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Abstract
In this work, we have discussed the effect of width of the layers on the micropolar–Newtonian fluid flow through the porous 
layered rectangular pipe. The mathematical model of our problem represents the sandwiching of non-Newtonian fluid between 
the Newtonian fluid layers. The horizontal porous channel is divided into three porous layers with different permeabilities, 
and the problem is modeled in such a way that the width of each layer can be varied. The flow in the respective porous region 
took place due to the constant pressure gradient along the direction of the flow. Brinkman equation has been used for the 
fluids flowing through the porous medium. The problem is solved analytically, and the expressions for the flow velocity, 
volumetric flow rate and shearing stresses at the walls of the horizontal plates are obtained in the closed form. The impact 
of width of the middle porous layer is seen on the mean flow velocity, velocity profile, interfacial velocities and interfacial 
shear stresses. The present work has a setup that will be useful in oil recovery process, filtration of the contaminated ground 
water and some medical purposes.

Keywords Micropolar fluid · Interface · Porous medium · Darcy number · Micropolarity parameter

1 Introduction

With the advent of time, the study of fluid mechanics is 
emerging as a great challenge for the researchers and sci-
entists. The advances in the fluid mechanics are increasing 
because of the dependency of our life on the fluids. The air 
that we breathe, the fluid and food which we take for liv-
ing, and the motion of physiological fluids and industrial 
fluids are some very well-known examples to express the 
importance of fluid mechanics [1]. Dealing with the real-life 
problems, the mediums which transmit the fluids are of great 
importance in the work of fluid flow problems. One of such 
media is the porous materials which consist of some voids 
and solids spaces [2]. The water and food transportation to 
the plants, recovery of the oils from earth layers, filtrations 
of the contaminated water, etc. are the examples of fluid 
flow through porous media. Yadav et al. [3–5] solved the 
problems of the porous membrane comprising of spherical/
spheroidal particles, using cell model technique.

The process of extracting petrol/oils from the porous earth 
layers and recovery of groundwater, body fluids through the 
tissues and blood through arteries require the knowledge of 
fluid flow through the rectangular geometry occupied by 
porous medium. Such topics are grabbing attention of many 
researchers, industrialists, geologist and various scientists 
because of its lot of applications. Viewing the various appli-
cations, Hamdan [6] reported a review paper on the single-
phase flow through the porous channel with the discussion 
involving various mathematical models. Rudraiah [7] derived 
the slip condition for the Poiseuille–Couette flow between 
two parallel plates, bounding porous material. Kaviany [8] 
considered the convective and boundary effects for chan-
nel flow and concluded that the velocity variation strictly 
depends on the porous medium shape parameter. Chamkha 
[9] solved the hydromagnetic fully developed laminar mixed 
convection fluid flow problem and discussed the problem 
in the presence or absence of heat generation or absorp-
tion effects. Numerous works on the flow and heat transfer 
through the channel filled with porous medium are done by 
Umavathi et al. [10–13] and Chamkha et al. [14]. Ismael et al. 
[15] solved numerically the steady laminar mixed convec-
tion flow problem for a lid-driven square cavity filled with 
the water. Chamkha [16] did an analysis on the unsteady, 
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laminar double-diffusive convective flow of a binary gas 
mixture through the porous medium. Magyari and Cham-
kha [17] investigated the steady laminar magnetohydrody-
namic thermosolutal Marangoni convection in the boundary 
layer approximation. The problem of Newtonian fluid past 
through the identical cylindrical shells was solved by Yadav 
[18] using particle-in-cell method. Tiwari et al. [19] analyzed 
the creeping flow through membrane of non-homogeneous 
porous cylindrical particles using Darcy law. They studied 
the effects of various parameters on membrane’s perme-
ability. Vafai and Thiyagaraja [20] done analysis on the flow 
and heat transference for the three types of the interfacial 
region of porous medium and solved the problem by analyti-
cal as well as numerical method. Sahraoui and Kaviany [21] 
considered the slip and no-slip boundary conditions at the 
interface of porous and plain medium and investigated the 
parameters on which the slip coefficient relies.

As work proceeded in the direction of involving as much 
as real-life problems, the researchers started working with the 
immiscible fluids through the different regimes of porous lay-
ers. Ansari and Deo [22] observed the magnetic field effect 
on the channel flow of two Newtonian fluids of different vis-
cosities. The unsteady flow and heat transfer of two-fluid sys-
tem discussed with useful results in the works [23–26]. Uma-
vathi et al. [27] analyzed the problem of fully developed flow 
of two immiscible viscous and couple stress fluids through 
composite porous medium. An unsteady laminar magnetohy-
drodynamic flow and heat transfer of a particulate suspension 
in an electrically conducting fluid through channels and cir-
cular pipes are discussed by Chamkha [28]. Allan and Ham-
dan [29] discussed the model of fluid flow with two different 
layers of porous medium in which one of the porous regions 
is governed by Brinkman and another by Forchheimer equa-
tion. In this work, they evaluated the interfacial velocity and 
discussed its dependency on the Darcy numbers. Ford and 
Hamdan [30] solved the problem on the porous layers having 
different permeabilities and used the finite difference scheme 
to obtain the solutions of the flow models. Recently, Yadav 
[31] have discussed the motion of the fluid flow through the 
porous membrane of variable permeability. Hamdan et al. 
[32] studied the Poiseuille flow through the porous channel 
considering different permeability functions. The problem 
of 2-D fully developed Stokes flow passing through horizon-
tal porous pipe was solved by Awartani and Hamdan [33]. 
In this paper, they discussed about three types of flows that 
were the Poiseuille flow, Couette flow and Poiseuille–Couette 
flow, respectively. Chandersis and Jamet [34] investigated the 
boundary condition for the fluid–porous interface and solved 
the problem using method of asymptotic expansions.

