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Abstract
Due to the advancements in digital image processing and multimedia devices, the digital image can be easily tampered 
and presented as evidence in judicial courts, print media, social media, and for insurance claims. The most commonly used 
image tampering technique is the copy-move forgery (CMF) technique, where the region from the original image is copied 
and pasted in some other part of the same image to manipulate the original image content. The CMFD techniques may not 
provide robust performance after various post-processing attacks and multiple forged regions within the images. This arti-
cle introduces a robust CMF detection technique to mitigate the aforementioned problems. The proposed CMF detection 
technique utilizes a fusion of speeded up robust features (SURF) and binary robust invariant scalable keypoints (BRISK) 
descriptors for CMF detection. The SURF features are robust against different post-processing attacks such as rotation, 
blurring, and additive noise. However, the BRISK features are considered as robust in the detection of the scale-invariant 
forged regions as well as poorly localized keypoints of the objects within the forged image. The fused features are matched 
using hamming distance and second nearest neighbor. The matched features grouped into clusters by applying density-based 
spatial clustering of applications with noise clustering algorithm. The random sample consensus technique is applied to the 
clusters to remove the remaining false matches. After some post-processing, the forged regions are detected and localized. 
The performance of the proposed CMFD technique is assessed using three standard datasets (i.e., CoMoFoD, MICC-F220, 
and MICC-F2000). The proposed technique surpasses the state-of-the-art techniques used for CMF detection in terms of 
true and false detection rates.
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1 Introduction

In this age of information, the use of digital images and vid-
eos as personal memories and social awareness is increasing 
rapidly. A large number of individuals and organizations are 

using easily available and simple digital image modification 
tools for image modifications. There are commonly three 
motives where image manipulation tools are used, i.e., the 
image stenography, the image digital watermarking, and the 
image forgery. In the image stenography, sensitive informa-
tion is hidden in the image [1–4]. In the image digital water-
marking, the authentication data or copyright information 
is hidden into the image, to identify the authorization and 
ownership of the digital image and restrict the digital image 
from being tampered or from unauthorized distribution [5, 
6]. In the image, forgery is used to manipulate and hide the 
original content of the image and used the forged image in 
unlawful and unethical purposes [7]. The examples for ille-
gal use of image forgery are; presenting the forged images 
in a courtroom as evidence, spreading the forged images 
as propaganda to initiate chaos in the society, to blackmail 
an individual with forged images, broadcasting the false 
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information by using forged images for particular person or 
organization gain.

In literature, there are two types of forgery detection tech-
niques, active (non-blind) and passive (blind) technique. In 
the active technique, the data are embedded in the original 
image, which is later used to check the authenticity of the 
image by extracting and matching the embedded data [8]. 
However, the major drawback of the active technique for its 
usage in the forensic application is that it requires the prior 
knowledge of the embedded data [9].

To cope with the forensic application, the passive tech-
nique is used widely in forensic application [9]. The passive 
technique does not require any additional information to 
detect the CMF in the forged image; it uses the information 
present in a tampered image to identify the forged regions. 
It is widely acknowledged that there are two types of image 
forgery, one is CMF and the other is image splicing. In CMF 
one or more regions from the original image are counterfeit 
on some other region of the same image to hide or manipu-
late the original image content [11]. While in image splicing, 
the regions from one or more images are imitated on some 
other image. The example of CMF is shown in Fig. 1, where 
it is very difficult with the naked eye to identify the forgery. 
The result of image forgery detection can be categorized 
as; (1) an input image either forged or not forged without 
localization of forged region and other (2) where a forged 
region in a digital image is localized within the same image 
if detected as forged image [12].

The proposed CMFD technique of this article uses a 
passive technique for CMFD, with the ability to localize 
the tampered regions in the image. To make the proposed 
technique fast, robust, and accurate, the discrete wavelet 
transform (DWT), SURF technique and BRISK technique 
have been utilized. The aim of using DWT in the proposed 
technique is to get only the most robust and appropriate 
features from DWT approximate sub-band to reduce the 

computational cost [13]. Using SURF and BRISK, only 
the worthy and effective keypoints are detected, and fea-
tures are extracted due to the refinement from DWT. The 
SURF [14] features allow detecting the forged regions 
even after post-processing attacks like rotation, blurring, 
color reduction, contrast adjustment, JPEG compression, 
additive noise, and brightness change of the forged region 
[15, 16]. The BRISK is generally robust against all pos-
sible transformation especially post-processing attacks 
like scaling and can detect most unique features from 
forged regions in CMF [17]. The features from SURF and 
BRISK are fused vertically with a descriptor length of 
64 × N  each. These fuse features are then matched using 
Hamming distance and 2NN; Hamming distance is used 
because of the fact that BRISK can utilize the Hamming 
greatly [17]. Using density-based spatial clustering of 
application with noise (DBSCAN), the match features are 
group together into clusters, which aid in mitigating some 
false matches [18]. After that, the random sample consen-
sus (RANSAC) technique is used to remove the residual 
false matches from the matched features in the previous 
step. The RANSAC estimates the parameters of a model 
from data provide with outliers (i.e., false matches) and 
inliers (i.e., true matches) to remove the outliers. The pro-
posed CMFD technique shows better results compare with 
state-of-the-art CMFD technique.

