioning results (with “searching space 
limiting,” “mean filter,” “correlated noise,” and “SKF-based 
integration”) are depicted in Fig. 4. As shown, the WiFi/
MEMS trajectory fits the actual one well.

The detailed estimation errors of WiFi/MEMS illus-
trated above, WiFi (with “searching space limiting” and 
“mean filter”), and MEMS (with “correlated noise”) are 
listed in Table 3. As shown, the maximum error, the mean 
error, and the root mean square (RMS) of position errors 
are the smallest when using WiFi/MEMS. Therefore, 
WiFi/MEMS results give the best performance among the 
three algorithms. The maximum error of WiFi/MEMS is 
1.5436 m, which is 56.12% of WiFi and 71.43% of MEMS. 
The mean error of WiFi/MEMS is 0.6086 m, which is 
63.87% of WiFi and 63.83% of MEMS. The RMS of WiFi/
MEMS position errors is 0.7015 m, which is 60.05% of 
WiFi and 60.61% of MEMS.

Furthermore, the error probabilities of these algorithms 
are depicted in Fig. 5. As shown, the performance of WiFi/
MEMS is the best of the three. The cumulative error per-
centages of WiFi and MEMS are close. In all, this figure 
proves the advantage of the SKF-based WiFi/MEMS inte-
gration approach as well.

�+

0
= diag

([
0.01 0.01

])
;

c = 0.4; d = 0.55.

To further optimize the navigation performance of the 
proposed WiFi/MEMS solution, the number of selected 
APs is varied and WiFi/MEMS positioning results in dif-
ferent conditions are compared. The detailed estimation 
errors using different numbers of APs are listed in Table 4. 
As shown, the maximum error is the smallest when using 
20 APs, while the mean error and the RMS of position 
errors are the smallest when using 14 APs (0.5946 m and 
0.6945 m, respectively), which means positioning results 
using 14 APs have the optimal navigation performance. 
Since the computation time gets shorter when fewer APs 
are selected, using 14 APs instead of 20 APs is suggested 
in the current study.

7  Conclusion

This paper proposes a novel improved integrated WiFi/
MEMS indoor navigation solution. In WiFi part, a novel 
searching space limiting approach is originally presented. 
With searching space limiting and a mean filter, the average 
positioning error decreases by 28% and the running time 
decreases by 33% compared with the traditional WKNN 
method. For PDR solution, an attitude determination EKF 
with correlated process and measurement noise is pre-
sented utilizing the information from triaxial gyroscopes 
and accelerometers. Through this filter, accurate heading 
calculation is obtained and the average positioning error 
decreases greatly. In WiFi/MEMS integration, the SKF 
approach is introduced into indoor navigation field and a 
novel Kalman filter system is originally designed to achieve 
higher accuracy.

With these improvements, the WiFi/MEMS trajectory 
fits the actual one well in the conducted experiments. The 
average positioning error of the proposed WiFi/MEMS 
algorithm is less than 0.6 m when 14 APs are selected. As 
a result, the proposed WiFi/MEMS integration has been 
proven in indoor tests, and its performance is illustrated to 
be very competitive for indoor navigation. Furthermore, it 
has an easy application on smartphones and a broad market 
prospect.
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Table 4  Positioning errors using different numbers of APs

Maximum (m) Mean (m) RMS (m)

20 APs 1.5436 0.6086 0.7015
17 APs 2.1791 0.6067 0.7149
14 APs 1.8508 0.5946 0.6945
11 APs 1.7181 0.6142 0.7202
8 APs 1.8795 0.6702 0.7830
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