
Vol.:(0123456789)1 3

Arabian Journal for Science and Engineering (2020) 45:3761–3780 
https://doi.org/10.1007/s13369-019-04239-1

RESEARCH ARTICLE - CIVIL ENGINEERING

Predicting Convergence Rate of Namaklan Twin Tunnels Using 
Machine Learning Methods

Mehdi Torabi‑Kaveh1 · Bahram Sarshari2

Received: 9 July 2019 / Accepted: 6 November 2019 / Published online: 20 November 2019 
© King Fahd University of Petroleum & Minerals 2019

Abstract
Convergence prediction of tunnels has always been one of the important issues of geotechnical projects. Developing pre-
diction models is a good approach to predict convergence, when there is no knowledge of the possibility of convergence 
occurrence in the future. In this study, convergence rates of two tunnels from the Namaklan twin tunnel were predicted by 
different types of machine learning methods. Artificial neural networks (ANNs), multivariate linear regression (MLR), mul-
tivariate nonlinear regression (MNR), support vector regression (SVR), Gaussian process regression (GPR), regression trees 
and ensembles of trees (ET) were applied to predict the convergence rate (CR). The six parameters of cohesion (c), internal 
friction angle (Φ), uniaxial compressive strength of rock mass (σc), rock mass rating, overburden height (H) and the number 
of installed rock bolts (NB) were selected as predictor parameters. The dataset was collected via field investigations and 
laboratory experiments. The results showed that the MLP–ANN model can successfully predict the CR with the determina-
tion coefficient (R2) of 0.93. The RBF–ANN model is also successful in predicting the CR with R2 of 0.81. The SVR, MNR 
and MLR models were also constructed to obtain an empirical formula for predicting the CR. Comparing among the three 
models showed that the SVR model is more successful (R2 = 0.66) than the MNR and MLR models with R2 of 0.65 and 0.61, 
respectively. However, the SVR model is placed in the next rank of the ANN models. Among the rest models, except the 
ET model (R2 = 0.66), the RT and GPR models have no good capability for the prediction of the CR. In total, assessing the 
statistical indices indicated that the ANNs are superior to the other models in predicting the CR. However, the SVR model 
could be considered to be a reliable predictive model for convergence rate estimation.

Keywords  Tunnel convergence rate · Namaklan twin tunnels · Machine learning methods · Convergence rate prediction

1  Introduction

Evaluation of tunnel convergence is one of the most impor-
tant issues during the excavation and even after utilization. 
This subject is more important concerning the new Austrian 
tunneling method (NATM). The occurrence of convergence 
at a high rate is associated with great problems such as 
reducing the advance rate and safety which increase operat-
ing costs. Two major factors are considered as a cause of 
convergence after the excavation. First is strain induced by 
stress distortion due to tunnel face advance, and second is 

the behavior of the material after excavation (e.g., the time-
dependent creep, swelling and squeezing) [1]. Predicting 
convergence magnitude is essential to select excavation and 
support methods. Hence, tunneling studies have focused on 
the prediction of convergence using geomechanical param-
eters and excavation parameters. Researchers have used dif-
ferent approaches to predict tunnel convergence magnitude. 
In this regard, many researchers applied numerical meth-
ods to predict tunnel convergence [2–6]. However, in most 
cases, such models are not usable to other projects. On the 
other hand, there is a limitation about coverage of all effec-
tive parameters on convergence in the form of an empiri-
cal model [7]. Therefore, several researchers have recently 
used artificial neural networks (ANNs) and new statistical 
methods in predicting convergence in relation to tunnels and 
powerhouses. Mahdevari and Torabi [8] used artificial neural 
networks (ANNs) to predict tunnel convergence. They used 
two different ANN models including multilayer perceptron 
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(MLP) and radial basis function (RBF). They reported that 
the proposed MLP model has more efficiency in predict-
ing convergence compared to the other methods. Also, the 
study revealed that cohesion, friction angle, elastic modu-
lus and uniaxial compressive strength are the most effective 
factors in estimating convergence, whereas tensile strength 
has the least effect. In research conducted by Adoko et al. 
[9], multivariate adaptive regression spline (MARS) and 
ANN were applied to predict the diameter convergence of a 
high-speed railway tunnel in weak rock. They suggested that 
MARS can be considered as a reliable alternative to ANN 
when a geomechanical problem such as the tunnel conver-
gence requires nonlinear modeling. In another study, Zarei 
et al. [10] used three different methods including statistical, 
ANN and numerical modeling to develop a convergence cri-
terion for the Chehel Chay water conveyance tunnel. They 
also concluded that ANN is more success in estimating 
convergence. Rajabi et al. [11] used some geomechanical 
and design parameters to predict the maximum horizontal 
displacement of sidewalls of a powerhouse. They predicted 
the maximum horizontal displacement by an ANN model, 
and after doing sensitivity analysis, they reported that over-
burden depth is the most effective parameter versus tensile 
strength which is the least effective parameter on displace-
ment. Also, in a recent study, Hajihassani et al. [12] used 
ANN to predict the tunneling-induced ground movements as 
a flexible nonlinear approximation function. They reported 
that the proposed ANN model could be applied to predict 
three-dimensional ground movements induced by tunneling 
with high accuracy. Chen et al. [13] applied three differ-
ent ANNs including back-propagation (BP), RBF and the 
general regression neural network (GRNN) in developing 
an appropriate model to predict the maximum surface set-
tlement caused by EPB shield tunneling and compared their 
reliability. The GRNN model was found to be more accurate 
than the BP and RBF models and was proposed as a capable 
model to predict the behavior of ground settlement.

