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Abstract
This article investigates the impact of nanosized particles (Cu and Ag) on the thermal performance of partially ionized non-
Newtonion liquid (Casson fluid) exposed to non-uniform magnetic field in the presence of thermal radiations. Mathematical
models based on basic governing laws are complex, nonlinear and coupledwhich are solved byfinite elementmethod in order to
investigate the underlying physics. The results are validated by comparing with already published benchmarks. Convergence,
error and mesh-free analysis are done. The CPU times of present method and method used in published benchmark are noted.
The present method has less CPU time than CPU time required by method used in published benchmark. The wall shear
stress increases, whereas wall heat flux decreases as the intensity of the magnetic field is increased. This observation is noted
for the both cases of Cu and Ag nanoparticles. However, the wall shear stress for the case of Ag nanoparticles is greater than
the wall shear stress for the case of Cu nanofluid. The usage of Ag nanoparticles is recommended as their dispersion in the
base fluid increases the effective thermal conductivity in comparison of Cu nanofluid. Hall and ion-slip currents have shown
remarkable increase in velocity and a significant reduction.

Keywords GFEM · Skin friction coefficient · Nusselt number · Nanoparticles · Thermal radiation

1 Introduction

Mixture of nanoparticles (in size 1–100 nm) and traditional
liquid is known as nanofluid. The study of dispersion of
nanoparticles in fluid has significant role in the improve-
ment of thermal conductivity of nanofluids. Nanoparticles
have various applications in heat transfer including a nuclear
reactor, microchannel and thermal fluid and cooling system.
Heat transfer in the presence of nanoparticles is examined
by many researchers. However, here we describe the most
relevant. Awais et al. [1] investigated heat and mass trans-
port of Oldroyd-Beta fluid containing nanoparticles over the
bidirectional moving surface. Awais et al. [2] also exam-
ined heat transportation in MHD flow of nanofluid with slip
constraint. Bilal et al. [3] numerically studied the impact of
nanoparticles ondouble diffusion in hydromagneticflowover
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a stretching surface. Hassan et al. [4] simultaneously consid-
ered the influence of shape of nanoparticles and oscillating
magnetic on the flow of ferrofluid. Zeeshan et al. [5] exam-
ined the impact of nanoparticles including entropygeneration
in flow due to rotation of disk. The role of hybrid nanoparti-
cles on an enhancement transport of heat in hydromagnetic
flowduring the peristalticmechanismofmicropolar fluidwas
investigated by Ahmad and Nadeem [6]. An enhancement of
biofluid during peristaltic movement of the fluid subject to
Cu nanoparticles is also analyzed byAhmad andNadeem [7].
Awais et al. [8] discussed an enhancement in thermal con-
ductivity of couple stress fluid when nanosize particles are
dispersed. Hayat et al. [9] considered the effects of nanopar-
ticles and thermal radiation on peristaltic transportation of
biofluid in a channel with pores. They noted a remarkable
impact of nanoparticles on the pumping phenomenon.

Newtonian and non-Newtonian fluids may have the prop-
erty of emitting thermal radiations during thermal changes in
the fluid. The effects of such radiations can be incorporated
in extensive work on the thermal radiations are available, but
we describe the most relevant. For instance, Mehmood et al.
[10] considered thermal radiation in the hydromagnetic flow
of dusty liquid by an inclined plane with dissipation. Khan
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et al. [11]modeled the simultaneous effects including thermal
radiations and thermal slip on the transport of heat in mag-
netohydrodynamic flow past a cylinder having pores. Abbasi
et al. [12] developed mathematical models for transport of
heat in Jeffery liquid subjected thermal radiations and double
stratification and derived their solutions in order to examine
the role of thermal radiations on mixed convection in the
flow. Awais et al. [13] discussed the thermal performance of
nanofluid in the presence of thermal radiations emitted by the
fluid. Hayat et al. [14] used the correlations for thermal prop-
erties of the base fluid and nanosized properties to investigate
the thermal performance of working fluid in the presence of
Marangoni effects.

The dynamics of ionized exposed to magnetic field have
totally distinct dynamics of non-ionizedfluid as ionizedfluids
experienced three forces namely the Lorentz force, the Hall
force and force due to ion collision (ion-slip force). Existing
literature reports for flows under the action of Lorentz force.
Some developments are also made for flow in the presence of
Hall currents. However, literature is scant for flows including
Hall and ion-slip impacts.Motsa and Shateyi [15] derived the
set of partial differential equations by considering the effects
of Hall currents on the transport of mass subjected to chemi-
cal reactions and solved themnumerically in order to examine
the behavior of associated parameters. Hayat et al. [16] devel-
oped the mathematical models by considering the effects of
Hall currents and Ohmic dissipation on the transport of heat
in mixed convective flow generated peristaltic mechanism.
Hayat and Nawaz [17] modeled three-dimensional flow of
magnetohydrodynamic liquid composed of charged particles
exposed to the magnetic field. They noted remarkable impact
of Hall currents on momentum diffusion. Results of Hall
effects of convection flow in appearance of magnetohydro-
dynamic channel incorporated viscous fluid past a channel
is examined by Hayat et al. [18]. Hayat et al. [19] consid-
ered Hall and ion-slip influences in peristaltic flow of Jeffery
nanofluid. Jha et al. [20] did mathematical modeling for flow
experiencing Hall and ion Buoyancy forces and derived the
solution of resulting models in order to examine the role of
Hall and Buoyancy forces on mixed convection flow. Hayat
et al. [21] used the governing laws and Maxwell’s equa-
tions to investigate peristaltic phenomenon under the Hall
and ion slip currents. Recently, Nawaz et al. [22] studied
the three-dimensional heat transfers in polymeric material
containing nanoparticles in the presence of Hall and slip cur-
rents.