The transition layer in the fluid flow through the different 
layers plays an important role in various applications. Nield 
and Kuznetsov [35] modeled the Newtonian fluid flow in 
three layers of horizontal channel and observed the transition 

layer’s effect on the motion of fluid at different Darcy num-
bers. Umavathi et al. [36] considered fully developed flow 
and heat transfer of couple stress fluid sandwiched between 
two Newtonian fluids in the horizontal channel and solved the 
problem analytically. Zaytoon et al. [37, 38] used same model 
but with different permeability functions for the transition 
layer. In both the works, they solved the Brinkman equation 
by reducing it into the Airy’s differential equation. Zaytoon 
et al. [39] modeled the Newtonian fluid flow through porous 
medium of finite or infinite thickness in a horizontal chan-
nel and solved the problem by using Darcy equation for the 
porous region having variable permeability. Zaytoon et al. 
[40] extended their previous work by considering Brinkman 
layer sandwiched between two Darcy layers, and the problem 
was solved using Airy’s function and Nield–Kuznetsov func-
tion. Alzahrani et al. [41] gave a note on the flow through 
porous medium having variable permeability and the fluid 
having pressure-dependent viscosity; they had considered the 
porous material inside an inclined channel. Umavathi et al. 
[42] solved the problem in which the middle layer is occupied 
by micropolar fluid and the width of the three layers is fixed 
and equal. A similar type of work on the heat transfer and 
flow of micropolar fluid can be found in the works [43–46].

The wide scope of fluid flow through different perme-
abilities of porous layers occurs in the oil reservoirs, in 
groundwater recovery and in blood flow through different 
layers of arteries. Various significant investigations were 
conducted, and the results are obtained for the model of 
immiscible fluids. Yadav et al. [47] discussed the applica-
tion and motivation for the flow of micropolar–Newtonian 
fluids through porous channel and presented the effect of 
various parameters on the flow. Later on, Yadav et al. [48] 
investigated the presence of inclined magnetic field on 
the micropolar–Newtonian flow model. One of our recent 
works [49] dealt with the stratified flow of immiscible New-
tonian–micropolar–Newtonian fluids with fixed interfaces. 
Saad et al. [50] discussed the model for immiscible  CO2–oil 
and concluded that the model plays significant role in oil 
displacement process. Flow of non-Newtonian and Newto-
nian fluids through porous medium rigorously occurs in the 
petroleum industries. Siddique et al. [51] discussed experi-
mentally and numerically the model of crude oil and water. 
Being motivated by the above-discussed literatures, mostly 
[37–41] and various applications [50, 51], we decided to 
discuss the present problem.

In the present work, the model is chosen in a way that 
horizontal channel is divided into three different porous 
regions and the widths of each region can be varied. The 
micropolar fluid is assumed to flow in the middle porous 
layer of the channel. Though our present model resembles 
with our previous work [49], the problem discussed here 
is considerably different. Previously we fixed the width 
of each porous layer of the horizontal channel, while here 
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the interfaces are movable, i.e., they can be varied accord-
ingly to the need. Also, here we have taken each porous 
layer of different permeabilities and presented the effect 
of three different Darcy numbers on the flow and Brink-
man transition layer via graphs and tables, in the absence 
of magnetic field. Although some authors such as Zay-
toon et al. [37, 38] have solved the problem on movable 
interface by considering Newtonian fluid sandwiched 
between the Newtonian fluid layers, here, we consider 
non-Newtonian fluid sandwiched between the Newtonian 
fluid porous layers with movable interfaces. Our objective 
in this work is to present the effect of width of micropolar 
fluid layer sandwiched between two Newtonian fluid lay-
ers on the stresses at the interfaces, velocities of fluids 
and on the different Darcy numbers of the porous layers. 
Since a mathematical model for the oil recovery process 
plays an important role in the enhancement process, our 
model can be widely used for the oil extraction process. 
Such type of model is important in various industrial 
and natural applications [35, 37–40] that deal with the 
ground water recovery; recovery of oil and gas; design-
ing of cooling and heating systems; flow of oil through 
the porous rock layers; the flow of nutrients and water 
into plants branches; blood flow in animal/human body 
tissues; lubrication mechanisms; design of aircraft wings 
with porous nature to lessen the drag force; and study of 
fuel cells depending on an analysis of fluid flow through 
and over porous medium layers.

