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Abstract
System identification based on infinite impulse response (IIR) models has received much attention because it is used in a 
variety of real-world applications. However, an IIR model might have a multimodal error surface. To attain an ideal identi-
fication, an efficient and robust method is necessary. In this study, a modified whale optimization algorithm (WOA) with a 
ranking-based mutation operator, called the RWOA, is presented to solve the IIR system identification problem. The RWOA 
integrates a ranking-based mutation operator into the basic WOA to enhance performance by speeding up the convergence 
rate and then enhances the exploitation capability. The experimental results of actual and reduced-order identification for a 
standard system using our proposed RWOA were superior to those of five state-of-the-art algorithms (including the basic 
WOA), in terms of improving the quality and stability of the results, in most cases, and significantly speeding up convergence.

Keywords Ranking-based mutation operator · Whale optimization algorithm · RWOA · IIR system · System identification

1 Introduction

In the last few years, the adaptive infinite impulse response 
(IIR) filter has become very popular and has increasingly 
attracted the attention of many researchers and scholars [1, 
2]. It is very popular in diverse fields of application, such as 
control systems [3], communication [4], signal processing 
[5], and image processing [6]. In the case of several system 
identification problems, adaptive IIR filters tend to model 
the unknown system in accordance with some error function 
between the output of the candidate model and the output of 
the plant [7]. To acquire an ideal identification, it is neces-
sary to search the appropriate filter parameters to enable the 
error surface between the output of the adaptive filter and the 
output of the plant to achieve the minimum value.

There is a major concern that the error surfaces produced 
by the IIR filter are typically multimodal, which makes them 
difficult to minimize, and they are quite easily trapped in 

local minima. To overcome this problem, researchers have 
attempted to use efficient and robust evolutionary comput-
ing algorithms inspired by nature for IIR system identifica-
tion. In this case, IIR system identification is modeled as a 
minimization problem and then solved using an evolution-
ary computing algorithm [8]. For example, Krusienski and 
Jenkins [2] used the particle swarm optimization algorithm 
(PSO), which is a popular and classical evolutionary com-
puting algorithm inspired by the social behavior of flocking 
birds, to create the adaptive IIR filter structure. Later, Zou 
et al. [7] proposed an improved version of PSO called IPSO 
to process IIR system identification. The simulation results 
indicated the efficiency of IPSO compared with different 
versions of the PSO algorithm. Patwardhan et al. [9] used 
the cuckoo search algorithm (CS), which is inspired by the 
lifestyle of birds, to handle IIR feedback system identifica-
tion. Panda et al. [10] exploited the cat swarm optimization 
algorithm, which is derived from the behavior of cats, to 
handle different cases of IIR modeling. Furthermore, Saha 
et al. [11] used the gravitational search algorithm (GSA), 
which is based on the law of gravity, to solve the IIR model, 
whereas Karaboga [12] used IIR models to test the efficiency 
of the artificial bee colony algorithm, which is inspired by 
the behavior of bees searching for food. The results reported 
in these studies show that these evolutionary computing 
algorithms can efficiently solve the IIR system identification 
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problem. Despite the merits of the aforementioned studies, 
according to the well-known no-free-lunch theorem (NFL), 
no single optimization algorithm exists that can outperform 
all other algorithms for all optimization problems [13]. 
Because the IIR model has different cases, it is possible that 
an algorithm performs well on a test case, but poorly on 
another case. Therefore, this has stimulated researchers and 
scholars to investigate the efficiency of new algorithms to 
solve the IIR model identification problem and problems in 
other fields.