Although different methods have been used to identify 
the relationships between geotechnical properties and tunnel 
convergence as mentioned above, there still exists uncer-
tainty in convergence prediction for tunnels excavated in 
different lithologies. Also, in spite of extensive use of new 
machine learning methods in prediction aims concerning 
geotechnical engineering problems [14–17], approximately 
in most of the studies on the subject of tunnel convergence 
prediction, prediction models have been limited to common 
linear and nonlinear regressions and ANNs. Accordingly, 
this research tries to extend the knowledge about conver-
gence prediction of the tunnel by investigating the applica-
bility of different methods in modeling convergence rate. In 
the present study, new and common approaches of machine 
learning systems including support vector regression (SVR), 
Gaussian process regression (GPR), regression trees (TR) 

and ensembles of trees will be applied to predict conver-
gence rate of Namaklan twin tunnel (west of Iran). Also, 
some common prediction models such as multivariate linear 
regression (MLR), multivariate nonlinear regression (MNR) 
and ANNs will be used to predict the convergence with the 
aim of comparing among the prediction approaches. This 
study uses some commonly employed and perhaps the most 
representative geotechnical parameters including uniaxial 
compressive strength (UCS), rock mass rating (RMR) and 
rock quality designation (RQD), rock quality system (Q), 
cohesion (C), internal friction angle (Φ), uniaxial compres-
sive strength of rock mass (σc) and uniaxial tensile strength 
of rock mass (σt), along with some construction parameters 
such as overburden height and number of rock bolts as inputs 
for the models. Then, correlations will be done between 
predicted and observed convergence rates along the tunnel 
route.

2 � Project Descriptions and Geology

Namaklan tunnel consists of twin D-shape bored tunnels of 
6.35 m outer diameter. The tunnels were bored in the fourth 
section of Arak–Khorramabad Highway, between the cities 
Borujerd and Khorramabad as shown in Fig. 1. The lengths 
of the tunnels are 656 m and 652 m for west and east tun-
nels, respectively, with the horizontal distance of the twin 
tunnels being 45 m (more than 2.5 times the tunnel diameter) 
(Fig. 1). For both the tunnels, the diameter of excavation is 
15.6 m and the diameter of the final lining is 13.6 m.

The route of the twin tunnel is composed of an alterna-
tion of marly limestone, limestone, shale and marl (Fig. 2) 
[18]. Due to the performance of tectonic forces, systematic 
discontinuities were mostly developed in hard layers. Based 
on the ratio of resilient and non-uniform layers in different 
zones, the route of the tunnel is characterized by gaping and 
different zones with blocks in different dimensions. The twin 
tunnels are parallel to each other (approximately 45 meters 
apart), and the characteristics of the defined zones are the 
same. In both the tunnels, the slope of the layering is from 
the outlet side to the inlet of the tunnel. Rock mass zoning 
along the tunnels has been done based on lithology type, 
characteristics of discontinuities (direction, density, spacing, 
etc.), weathering depth and overburden height of the tunnel. 
Different zones were characterized along the tunnel route 
that their characteristics were recorded in measuring stations 
and used as prediction parameters in the analysis part.

The shale and marl units have very low-to-low perme-
ability, and they are very weak to weak from the hydrody-
namic potential point of view. The limestone and the marly 
limestone units show a wide range of surface solution 
features, which confirms that they have low-to-moderate 
permeability. Also, the emergence of a spring at the outlet 
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of the tunnel and monitoring drilled boreholes indicate the 
high level of groundwater in the studied area [18].

Morphology of a region is a function of its lithology 
units and tectonics condition. The rock unit outcrops in the 
region include Chaghalvandi overthrust units and quater-
nary alluviums. Figure 3 illustrates the morphology found 
in the study area. The limestone and marly limestone of 
Chaghalvandi units are relatively hard and form sharp 
landscape features in the region. Quaternary deposits of 
old and new alluvium are very loose, with numerous small 
and large streams that form flat sections. The inlet trenches 
of both tunnels were excavated within marl limestone, 
which are located underneath thicker alluvial deposits, 
but the tunnel outlet trenches were created in a weathered 
zone of the marl limestone unit and a part of marl and 
shale units. In this regard, a collapse was occurred at the 
outlet of the tunnel due to the existence of weak rocks in 
this part (Fig. 4).

3 � Data Collection and Input Parameters

The data were collected via field investigations along the 
tunnel route. During field measurements, rock mass prop-
erties of forty-five zones were recorded to evaluate rock 
mass quality. During the field study, the datasets were 
collected per each tunnel segment where the rock mass 
of each zone showed similar characteristics. Due to the 
significant effects of structural parameters and overburden 
pressure on the development of convergence, geological 
parameters should be considered in the stage of conver-
gence rate assessment. Therefore, geological parameters 
such as rock quality designation (RQD), rock mass rating 
(RMR), rock quality system (Q) and overburden height 
(H) were measured for all the tunnel zones and were used 
in the construction of prediction models. After excavating 
a tunnel opening, the strength of rock mass, which is a 