2  Formulation of the Problem

2.1  Mathematical Model

The schematic representation of model for the concerned 
problem is shown in Fig. 1. The horizontal channel is formed 

by two parallel solid plates at y = h and y = 0 , respectively. 
The channel is filled with three layers of the porous medium 
of different permeabilities: k1, k2 and k3 . The three layers of 
the porous medium in the horizontal channel are modeled 
in such a way that the width of each layer can be varied. 
The widths of region-I (h ≤ y ≤ �h) , region-II (�h ≤ y ≤ �h) 
and region-III (0 ≤ y ≤ �h) from the top to bottom are 
(1 − �)h, (� − �)h and � h , respectively.

The values of � and � are chosen in such a way that the 
middle layer can be thicker, thinner and of equal width with 
respect to the other layers. The Newtonian fluid is allowed 
to flow in the upper and lower porous regions of the channel, 
respectively, and micropolar fluid in region-II, i.e., region 
which is sandwiched between the Newtonian fluids. The flu-
ids, which are flowing through the horizontal porous chan-
nel, are assumed to be steady and incompressible. It is also 
assumed that the flow is fully developed, i.e., no variation 
in the flow velocity along the direction of flow. The flow 
through the composite porous layers takes place due to con-
stant pressure gradient along the direction of flow.

2.2  Description of the Governing Equations

In 1947, Brinkman [52] did a remarkable work for the fluid 
flow through porous medium of high permeability. He 
extended the Darcy law [53] by adding viscous term. As we 
are considering the flows through porous medium of high per-
meability, the Brinkman equation [52] for the Newtonian fluids 
(in the absence of any external forces) is described below:

where p is the pressure gradient and k is the permeability 
of the porous medium. Here, � and �eff are viscosity and 
effective viscosity of the fluid, respectively, and � is the flow 
velocity of the fluid. Liu and Masliyah [54] discussed the 

(1)grad p = −
�

k
� + �effΔ�,

Fig. 1  Representation of the 
model
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relation between effective viscosity �eff and viscosity of fluid 
� and concluded that the relation between effective viscosity 
�eff and viscosity of fluid � depends on the types of porous 
media, i.e., effective viscosity of fluid in porous region may 
either greater or smaller than the viscosity of fluid. Nield 
and Bejan [55] had provided an important conclusion in his 
work that both �eff and � are equal for high porosity. Let the 
velocity components of Newtonian fluid with same viscos-
ity in region-I and region-III of the horizontal porous chan-
nel be (u1, 0, 0) and (u3, 0, 0) , respectively. It is important 
to note that the y-component of velocity becomes constant 
because of the fully developed flow and continuity equation 
for incompressible flow; and this component vanishes when 
we apply the no-slip boundary condition at the parallel plates. 
Fully developed flow condition suggest that the x-compo-
nents of velocities u1 and u3 will be function of y only, i.e., 
u1 = u1(y) and u3 = u3(y) . The permeability of the respec-
tive regions is assumed as k1 and k3 . Thus, the equations gov-
erning the flows in the region-I and region-III are given as:

Region-I

where �1 is the viscosity of the fluid which is taken same as 
the effective viscosity of fluid. Similarly, the equation for the 
region-III is mentioned below:

Region-III

The theory of micropolar fluid, which is flowing through 
the middle layer of the horizontal porous channel, was intro-
duced by Eringen [56, 57]. Micropolar fluid is a kind of a 
non-Newtonian fluid characterized by the local motion of 
its constituents’ particles; it deals with the non-symmetric 
stress and couple stress tensor. Fluids exhibiting such rota-
tional motion of its particles and following the respective 
constitutive equation are known to be micropolar fluid, for 
example liquid crystals, animal blood, body fluids, polymers, 
etc. The field equations [58] for the micropolar fluid are 
described below:

(2)�1

d2u1

dy2
−

�1

k1
u1 −

dp

dx
= 0,

(3)�1

d2u3

dy2
−

�1

k3
u3 −

dp

dx
= 0.

(4)
��

�t
+ ∇ ⋅ (��) = 0,

(5)
�
D�

Dt
= −∇p + (� + � − �r)∇div� + (� + �r)Δ� + 2�r∇ × � + �f ,

(6)
�I

D�

Dt
= 2�r(∇ × � − 2�) + (c0 + cd − ca)∇div�

+ (ca + cd)Δ� + �g,

where � and � are the viscosity coefficients; �r denotes the 
dynamic microrotational viscosity; c0 , cd, ca are known 
as coefficients of angular viscosities. Here, I, f and g rep-
resent microinertia coefficient, external linear and couple 
forces, respectively. The linear and microrotational veloc-
ity of the micropolar fluid is denoted by � and � , respec-
tively. Using Eqs. (4)–(6) and Eq. (1), the equation for the 
micropolar fluid passing through middle porous layer, i.e., 
(� h ≤ y ≤ � h) of the horizontal channel is given as:

Region-II (� h ≤ y ≤ � h)

Here �, � and � are the viscosity coefficients of micropo-
lar fluid. The component form of linear and microrotational 
velocities is (u2, 0, 0) and (0, 0, �) , respectively.