For the simulations of hydromagnetic flow situations,
numerous numerical schemes have been employed by the
researchers working in the fluid of computational fluid
dynamics (CFD). The most liberal method is Galerkin finite
element method (GFEM). The method process is effica-
cious concerning the solution of coupled nonlinear problems
with complicated boundary conditions. Implementation of

Galerkin finite element method (GFEM) as the simulations
of fluid flow problems can be seen through Refs. [25, 26].

To the best of author’s knowledge, the finite element study
on thermal performance of Casson fluid subjected to the dis-
persion of Cu and Ag nanoparticles is not conducted so far.
The present investigation is advancement in this direction.
A comparative study on the impact of copper and silver
nanoparticles on thermal performance is also carried out.
The finite elementmethod is to implement to themodeled the
problems, and parametric analysis is done in order to analyze
the dynamics of associated parameters. Extensive numerical
experiments are performed andobtainedobservations are dis-
played. Eventually, the whole work is summarized.

2 ProblemDevelopment

Consider 3D flow as a mixture of viscous fluid with cop-
per and silver as nanoparticles. Flow is by nonlinear velocity
of surface. Radiation effects are present. Non-uniform mag-
netic field B � B0(x + y)n−1 is applied in z-direction.
Surface has velocity as Vw � [a1(x + y)n, b1(x + y)n] where
a1, b1, n > 0 are constant, and the wall temperature is
defined as Tw � T∞ + A0T0(x + y)2n Further Joule heating
and viscous dissipation are present. Physical configuration is
shown in Fig. 1.

Conservation laws of mass, momentum and energy for an
incompressible flow of Casson fluid are

∇ · V � 0, (1)

ρnf
dV
dt

� −∇P + μnf

(
1 +

1

β

)
∇2V + J × B, (2)

(ρcp)nf
dT

dt
� knf∇2T + tr (τL) +

1

σnf
J · J − ∇ · qr, (3)

∇ · B � 0, ∇ × B �μ0J, ∇ × E �∂B
∂t

, (4)

J �σnf[E + V × B]− βe

|B| (J × B)+
βeβi

|B|2 (J × B) × B (5)

where P is the pressure, d
dt is the material derivative, μnf

is the dynamic viscosity of the nanofluid, V is the velocity
field, J is the current density, ρf is the fluid density, ρn f is
the density of the nanofluid, B is the magnetic induction,
kn f is the thermal conductivity of the nanofluid, σnf is the
electrical conductivity of the nanofluid and β is the Casson
fluid yield stress parameter and

(
cp

)
nf is the specific heat

of the nanofluid, βi(� ωiτi) is the ion-slip parameter which
is the product of cyclotron frequency (ωi) of ions and ion
collision time (τi), βe(� ωeτe) is the product of cyclotron
frequency of electrons (ωi) and electrons collision time (τe)
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Fig. 1 Physical configuration

and qr is the radiative heat flux vectorwhich can be calculated
by the Stefan–Boltzmann law [9] for the thermal radiations.

The use of boundary-layer approximations O(x) � O
(y) � O(u1), O(u2) � O(T ) � 1, O(z) � δ, O(νnf) � δ2

in Eqs. (1)–(5) gives

∂u1
∂x

+
∂u2
∂y

+
∂u3
∂z

� 0, (6)

u1
∂u1
∂x

+ u2
∂u1
∂y

+ u3
∂u1
∂z

� νnf

(
1 +

1

β

)
∂2u1
∂z2

+
σnfB2

0 (x + y)n−1

ρnf[(1 + βeβi)2 + β2
e ]

[u2βe − (1 + βeβi)u1], (7)

u1
∂u2
∂x

+ u2
∂u2
∂y

+ u3
∂u2
∂z

� νnf

(
1 +

1

β

)
∂2u2
∂z2

− σnfB2
0 (x + y)n−1

ρnf[(1 + βeβi)2 + β2
e ]

[u1βe + (1 + βeβi)u2], (8)

u1
∂T

∂x
+ u2

∂T

∂y
+ u3

∂T

∂z
�

(
knf

(ρcp)nf
+

16σ ∗T 3∞
(ρcp)nf3k∗

)
∂2T

∂z2

+
σnfB2

0 (x + y)n−1

(ρcp)nf[(1 + βeβi)2 + β2
e ]
(u21 + u22)

+
μnf

(ρcp)nf

(
1 +

1

β

)
[

(
∂u1
∂z

)2

+

(
∂u2
∂z

)2

],

(9)

where u1, u2 and u3, locate the velocities components on
space coordinates, subscript f is the base fluid, n f is the
thermo-physical properties of nanofluid, B0 is magnitude
of the constant magnetic field and intends its magnitude.
Several models for thermo-physical properties of base fluid,
solid nanosized particles and nanofluid are in practice. The
numerical values of thermal properties used in this study are