The main achievements of the proposed CMFD technique 
are as follows:

(1) The fusion of sparse features based on the SURF and 
BRISK descriptors to achieve a complementary effect 
in CMF detection.

(2) Ability to detect single and multiple forged regions in 
a digital image.

(3) Capacity to detect the forged regions even after post-
processing attacks like scaling, rotation, blurring, color 

Fig. 1  Example of CMF [10]

Forged with CMF(b)Original image(a)
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reduction, contrast adjustment, JPEG compression, 
additive noise, and brightness change.

(4) Mitigate the computational cost for forgery detection 
by plummeting the feature vector size and narrowing 
down the matching area.

2  Related Work

The CMF is the most common image forgery technique due 
to its simple nature. Therefore, researchers have proposed 
many CMF detections over the past few years [19–23]. 
Fridrich et al. [24] propose the very first technique in CMF 
detection. The technique divides the image in small over-
lapped block and extracts feature based on the discrete 
cosine transform (DCT) coefficient. The extracted features 
then lexicographically sorted and matched for the detection 
of the forged regions. A block-based technique is presented 
by Lin et al. [25], which divides the input image the equal-
sized overlapping blocks followed by feature extraction and 
storing them as an integer. The extracted features are then 
rearrange using radix sort and match using by comparing 
the accumulated numbers of each block feature vector. Ard-
izzone et al. [26] compare the features in a triangle rather 
than in the fixed-size block to detect forged regions. These 
triangles are matched according to their shape, content in the 
triangle, and local features. The drawback of this technique 
is unable to identify the forged region with affine transfor-
mation. A medley of DCT and DWT by Hayat et al. [13] 
is proposed in which DCT is used to extract features and 
then reduce them using DWT, respectively. Finally, the cor-
relation coefficient between all row vectors is calculated to 
detect duplicated blocks. However, it does not perform well 
in the presence of occlusion and multiple forged regions.

A block-based technique is proposed by Alkawaz et al. 
[27], which uses discrete cosine transform (DCT) which can 
accurately detect the forged regions in the image. The image 
features are created by rearranging 2D-DCT coefficient. The 
forged regions are detected by calculating and comparing 
Euclidean distance between blocks. The performance of the 
CMFD technique greatly depends on the size of the block, 
wrongly chosen block size leads to a decrease in accuracy of 
the CMFD technique. Silva et al. [18] present a technique for 
CMFD which uses keypoint-based descriptor called SURF 
for feature extraction. To reduce the complexity of the tech-
nique, the author uses the clustering technique to reduce the 
area under the observation. This technique underperforms 
in JPEG compression post-processing attack. Another key-
point-based CMFD technique is proposed by Li et al. [28], 
which segmented the input forged image into the patches fol-
lowed by keypoint extraction, which are compared with each 
other using affine transform matrix and expectation–maxi-
mization-based algorithm to detect CMF in the input image. 

However, due to the complex matching process, the compu-
tational cost of the proposed technique has increased.

In [29], a review on different keypoint-based CMFD tech-
niques is performed, which uses different keypoint-based 
descriptors like scale-invariant feature transform (SIFT) 
and SURF for feature extraction. The study shows that the 
SURF-based technique performs better than a SIFT-based 
technique for CMFD in terms of accuracy and computational 
cost. Another review by Farid H. [30] has discussed differ-
ent passive forgery detection techniques, i.e., pixel-based, 
format-based, camera-based, physical-based, and geometric-
based techniques. The study shows that above-mentioned 
passive forgery detection techniques work well by exploit-
ing the information present in the forged image to detect 
forgeries. However, with the advancement in digital image 
processing, forgery detection becoming more and more diffi-
cult. Manu et al. [31] propose a dense field technique, which 
uses a fast approximation nearest neighbor search algorithm 
and patch match technique. The technique relies on polar 
cosine transform (PCT), Fourier–Mellin transforms (FMT), 
and Zernike Moments (ZM). The technique performs well 
rotational invariant post-processing, but computational cost 
is high and low accuracy.

A multi-level dense descriptor (MLDD) proposed by Bi 
et al. [32] is used to extract features and perform geometric 
invariant moments-based matching. This technique requires 
less computational cost. Yuan et al. [33] propose a deep 
learning-based technique for image forgery detection which 
uses a convolutional neural network (CNN). The CNN is 
used to learn hierarchical representation from an RGB color 
image. To detect the forged regions, it extracts the features 
from the image provided in test images where CNN plays 
the role of patch descriptor. The accuracy of this technique 
is high but it requires a high computational cost. A novel 
keypoint-based technique for CMFD is proposed by Zandi 
et al. [34] to detect a forgery in the image by utilizing the 
advantages of block-based and traditional keypoint-based 
descriptors. The technique iterates to adjust the density of 
the keypoint descriptor based on the achieved information. 
The technique performs well as compared with state-of-the-
art CMFD techniques for various post-processing attacks 
like rotation invariance, additive white noise, JPEG com-
pression, and blurring; however, its performance decreases 
if scaling is applied to forged regions of the image.