The mathematical expression for � is used by Ahmadi 
et al. [59] is as follows:

where j = h2 is known to be microinertia density.

3  Solution of the Problem

Equations (2), (3), (7) and (8) are made dimensionless by con-
sidering the following parameters:

Here U and h represent the characteristic velocity and 
length, respectively. The symbol Dai, i = 1, 2, 3, represents 
the Darcy number in the respective porous region. The maxi-
mum value of Darcy numbers can be unity as discussed in 
the work of Zaytoon et al. [37–40].

With the use of Eq. (9), the non-dimensional form of (drop-
ping tilde) Eqs. (2), (3), (7) and (8) can be written as:

Region-I (� ≤ y ≤ 1)

where Da1 is the Darcy number for porous region-I and 
P =

dp

dx
 is the constant pressure gradient.

(7)(� + �)
d2u2

dy2
+ �

d�

dy
−

�

k2
u2 −

dp

dx
= 0,

(8)�
d2�

dy2
− �

(
2� +

du2

dy

)
= 0.

� =
(
� +

�

2

)
j,

(9)
ũi =

ui

U
, ỹ =

y

h
, x̃ =

x

h
, p̃ =

p

𝜇1U∕h
,

�̃� =
𝜔

U∕h
, Dai =

ki

h2
andm =

𝜇1

𝜇
.

(10)
d2u1

dy2
−

u1

Da1
= P,
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Region-II (� ≤ y ≤ �)

where K =
�

�
, which is known as the material parameter of 

Eringen/micropolar fluid. On putting K = 0, the field equa-
tions of micropolar fluid will become uncoupled and reduces 
to the classical Navier–Stokes equation for Newtonian fluids. 
The range of values of micropolar parameter is K ∈ [0,∞) 
which is discussed in the work of Eringen [57]. Here, the 
Darcy number for the middle layer is denoted by Da2.

Region-III (� ≤ y ≤ 0)

where Da3 is the Darcy number for the lower porous layer 
of the horizontal channel.

Equation  (10) can be solved directly by the classical 
method of solving linear differential equation. Let �1 =

1√
Da1

, 
then Eq. (10) can be rewritten as:

where D2 represents the second differential operator. Thus, 
the velocity of Newtonian fluid in the region-I is given as:

Similarly, the velocity of Newtonian fluid in the region-III 
becomes as follows:

where �3 =
1√
Da3

.

Equations (11) and (12) are the coupled differential equa-
tions, and the linear and microangular velocity of micropolar 
fluid can be found by solving Eqs. (11) and (12) together.

The linear and microangular motions of the micropolar 
fluid in the middle porous layer are having the following 
expressions:

(11)(1 + K)
d2u2

dy2
+ K

d�

dy
−

u2

Da2
= mP,

(12)
(
1 +

K

2

)
d2�

dy2
− K

(
2� +

du2

dy

)
= 0,

(13)
d2u3

dy2
−

u3

Da3
= P,

(14)(D2 − �2
1
)u1 = P,

(15)u1(y) = C1 exp(�1y) + C2 exp(−�1y) −
P

�2
1

.

(16)u3(y) = C7 exp(�3y) + C8 exp(−�3y) −
P

�2
3

,

(17)

u2(y) = C3 exp(�y) + C4 exp(−�y) + C5 exp(�y) + C6 exp(−�y) −
mP

�2
2

,

(18)
�(y) = S[C3 exp(�y) − C4 exp(−�y)] + T[C5 exp(�y) − C6 exp(−�y)],

where  � =

�
h2+

√
h4−4k2

2
, � =

�
h2−

√
h4−4k2

2
, h2 =

2K+�2
2

(1+K)
,

k
2 =

4K�2
2

(2+K)(1+K)

In  the  express ion of  the  f low veloci t ies , 
Eqs.  (15)–(18) involved eight arbitrary constants 
C1, C2, C3, C4, C5, C6, C7 and C8 . The mathematically 
consistent and reliable boundary and interface conditions 
can be used to get the values of these arbitrary constants. 
The boundary conditions which are used at the boundaries 
and interfaces are discussed in the next section.

3.1  Boundary Conditions

In this section, we have given the conditions at boundaries 
and interfaces in non-dimensional forms.

Zero-velocity boundary conditions at solid walls:

The tangential velocities are continuous at the interfaces 
y = � and y = � ∶

The continuity in shearing stresses at the interfaces 
y = � and y = � ∶

The constant cell rotational velocity at the interfaces 
y = � and y = � ∶

S =
(2 + K)�2

2
�

4K2
−

�

2
−

(1 + K)(2 + K)�3

4K2
and

T =
(2 + K)�2

2
�

4K2
−

�

2
−

(1 + K)(2 + K)�3

4K2

(19)u1 = 0 at y = 1,

(20)u3 = 0 at y = 0.