Fig. 1   Location of Namaklan twin tunnel on Iran map
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function of rock mass properties, is an important factor in 
probable convergence occurrence around a tunnel. Hence, 
considering rock mass properties is essential in predict-
ing the convergence rate of a tunnel. In this regard, major 
rock mass properties including cohesion (C), internal 
friction angle (Φ), uniaxial compressive strength of rock 
mass (σc) and uniaxial tensile strength of rock mass (σt) 
as outputs of RocLab program were calculated according 
to the Hoek–Brown and Mohr–Coulomb criteria and were 
applied in developing prediction models. Finally, uniaxial 
compressive strength (UCS) of intact rock, the rock mass 
parameters (C, Φ, σc and σt), the geological data (RQD, 
RMR, Q and H) along with number of installed rock bolts 
(NB) were used to predict the convergence rate (CR) of 
each zone. After each cycle of excavation, convergence 

control points were established and convergence meters 
were applied to measure the CR values. The measurements 
were frequently repeated according to a daily program 
until stabilization of the points. Table 1 presents some 
details of the recorded parameters and the measured CR 
values. Also, Fig. 5 illustrates occurred convergences in 
some parts of the tunnel route.

4 � Predicting of the Tunnel Convergence 
Rate Using Statistical Models

Regression-based equations extracted from statistical models 
are considered as easy-use prediction tools among available 
predicting models [19]. Considering that convergence rate 
of a tunnel is related to different geomechanical parameters, 
so the prediction of convergence rate based on only one 
parameter is not reliable. Hence, in this study, multivari-
ate regression analyses (linear and nonlinear forms) were 
applied to create prediction models of the convergence rate 
of the tunnel using the geomechanical parameters as inputs. 
Multiple linear regression (MLR) analysis was performed 
by SPSS software [20]. Backward method was selected to 
perform multivariate linear regressions. In this method, all 
independent variables are first entered into the equation and 
the effect of all variables is evaluated on dependent variable. 
Less efficient variables are excluded one after another, and 
eventually, these steps continue until the test error reaches 
a significant level of 10%. Backward elimination starts with 
all of the predictors in the model. The variable that is least 

Fig. 3   Sharp morphology of Chaghalvandi units (Kn−lm) in the region 
versus quaternary deposits (Qt2) with flat morphology

Fig. 4   Collapse at the outlet of the west tunnel (tunnel 1) due to the existence of weak rocks
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significant that is the one with the largest p value is removed, 
and the model is refitted. Each subsequent step removes the 
least significant variable in the model until all remaining 

variables have individual P values smaller than some value, 
such as 0.05 or 0.10. In fact, in this method, important vari-
ables are known and remain in the equation. Every inde-
pendent variable with a low correlation coefficient with 
the dependent variable was omitted. The summary of the 
obtained models is presented in Table 2. As can be seen 
from the table, with excluding the less important variables, 
R2 shows negligible changes for the models and so model 
4 which has the lowest and the most effective variables (H, 
RMR, Φ, c, σc and NB) among the models is selected as a 
prediction model.

The following multiple linear regression equation was 
obtained for prediction of convergence rate (CR) as output 
considering six inputs of the model 4:

where CR is the predicted convergence rate. A scatter plot of 
the predicted CR versus the measured CR is shown in Fig. 6. 
Given the unreliable determination of coefficient (R2 = 0.61) 
obtained in linear analysis, it was tried to find a multivariate 
nonlinear regression (MNR) model that incorporates all the 
parameters used in model 4 in the linear regression. Several 
different forms of nonlinear regression equations were used, 
and it was found one with the smallest number of parametric 
constants, still providing the most accurate result (with high-
est R2). The selected model is of the following form:

(1)
CR = 4.35 + 6.23H − 0.08RMR − 3.9NB + 6.948�

c

− 2.26c − 0.01�

Table 1   Details of input and 
output parameters

Type and number of data Symbol Unit Minimum Maximum Mean SD

Inputs/45 for each parameter UCS MPa 3.00 52.00 8.11 12.22185
H m 9.00 46.00 32.2 9.15065
RQD % 10.0 95.00 23.0667 18.75851
RMR – 13.0 49.00 23.2000 6.75412
Q – 0.001 26.00 0.6520 3.86945
NB N/m 0.00 12.00 6.4889 3.22365
σt MPa 0.00 0.02 0.0032 0.00507
σc MPa 0.01 0.84 0.1036 0.20267
c MPa 0.05 1.80 0.2526 0.45445
Φ Degree (°) 14.4 27.60 18.6624 3.35269

Output/45 CR mm/day 0.03 2.10 0.7320 0.62321

Fig. 5   a Breaking the support system due to the occurrence of con-
vergence in tunnel 1; b creating cracks in the wall of tunnel 2 in result 
of convergence

Table 2   Model summary for the 
multivariate linear regressions

Model Predictors R R2 SE of the estimate Excluded variables

1 Φ, H, Q, NB, σt, RMR, RQD, c, σc 0.781 0.610 0.43661 UCS
2 Φ, H, NB, σt, RMR, RQD, c, σc 0.781 0.610 0.43052 UCS, Q
3 Φ, H, NB, RMR, RQD, c, σc 0.780 0.609 0.42491 UCS, Q, σt

4 Φ, H, NB, RMR, c, σc 0.780 0.608 0.41972 UCS, Q, σt, RQD



3767Arabian Journal for Science and Engineering (2020) 45:3761–3780	

1 3

In spite of what was expected, the nonlinear model could 
not significantly enhance the accuracy of the model for 
predicting the CR in comparison with the linear regression 
model, as the nonlinear regression increased the value of R2 
from 0.61 in MLR to 0.65 in MNR (Fig. 6).