A hybrid CMFD technique is proposed by Yang et al. 
[35]. This technique combines the features based on the 
KAZE and SIFT feature descriptors. The hybrid features are 
matched, and affine transformation estimation is applied to 
remove false matches. This technique produces good results 
even if extreme geometrical transformation is applied in the 
forged regions of the image. Another technique based on the 
hybrid features (i.e., SIFT, SURF, and HOG feature descrip-
tors) is proposed by Pandey et al. [36] to detect CMF in the 
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image. This technique produces better performance; how-
ever, it requires a high computational cost. Yu et al. [37] 
propose a technique that uses MROGH and hue histogram 
(HH) descriptor. The proposed technique performs well 
when compared to the SIFT and SURF-based techniques for 
CMF detection. This technique produces a satisfactory result 
in various post-processing attacks e.g., rotation and JPEG 
compression, but underperforms if forged regions subjected 
to scaling and additive noise.

3  The Methodology of the Proposed CMFD 
Technique

The foundation of the proposed CMFD technique is based on 
DWT, hybrid features (i.e., SURF and BRISK), clustering 
based on the DBSCAN, and RANSAC. The block diagram 
of the proposed CMFD technique is shown in Fig. 2, and the 
detail description of each step is provided in the following 
subsequent sections.

3.1  Pre‑processing

In the first step of the proposed technique, the input forged 
image is converted into the grayscale using Eq. (1).

where Y  denotes the luminance and R, G, and B denotes the 
red, green, and blue pixels values of the color image. The 

(1)Y = (2.99)R + (0.587)G + (0.114)B

grayscale conversion of the input forged image reduces the 
computational cost of the proposed CMFD technique.

3.2  Discrete Wavelet Transform (DWT)

In this step, the DWT is applied to the grayscale input forged 
image. The DWT divides the forged image into four sub-
bands, i.e., approximation (LL), horizontal (LH), vertical 
(HL), and diagonal (HH). In the proposed CMFD technique, 
the level-2 approximation sub-band is chosen since most 
energetic information of the image lies in this sub-band 
[38], hence reduce the computational cost of the proposed 
CMFD technique. The level-2 approximation coefficients of 
the DWT can be obtained by Eq. (2).

where Y  is the input grayscale forged image passed through 
the filter g, and y′

low
 denotes the approximation coefficients 

of the level-2 DWT, which can also be illustrated in Fig. 3.
The filtration through level-2 approximation coefficients 

enables the pre-processing forged image to extract only the 
most energy-rich features by SURF and BRISK descriptor 
in the next step.

3.3  Features Extraction Using SURF and BRISK

After applying DWT to the input image, the SURF and 
BRISK descriptors are used to extract features. The detail 

(2)y�
low

= (((Y ∗ g) ↓ 2) ∗ g) ↓ 2

Fig. 2  Block diagram of the proposed CMF detection technique based on the sparse features and DBSCAN clustering applied on the forged 
image of the CoMoFoD dataset [10]
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sub-sections about SURK and BRISK descriptor are as 
follow:

3.3.1  Features Extraction Using a SURF Descriptor

The SURF descriptor is not only fast but also robust against 
translation and affine transformation even in the presence 
of the noise [39]. The SURF descriptors are considered to 
be better than the other descriptors in terms of speed and 
robustness [40]. The SURF uses Hessian matrix determinant 
to select the keypoint [14] as expressed in Eq. (3)

where H(i, �) is Hessian matrix at point i = (x, y) in the y′
low

 
with scale � , Lxx(i, �), Lxy(i, �), Lxy(i, �) , and Lxy(i, �) are the 
convolution of the second order of Gaussian with m(x, y) at 
point i [14].

The Hessian matrix uses a box filter to take approxima-
tion by taking second-order Gaussian derivatives to reduce 
computational cost as they can be efficiently computed 
using the independent size of integral images. The selected 
box filter in the Hessian matrix is of 9 × 9 with � = 1.2 for 
Gaussian second-order approximation coefficients [14]. Now 
consider these approximation coefficients (i.e., Axx,Ayy, and 
Axy ), the Hessian matrix uses Eq. (4) for fast and accurate 
approximation calculation for the Hessian determinant.

where |||Lxy(1.2)
|||F||Axx(9)

||F∕||Lxx(1.2)||F|||Axy(9)
|||F = 0.9 is rela-

tive weight to balancing the Hessian determinant and |x|F is 
Frobenius norm.

The next step is the extraction of the feature descriptors 
from DoG approximation. This process consists of two steps, 
in the first step, an orientation-based assignment around the 
detected interest point is conducted. The calculation for ori-
entation uses Haar wavelet response with Gaussian at interest 

(3)H(i, �) =

[
Lxx(i, �) Lxy(i, �)

Lyx(i, �) Lyy(i, �)

]

(4)
|||Happrox

||| = Axx ∗ Ayy −
(
0.9Axy

)2

point with � = 2.5 s. Subsequently, the horizontal and vertical 
wavelet responses are sum up with rotating edge to calculate 
the dominant orientation. This dominant orientation is taken 
as interest point descriptor.