(21)u1(�) = u2(�),

(22)u2(�) = u3(�).

(23)m
du1

dy

||||y=� = (1 + K)
du2

dy

||||y=� + K�(�),

(24)(1 + K)
du2

dy

||||y=� + K�(�) = m
du3

dy

||||y=� .

(25)
d�

dy

||||y=� = 0,

(26)
d�

dy

||||y=� = 0.
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3.2  Determination of the Arbitrary Constants

On substituting the boundary conditions from Eqs. (19)–(26) 
into Eqs. (13), (16), (17) and (18), we obtained the system of 
algebraic equations (linear in nature) for the corresponding 
constants arising in the solution of the velocities. The system 
of equations is written in matrix form as follows:

where
 

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e
�1 e

�1 0 0 0 0 0 0

0 0 0 0 0 0 1 1

e
�1� e

−�1� −e�� −e−�� −e�� −e−�� 0 0

0 0 e
��

e
−��

e
��

e
−�� −e�3� −e−�3�

m�1e
�1� m�1e

�1� −Le�� Le
−�� −Me

��
Me

−�� 0 0

0 0 Le
�� −Le−�� Me

�� −Me
−�� −m�3e

�3� −m�3e
−�3�

0 0 S�e�� S�e−�� T�e�� T�e−�� 0 0

0 0 S�e�� S�e−�� T�e�� T�e−�� 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Solving matrix given by (27) (with the use of Mathematica 
10.3), the authors have obtained the values of the constants 
C1, C2, C3, C4, C5, C6, C7 and C8 . Since these values are 
cumbersome, we refrain from presenting the values in the 
manuscript.

Inserting the values of the above arbitrary constants in 
Eqs. (15), (16), (17) and (18), we can obtain the velocity of 
micropolar–Newtonian fluids in their respective regions, i.e., 
we obtained the values of u1(y), u2(y), �(y) and u3(y).

The tangential velocity at the two interfaces, i.e., at y = � 
and y = � is given as:

where the arbitrary constants C1, C2, C7 and C8 already have 
been evaluated. Hence, we can find the expression for tan-
gential velocity at the interfaces.

4  Volumetric Flow Rate and Stresses

4.1  Evaluation of Volumetric Flow Rate

The non-dimensional volume flux through the horizontal 
porous layers is given as:

(27)AX = B,

X =
[
C1 C2 C3 C4 C5 C6 C7 C8

]T
,

B =
[

P

�2
1

P

�2
3

P

�2
1

−
mP

�2
2

−
P

�2
3

+
mP

�2
2

0 0 0 0
]T
,

L = [�(1 + K) + SK], M = [�(1 + K) + TK].

(28)u1(�) = C1 exp(�1�) + C2 exp(−�1�) −
P

�2
1

,

(29)u3(�) = C7 exp(�3�) + C8 exp(−�3�) −
P

�2
3

,

Using the values of velocities from Eqs. (15), (16) and (17) 
in (30), we can get the flow rate which is given below:

4.2  Evaluation of Shear Stress at the Porous 
Interface

The shear stresses at the upper and lower interfaces of the 
porous layers, i.e., �� and �� , respectively, in non-dimen-
sional form are given below:

Using the values of velocities in Eqs. (32)–(33), we can 
obtain the expression of shear stresses at the upper and lower 
interfaces of the porous layers which are given below

5  Results and Discussion

In the present work, our main objective is to present the 
effect of micropolar fluid layer on fluid flow quantities 
that describe the motion of the fluids like flow velocity, 
flow rate, shear stress, etc. To observe the effect, we have 
chosen the width of middle layer in the following manner:

(a) When middle layer is thicker than the other porous lay-
ers, i.e., when � = 1∕4 and � = 3∕4.

(b) When middle layer is thinner than the other porous lay-
ers, i.e., when � = 0.49 and � = 0.51.

(30)Q =

�

∫
0

u3(y)dy+

�

∫
�

u2(y)dy +

1

∫
�

u1(y)dy.

(31)

Q =
1

�3

[
C7{exp(�3�) − 1} − C8{exp(−�3�) − 1} −

P�

�3

]

+
1

�

[
C3{exp(��) − exp(��)} − C4{exp(−��) − exp(−��)}

]

+
1

�

[
C5{exp(��) − exp(��)} − C6{exp(−��) − exp(−��)}

]

−
mP

�2
2

(� − �)

+
1

�1

[
C1{exp(�1) − exp(�1�)} − C2{exp(�1) − exp(�1�)} −

P(1 − �)

�1

]
.

(32)�� =

(
du1

dy

)

y=�

,

(33)�� =

(
du3

dy

)

y=�

.

(34)�� = C1�1 exp(�1�) − C2�1 exp(−�1�),

(35)�� = C7�3 exp(�3�) − C8�3 exp(−�3�).
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(c) When width of the middle layer is same as the width of 
the other porous layers, i.e., when � = 1∕3 and � = 2∕3.

The above-chosen width of the layers is taken from the 
works [37, 38, 40].