Table 1 Thermo-physical properties of fluid and nanoparticles

Physical properties Blood fluid Cu Ag

Cp 4179 385 235

ρ 997.1 8933 10,500

k 0.613 400 429

σ 1.19 5.96×107 6.63×107

recorded in Table 1. Here, we have used the models due to
Tiwari and Das [27]. This model is given by

ρnf � (1 − φ)ρf + φρs, μnf � μf

(1 − φ)
5
2

,

σ � σs

σf
, knf �

{
ks + 2kf − 2φ(kf − ks)

ks + 2kf + φ(kf − ks)

}

(ρc)nf � (1 − φ)(ρc)f + φ(ρc)s,

σnf � σf

(
1 +

3(σ − 1)φ

σ + 2 − (σ − 1)φ

)
, νnf � μnf

ρnf

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (10)

where φ is the solid volume fraction of nanoparticles.
The boundary conditions concerning the existing flow

investigation are

u1 � a1(x + y)n, u2 � b1(x + y)n, w � 0, T � Tw at z � 0
u1 � 0, u2 � 0, T → T∞ as z → ∞.

}
,

(11)

The change of variables

u1 � a1(x + y)n f ′, u2 � a1(x + y)ng′, η �
√

a1
v
(x + y)

n−1
2 z,

u3 � −√
a1v(x + y)

n−1
2 { n+12 ( f + g) + n−1

2 η( f ′ + g′)},
θ (η) � T−T∞

Tw−T∞ ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(12)
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transforms Eqs. (6)–(9) into the following set of boundary
value problems

(
1 +

1

β

)
f ′′′ − φ1[n f

′( f ′ + g′) − n + 1

2
( f + g) f ′′]

+
φ2M2

(1 + βeβi)2 + β2
e
[βeg

′ − (1 + βeβi) f
′] � 0

f (0) � 0, f ′(0) � 1, f ′(∞) � 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

(13)(
1 +

1

β

)
g′′′ − φ1[ng

′( f ′ + g′) − n + 1

2
( f + g)g′′]

− φ2M2

(1 + βeβi)2 + β2
e
[βe f

′ + (1 + βeβi)g
′] � 0

g(0) � 0, g′(0) � λ, g′(∞) � 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

(14)
(
1 +

4

3NR

)
θ ′′ + kf

knf
φ3

n + 1

2
Pr θ ′( f + g) − n Pr θ ( f ′ + g′)

+
kf
knf

μf

μnf

φ2

(1 − φ)2.5
1

(1 + βeβi)2 + β2
e
Pr EcM2[( f ′)2 + (g′)2]

+(1 + 1
β
) knfkf

μnf
μf

Pr Ec[( f ′′)2 + (g′′)2] � 0,

θ (0) � 1, θ (∞) � 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(15)

where

φ1 � (1 − φ)
5
2 ((1 − φ) − φ

ρs

ρf
),

φ2 � (1 − φ)
5
2 ((1 +

3(σ − 1)φ

σ + 2 − (σ − 1)φ
)),

φ3 � 1 − φ +
φ(ρc)s
(ρc)f

,

and NR denotes radiation parameter, Pr terms Prandtl num-
ber, Ec is theEckert number,M representsHartmannnumber.
These dimensionless parameters are defined by

NR � knfk∗

4σ ∗T 3∞
, Ec � a2

(cp)fA0T0
, Pr � μf(cp)f

kf
,

M2 � σfB2
0

ρfa
, λ � b1

a1
.

The dimensionless shear stresses at the elastic sheet are

C fx � τzx |z�0
1
2ρfa

2(x + y)2n
, Cgy � τzy |z�0

1
2ρfa

2(x + y)2n
,

C fx (Re)
1
2 � 2

√
n + 1

(1 − φ)2.5

(
1 +

1

β

)
f ′′(0),

Cgy (Re)
1
2 � 2

√
n + 1

(1 − φ)2.5

(
1 +

1

β

)
g′′(0). (16)

The dimensionless rate of heat transfer at the sheet is

Nu � − knf(x + y) ∂T
∂y |z�0

kf(T − T∞)
, (Re)−

1
2 Nu � − knf

√
n + 1

kf
θ ′(0),

(17)