In the second step of the extraction of the feature descrip-
tors, the filter region is divided into small sub-regions. From 
each sub-regions, the dx the horizontal and dy the vertical 
wavelet responses are then sum up for each sub-region to pro-
duce the set of features. For polarity information of intensities, 
the absolute values of responses ||dx|| and |||dy

||| are also calculated 
[14]. This gives four-dimensional descriptor vector V  as 
expressed in Eq. (5).

Concatenating the dimensions of each sub-region result 
give 64XN feature vector. The extracted features using the 
SURF descriptor are now ready to fuse with BRISK features 
extracted in the next sub-section.

3.3.2  Features Extraction Using a BRISK Descriptor

In this step, the features are extracted from the forged image by 
applying the BRISK descriptor. It is a binary feature descrip-
tion technique [17]. One of the main advantages of using 
BRISK is its robustness against scale invariance. For feature 
selection, BRISK uses a sampling pattern as shown in Fig. 4.

In Fig. 4, the blue dots indicate the location and the dashed 
lines in red color indicate the radius ri , which is based on the 
Gaussian kernel to smooth the sampling-point intensity values 
to avoid aliasing at point ni in the pattern; hence, the local 
gradient can be calculated by Eq. (6).

where g
(
ni, nj

)
 is a local gradient, 

(
ni, nj

)
 represent the sam-

pling-point pairs, I
(
ni, �i

)
 and I

(
nj, �j

)
 are smoothed 

(5)V =
(∑

dx,
∑

dy,
∑||dx||,

∑|||dy
|||
)

(6)g
(
ni, nj

)
=
(
nj − ni

)
∗

(
I
(
nj, �j

)
− I

(
ni, �i

) )

‖‖‖nj − ni
‖‖‖
2

Fig. 3  Level-2 filter analysis of DWT
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intensities values. To identify the scale invariance in BRISK, 
it uses sampling pattern around keypoint k rotated by 
� = arctan 2

(
gx, gy

)
 . The calculation of bit-vector dk is per-

formed by comparing all the short-distance sampling-point 
pairs 

(
n�
i
, n�

j

)
∈ Ss , so that every bit b is either 1 or 0 as 

shown in Eq. (7). The length of bit-vector dk is 64 × N with 
keypoint in the range specified by [�minimum�maximum].

The features extracted using the BRISK descriptor are fuse 
with the features extracted in the previous sub-section using 
the SURF descriptor in Eq. (5), vertically as both features have 
the same dimension as shown in Fig. 5.

3.4  Feature Matching

In this step, the fused features from SURF and BRISK are 
matched. The Hamming distance is utilized for feature 
matching in the proposed technique, as it is beneficial for 
BRISK features matching. The set D =

{
d1, d2,… , dn−1

}
 is 

the sorted Hamming distance correspondence to the other 
features. Now, the 2NN test is carried out by calculating 
the ratio of closest Hamming distance and second closest 
Hamming distance. This ratio is compared with a threshold 
T(which is set to 0.6) as defined in Eq. (8).

(7)
b =

{
1, I

(
n𝛼
j
, 𝜎j

)
> I

(
n𝛼
i
, 𝜎i

)
0, otherwise

∀
(
n𝛼
i
, n𝛼

j

)
∈ Ss

The 2NN is repeated on di and di+1 until T is less than the 
ratio. Now, if the total repetitions are k then there are a total of 
k matches for the point under inspection.

The matched points are shown in Fig. 6. There are lots 
of false matches in the match features. The false matches 
are reduced by applying DBSCAN clustering in the next 
sub-section.

3.5  Clustering Using DBSCAN

It has been widely observed that the match keypoints in the 
input forged image are denser than the wrongly matched key-
points, as shown in Fig. 6. DBSCAN, a clustering technique, 
which produces excellent results in the field based on spatial 
clustering applications [41, 42]. This clustering technique also 
uses the information that the true match keypoints are denser 
than the false match keypoints in the cluster.

Firstly, the density of keypoints around each keypoint within 
the cluster is calculated in DBSCAN. This density calculation 
acts as an influence function of all keypoints present in the 
cluster on the particular keypoint present in the same cluster. 
This influence can be mathematically described as in Eq. (9).

(8)
d1

d2
≤ T , T ∈ (0, 1)

(9)I(a, b) =

√√√√ n∑
d=1

(
ad − bd

)2

Fig. 4  Sampling pattern for BRISK with P = 60 points [17]
Fig. 5  Result of the fused features of SURF (red) and BRISK (green) 
descriptors
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where the influence I(a, b) of keypoint a on keypoint b is 
simply an Euclidean distance between both keypoints. The 
Euclidean distance and impact of keypoint a on to the key-
point b are inversely proportional to each other. As the dis-
tance increases, the impact of keypoint a on to the keypoint 
b decreases, and vice versa [41].