The influence of various fluid flow controlling param-
eters like Darcy numbers, material parameter, viscosity 
ratio, etc. on the flow velocity, flow rate and shear stresses 
are discussed below.

5.1  Discussion on Flow Velocity and Micropolar 
Fluid Layer

The effect of middle layer on the velocity profile in dif-
ferent sections of horizontal porous channel is shown in 
Fig. 2. The parabolic nature of the velocity profile in the 
horizontal channel validates our result with the Poiseuille 
flow under the presence of constant pressure gradient. 
Therefore, the nature obtained for the flows in horizon-
tal channel is in good agreement with the Poiseuille flow 
with no-slip boundary condition. The aim of this work is 
to observe the effect of the width of middle layer on the 
flows. It is clearly shown (Fig. 2) that flows through the 
middle porous layer of channel are higher in case � = 0.49 
and � = 0.51 , i.e., the width of middle layer is lesser than 
the upper and lower porous layers of the channel.

The rate of increase in the velocity of micropolar fluid 
in the middle layer of the horizontal porous channel 
increases with the decrease in the width of micropolar 
fluid layer. It is also important to note that the velocity of 
Newtonian fluids in lower and upper regions of the hori-
zontal porous channel is almost same when the width of 
middle layer is equal or not equal to the width of other two 
lower and upper layers. The same nature of the effect of 

thinner middle layer can be found in the works of Zaytoon 
et al. [37, 38].

5.2  Effect of Middle Layer Width, Darcy Number, 
Viscosity Ratio, Material Parameter on the Flow 
Rate

In this subsection, we have discussed the variation in the 
flow rate with middle layer width, Darcy number, viscosity 
ratio and material parameter. Figure 3a depicts the variation 
in flow rate with viscosity ratio and also with Darcy numbers 
Da1, Da2, Da3 of three layers when the middle layer has 
equal width, i.e., when � = 1∕3 and � = 2∕3.

From the above figure, we have concluded that the vis-
cosity ratio and the volumetric flow rate in the horizontal 
channel increase together. Also, the flow rate is more in case 
where Darcy number of middle layers is greater than the 
Darcy numbers of other two layers. It is important to note 
that the rate of flow in channel increases rapidly for lower 
values of viscosity ratio (m ≤ 2) . It is also observed that the 
flow rate is almost equal for higher values of viscosity ratio 
when all the Darcy numbers are unequal and Darcy number 
of middle layers is less than the Darcy numbers of other two 
layers of the porous regions of the horizontal channel.

Figure 3b shows the variation in flow rate with viscos-
ity ratio and also with permeability Da1, Da2, Da3 of three 
layers when the middle layer is thicker than other layers, 
i.e., when � = 1∕4 and � = 3∕4 . Figure 3b shows that the 
dependency of flow rate on viscosity ratio for thick middle 
layer seems to be same in nature as in case of equal width 
of the layers, but the values of flow rate shown in Fig. 3b 
are higher than that shown in Fig. 3a. The variation in flow 
rate with viscosity ratio and permeabilities—Da1, Da2 and 
Da3—of three layers, when the middle layer is thinner than 
other layers, i.e., when � = 0.49 and � = 0.51 , is shown in 
Fig. 3c. In this case, flow rate is higher when Darcy number 
of middle layer is less than other two layers. It is important 
to note that the variation in flow rate with all cases of Darcy 
number is almost constant except when Darcy number of 
middle layer is less than other two layers.

The changes observed in flow rate with respect to the 
material parameter of micropolar fluid for all three cases of 
the width of middle porous layer are shown in Fig. 3d. From 
this figure, it is noticed that the flow rate decreases with the 
increase in micropolarity parameter and seems to be constant 
in case of thin middle layer and lowest for thick middle layer.

The influence of Darcy number Da1
�
�1 =

1√
Da1

�
 of upper 

porous layer on the flow rate for equal, thick and thin 
micropolar fluid layers is discussed in Fig. 3e–g. From these 
figures, we concluded that flow rate is decreasing with 
increasing values of parameter �1 , i.e., with the decrease in 
Darcy numbers of upper porous layers.Fig. 2  Variation in velocity profile with the width of the middle layer 

when Da1 = 0.1 = Da2 = Da3, m = 1, P = −0.7 and K = 1
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Fig. 3  a Variation in flow rate with viscosity ratio and Darcy 
numbers when � = 1∕3, � = 2∕3, P = −0.7, m = 1 and K = 1. 
b Variation in flow rate with viscosity ratio and Darcy num-
bers when � = 1∕4, � = 3∕4, P = −0.7 and K = 1. c Varia-
tion in flow rate with viscosity ratio and Darcy numbers when 
� = 0.49, � = 0.51, P = −0.7 and K = 1. d Variation in flow 

rate with micropolarity parameter and transition layer when 
P = −0.7, Da1 = Da2 = Da3 = 1 and m = 1. e Variation in flow 
rate with Darcy number when P = −0.7, K = 1, � = 1∕3, � = 2∕3 
and m = 1. f Variation in flow rate with Darcy number when 
P = −0.7, K = 2, � = 1∕4, � = 3∕4 and m = 1. g Variation in flow 
rate with Darcy number when P = −0.7, K = 1, � = 0.49, � = 0.51
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Figure 3e–g shows that the value of flow rate is higher 
when Darcy number of middle layer is higher than the Darcy 
number of lower porous layer. The variation in flow rate with 
the parameter �1 for all types of middle layer is also given 
numerically in Table 1.