In this study, some statistical indices including mean of 
the mean absolute error (MAE), the squares of the errors 
(MSE), root mean square error (RMSE) and determination 
coefficient (R2) were used to evaluate the performance of 

(2)
CR = 11.641 − 0.048H + 0.142RMR − 0.013NB + 8.258�

c
− 0.96c − 0.987�

+ 0.001H2
− 0.005RMR

2
− 0.001NB

2
+ 4.271�

2

c
− 1.41c2 + 0.02�

2

prediction models by comparing the predicted CR values 
with the true values. The following equations given expres-
sions of MAE, MSE and RMSE, respectively:

where Yi
′ is the predicted value, Yi is the measured value and 

n is the number of all variables.

(3)MAE =
1

n

n∑

i=1

|||
(
Yi − Y �

i

)|||

Fig. 6   Scatter plots of the pre-
dicted CR versus the measured 
CR for the linear (a) and nonlin-
ear (b) multivariate regressions
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Table 3   Comparative table of the developed prediction models

Model Statistical indices for the 
models

Characteristics of the selected models Total rank

Multivariate linear regression (MLR) R2 = 0.61
MSE = 0.149
RMSE = 0.386
MAE = 0.311

Analysis method: backward 6

Multivariate nonlinear regression (MNR) R2 = 0.648
MSE = 0.134
RMSE = 0.366
MAE = 0.299

Function: quadratic form 4

ANNs
MLP R2 = 0.925

MSE = 0.029
RMSE = 0.169
MAE = 0.122

Training algorithm: Levenberg–Marquardt
Transformation functions: hidden layer (tansig) 

and output layer (purelin)
Performance function: MSEREG
Gradient: 1.04e−13
Mu: 0.01
Validation check: 56 epochs

1

RBF R2 = 0.81
MSE = 0.0.073
RMSE = 0.269
MAE = 0.218

Training algorithm: Levenberg–Marquardt
Transformation functions: hidden layer (softmax) 

and output layer (purelin)
Performance function: MSEREG

2

Support vector regression (SVR)
eps-regression SVMa R2 = 0.659

MSE = 0.148
RMSE = 0.385
MAE = 0.268

SVM-Type: eps-regression
SVM-Kernel: radial
Cost:1
Gamma: 0.1666667
Epsilon: 0.1
Number of support vectors: 39

3

Linear SVM R2 = 0.32
MSE = 0.26
RMSE = 0.51
MAE = 0.42

Quadratic SVM R2 = 0.32
MSE = 0.26
RMSE = 0.51
MAE = 0.42

Cubic SVM R2 = 0.18
MSE = 0.45
RMSE = 0.67
MAE = 0.51

Fine Gaussian SVM R2 = 0.18
MSE = 0.45
RMSE = 0.67
MAE = 0.51

Medium Gaussian SVM R2 = 0.45
MSE = 0.21
RMSE = 0.46
MAE = 0.36

Coarse Gaussian SVM R2 = 0.29
MSE = 0.27
RMSE = 0.52
MAE = 0.41

Regression tree (RT)
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RMSE can define the performance of different models in 
predicting target values. In this regard, if RMSE to be ˂ 10%, 
10–20%, 20–30% and ˃ 30%, the performance of a model 
is excellent, good, fair and poor, respectively. Comparing 
among the statistical indices (MSE, RMSE and MAE) calcu-
lated for both models which are presented in Table 3 shows 
that the MNR model has lower errors in the prediction of 
the CR values and so has more efficiency in predicting than 
the MLR model. Although based on the RMSE values, the 
performance of both models is poor.

(4)MSE =
1

n

n∑

i=1

(
Yi − Y �

i

)2

(5)RMSE =

√√√√1

n

n∑

i=1

(
Yi − Y �

i

)2

5 � Predicting of the Tunnel Convergence 
Rate Using ANNs

ANN is a new alternative to other conventional statistical 
techniques which are often limited by strict assumptions 
of normality, linearity, variable independence, one-pass 
approximation, the curse of dimensionality, etc. Some of 
the advantages of the neural network include requiring less 
formal statistical training, ability to implicitly detect com-
plex nonlinear relationships between dependent and inde-
pendent variables, ability to detect all possible interactions 
between predictor variables and the availability of multiple 
training algorithms [21–23]. But some following limita-
tions decrease the ability of ANN in comparison with sta-
tistical models. Requirement of a large diversity of training 
for operation is a common limitation for neural networks. 
The knowledge acquired during the training of the model 
is stored implicitly, and hence, it is hard to come up with 

a The best model with the highest performance

Table 3   (continued)

Model Statistical indices for the 
models

Characteristics of the selected models Total rank

Fine treea R2 = 0.53
MSE = 0.17923
RMSE = 0.42335
MAE = 0.33832

Preset: Fine tree
Minimum leaf size: 4
Surrogate decision splits: Off

7

Medium tree R2 = 0.52
MSE = 0.18
RMSE = 0.42
MAE = 0.32

Coarse tree R2 = 0.00
MSE = 0.38
RMSE = 0.62
MAE = 0.53

Gaussian process regression (GPR)
Exponential GPRa R2 = 0.53

MSE = 0.17959
RMSE = 0.42378
MAE = 0.34787

Preset: Exponential GPR
Basis function: Constant
Kernel function: Exponential
Use isotropic kernel: true
Kernel scale: Automatic
Kernel sigma: Automatic
Sigma: Automatic
Standardize: true
Optimize numeric parameters: true