In the next step, the local density of keypoint a is cal-
culated by summing all the influence of keypoint a with 
its m-nearest neighbors’ distance. This summation can be 
described mathematically as in Eq. (10).

where the m-nearest neighbors for keypoint a are calculated 
and rearrange it in ascending order using quick sort accord-
ing to their distance to the keypoint a . By calculating the 
ratio of keypoint density a with a total number of m nearest 
neighbors, the clusters are generated.

The DBSCAN clustering technique removed some false 
match feature but some of the false matches are still present 
in the cluster-based result as shown in Fig. 7. The detail dis-
cussion on removing the remaining false match region from 
the forged image is mentioned in the next step.

3.6  False Match Region Removal Using RANSAC

The clustering in the previous step can remove some false 
matches, but not all of them. In this step, the residual false 

(10)D
(
a, b1, b2,… , bm

)
=

m∑
x=1

I
(
a, bx

)

matches in the cluster are removed. The proposed tech-
nique uses random sample consensus (RANSAC) tech-
nique for this purpose [43]. RANSAC estimates the param-
eters of a model from data provide with outliers (i.e., false 
matches) and inliers (i.e., true matches). The RANSAC 
uses a transformation matrix to estimate the outliers, as 
described in Eq. (11).

where H is a transformation matrix with scaling, rotation, 

and shearing. Also, 
⎛⎜⎜⎝

ai
bi
1

⎞⎟⎟⎠
 and 

⎛⎜⎜⎝

aj
bj
1

⎞⎟⎟⎠
 are the location at i and 

j point. Now, based on the transformation matrix H, as in 
Fig. 8, all the false matches are eliminated that are not 
attuned with the H.

The RANSAC can remove the remaining false match 
features that are left from DBSCAN clustering. This step 
contributes well in improving the proposed CMFD tech-
nique accuracy.

3.7  Post‑processing and Localization

In the final step, the morphological operation is applied to 
the resultant image from the previous sub-section. If the 
binary mask is all black, then no forged region is present 

(11)H

⎛⎜⎜⎝

ai
bi
1

⎞⎟⎟⎠
=

⎛⎜⎜⎝

aj
bj
1

⎞⎟⎟⎠

Fig. 6  SURF and BRISK features are matching with some false 
matches

Fig. 7  Clustering and false match removal of match features
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in the image; if any white area is present in the image, 
this concludes that the image is forged.

This morphological result as a binary mask is shown in 
Fig. 9a. The final localization of the forged region in the 
image using the binary mask from the previous step is in 
Fig. 9b. This step produces the final image with locali-
zation if any forgery is detected from the previous step.

4  Experimental Results, Performance 
Evaluation Criteria, and Discussions

The experimental results of the proposed technique are car-
ried out on three state-of-the-art datasets, namely CoMoFoD 
[10], MICC-F220, and MICC-F2000 [44]. The CoMoFoD 
dataset is a collection of 200 tampered images, each of size 
512 × 512. MICC-F220 and MICC-F2000 datasets consist of 
220 and 2000 tampered images, respectively.

4.1  Performance Evaluation Criteria

The performance of the proposed technique is evaluated in 
terms of precision ( P ), recall ( R ), and F-measure. The per-
formance evaluation criteria are based on the total number of 
true positive ( TP—correctly detected forged region), false posi-
tive ( FP—an authentic region that is mistakenly detected as a 
forged region) and false negative ( FN—the forged regions that 
are mistakenly missed). Two most commonly used criteria for 
CMFD are precision P and recall R , which are mathematically 
expressed in Eq. (12) and Eq. (13), respectively.

Using P and R, dice similarity coefficient (DSC) aka 
Fmeasure the score is calculated, which is mathematically 
defined by Eq. (14).

The following are the tests to establish the expediency of 
the proposed CMFD technique.

(12)P =
TP

TP + FP

(13)R =
TP

TP + FP

(14)Fmeasure = 2 ∗
(
P ∗ R

P + R

)

Fig. 8  False match removal using RANSAC from a cluster-based 
image

Fig. 9  a Binary mask and b 
localization of forged region in 
the original image
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4.2  Accuracy and Effectiveness

Three separate tests for consistent, inconsistent, and multiple 
forged regions are performed to evaluate the accuracy and 
effectiveness of the proposed CMFD technique. For these 
experiments, the images are selected from the CoMoFoD 
dataset. In Figs. 10a, 11a, and 12a, the authentic images are 
shown with no forged region in the images.

Using CMF, the image is forged as shown in Figs. 10b, 
11b, and 12b with consistent, inconsistent, and multi-
ple forged regions, respectively. The proposed CMFD 
technique can detect the forgery even in the presence of 
the inconsistent and multiple forged regions as shown in 
Figs. 10c, 11c, and 12c. The precision, recall, and F-meas-
ure in the case of Fig. 11c are P = 0.9855,R = 0.9185, and 
Fmeasure = 0.9508. In Fig.  12c, P = 0.8394, R = 0.9213, 
and Fmeasure = 0.8784 . For the multiple forged image using 
CMF in Fig. 12c, the image with multiple forged rocks, the 
P = 0.9268, R = 0.9402, and Fmeasure = 0.9335 , the image 
with multiple forged windows, the P = 0.9061, R = 0.9645, 
and Fmeasure = 0.9344 ,  the image with mult iple 
forged tree leafs, the P = 0.9256, R = 0.8977, and 
Fmeasure = 0.9115, and the image with multiple forged car, 

the P = 0.9080, R = 0.8684, and Fmeasure = 0.9335 . The 
binary mask for comparison is shown in Figs. 10d, 11d, and 
12d.