The whale optimization algorithm (WOA) is a newly pro-
posed metaheuristic introduced by Mirjalili et al. [14] based 
on the bubble-net feeding technique of baleen whales. Com-
pared with other algorithms, the WOA can provide competi-
tive results and has superior performance. The merits of this 
algorithm are that it is easy to implement, the structure is 
very simple, and it requires few control parameters. Thus, 
the original version of the WOA has attracted the attention 
of many scholars and has been applied in a wide variety of 
application studies [15–20]. Although the basic WOA has 
been shown to perform well in the aforementioned studies, 
when compared with other traditional algorithms, it still has 
some drawbacks, such as slow convergence and becoming 
stuck easily in local optima. Consequently, different WOA 
variants have been proposed to improve its performance. 
An improved WOA was developed by Oliva et al. [21], who 
combined the features of the standard WOA with chaotic 
maps to improve performance and applied it to the parameter 
estimation of photovoltaic cells. Hu et al. [22] also proposed 
a modified version of WOA. They introduced the inertia 
weight into the WOA to improve performance, tested the 
modified algorithm on benchmark functions, and predicted 
the daily air quality index. Moreover, Trivedi et al. [23] 
developed a new variant of the WOA using a hybridization 
of the PSO algorithm called PSO-WOA for global numerical 
function optimization. Another novel adaptive WOA algo-
rithm for global optimization was proposed by Bhesdadiya 
et al. [24] and used as an adaptive mechanism to update 
the whale’s position. A Kaveh [25] proposed an enhanced 
WOA by modifying the updating mechanism of the basic 
WOA and applied it to the size optimization of a skeletal 
structure. Mafarja and Mirjalili [26] proposed a hybrid WOA 
with simulated annealing and used it for feature selection. 
Considering all these improvements to the basic WOA, we 
found that they are appropriate for different types of practical 
applications; however, these WOA variants are not suitable 
for solving all classes of practical problems according to 
the NFL [13].

In this paper, we propose a modified WOA called RWOA 
that integrates a ranking-based mutation operator with the 
basic WOA to make the basic WOA converge faster, and 
more robust and suitable for practical applications. The 
RWOA was applied to solve the IIR model identification 

problem and was compared with existing evolutionary com-
puting algorithms. The simulation results demonstrated 
clearly that our proposed RWOA exhibited superior identi-
fication performance.

The remainder of this paper is organized as follows: In 
Sect. 2, we present the problem of adaptive IIR filter model 
identification. In Sect. 3, we present the steps involved in 
whale optimization. In Sect. 4, we present our proposed 
RWOA. We describe the simulation results and analyze them 
in Sect. 5. Finally, we discuss our conclusions and future 
work in Sect. 6.

2  Adaptive IIR Filter Model

The adaptive IIR filter has been widely used in system 
identification because a number of problems encountered 
in signal processing can be modeled as a system identifica-
tion problem. For the system identification configuration, to 
make the filter’s output close to the output of an unknown 
system, the main task of the adaptive algorithm is to search 
for appropriate filter coefficients. The block diagram for an 
adaptive IIR system identification is shown in Fig. 1.

The input–output relationship of the IIR system can be 
described as follows [27, 28]:

where x(n) and y(n) denote the input and output of the fil-
ter, respectively, and L(≥ K) represents the filter’s order. Let 
a0 = 1 . Then the transfer function of this IIR filter is defined 
as

(1)
L∑

l=0

a1y(n − l) =

K∑

k=0

bkx(n − k)

(2)H(z) =

∑
K
k=0

bkz
−k

1 +
∑

L
l=1

alz
−l
.

Unkown IIR System

Adaptive IIR filter

Optimization 
Algorithm
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v(n)+

y0(n) +

-
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x(n)

+

d(n)

Fig. 1  Adaptive IIR filter for system identification
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In the design method, Hp(z) is the transfer function of 
the unknown plant and Hm(z) is the transfer function of the 
IIR model. From Fig. 1, it is clear that the output of the IIR 
filter is y(n) ; d(n) = y0(n) + v(n) is the overall response of 
the unknown IIR plant; y0(n) is the output of the unknown 
plant; and v(n) is additive white Gaussian noise. The equa-
tion e(n) = d(n) − y(n) represents the error signal. Hence, 
the main goal of identification is to formulate a minimiza-
tion problem that can be defined as the cost function J(w) 
as follows:

where N denotes the number of input samples used for the 
calculation of the objective function. The mean square error 
(MSE) is equal to J(w) , which produces the coefficient vec-
tors of the IIR model, where w = (a1,… aL, b0, b1,… bK)

T . 
The objective of the algorithm is to minimize the MSE 
through adjusting coefficient vector w of transfer function 
Hp(z).