3 Numerical Scheme

Several techniques for solutions of governing problemsmod-
eled in fluid dynamics have been in practices. For example,
the studies [1, 2, 17] apply homotopy analysis method to
find analytic series solutions of modeled similarity boundary
value problems. Spectral method is also powerful tech-
nique which has been applied to the fluid problems by
several researchers. For instance, a comprehensive literature
review on Tau method is given in by Ortiz [28]. Scheffel
[29] has given detailed analysis for the implementation of
spectral method to magnetohydrodynamic problems. How-
ever, this text is limited to initial value problems. Patera
[30] proposed spectral element method, which is combina-
tion of spectral method and finite element method, for the
numerical solutions of incompressible Navier–Stokes equa-
tions. He validated his proposed technique by comparing the
results with numerical and experimental data.Mercader et al.
[31] implemented spectral methods for high-order equations.
Canuto et al. [32] has discussed spectral methods for fluid
dynamics in his book. Ehrenstein and Peyret [33] presented
Chebyshev collocation method of unsteady Navier–Stokes
equations based on vorticity-stream functions formulation.
Smith et al. [34] has implemented spectral collocation to the
flow past a circular cylinder. The spectral method has been
successfully implemented with Newtonian fluid flows (see
Refs. [28–34]), and available literature on spectral method
may provide a foundation to extend them to the problems
associated with non-Newtonian fluid flows. Implementation
of Spectral method to no-Newtonian fluid problems needs
lot of development. But it is not a matter to worry, as there
is another powerful technique called Galerikin finite ele-
ment method which has been successfully implemented on
heat and mass transfer problems associated with the flows
of non-Newtonian fluid [22–26]. The studies mentioned in
Refs. [22–26] have shown an excellent agree with published
benchmarks. Therefore, the present complex, coupled and
nonlinear problems (13)–(15) are solved by the finite ele-
ment method (FEM). Some details about FEM related to the
problems (13)–(15) are given in “Appendix A”. Further, the
mesh-free analysis is given in Table 2.

The results obtained from any numerical method are
physically realistic only when they are mesh free. In present
work, the mesh-free analysis is also shown in Table 2. It is
depicted in Table 2 that calculated results are meshfree when
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Table 2 Numerical values of f ′( ηmax
2

)
, g′( ηmax

2

)
and θ

( ηmax
2

)
at the mid

of computational domain [0, 7] for different elements when NR �
0.1,Ec � 1.9,Pr � 0.5, λ � 0.5, μf � 6.9 × 10−3, β � 0.5, βe �
0.5, βi � 0.3, φ � 0.1

Number of
elements

f
( n∞

2

)
g
( n∞

2

)
θ
( n∞

2

)

30 0.1120930092 0.08985919754 0.3890856311

60 0.1071152059 0.8510070048 0.3062215480

90 0.1054645199 0.8353922186 0.2755648886

120 0.1046409974 0.8276322508 0.2596009563

150 0.1041475372 0.08229916297 0.2498093443

180 0.1038187456 0.08199040529 0.2431902916

210 0.1035840541 0.08177018622 0.2384168810

240 0.1125739992 0.08160517378 0.2348116342

270 0.1032712467 0.08910255359 0.2319938898

300 0.1031619511 0.08137448654 0.2297293702

330 0.1030722171 0.08129048028 0.2298698433

the domain [0, 7] is breakdown into 330 elements. Hence, the
upcoming analysis is carried out with 330 elements (Table 2).

Errors and error estimatesThere are severalmethods [36] for
defining errors and their estimates. The well-known method
is residual-based estimates which works on the total energy
norm defined by

||e|| �
(

m∑
K�1

(
||e||2K

)) 1
2

where

||e||K �
∫
σ

(£ e)T (∇e)dΩ where e � f − f̂ .

The details about residual-based estimators in termof total
energy norm can found in “Appendix B”.

Table 5 Comparison of the present results of−θ ′(0)with the published
work of Khan et al. [35] when M � 0, NR → ∞,Ec � 0, φ � 0, βi �
0.3, βe � 0.3

n Pr λ Present results Khan et al. [35]

1 0.7 0.5 0.969013 0.972033

1 1.122506 1.122406

1 0.5 1.224841 1.224745

1 1.419313 1.424214

7 0.5 3.762713 3.762723

1 1.583601 1.582607

3 0.7 0.5 1.569162 1.576617

1 1.817235 1.817007

1 0.5 1.979994 1.979999

1 2.287349 2.287345

Tolerance and stopping criterion The skin friction coef-
ficients and Nusselt number versus indicated values of
parameters are computed by running the indigenous com-
puter which solves the problem in an iterative manner order.
Since exact solutions of problems under the consideration
are not available. Therefore, the stopping criterion is defined
by the error |ωi+1 − ωi |< ε where ε is very small and in the
present case it is equal to 10−8 such that ωi+1 	 ωi . Thus,

(Re)
1
2C fx , (Re)

1
2Cgy and (Re)− 1

2 Nu are noted when above
given criterion is satisfied. Errors for each parametric value
are also displayed in Tables 6 and 7.

Validation of study The Galerkin finite element method
(GFEM) formulation is used to develop a computer program
to simulate the velocity and temperature. The results are val-
idated when M � Ec � φ � 0, β → ∞ and NR → ∞ to
published results [35]. The validation of results is displayed
in Tables 3, 4 and 5 below.