4.3  Robustness

To mitigate the accuracy of CMFD techniques, the culprits 
apply the post-processing attacks on forged regions. In the 
robustness test, the most commonly used post-processing 
attacks are tested to estimate the robustness of the proposed 
technique. These post-processing attacks are rotational 
invariance, scale invariance, blurring, color reduction, con-
trast adjustment, JPEG compression, additive noise, and 
brightness change (Fig. 13).

The proposed CMFD technique performs outstandingly 
against various attacks as presented in Table 1 and Fig. 14, 
respectively. The following sub-sections discussed the 
experimental results of the proposed CMFD technique on 
each post-processing attack after CMF in the images of the 
CoMoFoD dataset.

Fig. 10  a Without forgery image, b forgery with consistent shape, c localization of forged image, and d binary mask from the dataset for com-
parison

Fig. 11  a Without forgery image, b forgery with inconsistent shape, c localization of forged image, and d binary mask from the dataset for com-
parison
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a) Rotational invariance

The forged region of the image in rotational invari-
ant conducted on three different images, the images 
with rotational invariant of 60-degrees, 90-degrees, and 
180-degrees, respectively, as shown in Fig.  13b, and 
original image without tampering are shown in Fig. 13a. 
The detected forged region is shown in Fig. 13c, which is 
compared with a binary mask of the CoMoFoD dataset is 
shown in Fig. 13d for visual reference.

(b) Scale invariance

The original image from the CoMoFoD dataset, as shown 
in Fig.  15a, is forged by a scale-invariant attack by 
reducing the size of the forged region to 15% as shown 
in Fig. 15b. The detected forged region using proposed 
CMFD technique and binary mask for comparison is 
shown in Fig. 15c and d, respectively.

Fig. 12  a Without forgery image, b multiple copy-move forgeries, c localization of forged image, and d binary mask from the dataset for com-
parison
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c) Blurring

The CoMoFoD dataset consists of tampered images that are 
blurred by applying an averaging filter of mask size 3 × 3, 
5 x 5, and 7 x 7. For blurring test, the proposed technique 
uses an averaging filter with a mask size of 7 x 7 as shown 
in Fig. 16.

d) Color reduction

For the color reduction test, the colors of the forged image 
are reduced by calculating the uniform quantization of inten-
sity values of the original image. The colors of the forged 
image are reduced to 128 intensity levels for each color 
channel of the RGB image, as shown in Fig. 17.

e) Contrast adjustment

For contrast adjustment test, the intensity range of a sam-
ple forged image of the CoMoFoD dataset is mapped 

Fig. 13  a Without forgery image, b forgery with rotational invariance of 60-degree, 90-degree, and 180-degree, respectively, c localization of 
forged image and d binary mask from the dataset for comparison

Table 1  Performance analysis of the proposed CMFD technique in 
terms of P and R for different post-processing attacks

Post-processing type Precision Recall

Rotational invariance (RI) 60° 0.9824 0.8917
90° 0.9130 0.8720
180° 0.9980 0.6954

Scale invariance (SI) 0.8980 0.9935
Blurring (B) 0.9362 0.8747
Color reduction (CR) 0.9796 0.8784
Contrast adjustment (CA) 0.8745 0.9754
JPEG compression (JPEG-C) 0.8213 0.9332
Additive noise (AN) PSNR = 33.1 0.9333 0.9552

PSNR = 23.2 0.8839 0.9128
PSNR = 20.6 0.9382 0.8118

Brightness change (BC) 0.9841 0.9447
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to one of the three new lower and upper intervals bound 
i.e.,(0.01, 0.95), (0.01, 0.9) , and (0.01, 0.8) . In the pro-
posed CMFD technique, new lower and upper interval 
bound, i.e., (0.01, 0.8) , are used, which generate a darker 
forged image as shown in Fig. 18.

f) JPEG compression

The JPEG compression of a sample forged image in the 
CoMoFoD dataset is achieved by varying the JPEG quality 
factor. In this test, the original image from the CoMoFoD 

Fig. 14  Performance analysis of 
the proposed CMFD technique 
in terms of Fmeasure for post-
processing attacks 0.9349 
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Fig. 15  a Without forgery image, b forgery with scale invariance, c localization of forged image, and d binary mask from the CoMoFoD dataset 
for comparison

Fig. 16  a Without forgery image, b forgery with blurring, c localization of forged image, and d binary mask from the CoMoFoD dataset for 
comparison from CoMoFoD dataset [10]
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dataset is compressed by the JPEG quality factor of 50, 
which reduces image quality and produces blocks-type 
effects on a forged image as shown in Fig. 19.

g) Additive noise

For additive noise test, the CoMoFoD dataset uses white 
Gaussian noise with three different values of variance, 

i.e., 0.009, 0.005, and 0.0005, with peak signal to noise 
ratio (PSNR) 20.6, 23.2 and 33.1, respectively. The mean is 
set to zero for all variations. The performance of the pro-
posed CMFD technique is evaluated on the PSNR values 
as mentioned earlier and experimental results are shown 
in Fig. 20.