3  Whale Optimization Algorithm (WOA)

The WOA is a novel metaheuristic algorithm, which was 
proposed by Mirjalili and Lewis [14]. The WOA simulates 
the special foraging behavior of humpback whales, whereby 
they search for and attack prey (herds and small fish), which 
is called the bubble-net hunting strategy. Figure 2 shows the 
bubble-net hunting model.

Figure 2 clearly shows that the humpback whale hunts 
prey by creating distinctive bubbles and swimming in a 
“9”-shaped path. The motivation of the WOA is this special 

(3)MSE = J(w) =
1

N

N∑

n=1

e2(n),

hunting method. In addition to simulating the bubble-net 
strategy in the WOA, the whale also has another strategy, 
which is simulating encircling the prey. This can be sum-
marized as follows: first, the humpback whale observes the 
location of the prey (fish herds) and then encircles them to 
hunt them using the bubble-net strategy. The formulas of the 
two hunting strategies that is, the encircling prey strategy 
and bubble-net feeding strategy, proposed in the WOA are 
defined as

where p is an arbitrary number in [0, 1] , ���⃗D� =
|||
�����⃗X ∗(t) − �⃗X(t)

||| 
represents the length from the ith whale to the best position 
of the leader whale (the best location acquired thus far), l 
denotes a random value in [−1, 1] , b denotes a constant that 
defines the shape of a logarithmic spiral, ⋅ denotes constitu-
ent-by-constituent multiplication, t denotes the current itera-
tion, ��⃗D =

|||
��⃗C ⋅

�����⃗X ∗(t) − �⃗X(t)
||| , X

∗ denotes the position vector 
of the optimum measure acquired thus far, and X(t) denotes 
the position vector. Note that X∗ must be updated at every 
step of the optimization if there exists a better solution. Here, 
�⃗A = 2 �⃗a ⋅ r⃗ − �⃗a , ��⃗C = 2 ⋅ r⃗ , and the values of �⃗A are in the range 
[−a, a] , where the value of �⃗a linearly decreases from 2 to 0 
because it is calculated as a = 2 − 2 ∗ t∕tmax . Note that in 
the exploration and exploitation stages, the value of �⃗a 
remains the same and the value of r is in the range [0, 1].

Equation (4) contain two formulas, where the first is the 
mathematical model of the encircling prey strategy of the 
humpback whale and the second is the mathematical model 
of the bubble-net hunting strategy. Note that humpback 
whales swim around prey inside a contracting circle or move 
with a conical logarithmic spiral motion to prey on fish herds 
simultaneously. We assume that the humpback whale adopts 
these two hunting mechanisms with a probability of 50%, 
and then variable p switches between these two components 
with a 50% probability. We know that both the exploitation 
stage and exploration stage are the main stages of the opti-
mizing problem in population-based algorithms. Therefore, 
in the WOA, vector �⃗A is used for exploration to scan for prey, 
and its value is greater than 1 or less than − 1. When |||

�⃗A
||| ≥ 1 , 

the whales are forced into exploration to determine the 
global optimum and eliminate many local minima. The 
mathematical model is formulated as

where �������⃗Xrand is chosen from the current generation and indi-
cates a random position vector (a random whale). When 

(4)�⃗X(t + 1) =

{
�����⃗X ∗(t) − �⃗A ⋅

��⃗D if p < 0.5

���⃗D�
⋅ ebl ⋅ cos(2𝜋l) + �����⃗X ∗(t) if p ≥ 0.5

(5)��⃗D =
|||
��⃗C ⋅

�������⃗Xrand −
�⃗X
|||

(6)�⃗X(t + 1) = �������⃗Xrand −
�⃗A ⋅

��⃗D

Fig. 2  Bubble-net hunting behavior of humpback whales
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|||
�⃗A
||| ≥ 1 , the WOA focuses on exploration using Eq. (6), so 

the whale updates its position according to �������⃗Xrand , which is a 

stochastically chosen whale, whereas when |||
�⃗A
||| < 1 , the 

WOA focuses on exploitation, and the whale updates its 
position based on the best searching agent acquired thus far. 
The flowchart of the WOA is illustrated in Fig. 3.