5.3  Effect of Middle Layer Width, Darcy Number, 
Micropolarity Parameter on the Velocity Profile 
of the Micropolar Fluid

The variation in the flow velocity of micropolar fluid in 
middle layer with middle layer’s Darcy number for differ-
ent widths of the middle layer is shown in Fig. 4a–c, when 
Da1 = Da3 = 0.1, m = 1, K = 2 and P = −0.7 . From these 
figures, we concluded that the value of flow velocity of 

Table 1  Variation in the flow 
rate with the reciprocal of Darcy 
number and width of middle 
layer when P = −0.7, K = 2 
and m = 1

Flow rate

Equal width porous layer Thin middle layer Thick middle layer

�1 Da3 > Da2 Da2 > Da3 Da3 > Da2 Da2 > Da3 Da3 > Da2 Da2 > Da3

1.0 0.0235 0.0646 0.0488 0.0511 0.0181 0.0696
1.2 0.0232 0.0639 0.0474 0.0497 0.0180 0.0692
1.5 0.0226 0.0627 0.0449 0.0473 0.0177 0.0686
1.8 0.0220 0.0613 0.0421 0.0446 0.0175 0.0679
2.0 0.0215 0.0603 0.0402 0.0426 0.0173 0.0674
2.5 0.0201 0.0574 0.0350 0.0374 0.0167 0.0659
3.0 0.0186 0.0543 0.0298 0.0322 0.0161 0.0642
3.5 0.0170 0.0510 0.0248 0.0271 0.0153 0.0623
4.0 0.0154 0.0478 0.0202 0.0224 0.0146 0.0603
4.5 0.0138 0.0446 0.0160 0.0180 0.0138 0.0584

Fig. 4  a Variation in micropolar fluid flow velocity for thin middle layer. b Variation in micropolar fluid flow velocity for thick middle layer. c 
Variation in micropolar fluid flow velocity when width of all layers is equal
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micropolar fluid in middle layer increases with the increase 
in middle layer’s Darcy number.

For thin middle layer (Fig. 4a), the variation in flow veloc-
ity of micropolar fluid in middle layer is almost constant for 
particular value of the Da2 . It is important to note that the 
micropolar fluid velocity achieves the maximum value near the 
center of region-II for higher value of the middle layer’s Darcy 
number 

(
Da2 > 0.1

)
 ; however, it achieves the minimum value 

near the center of region-II for low value of the middle layer’s 
Darcy number 

(
Da2 < 0.01

)
 (Fig. 4b, c).

From the theory of micropolar fluid discussed in Eringen 
[57], it is known that the micropolar fluid can be reduced to 
the Newtonian fluid by taking � → 0 (in the absence of micro-
rotational velocity). Thus, our model can reduce to the flow of 
immiscible Newtonian fluids through the composite porous 
layered channel with movable interfaces by taking � → 0 in 
Eq. (11). The similar type of problem with variable and gener-
alized variable permeability had been solved by Zaytoon et al. 
[37, 38].

In this case, the governing equation for the flow of fluid in 
region-II will be as follows:

(36)
d2u2

dy2
−

u2

Da2
= mP.

The expression for the velocity of Newtonian fluid in 
region-II can be obtained by solving the above equation which 
is given below:

where �2 =
1√
Da2

 and B1, B2 are arbitrary constants which 
can be obtained by using the above suitable boundary 
conditions.

The variation in Newtonian fluid velocity in region-
II with middle layer’s Darcy number for different widths 
of the middle layer and its comparison with velocity of 
micropolar fluid in middle layer is shown in Fig. 5a–c, when 
Da1 = Da2 = Da3 = 0.1, m = 0, K = 1 and P = −0.7 . The 
dotted lines show the flow of Newtonian–Newtonian–New-
tonian flow through the composite porous layers, while the 
solid lines show Newtonian–micropolar–Newtonian flow 
model through the composite porous layers.

Figure 5 shows that the nature of variation in Newtonian 
fluid velocity in region-II with middle layer’s Darcy num-
ber agrees with the variation in Newtonian fluid velocity in 
region-II with middle layer’s Darcy number as discussed in 
the work of Zaytoon et al. [37, 38]. Figure 5 shows that the 
velocity of micropolar fluid inside the middle layer is less as 
compared to the velocity of Newtonian fluid.