Fig. 17  a Without forgery image, b forgery with color reduction, c localization of forged image, and d binary mask from the CoMoFoD dataset 
for comparison

Fig. 18  a Without forgery image, b forgery with contrast adjustment, c localization of forged image, and d binary mask from the CoMoFoD 
dataset for comparison

Fig. 19  a Without forgery image, b forgery with JPEG compression, c localization of forged image, and d binary mask from the CoMoFoD data-
set for comparison



2988 Arabian Journal for Science and Engineering (2020) 45:2975–2992

1 3

h) Brightness change

For the brightness change test, the CoMoFoD dataset uses 
the same approach as used for the contrast adjustment. The 
lower and upper bound of forged image intensity range is 
mapped to one of the three new lower and upper intervals 
bound (0.01, 0.95), (0.01, 0.9) and (0.01, 0.8) . For this test, 
the (0.01, 0.8) range is used for brightness change as shown 
in Fig. 21, which produces a visually brighter forged image.

4.4  Comparison Test

The proposed technique is tested on MICC-F220, 
MICC-F2000, and CoMoFoD datasets. The results from 
above-mentioned datasets compared with the following 
state-of-the-art CMFD techniques. Manu et al. (cluster 
keypoint-based technique) [31], Amerini et  al. (SIFT-
based technique) [44], Cozzolino et al. (FMT, ZM-Polar, 

ZM-Cart, PCT-Polar and PCT-Cart) [45], the SURF-based 
technique for CMFD proposed by Thampi et al. [46], Chen 
et al. (SIFT-based technique) [47], Abdel-Basset et al. 
(2-level clustering technique for CMFD) [48] and Soni 
et al. (hybrid feature-based technique for CMFD) [49].

The experimental details presented in Table  2 and 
Fig. 22 show that the proposed CMFD technique outper-
forms the state-of-the-art CMFD techniques in terms of 
precision (P), recall (R), and Fmeasure . The proposed CMFD 
technique outperforms state-of-the-art CMFD techniques 
because it uses a complementary features-based vec-
tor that contains robust features of SURF and BRISK 
descriptors. Furthermore, the proposed CMFD technique 
uses DBSCAN-based clustering technique as compared to 
the k-mean clustering technique, which does not require 
prior information about the total numbers of clusters in the 
forged image, which help in detecting single and multiple 
forged regions. Lastly, the proposed CMFD technique uses 

Fig. 20  a Without forgery image, b forgery with additive noise with PSNR at 33.1, 23.2, and 20.6, respectively, c localization of forged image 
and d binary mask from the CoMoFoD dataset for comparison
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RANSAC technique for robust estimation of true and false 
matches in the forged image.

4.5  Time Efficiency

To analyze the performance analysis in terms of the compu-
tational cost of the proposed CMFD technique, the images 
from MICC-F220, MICC-F2000, and CoMoFoD datasets 
are used. The 100 images are taken from the MICC-F220 
dataset and computational cost (time in seconds) is com-
pared with following state-of-the-art CMFD techniques; 
Fridrich et al. [24], Yang et al. [35], Yang et al. [50], Pope-
scu et al. [51], and Soni et al. [52] as shown in Table 3. The 
reason for selecting 100 images from MICC-F220 is that 
the state-of-the-art CMFD technique also uses 100 images 
of the MICC-F220 dataset to report the computational cost. 
The whole images from dataset MICC-F2000 are used to 
evaluate the time performance of proposed CMFD tech-
nique and compared with Li J. et al. [53], Yang et al. [50], 
Zhong et al. [54], Amerini et al. [44], Amerini et al. [55], 
and Soni et al. [56], as presented in Table 4. The whole 
images are used to conduct a time evaluation experiment 
from CoMoFoD dataset and compared with Amerini et al. 
[44], and Muzaffer et al. [57], as shown in Table 5. The 
hardware and software resources (i.e., Intel(R) Core(TM) 
i7-4600U CPU @ 2.10 GHz, 8 GB RAM, HDD 500 GB, 
MATLAB 2017b, and Windows 10 64-bit OS) are same for 
all the above experiments. The performance of the proposed 
CMFD technique is better than state-of-the-art CMFD tech-
niques in terms of true-positive rate (TPR), false-positive 
rate (FPR), and time efficiency (CPU time in seconds) as 
detailed mentioned in Tables 3, 4, and 5. The robust TPR 
performance and low computational cost of the proposed 
CMFD technique are achieved: by the refinement of forged 
image by applying DWT and extracting only energy-rich 
features, by using the fast feature extraction techniques of 
SURF and BRISK as compared to SIFT descriptor, and 
plummeting the search space using DBSCAN clustering.