4  Modified Whale Optimization Algorithm 
with Ranking‑Based (RWOA)

As mentioned, in this paper, we present a modified version 
of the WOA called the RWOA for solving IIR system iden-
tification problems. The RWOA combines a ranking-based 
mutation operator with the pure WOA to speed up the rate 
of convergence and results in smoothly balanced intensifica-
tion and diversification. Therefore, this approach improves 
the quality of the basic WOA. In the following subsection, 

we first briefly review the ranking-based mutation operator 
and then present our RWOA in detail.

4.1  Ranking‑Based Mutation Operator

1. Ranking Assignment For the purpose of choosing infor-
mation about a good search agent from the WOA popu-
lation, it is necessary to assign a rank for each whale 
according to the related fitness. First, the population 
(each whale) is sorted in ascending order (i.e., from 
best to worst) according to the fitness of each individual 
(each whale). The rank of an individual is assigned as

where Np indicates the number of the population. From 
Eq. (7), the highest rank is assigned to the best individ-
ual (best whale) in the current population and then other 
individuals acquire their corresponding ranking order.

(7)Ri = Np − i, i = 1, 2,… ,Np,

Fig. 3  Flowchart of the WOA
Start

Initialize the whales population ,A,a and c,l and p

If (p<0.5)

Update the search agents
 position by Eq.(4)(the 
second component) Update the search agents

 position by Eq.(4)(the first 
component

Select a random search 
agentUpdate the searchagents 

position by Eq.(6)

Check if any search agent goes beyond the search 
space and amend it

Update X* if there is a better solution

Iteration=Iteration+1

If(|A|<1)

Yes

No

No

Calculate the fitness of each search agent,evaluate 
X*,A,a and c,l and p

Iterarion<Maxiteration

Yes

EndNo

Yes
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2. Selection Probability When each individual is ranked, 
selection probability Pi of the ith individual (whale) is 
modeled as

  Algorithm 1 presents the ranking-based mutation 
operator of “DE/rand/1.” In nature, useful information 
is always contained in good species; hence, good species 
always have a greater probability of being selected to 
propagate a new generation. Similar to nature, in accord-
ance with the approach described in Algorithm 1, it is 
clear that the higher the ranking of the individual, the 
greater the probability that the individual is chosen as 
the base vector or terminal vector in the mutation opera-
tor to propagate useful information about the popula-
tion to the offspring. Note that the starting vector is 
not selected based on its selection probability because, 
assuming that both the vectors in the difference vec-
tor are selected from better vectors, the searching step-
size of the difference vector may have a probability that 
decreases quickly, which results in premature conver-
gence [29, 30].

(8)Pi =
Ri

Np

, i = 1, 2,… ,Np.

4.2.1  Complexity Analysis

In this section, both the time and space complexity of the 
RWOA are analyzed.

Time Complexity The time complexity of the RWOA is 
briefly analyzed in this subsection. The RWOA contains five 
major steps: initialization, ranking-based mutation, encir-
cling prey (exploration phase), attacking prey (exploitation 
phase), and halting judgment. In the RWOA, N is the number 
of search agents, T is the maximum number of iterations, 
and D is the dimension of the problem. The initialization 
step contains a double loop (N and D times), so its time 
complexity is O(N * D). The ranking-based mutation stage, 
exploration phase, and exploitation phase all contain a triple 
loop (N, D, and T times), so the time complexity for each 
step is O(N * D * T). The time complexity of the last step, that 
is, the halting judgment step, is O(1). Thus, the total time 
complexity of the proposed RWOA is O(N * D * T). Table 1 
shows a comparison of the time complexity for the RWOA 
and WOA.