8

Rational quadratic GPR R2 = 0.50
MSE = 0.19
RMSE = 0.44
MAE = 0.37

Squared exponential GPR R2 = 0.50
MSE = 0.19
RMSE = 0.43
MAE = 0.37

Matern GPR R2 = 0.51
MSE = 0.19
RMSE = 0.43
MAE = 0.37

Ensemble trees (ET) R2 = 0.63
MSE = 0.1401
RMSE = 0.3743
MAE = 0.32546

Preset: Bagged tree
Minimum leaf size: 8
Number of learners: 30

5
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a reasonable interpretation of the overall structure of the 
network. Besides, slow convergence speed, less generalizing 
performance, ‘black box’ nature, greater computational bur-
den, arriving at a local minimum and overfitting problems 
are intrinsic disadvantages of ANN.

The multilayer perceptron (MLP) and the radial basis 
function (RBF) are two famous neural networks which have 
been widely used in many areas of geomechanics. RBF 
is considered as an alternative to MLP, because MLP is 
nonlinear in its parameters and it should perform several 
attempts of trial and error to choose the best from a set of 
locally optimum parameters. While RBF network has linear 
parameters and is capable of universal approximations and 
learning without local minima, it guarantees convergence to 
optimum parameters. Also, it is reported that the RBF-type 
networks learn faster than MLP networks and train with the 
least initial set of data [24].

To examine the capability of MLP and RBF in predict-
ing convergence rate of the tunnel, two models were devel-
oped using H, RMR, Φ, c, σc and NB parameters as inputs 
and CR as the target of the models. In the MLP model for 
all neurons in the hidden layer, hyperbolic tangent trans-
fer function (tansig) was selected to transform real-valued 

arguments ranging from − 1 to + 1. In the case of the out-
put layer (target), linear transfer function (purelin), which 
takes real-valued arguments and returns them unchanged, 
was applied. In the RBF model, the activation functions for 
the hidden layer and the output layer were the radial basis 
function and purelin, respectively.

An automatic computation was used to find the best 
number of units of the hidden layer within the minimum 
and maximum values of a range, where the best number 
of hidden units was the one that yields the smallest error 
in the testing data. Optimization and determination of the 
best MLP and RBF models were carried out by evaluating 
several different networks with different hidden neurons and 
spread parameters. The best created MLP and RBF mod-
els have one hidden layer with 13 hidden neurons and one 
hidden layer with 12 hidden neurons, respectively (Fig. 7). 
The Levenberg–Marquardt algorithm and clustering were, 
respectively, used for training the MLP and the RBF models 
via neural network toolbox of MATLAB [25] until reaching 
the best-fitted results (Table 3). Seventy percent of the data 
were used to train the neural network. The rest 30% of the 
input data were applied for validating and testing the neural 
network results.

Fig. 7   Structures of the constructed ANNs
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In the case of the MLP model, at the epoch of 56 of learn-
ing the best network was obtained (Fig. 8). As can be seen 
from the figure, after reaching the best validation check, it 
means the least mean squared error (MSE), the training was 
stopped and the network weights were stored as the best 
network weights. Figure 9 shows that there is a meaning-
ful correlation between the measured and predicted CR, 
which reveals that the selected network has high accuracy 
in predicting the tunnel convergence rate. The success of 
the network in learning and generalizing is shown in Fig. 9. 
As can be seen from the figure, the test data are estimated 
with a high regression of 0.957. Also, the linear regression 
between the input and output data is 0.962 for all network 
(Fig. 9). Good results were found for the RBF model. Fig-
ure 10 shows a scatter plot between the predicted and meas-
ured CR values using the RBF model with the 12 hidden 
neurons. As can be seen from the figure, the determination 
coefficient (R2) is 0.81 which illustrates a good correlation 
between the measured and predicted CR. Also, the model 
has reliable values of MSE, RMSE and MAE (Table 3).

6 � Predicting of the Tunnel Convergence 
Rate Using SVR

Application of the support vector regression (SVR) models 
in solving nonlinear problems is growing among researchers 
who deal with geotechnical issues. This approach focuses 
on forecasting analysis [26, 27]. There are some advantages 

which give much better performance to support vector 
machine (SVM) than ANN. These advantages include a 
global and unique solution, a simple geometric interpreta-
tion, a structural risk minimization and low prone to over-
fitting. Hence, some types of SVR models with different 
kernel types were developed to predict CR of the tunnel and 
their prediction accuracies were compared. The models were 
constructed by Regression Learner Application in MATLAB 
[25] and the e1071 package which is the first and most intui-
tive package in R software. RMR, H, NB, σc, c and Φ were 
selected as inputs of the models. Six models with kernel 
types of linear, quadratic, cubic, fine Gaussian, medium 
Gaussian and coarse Gaussian were created in MATLAB 
(Table 3). It was found that except medium Gaussian model 
which has a relatively fair determination coefficient (R2 of 
0.45), other models have very weak performance in predict-
ing the CR values compared to the multivariate regressions 
and the ANNs. Therefore, it was tried to develop another 
SVM model based on the kernel function type of radial basis 
function (RBF). A reason for using the kernel function is 
its ability in transforming our data from nonlinear form to 
linear form. It allows the SVM to find a fit, and then, data are 
mapped to the original space. The model shows relatively 
good ability in predicting CR with R2 = 0.66 (Fig. 11) but 
contrary to our expectation, the SVM model is not more 
efficient than the ANN models. Equation 6 represents the 
equation developed by the constructed SVM model:

Fig. 8   Performance error plot of 
the optimum MLP model
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Fig. 9   Regression plots corre-
sponding to the MLP model

Fig. 10   Scatter plot of the pre-
dicted CR versus the measured 
CR for the RBF–ANN model
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7 � Predicting of the Tunnel Convergence 
Rate Using RT

The regression tree (RT) is considered a powerful and fast 
technique for fitting and prediction aims. RT is defined via 
a decision tree that assesses the effect of predictors (inputs) 
on output variable(s) (response). The RT method converts 
input variables into a mixture of continuous and categorical 

(6)
CR = 0.63H − 6.52RMR − 1.64NB − 3.5�

c
− 3.57c

− 6.18� + 0.446

Fig. 11   a Scatter plot of the 
predicted CR versus the meas-
ured CR for the SVR model; 
b comparison of the predicted 
versus measured values

Fig. 12   Structure of a regression tree
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variables in predicting a single output [28]. The task of 
learning in regression trees involves the prediction of real 
numbers instead of discrete batch values which are common 
in classification trees. The most advantage of RT is the easy 
interpretation of the summarized results which make it a 
reliable method in prediction aims [29].

RT is a graph similar to a tree that contains a sequence 
of questions that are defined by variables and a set of fitted 
response values (Fig. 12). In response to that whether a predic-
tor satisfies a given condition, answer to each question is ‘yes’ 
or ‘no.’ The answer to a question decides that the process shifts 
to another question or stops at a fitted response value. When 
the answer is ‘yes,’ the process continues in the left branch. 
Root, branches, leaves and nodes are the main components 
of a tree. In a decision tree, nodes form circles and branches 
connect nodes. During the process, root is considered as the 
first node which is a variable and then several internal nodes 
are created as a result of dividing that node based on a series of 
features. Decision tree structure in such a way that the root is 
placed at the top of a chain and leaf (including root, branch and 
node) forms the end of it. A decision tree is called a classifica-
tion tree when the output of a tree is a discrete set of values, 
whereas a real set of values for the output of a tree converts it 
to a regression tree.

To explain the mathematics behind classification in the 
regression tree, a brief mathematical formula is presented the 
following. Decision regression tree algorithms work through 
recursive partitioning of the training set to obtain subsets that 
are as pure as possible to a given target class. Each node of 
the tree is associated with a particular set of records T that is 
split by a specific test on a feature. For example, a split on a 
continuous attribute A can be induced by test A ≤ x. The set of 
records T is then partitioned into two subsets that lead to the 
left branch of the tree and the right one:

Similarly, a categorical feature B can be used to induce 
splits according to its values. For example, if B = {b1, …, bk}, 
each branch i can be induced by the test B = bi.

The divide step of the recursive algorithm to induce a deci-
sion tree takes into account all possible splits for each feature 
and tries to find the best one according to a chosen quality 
measure: the splitting criterion. If your dataset is induced on 
the following scheme:

where Aj are attributes and C is the target class, all can-
didate’s splits are generated and evaluated by the splitting 
criterion. Splits on continuous attributes and categorical 
ones are generated as described above. The selection of the 

(7)

Tl = {t ∈ T ∶ t(A) ≤ x}

and

Tr = {t ∈ T ∶ t(A) > x}

(8)A
1
,… ,Am,C

best split is usually carried out by impurity measures. The 
impurity of the parent node has to be decreased by the split. 
Let (E1, E2, …, Ek) be a split induced on the set of records E, 
a splitting criterion that makes use of the impurity measure 
I (·) is:

Standard impurity measures are the Shannon entropy or 
the Gini index. More specifically, CART uses the Gini index 
that is defined for the set E as follows. Let pj be the fraction of 
records in E of class cj:

where Q is the number of classes. It leads to a 0 impurity 
when all records belong to the same class.

Since the data in this study are real values, a regression 
tree was applied to predict the convergence rate. The same 
datasets used for developing the above models were applied 
to create RT models via Regression Learner Application in 
MATLAB [25]. All the regression tree model types (fine, 
medium and coarse) in the application were constructed 
to predict the CR values, and the best model with dataset 
was selected. A fine tree was determined as the best model 
that its characteristics are presented in Table 3. Figure 13a 
illustrates the scatter plot of the CR values predicted by the 
regression tree model versus the measured values. As can 
be seen from the figure, the RT model with R2 of 0.44 is not 
successful in predicting CR values, as almost a significant 
part of the data points are too scattered relative to the respec-
tive regression line of CR values. Also, it was revealed that 
there is a huge difference between predicted and observed 
CR values which confirms the inefficiency of the model in 
predicting CR (Fig. 13b).