Fig. 21  a Without forgery image, b forgery with brightness change, c localization of forged image, and d binary mask from the CoMoFoD data-
set for comparison

Table 2  Performance comparison of the proposed CMFD technique 
with state-of-the-art CMFD techniques on the MICC-F220, MICC-
2000, and CoMoFoD datasets (bold values indicate best perfor-
mances)

Dataset Technique name P R

MICC-F220 Manu et al. [31] 0.9050 0.9550
FMT [45] 1.0000 0.5940
ZM-Polar [45] 1.0000 0.4910
ZM-Cart [45] 0.9820 0.4910
PCT-Polar [45] 0.9650 0.5000
PCT-Cart [45] 0.9630 0.4730
SURF [46] 0.8160 0.9273
Abdel-Basset et al. [48] – –
Soni et al. [49] – –
Proposed technique 0.9564 0.9630

MICC-F2000 Manu et al. [31] 0.7260 0.9560
FMT [45] 0.7920 0.7000
ZM-Polar [45] 0.8250 0.5870
ZM-Cart [45] 0.8070 0.5800
PCT-Polar [45] 0.8550 0.6000
PCT-Cart [45] 0.8190 0.5740
SURF [46] 0.6780 0.9460
Abdel-Basset et al. [48] – –
Proposed technique 0.9990 0.8935

CoMoFoD Manu et al. [31] 0.7980 0.7490
Amerini et al. [44] 0.7000 0.8750
FMT [45] 0.8290 0.5220
ZM-Polar [45] 0.8700 0.4890
ZM-Cart [45] 0.8480 0.5090
PCT-Polar [45] 0.8770 0.4910
PCT-Cart [45] 0.8480 0.4940
SURF [46] 0.6160 0.7098
Chen et al. [47] 0.7019 0.8461
Proposed technique 0.9598 0.9124
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5  Conclusions

The proposed CMFD technique uses level-2 DWT to select 
energy-rich features from the forged image. The features 
from SURF and BRISK descriptors are fuses together to 
get the complementary effect for CMF detection in the 

proposed CMFD technique to aid in the detection of the 
single and multiple forged regions in the image. The fused 
feature set also assists robust CMF detection in the pres-
ence of post-processing attacks like scale invariance, rota-
tion invariance, blurring, color reduction, contrast adjust-
ment, JPEG compression, additive noise, and brightness 
change. The DBSCAN clustering and RANSAC are used 
to reduce search space, mitigate false matches, and reduce 
the computational cost of the proposed technique. The pro-
posed technique provides an accurate and robust result for 
single and multiple forged regions even in the presence 
of post-processing attacks with less computational cost 
compared to state-of-the-art techniques. The experiment 
results show that the proposed CMFD technique outper-
forms the state-of-the-art CMFD techniques in term of 
precision, recall, and Fmeasure . Therefore, the proposed 
technique can perform a vigorous part in the forensic 
application. Nevertheless, image forgery uses more com-
plicated post-processing attacks, e.g., excessive scaling, 
smoothening, and brightness change in the forged regions. 
Therefore, we are in the process of refining the proposed 
technique that handles these concerns more efficiently.

Fig. 22  Performance com-
parison of proposed CMFD 
technique with state-of-the-art 
in terms of Fmeasure
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Table 3  Performance comparison of the proposed CMFD technique 
on the MICC-F220 dataset with state-of-the-art CMFD techniques in 
terms of FPR, TPR, and CPU time (time in seconds)

Bold values indicate the best performances

Techniques False-positive 
rate (%)

True-positive 
rate (%)

CPU time (S)

Fridrich et al. [24] 84.00 89.00 294.69
Yang et al. [35] 10.42 95.45 12.40
Yang et al. [50] 9.02 95.88 10.20
Popescu et al. [51] 86.00 87.00 70.97
Soni et al. [52] 8.60 97.40 9.20
Proposed technique 7.31 98.05 8.35

Table 4  Performance comparison of the proposed CMFD technique 
on the MICC-F2000 dataset with state-of-the-art CMFD techniques 
in terms of FPR, TPR, and CPU time (time in seconds)

Bold values indicate the best performances

Techniques False-posi-
tive rate (%)

True-posi-
tive rate (%)

CPU time (S)

Li J. et al. [53] 11.80 91.55 24.45
Yang et al. [50] 12.02 92.78 25.20
Zhong et al. [54] 14.82 93.75 22.40
Amerini I. et al. [44] 11.61 93.42 20.94
Amerini et al. [55] 9.15 94.86 19.20
Soni et al. [56] 6.80 98.50 18.60
Proposed technique 5.22 98.84 12.72

Table 5  Performance comparison of the proposed CMFD technique 
with state-of-the-art CMFD techniques in terms of FPR, TPR, and 
CPU time (time in seconds) on the CoMoFoD dataset

Bold values indicate the best performances

Techniques False-positive 
rate (%)

True-positive 
rate (%)

CPU time (S)

Amerini [44] et al. 92.00 94.00 1340.38
Muzaffer [57] et al. 89.00 91.00 146.7
Proposed technique 9.82 96.68 58.9
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