Space Complexity The proposed RWOA uses the number 
of search agents (whales), which is N, to calculate the space 
complexity, and the dimension of the problem to be solved 

4.2  Main Procedure of the RWOA

The RWOA combines the aforementioned ranking-based 
mutation operator with the basic WOA. The main procedure 
of the proposed enhanced RWOA is summarized in Fig. 4.

is D. Therefore, the total space complexity of the RWOA is 
O(N * D). The WOA also uses N search agents to calculate 
the space complexity, so its related total space complexity is 
O(N * D), which is the same as that of the RWOA.
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4.2.2  Advantages of the RWOA

Our proposed enhanced RWOA has some major advantages, 
which are summarized as follows:

(A) Because good parents are more likely to be chosen, 
the ranking-based mutation operator is quite useful 
for improving the exploitation ability of the enhanced 
RWOA; hence, it enhances the entire performance 
compared with the basic WOA algorithm.

(B) Our RWOA has an uncomplicated structure, which 
means that it does not destroy the simple structure of 
the basic WOA. The enhanced RWOA only requires 
a small amount of extra execution time when ranking 
the population and choosing individuals, but the extra 
computational cost is negligible. According to the com-
plexity analysis of the RWOA and WOA, the enhanced 
RWOA does not significantly change the entire com-
plexity of the pure WOA.

5  Modified RWOA for IIR System 
Identification

In this section, our proposed enhanced RWOA algorithm is 
used to solve the IIR system identification problem, which is 
mentioned in Sect. 2. In this case, N whales, which search in 

Fig. 4  Flowchart of the 
enhanced RWOA Start

Initialize the whales population ,A,a and c,l and p

If (p<0.5)

Update the search agents
 position by Eq.(4)(the 
second component)

Update the search agents
 position by Eq.(4)(the first 

component

Select a random search 
agentUpdate the searchagents 

position by Eq.(6)

Check if any search agent goes beyond the search 
space and amend it

Update X* if there is a better solution

Iteration=Iteration+1

If(|A|<1)

Yes

No

No

Calculate the fitness of each search agent,evaluate 
X*,A,a and c,l and p

Iterarion<Maxiteration

Yes

End

 Using Algorithm 1 sorting the population, and 
assigning the ranking and selection probability for 
each individual and  doing  ranking-based mutation 

stage

No
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Table 1  Comparison of the time 
complexity

Algorithms Time complexity

RWOA O(N * D * T)
WOA O(N * D * T)
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the search zone, represent the estimated parameter vectors of 
the filters. The locations of all the whales are updated using 
the enhanced RWOA to obtain the minimum error between 
the output of the filter and an unknown plant. The fitness for 
the ith whale at position X⃗i is represented by the objective 
function given by Eq. (3). The flowchart of the enhanced 
RWOA for IIR model identification is presented in Fig. 5.

5.1  Experimental Results

To verify the performance of our enhanced RWOA for iden-
tifying different IIR systems, an extensive experiment was 
conducted on three types of benchmark IIR plants, with 
orders two, three, and four, which were chosen from Refs. 
[7, 10, 12, 27]. The RWOA was compared with five state-
of-the-art algorithms: PSO [31], BA [32], GSA [33], GOA 
[34], and pure WOA [14]. The objective function, which is 
the MSE described in Sect. 2, was used as the metric. In the 
simulations, the problem parameters were set as follows: The 
input used a white sequence, which contained 100 samples; 

Fig. 5  Flowchart of the 
enhanced RWOA algorithm for 
IIR system identification

Start
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space and amend it
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If(|A|<1)
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Fig. 6  Average MSE curve for model-1, case 1
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additive noise was not considered in our study. The proposed 
RWOA was implemented in the MATLAB programming 
language for the four algorithms. All the experiments were 
run on a computer with an AMD Athlon (tm) II*4640 pro-
cessor and 4 GB of RAM using MATLAB R2012a.

The experimental results obtained for all the IIR plants 
test cases that contained full and reduced orders are pre-
sented in Tables 3, 4, 6, 7, 9, and 10, and illustrated in 
Figs. 6, 7, 8, 9, 10, and 11 for the MSE and convergence 
characteristics. The best average (Mean) and standard devi-
ation (Std) are highlighted in bold. Additionally, the esti-
mated values obtained by all the algorithms are presented 
in Tables 2, 5, and 8.