8 � Predicting of the Tunnel Convergence 
Rate Using ET

Considering the low capability of the RT model in the pre-
diction of CR, the ensemble method was applied to enhance 
the applicability of the regression model in predicting CR. 
The ensemble method combines multiple weak regression 
trees with the aim of forming an accurate and strong regres-
sion tree model. In this method, multiple diverse regression 
models are created based on different samples of the original 

(9)Δ = I(E) −

k∑

i=1

||Ei
||

|E|
I(Ei)

(10)

pj =

|||
{
t ∈ E ∶ t[C] = cj

}|||
|E|

then

Gini(E) = 1 −

Q∑

j−1

p2
j
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dataset, and finally, their outputs are combined. The result of 
the combination is a reduction of the variance in the model. 
Three types of ensemble methods (bagging, boosting and 
random trees) are commonly used as prediction models [30]. 
Among them, bagging is a simple and effective ensemble 
algorithm which utilizes a series of training sets according to 
random sampling and applies the regression tree algorithm 
to each dataset. Eventually, it calculates predictions of the 
new data by taking average among the models. This advan-
tage makes it a better selection concerning large datasets. 
In this study, the bagging ensemble method was applied to 

predict CR values using Regression Learner Application 
in MATLAB [25]. All the ensemble model types (boosted 
trees and bagged trees) in the application were constructed 
to predict CR values, and the best model was selected based 
on the obtained values of R2, RMSE and MSE for the mod-
els. Table 3 presents characteristics of the best-developed 
ensemble model which is a bagged model. The reliability 
of the developed model was evaluated by comparing the 
obtained R2, RMSE and MSE values for the ensemble model 
and the RT model. The comparison showed that applying 
ensemble method could significantly enhance the accuracy 

Fig. 13   a Scatter plot of the predicted CR versus the measured CR for the RT model; b comparison of the predicted versus measured values

Fig. 14   a Scatter plot of the predicted CR versus the measured CR for the ET model; b comparison of the predicted versus measured values
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of the prediction model (Fig. 14a). So that the ensemble 
model has higher determination coefficient (R2 = 0.63) and 
lower MSE, RMSE and MAE values (0.14, 0.37 and 0.34, 
respectively) than that of the RT model (0.18, 0.43 and 
0.34, respectively) (Table 3). However, the developed model 
has still a relatively low coefficient of determination that 
it reduces its applicability for new datasets. Also, Fig. 14b 
shows that differences between the predicted and observed 
CR values were more reduced compared to that of the RT 
model.

9 � Predicting of the Tunnel Convergence 
Rate Using GPR

GPR is a nonparametric probabilistic modeling approach 
to generalize nonlinear and complex functions in data-
sets [31]. Hence, the approach has been used by many 
researchers in various studies for solving different prob-
lems in engineering [32]. Considering that GPR uses ker-
nel functions, so it can handle nonlinear data efficiently. 
The parameters of GPR are a set of random variables, as 
any finite number of them has a joint Gaussian distribu-
tion. GPR has some advantage which makes it differ from 
other common prediction models. For example, GPR has 
a practically simpler understanding and implementing 
compared to back-propagation neural networks [33]. The 
use of kernel functions in the GPR model has made it 
close to SVM [34]. Furthermore, compared to the other 
regression kernel-based models, GPR provides reliability 
of responses to the given input data which is known to the 
probabilistic model [35].

The following expression is considered for predicting of y 
(output) by GPR:

where f(xi) and εi are latent functions and Gaussian noise, 
respectively. GPR treats f(xi) as a random variable. The fol-
lowing equation gives the joint distribution of y:

where K(x, x) is the kernel function and I is an identity 
matrix. The predictive distribution of yD+1 corresponding to 
a new given input xD+1 is given by the following expression:

where KD+1 is the covariance matrix, and its expression is 
given by:

The distribution of yD+1 is Gaussian with mean and 
variance [36]:

The details of GPR are given by Williams and Rasmus-
sen [37].

(11)yi = f
(
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)
+ ∈i
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)
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Fig. 15   a Scatter plot of the predicted CR versus the measured CR for the GPR model; b comparison of the predicted versus measured values
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Four types of GPR kernel functions including squared 
exponential GPR, matern GPR, exponential GPR and 
rational quadratic GPR were considered to develop GPR 
models. The models have been developed using Regres-
sion Learner Application in MATLAB [25] (Table 3). 
According to the reported R2 values in Table 3, all the 
GPR models have similar prediction capabilities, where 
the exponential model, with a slight difference in the coef-
ficient of determination (R2 = 0.53), located at a higher 
rank than the other GPR models. As shown in Fig. 15a, 
it is clear that the GPR model does not give reliable pre-
cision, so that the predicted CR values are relatively far 
away from the measured CR values (Fig. 15b). To evalu-
ate the performance of the GPR model, the predicted CR 
values were compared with the measured values using the 
statistical indices (R2, MSE, RMSE and MAE) (Table 3). 
It is observed that the GPR model has a relatively low 
capability in predicting the CR values.