Table 3 Comparison of present results with published work with their CPU times when n � 3, λ � 1, βi � 0.3, βi � M � 0, NR → ∞, Ec �
0, φ � 0, Pr � 0.5, β → ∞
Present results Khan et al. [35]

f ′′(0)(0) CPU g′′(0) CPU f ′′(0)(0) CPU g′′(0) CPU

−2.297952 6.469 s − 2.297183 6.469 s − 2.297186 8.12698 s − 2.297182 8.12698 s

Table 4 Comparison of the present results of
(
1 + 1

β

)
f ′′(0) and

(
1 + 1

β

)
f ′′(0) with the published work of Khan et al. [35] when βi � βe � M �

0, NR → ∞,Ec � 0, φ � 0,Pr � 0.5, β → ∞,Pr � 0.5

n λ Present results Khan et al. [35] Present results Khan et al. [35]

1 0.5 − 1.22467312 − 1.224745 − 0.612378 − 0.612372

1 − 1.41745614 − 1.414214 − 1.413214 − 1.414214

3 0.5 − 1.98985684 − 1.989422 − 0.995112 − 0.994711

1 − 2.29795231 − 2.297186 − 2.297183 − 2.297182
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Fig. 2 Variation of velocity f ′(η) of Cu/Ag nanofluid for different val-
ues of ion-slip parameter βi when β � 1, n � 4, M2 � 0.1, Pr �
3, NR � 0.3, Ec � 0.1, βe � 0.5, φ � 0.1

Fig. 3 Variation of velocity g′(η) of Cu/Ag nanofluid for different val-
ues of ion-slip parameter βi when β � 1, n � 4, M2 � 0.1, Pr �
3, NR � 0.3, Ec � 0.1, βe � 0.5, φ � 0.1

4 Results and Discussion

Modeled problems (13)–(15) are solved numerically by
FEM in order to investigate the dynamics of parameters on
velocities and temperature. Numerical experiments versus
parametric variation are conducted to explore the underlying
physics. Dotted curves represent the flow fluids associ-
ated with Cu nanofluids, whereas flow field associated Ag
nanofluid are shown by solid curves.

4.1 Observations RegardingVelocity

Effects of Hall and ion-slip currents The impact of param-
eter (βi) on the velocity of Cu nanofluid and Ag nanofluid
is investigated in Figs. 2 and 3. Figures 2 and 3 declare that
the velocity has an increasing trend when ion-slip param-
eter βi is enhanced. This increasing trend is noted for the

Fig. 4 Variation of velocity f ′(η) of Cu/Ag nanofluid for different val-
ues of Hall parameter βe when β � 1, n � 4, M2 � 0.1, Pr �
3, NR � 0.3, Ec � 0.1, βe � 0.5, φ � 0.1

Fig. 5 Variation of velocity g′(η) of Cu/Ag nanofluid for different val-
ues of Hall parameter βe when β � 1, n � 4, M2 � 0.3, Pr �
3, NR � 0.5, Ec � 0.1, βi � 0.1, φ � 0.1

both cases of Cu and Ag nanofluid. However, the influence
of βi on flow of Cu nanoparticles is more significant than
Ag nanoparticles. This increasing trend is based on the fact
that ion-slip current is responsible for its influence on the
flow of a force called ion-slip force which is opposite to the
opposing magnetic force. Also from mathematical point of
view, the parametric βi appears (with its square power) in the
denominator of Lorentz force (which is opposing force), so
an increase in βi results a remarkable decrease in the Lorentz
force. Eventually, the flow slows down (see Figs. 2 and 3).
The similar observations are noted for the parameter βe (see
Figs. 4 and 5). Hall force is also an opposite force to the
retarding magnetic force, and an increase in βe corresponds
to an increase in Hall force which results a significant reduc-
tion in the Lorenz force. Consequently, a remarkable increase
in the velocity of Cu nanofluid and Ag nanofluid is noted. It
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Fig. 6 Variation of velocity f ′(η) of Cu/Ag nanofluid for different val-
ues of Hartmann number M when β � 2, Pr � 3, n � 4, βe �
0.5, NR � 0.3, Ec � 0.1, βi � 0.3, φ � 0.1

is also noted from numerical experiments that Cu nanofluid
experiences less Lorentz force than the Lorentz force experi-
enced by the Ag nanofluid. Further, Hall and ion-slip forces
in case of flow of Cu nanofluid are stronger than those in case
of flow Ag nanofluid. Momentum boundary-layer thickness
is enhanced when βe and βi are enhanced; alternatively, an
increase in βi and βi corresponds ion collision and electrons
collisions, respectively. These collision rates are proportional
to ion and Hall currents, and therefore, ion-slip and Hall
forces are increased which results a remarkable reduction in
magnetic force.

Impact of variation of intensity of magnetic field on fluid
flow Figures 6 and 7 depict that an increase in the intensity of
appliedmagnetic field enhances themagnitude of theLorentz
force which retards the flow. Therefore, velocity and associ-
ated layer thickness are reduced. Hence, it is concluded that
momentum layer thickness may be controlled by the applied
magnetic field.

4.2 Parametric Study Regarding Temperature

The dynamics of parameters NR, M,Ec, M, βe and βi on
the temperature of mixtures of copper and Casson fluid and
Aluminum-Casson fluid are simulated in Figs. 8, 9, 10, 11
and 12.

Impact of thermal radiation parameters The mixtures of
Casson and nanoparticles are assumed to emit thermal radia-
tions whenmixture deform under thermal changes during the
flow. This emission of electromagnetic waves radiation takes
heat energy away from the liquid regime. Eventually, the
temperature of nanofluid decreases. This phenomenon is sim-
ulated through various numerical experiments. The obtained
results are given in Fig. 8. A significant reduction in thermal

Fig. 7 Variation of velocity g′(η) of Cu/Ag nanofluid for different val-
ues of Hartmann number M when β � 2, Pr � 3, n � 4, βe �
0.5, NR � 0.3, Ec � 0.1, βi � 0.3, φ � 0.1

Fig. 8 Variation of temperature θ(η) of Cu/Ag nanofluid for different
values of radiation parameter NR where β � 2, Pr � 12, M2 �
0.1, n � 4, Ec � 0.3, βe � 0.3, βi � 0.3, φ � 0.1

boundary-layer thickness is observed while increasing ther-
mal radiation parameter. It is also noted that the emission of
thermal radiation for Ag nanofluid is stronger than emission
of thermal radiation in the case of Cu nanofluid.