The Wilcoxon nonparametric statistical test [35] was also 
implemented for our simulations to test the difference in 
significance between the RWOA and the other algorithms 
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Fig. 7  Average MSE curve for model-1, case 2
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Table 2  Comparison of 
parameter estimation for model-
1, case 1

Parameters Actual values Estimated values

BA GSA PSO GOA WOA RWOA

a0 0.05 0.0482 0.1097 0.0285 0.0499 0.0385 0.0565
a1 − 0.4 − 0.3951 − 0.334 − 0.3811 − 0.3999 − 0.3824 − 0.4071
b1 1.1314 1.1457 1.2896 0.996 1.1311 1.1290 1.1303
b2 − 0.25 − 0.2667 − 0.3873 − 0.1386 − 0.2497 − 0.2468 − 0.2492

Table 3  Results of the MSE 
obtained by the BA, GSA, PSO, 
GOA, WOA, and RWOA for 
model-1, case 1

MSE BA GSA PSO GOA WOA RWOA

Best 2.11E−06 1.40E−03 1.60E−03 1.35E−09 2.26E−05 3.29E−06
Worst 8.95E−02 1.96E−02 1.07E−02 2.09E−02 2.02E−02 1.72E−02
Mean 2.96E−02 1.15E−02 5.60E−03 2.80E−03 9.50E−03 1.60E−03
Std 1.98E−02 4.80E−03 3.60E−03 6.10E−03 7.10E−03 3.50E−03

Table 4  Results of the MSE 
obtained by the BA, GSA, PSO, 
GOA, WOA, and RWOA for 
model-1, case 2

MSE BA GSA PSO GOA WOA RWOA

Best 8.70E−03 1.13E−02 1.10E−02 1.06E−02 9.20E−03 1.05E−02
Worst 3.39E−02 2.39E−02 1.62E−02 2.88E−02 2.09E−02 1.98E−02
Mean 1.50E−02 1.57E−02 1.40E−02 1.32E−02 1.34E−02 1.23E−02
Std 5.10E−03 2.90E−03 2.20E−03 4.31E−03 3.40E−03 2.00E−03

Table 5  Comparison of 
parameter estimation for model-
2, case 1

Parameters Actual values Estimated values

BA GSA PSO GOA WOA RWOA

a0 − 0.20 − 0.2021 − 0.2007 − 0.1688 − 0.1999 − 0.2267 − 0.2006
a1 − 0.40 − 0.4071 − 0.4475 − 0.4388 − 0.4004 − 0.3766 − 0.3997
a2 0.50 0.4939 0.3809 0.4283 0.4984 0.4993 0.4997
b1 0.60 0.5804 0.3772 0.5000 0.5971 0.6125 0.5991
b2 − 0.25 − 0.2494 − 0.2796 − 0.2508 − 0.2503 − 0.2390 − 0.2530
b3 0.20 0.1908 − 0.2796 0.1812 0.1983 0.2188 0.2021

Table 6  Results of MSE 
obtained by the BA, GSA, PSO, 
GOA, WOA, and RWOA for 
model-2, case 1

MSE BA GSA PSO GOA WOA RWOA

Best 7.70E−07 6.35E−05 2.65E−04 2.38E−08 5.05E−05 3.27E−07
Worst 8.08E−02 9.38E−04 7.10E−03 1.24E−02 9.70E−03 1.20E−03
Mean 2.09E−02 1.85E−04 3.70E−03 1.20E−03 1.10E−03 3.09E−04
Std 1.75E−02 1.52E−04 1.60E−03 2.83E−03 1.80E−03 2.82E−04

Table 7  Results of the MSE 
obtained by the BA, GSA, PSO, 
GOA, WOA, and RWOA for 
model-2, case 2

MSE BA GSA PSO GOA WOA RWOA

Best 3.69E−04 3.36E−04 8.09E−04 3.74E−04 4.20E−04 3.71E−04
Worst 2.37E−02 4.77E−04 2.90E−03 1.27E−02 4.70E−03 7.73E−04
Mean 7.70E−03 3.94E−04 1.40E−03 9.31E−04 1.50E−03 4.59E−04
Std 6.70E−03 2.70E−05 4.48E−04 2.26E−03 1.20E−03 7.33E−05
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on three types of benchmark IIR plants. It was necessary to 
conduct the statistical test because of the stochastic nature 
of metaheuristics [36, 37]. p values < 0.05 prove the statis-
tically significant superiority of the results. The statistical 
results of the p values are summarized in Table 10. Note that 
p values > 0.05 are underlined in the table.