10 � Comparing the Prediction Models

In this part, the capability of the developed models to pre-
dict CR values is evaluated. For investigating the capacity 
performance of the models, the four statistical indices (R2, 
MSE, RMSE and MAE) were used as judgment criterion. 
It is approved that, when R2 is equal to 1 and MSE, RMSE 
and MAE are zero, a model will be excellent. Therefore, 
the models were ranked based on their statistical indices 
to predict the CR values (Table 3). The results show that 
the MLP and RBF models have good results than the other 
models with a remarkable difference. The best model for 
predicting CR is MLP, and RBF, SVR, MNR, ET, MLR, 
RT and GPR fall into the next ranks, respectively. A high 
complication degree of the dataset, with considering a high 
number of the variables, can be considered as a reason to 
justify the superiority of the ANN models. Hence, ANNs 
are commonly used to treat super complicated problems, 
in which too many variables to be simplified in a model. 
Among the other models, the SVR model has more accu-
racy in predicting the CR values (R2 = 0.66). A comparison 
between the SVR model and the ANN models reveals that 

although the ANNs have higher capability than the SVR 
model, the SVR model can be applied as a simpler method 
in predicting CR values due to its ability in transforming 
the dataset from nonlinear form to linear form. Although 
the MNR model has R2 of 0.65 which is close to that for 
the SVR model and it also has lower MSE and RMSE 
values than the SVR model, the SVR is more capable in 
prediction because it could predict the CR values mean-
ingfully. The MNR model has meaningless values (such as 
negative values) in predicted values. This kind of mean-
ingless prediction mostly happens while trying to predict 
something which is out of range of the regression and data 
do not follow a normal distribution. The ET and the MLR 
models show results close together and have relatively 
reliable determination coefficients (R2 of 0.63 and 0.61, 
respectively). The RT model has relatively low success in 
predicting the CR values in spite of its ability in the use 
of kernel functions in modeling. Also, similar results were 
found for the GPR model, of course with slightly lower the 
statistic metric indices than the RT model (Table 3). This 
model has the least accuracy in predicting the CR values 
among the models with the rank of 8/8.

11 � Validation of the Prediction Models

New data were collected from another project in Iran to 
check the validity of the prediction models (Table 4). The 
data belong to tunnel 2 of the Kermanshah–Khosravi Rail-
way (west of Iran). Lithology of the tunnel route is shale. 
The shale rocks are mostly weak, but in some parts, their 
strength is high due to increasing silica content. Some of 
the equations extracted from the models were used to cal-
culate convergence rate values for the tunnel according to 
input values presented in Table 4. Figure 16 shows a com-
parison between CR values obtained from the models with 
observed CR values for the tunnel. The results reveal that 
there is an acceptable correlation between the calculated CR 
and the observed CR for the SVR model, while the cor-
relations for the MLR and the MNR prediction models are 
fair and weak, respectively (Fig. 16). The SVR model could 
estimate the CR values relatively close to the observed CR 

Table 4   Descriptive analysis of 
the new data

Type and number of data Symbol Unit Minimum Maximum Mean SD

Inputs/10 for each parameter H m 38.9 58.81 46.69 14.59
RMR – 19.75 23.00 21.00 18
NB N/m 0.375 0.50 0.40 0
σc MPa 0.124 0.275 0.18 0.11
c MPa 0.047 0.10 0.07 0.04
Φ Degree (°) 16.05 17.1 16.45 15.46

Output/10 CR mm/day 0.687 2.80 1.09 0.22
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Fig. 16   Correlation between 
the observed CR values of the 
Kermanshah–Khosravi Railway 
tunnel and the predicted CR 
values from a the SVR model, b 
the MLR model and c the MNR 
model
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values, which is evident of its high capability in prediction 
(Fig. 16a), whereas the regression models overestimated the 
CR values compared to the observed CR values (Fig. 16b, 
c), and therefore, they are not reliable predictors. Although it 
should be noted that due to the use of data related to similar 
rocks to examine validity of the models, they may not be 
extensible for other projects with different lithologies.

12 � Conclusions

This study tried to establish different prediction models to 
develop meaningful relationships between some strength 
and design parameters (UCS, C, Φ, σc, σt, RQD, RMR, Q, 
H and NB) with the recorded convergence rate values of 
the Namaklan twin tunnel in the west of Iran. MLR, MNR, 
MLP–ANN, RBF–ANN, SVR, RT, ET and GPR models 
are eight models that were developed for CR prediction. 
Multivariate linear regression with the backward analysis 
method showed that six parameters including H, NB, RMR, 
c, Φ and σc are the most important parameters in predicting 
the CR values. Hence, the parameters were used as inputs 
of all the models. The results showed that the MLP–ANN 
model can accurately predict the CR values (R2 = 0.925). 
The RBF–ANN model has been characterized as the sec-
ond possible alternative for the prediction of the CR with 
R2 of 0.81. Although ANNs are capable in predicting the 
CR values, the SVR model demonstrated to be a promising 
alternative. The SVR model transformed the dataset from 
nonlinear form to linear form and developed an equation as 
a quick tool to estimate the CR values. Linear and nonlin-
ear multiple regressions were also performed to generate a 
formula to predict the CR values. The MLR, ET and MNR 
models were relatively successful in predicting the measured 
CR with a determination coefficient of 0.61, 0.63 and 0.65, 
respectively. Also, it was observed that the RT and GPR 
models are the weakest in predicting the CR values among 
the prediction models. Finally, it can be concluded that the 
ANNs approaches could combine statistical techniques with 
machine learning techniques in a black box and make them-
selves the best possible models for the prediction of CR. 
As another result, the SVR model could be considered as a 
feasible prediction tool for predicting the convergence rate 
of the tunnel along with the ANNs. Also, the validity of 
the SVR, MLR and MNR models was checked by new data 
from another project. It was found that the capability of the 
SVR model is still reliable for predicting the reported CR 
values. However, more research works are needed to make 
the most accurate relationship to predict CR of tunnels exca-
vated in different geological conditions with various types 
of lithology.
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