(37)u2(y) = B1 exp(�2y) + B2 exp(−�2y) −
mP

�2
2

,

Fig. 5  a Variation in micropolar fluid flow velocity for thin middle layer. b Variation in micropolar fluid flow velocity for thick middle layer. c 
Variation in micropolar fluid flow velocity when width of all layers is equal



931Arabian Journal for Science and Engineering (2020) 45:921–934 

1 3

Figure 6a, b and c represents the variation in micropo-
lar fluid velocity, in middle layer with respect to micropo-
larity parameter for different middle layer’s widths, i.e., 
equal width, thin and thick, respectively, when m = 1 and 
P = −0.7 . Also, in this subsection, we have taken the 
different permeabilities of all three porous layers, i.e., 
Da1 = 0.01, Da2 = 0.02 and Da3 = 0.03.

Figure 6 shows that the flow velocity of micropolar fluid 
in middle layer decreases with the increasing values of the 
material parameter K. Since material parameter is only the 
parameter for describing the rotational property of micropo-
lar fluid, there will be no effect on the velocity of the New-
tonian fluids passing in region-I and region-III, respectively.

Fig. 6  a Variation in micropolar fluid flow velocity with material 
parameter when width of all layers is equal. b Variation in micropolar 
fluid flow velocity with material parameter when middle layer is thin. 

c Variation in micropolar fluid flow velocity with material parameter 
when middle layer is thick

Table 2  Variation in the shearing stress at the interfaces and interfacial velocity with Darcy number and width of middle layer when 
P = −0.7, K = 1, Da1 = Da2 = Da3 = Da and m = 1

Da → 1 0.1 0.01 0.001

�
xy
(�) Equal width layers − 0.1044 − 0.0497 − 0.00269 − 6.847 × 10−7

Thick middle layer − 0.15832 − 0.0811 − 0.00657 − 9.549 × 10−6

Thin middle layer − 0.00621 − 0.00276 − 0.000094 − 1.960 × 10−9

�
xy
(�) Equal width layers − 0.1044 − 0.0497 − 0.00269 − 6.847 × 10−7

Thick middle layer − 0.15832 − 0.0811 − 0.00657 − 9.549 × 10−6

Thin middle layer − 0.00621 − 0.00276 − 0.000094 − 1.960 × 10−9

u1(�) Equal width layers 0.07073 0.03881 0.00677 0.000699
Thick middle layer 0.06009 0.034226 0.00650 0.0006998
Thin middle layer 0.07920 0.04235 0.006905 0.0007

u3(�) Equal width layers 0.07073 0.03881 0.00677 0.000699
Thick middle layer 0.06009 0.034226 0.00650 0.0006998
Thin middle layer 0.07920 0.04235 0.006905 0.0007
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5.4  Effect of Middle Layer, Viscosity Ratio 
and Transition Layer’s Darcy Number 
on Velocities and Shearing Stress at Two 
Interfaces of Horizontal Channel

The effect of different Darcy numbers of the middle layer on 
the interfacial velocity and shearing stress is given numeri-
cally in Table 2. It is observed that the interfacial velocity 
and shearing stress decrease with the decrease in the Darcy 
number of middle porous layer. To validate our results with 
previously published work (Zaytoon et al. [37, 38, 40]), here 
we assumed that the Darcy number of each layer is same, i.e., 
Da1 = Da2 = Da3 = Da . Table 2 shows that the nature of 
variation in the interfacial velocity and shearing stress with 
the Darcy number agree with the nature of variation in the 
interfacial velocity and shearing stress with the Darcy num-
ber as discussed in the work of Zaytoon et al. [37, 38, 40].

Table 2 shows that the interfacial shearing stress is greater 
for the thicker middle layer as compared to other two cases 
of middle layer and the interfacial velocity is high for thinner 
middle layer as compared to thick middle layer and equal 
width layer. The effect of viscosity ratio m on the interfacial 
velocity and shearing stress is given numerically in Table 3.

It is observed that shearing stress and velocity at micropo-
lar–Newtonian interfaces increase with the increase in the values 
of the viscosity ratio. Table 3 also provides another important 
fact that the variation in interfacial velocity rate and shearing 
stress is very slow for higher values of viscosity ratio m.

6  Conclusions

In this work, we have analytically solved the problem of 
micropolar–Newtonian fluid flow through horizontal porous 
channel, in which each layer’s width can be varied. The 

problem is modeled in such a manner that it could be appli-
cable for the medical as well as industrial purposes. All the 
three porous layers are assumed to have different permeabili-
ties. The mean flow velocity, shear stress at the interfaces, 
velocities at the interfaces and the flow velocity of each fluid 
in their respective region have been obtained. The effect of 
the middle layer’s width on the flows has been reported. It 
is observed that when the middle layer is thin then the flow 
velocity in the channel is higher. The discussed result vali-
dates our work with the works [35, 37, 38]. The rotational 
property of micropolar fluid deaccelerates the flow velocity 
in each case of the widths of the middle layer. Also, it is seen 
that when the three porous layers has different permeabilities 
then the flow velocity is found to be higher in the channel. 
The effect of middle layer’s Darcy number and viscosity 
ratio on the interfacial velocity and shearing stress is also 
discussed and concluded that the interfacial shearing stress 
increases by increasing the thickness of the middle layer and 
interfacial velocity decreases by decreasing the thickness of 
the middle layer.
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