5.1.1  Parameter Setup

The simulation parameters used for all the algorithms were 
as follows: For a fair comparison, the population size for 
each algorithm was set to N = 30 and the maximum num-
ber of termination iterations for each algorithm was set to 
T = 500 . In addition to the basic control parameters, each of 
the algorithms also had special control parameters. For our 
proposed RWOA, the scaling factor was set to F = 0.7 and 
the component a⃗ was linearly diminished from 2 to 0 through 
the course of the iteration. For the pure WOA, the value of 
a⃗ was the same as that for the RWOA and decreased linearly 
from 2 to 0 through the course of the iteration. For the PSO, 
cognitive constant c1 was 1.5 and social constant c2 was 2. 
Inertia constant � was 1. For the BA, loudness A0 was set 
to 0.9 and pulse rate r0 was 0.5. For the GSA, gravitational 
constant G0 was 1 and coefficient of decrease � was 20. For 

the last algorithm, GOA, the constant of intensity of attrac-
tion f  was set to 0.5 and the constant of attractive of large 
scale l was set to 1.5. All the algorithms in our experiment 
were run 30 times for all the IIR plant test cases to obtain 
quantitative results.

Model 1 For the first experiment, the transfer function of 
a second-order plant is modeled as

Case 1 The transfer function of this second-order plant can 
be defined as a second-order model: 

Table 2 lists the estimated parameters acquired by the six 
algorithms, and it shows that GOA estimated the coefficients 
slightly better than the RWOA, and these two algorithms 
performed better than the other four algorithms. This indi-
cates that the RWOA had a strong ability to acquire accurate 
estimated parameters. Table 3 presents the statistical results 
in terms of MSE. Clearly, the standard deviation of the MSE 

(9)Hp(z) =
0.05 − 0.4z−1

1 − 1.1214z−1 + 0.25z−2
.

(10)Hm(z) =
a0 + a1z

−1

1 − b1z
1 − b2z

−2
.

Table 8  Comparison of 
parameter estimation for model-
3, case 1

Parameters Actual values Estimated values

BA GSA PSO GOA WOA RWOA

a0 1.00 0.9734 0.4294 0.7114 0.9989 1.00 1.00
a1 − 0.90 − 0.7024 − 0.7442 − 0.8393 − 0.9223 − 0.9188 − 0.9145
a2 0.81 0.7232 0.7204 0.8438 0.8050 0.8003 0.8022
a3 − 0.729 − 0.5615 − 0.8599 − 0.6521 − 0.4167 − 0.9659 − 0.8123
b1 − 0.04 − 0.2836 − 0.2073 − 0.0618 − 0.0191 − 0.0228 − 0.0253
b2 − 0.2775 − 0.5084 − 0.5886 − 0.5574 − 0.2472 − 0.2528 − 0.2546
b3 0.2101 0.0394 0.0144 0.0021 0.2354 0.2274 0.2283
b4 − 0.14 − 0.1734 − 0.4084 − 0.3692 − 0.1299 − 0.1368 − 0.1335

Table 9  Results of the MSE 
obtained by the BA, GSA, PSO, 
GOA, WOA, and RWOA for 
model-3, case 1

MSE BA GSA PSO GOA WOA RWOA

Best 4.55E−04 2.26E−02 7.40E−03 1.14E−05 9.02E−06 6.70E−06
Worst 2.56E−01 1.80E−01 3.42E−02 1.25E−01 9.58E−02 6.60E−03
Mean 8.19E−02 9.02E−02 1.96E−02 2.11E−02 1.50E−02 1.50E−03
Std 4.59E−02 4.77E−02 7.10E−03 3.31E−02 2.67E−02 1.60E−03

Table 10  Results of MSE 
obtained by the BA, GSA, PSO, 
GOA, WOA and RWOA for 
model-3, case 2