Influence of viscous dissipation Due to viscous nature of
nanofluid, heat dissipates and diffuses in the fluid regime.
This additional friction heat causes a rise in temperature (see
Fig. 9).

Impact of Ohmic dissipation The intensity of magnetic field
is proportional to electric current produced as a result of
change in magnetic flux and electric current is proportional
to the Ohmic dissipation. The impact of magnetic field on
the temperature is shown in Fig. 10. This graphical display
of temperature contours reflects that the process of passage
of electric current in Cu nanofluid produces heat greater than
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Fig. 9 Variation of temperature θ(η) of Cu/Ag nanofluid for different
values of Eckert number Ec when β � 2, Pr � 12, M2 � 0.1, NR �
0.3, βe � 0.5, βi � 0.3, n � 4, φ � 0.1

Fig. 10 Variation of temperature θ(η) of Cu/Ag -nanofluid for differ-
ent values of Hartmann number M when β � 2, Pr � 3.5, Ec �
0.1, NR � 0.3, βe � 0.5, βi � 0.3, n � 4, φ � 0.1

the heat produced in Ag nanofluid. By virtue of this, ther-
mal boundary-layer thickness in Ag nanofluid is greater than
thermal boundary-layer thickness.

Impact of Hall and ion-slip current on temperature Hall and
ion-slip parameters appear as denominator in Joule heating
in energy Eq. (15). Joule heating term reflects that rate at
which heat is produced by passage of an electric current is
inversely proportional to the sum of the squares of βe and
βi. Therefore, the production of Joule heating is reduced for
an increase βe and βi. Thus, Hall and ion-slip currents may
play a significant in controlling the thermal boundary-layer
thickness (see Figs. 11 and 12).

Fig. 11 Variation of temperature θ(η) of Cu/Ag nanofluid for differ-
ent values of ion-slip parameter βi when β � 2, Pr � 1.5, Ec �
0.1, NR � 0.5, βe � 0.5, M2 � 0.1, n � 4, φ � 0.1

Fig. 12 Variation of temperature θ(η) of Cu/Ag nanofluid for different
values of Hall parameter βe when β � 2, Pr � 3.5, Ec � 0.3, NR �
0.5, βi � 0.3, M2 � 0.5, n � 4, φ � 0.1

4.3 Rate of Heat Transfer and Skin Friction

The wall stresses versus different values of power-law index
(n) and Hartmann number are examined for Cu and Ag nano-
sized particles in Tables 6 and 7. Both tables show that the
shear stresses have increasing trend when power-law index
and Hartmann number are increased. It is also observed that
wall shear stress in case of Cu nanofluid is less than the
shear stress for Ag nanofluid. Tables 6 and 7 also depict that
heat transfer rate in Ag nanofluid is greater than the heat
transfer rate in Cu nanofluid. Therefore, usage of Ag nano-
sized particles as thermal performance increasing agent is
recommended due to two reasons: (1) Ag nanofluid enhances
the effective thermal conductivity of working fluid than the
enhancement in thermal conductivity by Cu nanosized parti-
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Table 6 Numerical values of
(Re)

1
2C fx , (Re)

1
2Cgy and

(Re)− 1
2 Nu with errors for

different values of n and M for
silver (Ag) nanoparticles when
NR � 0.1, Ec � 1.9, Pr �
1.02, λ � 0.5, μf �
6.9 × 10−3, β � 3, βe �
0.5, βi � 0.3, φ � 0.1

n M2 −(Re)
1
2C fx Error −(Re)

1
2Cgy Error −(Re)

1
2 Nu Error

1 0 3.313691645 7.6×10−8 2.991722492 1×10−9 2.379349533 4.2×10−8

1 3.317922674 1×10−9 2.965687445 3×10−9 2.099119706 2.54×10−7

2 3.335093412 2.6×10−8 3.086489002 8×10−9 1.974648218 1.27×10−7

2 0 5.034785371 4.4×10−8 3.551383088 1×10−9 5.112354901 1.27×10−7

1 5.042897535 5.0×10−8 3.579335285 5×10−9 5.422905386 2.34×10−7

2 5.061162939 2.6×10−8 3.679887969 1×10−9 5.506827588 5.9×10−7

3 0 5.727452898 0.9×10−9 3.749542355 0.9×10−9 7.960118564 5.35×10−9

1 5.732427468 0.9×10−9 3.777985846 0.9×10−9 8.315960187 5.53×10−7

2 5.763790229 0.9×10−9 3.879962812 0.9×10−9 8.398015840 1.21×10−8

Table 7 Numerical values of
(Re)

1
2C fx , (Re)

1
2Cgy and

(Re)− 1
2 Nu with errors for

different values of n and M for
Copper (Cu) nanoparticles when
NR � 0.1,Ec � 1.9,Pr �
1.02, λ � 0.5, μf �
6.9 × 10−3, β � 3, βe �
0.5, βi � 0.3, φ � 0.1

n M2 −(Re)
1
2C fx Error −(Re)

1
2Cgy Error −(Re)

1
2 Nu Error

1 0 1.644107744 4.5×10−8 0.7458829442 1×10−10 0.09003250827 1.23×10−8

1 1.738856526 6×10−9 0.7593166427 1.8×10−8 0.04424540876 5×10−11

2 1.811533028 2×10−9 0.7895978078 3×10−10 0.02059628711 3.64×10−9

2 0 2.688406738 1×10−9 0.8821629626 1×10−10 0.1351303991 4.5×10−9

1 2.715936614 1×10−9 0.8966819767 1×10−10 0.06433853217 1×10−9

2 2.769615793 2.1×10−9 0.9550270052 2.6×10−9 0.01307535894 7.3×10−9

3 0 3.200272768 1.8×10−8 0.9858196076 1×10−10 0.1966804584 3×10−10

1 3.205204880 1×10−9 1.000902683 2×10−9 0.1249213778 1.6×10−9

2 3.251142868 2.6×10−8 1.060317433 1×10−9 0.07204150891 1×10−11

cles, (2) Ag nanofluid exerts less shear stress at the surface of
sheet than the shear stress exerted by Cu nanosized particles.

5 Concluding Remarks

Three-dimensional simulations for Casson plasma (which
radiates thermal radiations and exhibits yield stress) in the
presence of dissipation effects are carried out by Galerikin
finite element method (GFEM). The weak form of the resid-
ual equations is used to derive the elements of stiffness
matrix. The following observations are noted.

• The wall shear stress increases with the decrease in wall
heat flux as the intensity of the magnetic field is increased.
The observation is noted for the both cases of Cu and Ag
nanoparticles. However, the wall shear stress for the case
of Ag nanofluid is greater than the wall shear stress for the
case of Cu nanofluid

• The usage of Ag nanoparticles is recommended as their
dispersion in the base fluid increases the effective ther-
mal conductivity in comparison with the effective thermal
conductivity of Cu nanofluid

• The velocity of the nanoplasma increases when βi is
increased as the force due to ion-slip current opposite
to force due to magnetic force. Furthermore, a rise in βi

causes an increase in the force due to ion collisions. As
this force is opposite to the force due to applied magnetic
field; therefore, the force due to applied magnetic field
is reduced. Hence, the velocity of the plasma increases.
An increase in the boundary-layer thickness is also noted
when ion-slip parameter is increased

• The velocity of the Casson plasma decreases when
the power-law index associated with wall velocity is
increased. Likewise, boundary-layer thickness increases
when power-law index is increased. This behavior of the
velocity is noted for both the cases of Ag and Cu nanopar-
ticles

• The temperature of the plasma decreases when the inten-
sity of thermal radiation is increased. Consequently, a
reduction in thermal boundary layer is observed. The Cas-
son fluid cools down.

Acknowledgements Authors extends their appreciation to the Dean-
ship of Scientific Research at King Khalid University for funding this
work through research groups program under Grant No. R.G.P-2/51/40.

Appendix A

Key calculations for finite element method The integral resid-
ual statements are given by
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∫ ηe+1

ηe

wp[ f
′ − h]dη � 0,

∫ ηe+1

ηe

wp[g
′ − K ]dη � 0,

∫ ηe+1

ηe

wp[
(
1+β
β

)
h′′ − nh2ϕ1 − nhKϕ1 + n+1

2 f h′ϕ1

+ n+1
2 gϕ1h

′ + βeϕ2
({1+βeβi}2+β2

e )
KM2

− ϕ2
({1+βeβi}2+β2

e )
(1 + βeβi)hM

2]dη � 0,∫ ηe+1

ηe

wp[K
′′( 1+β

β

)
− nK 2ϕ1 − nhKϕ1 + n+1

2 f K ′ϕ1

+ n+1
2 gK ′ϕ1 − ϕ2βe

({1+βeβi}2+β2
e )
hM2

− ϕ2(1+βeβi)
({1+βeβi}2+β2

e )
KM2]dη � 0,∫ ηe+1

ηe

wp[θ
′′
( 3NR+4

3NR
) + n+1

2
k f
kn f

ϕ3 Pr θ
′
f

− n+1
2

k f
kn f

ϕ3 Pr θ
′
g − n Pr hθ − n Pr K θ

+
k f
kn f

μ f
μn f

1
({1+βeβi }2+β2

e )
ϕ2M

2 Pr EcK 2

+ μf
μnf

Ec
({1+βeβi}2+β2

e )
ϕ2

kf
knf

M2 Pr h2

+
(
1+β
β

)
Ec

kn f
k f

μn f
μ f

Pr h′2 +
(
1+β
β

)
Ec

kn f
k f

μn f
μ f

Pr K ′2]dη � 0,

where wp, (p � 1, 2, 3, 4, 5) are the weight functions.
The unknown are approximated by Galerkin approximations
which are selected in following forms

g � ∑2
j�1 ψ j g j , f � ∑2

j�1 ψ j f j , h � ∑2
j�1 ψ j h j ,

K � ∑2
j�1 ψ j K j , θ � ∑2

j�1 ψ jθ j , j � 1, 2,

}
,

where f j , h j , K j and θ j are the unknown nodal values and
ψ j are linear shape functions which are defined by

ψ j � (−1) j−1

(
1 − η j+1

η

1 − η j−1
η

)
, j � 1, 2.

Using above defined approximations in weak form of
residual statements, one gets the following elements

K 14
i j � 0, K 15

i j � 0, b1i � 0, K 21
i j � 0,

K 22
i j �

∫ ηe+1

ηe

(
dψ j
dξ

)
ψidη, K 23

i j � 0, K 24
i j � −

∫ ηe+1

ηe

(ψ j )ψi ,

K 25
i j � 0, b2i � 0, K 31

i j � 0, K 32
i j � 0,

K 33
i j �

∫ ηe+1

ηe

[− dψi
dξ

(
1+β
β

)(
dψ j
dξ

)
− ϕ1(ψ j )nψi h

− nϕ1(ψ j )ψi K + n+1
2 ψiϕ1

(
dψi
dξ

)
f

+ n+1
2 ψiϕ1

(
dψ j
dξ

)
g − ϕ2

(1+βeβi)2+β2
e

M2(1 + βeβi)(ψ j )ψi ]dη,

K 34
i j �

∫ ηe+1

ηe

ϕ2
(1+βeβi)2+β2

e
βeM

2ψi (ψ j ),

K 35
i j � 0, b3i � 0, K 41

i j � 0, K 42
i j � 0,

K 43
i j �

∫ ηe+1

ηe

− M2ϕ2
(1+βeβi)2+β2

e
βeψi (ψ j ),

K 44
i j �

∫ ηe+1

ηe

[
− dψi

dξ

(
dψ j
dξ

)(
1+β
β

)
− nϕ1ψi (ψi )h

− nϕ1ψi (ψ j )K + n+1
2 ϕ1ψi (

dψ j
dξ ) f

+ n+1
2 ϕ1ψi

(
dψ j
dξ

)
g − M2ϕ2

(1+βeβi)2+β2
e

(1 + βeβi)ψi (ψ j )
]
dη,

K 45
i j � 0, b4i � 0, K 51

i j � 0, K 52
i j � 0,

K 53
i j �

∫ ηe+1

ηe

[
kf
knf

Pr Ec
(1+βeβi)2+β2

e
ϕ2

μf
μnf

(ψi )M
2(ψ j )h

+ knf
kf

(
1+β
β

)
μnf
μf

Pr
(
dψ j
dξ

)
h ′Ec

]
dη,

K 54
i j �

∫ ηe+1

ηe

[
M2

(1+βeβi)2+β2
e

μf
μnf

ϕ2
kf
knf

Ec(ψi )(ψ j )K

+ knf
kf

Pr μnf
μf

(
1+β
β

)
Ec(ψi )

dψ j
dξ K ′

]
dη,

K 55
i j �

[
−

(
3NR+4
3NR

)(
dψi
dξ

)
dψ j
dξ + n+1

2
kf
knf

ϕ3ψi(
dψ j
dξ

)
f Pr + kf

knf
ψi

(
dψ j
dξ

)
g

−Pr(ψ j )hnψi − nψi (ψ j )h Pr
]
dη, b5i � 0.

where

f �
2∑

i�1

ψi f i , h �
2∑

i�1

ψi hi , K �
2∑

i�1

ψi K i ,

in which f i , hi and Ki are nodal values at the previous iter-
ation.

Appendix B

Error and error estimates There are several methods for
defining the errors and estimation of errors. The most com-
mon method for finding the error is

e � f − f̂ ,

where f is the exact solution and f̂ is the approximate finite
element solution. For more elaboration, consider differential
equation.

£ f + b � 0.
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The energy norm can be written as

||e|| � |
∫
σ

(eT £ edΩ)| 12 ≈ |
∫
σ

| f − f̂ |£[ f − f̂ ]dΩ| 12

Now the error in field f is denoted by |� f |�
( ||e||2L2

Ω

) 1
2

where Ω is the physical/computational domain. The above
given absolute error for the computational domain in term of
elements of domain.

||e|| �
(

m∑
k�1

(||e||2K )
)1/2

where K refers to individual elements ΩK . The relative
energy norm error is defined as

EK � ||e||
|| f || × 100%.

The more details about the errors and error estimates can
be found in Ref. [34]. However, this method of error estima-
tion can be used as if exact solution is available but in most
of the cases, as in present case, the exact solutions are not
available. For this case, there is another way called residual-
based estimators. To explain the concept of residual-based
error, let us consider diffusion equation with source term.

−∇T (k∇φ) + Q � 0, X ∈ Ω,

with the boundary conditions

φ � φ̂ on Γφ

qT n̂ � qn on Γq ,

where

qT � −k∇φ � [qx , qy]
T

The error in the finite element solution can be written as

e � φ − φ̂

The total energy norm is

||e|| �
(

m∑
k�1

(
||e||2k

) 1
2

)

||e||2K�
∫
σK

(∇e)T k∇edΩ �
∫
σK

1

k
[(qx − q̂x )

2 + (qy − q̂y)
2]dΩ.
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