MSE BA GSA PSO GOA WOA RWOA

Best 4.05E−04 1.65E−02 4.60E−03 4.54E−04 7.74E−04 3.56E−04
Worst 1.49E−01 9.57E−02 2.20E−02 6.81E−02 3.92E−02 2.00E−03
Mean 6.90E−02 5.27E−02 1.36E−02 1.69E−02 7.40E−03 8.21E−04
Std 3.75E−02 1.87E−02 4.70E−03 1.98E−02 9.20E−03 4.70E−04



2173Arabian Journal for Science and Engineering (2020) 45:2163–2176 

1 3

using the RWOA was slightly better than that of the PSO, 
but outperformed those of the other algorithms. The average 
MSE obtained using the RWOA was superior to that of the 
basic WOA and the other four algorithms. Figure 6 shows 
the convergence for the average MSE values acquired by the 
six algorithms in solving the second-order plant problem. 
Figure 6 shows that the RWOA outperformed the other algo-
rithms because it had the fastest convergence to the global 
optimum among the other algorithms, followed by the GOA 
and PSO. However, Fig. 6 also shows that the WOA, BA, 
and GSA were easily trapped in local optima, which resulted 
in stagnation. The p values reported in Table 11 also indi-
cate that the results of the RWOA for the model-1, case 1 
IIR model were significantly better than those of the other 
algorithms. This is evidence that the RWOA had high per-
formance in terms of solving the second-order IIR model.

Case 2 A reduced-order IIR filter can model the second-
order plant. Hence, a first-order IIR model is used to model 
the second-order plant defined in Eq. (9). The transfer func-
tion is

Table 4 shows that the RWOA provided the best average 
results and standard deviation in terms of the MSE, which 
were slightly superior to those of the basic PSO and out-
performed those of the other algorithms in solving this IIR 
model. As shown in Fig. 7, the RWOA algorithm converged 
much faster and had the lowest MSE values compared with 
the other five algorithms. Furthermore, the p values in 
Table 11 also prove that the superiority of the RWOA was 
significant in three out of five cases.

Model 2 For the second experiment (Table 5), the transfer 
function of a third-order-plant is

(11)Hm(z) =
a
0

1 − b1z
−1
.

(12)Hp(z) =

[
−0.2 − 0.4z−1 + 0.5z−2

1 − 0.6z−1 + 0.25z−2 − 0.2z−3

]
.

Case 1 This third-order plant can be defined as a third IIR 
filter given by the transfer function

The results of the MSE obtained by the algorithms pre-
sented in Table 6 show that the GSA and RWOA had almost 
the same quality of solution, and these two algorithms per-
formed much better than the other algorithms. Figure 8 
shows that the RWOA converged much faster than the BA, 
PSO, GOA, and WOA, but was slightly worse than the GSA. 
Table 5 shows a list of values of the best estimated model 
parameters after 500 iterations for each algorithm. It shows 
that both the RWOA and GOA obtained estimated values 
that matched very well with the actual values, and proves 
that the RWOA and GOA performed better than the BA, 
GSA, PSO, and WOA in terms of estimating the values of 
the system. According to the p values presented in Table 11, 
the results of the RWOA were not significantly better than 
those of the GSA and GOA, but were better than those of 
the remaining three algorithms.

Case 2 In this section, a second-order IIR is used to model 
the third-order plant shown in Eq. (12) as follows: 

The convergence for all six algorithms is compared in 
Fig. 9, which shows clearly that the minimum MSE acquired 
for the RWOA was approximately the same as that achieved 
by the GSA, and these two algorithms outperformed the 
other algorithms, followed by GOA. During the optimiza-
tion process, the PSO and WOA acquired the same minimum 
MSE value, and the performance of BA was the worst of all 
the algorithms and stagnated in an early period. The com-
parison in terms of MSE is listed in Table 7, which shows 
clearly that the average MSE obtained by all the algorithms 
after 500 iterations was 70E − 03, 3.94E − 04, 1.40E − 03, 

(13)Hm(z) =

[
a0 + a1z

−1 + a2z
−2

1 − b1z
−1 − b2z

−2 − b3z
−3

]
.

(14)Hm(z) =

[
a0 + a1z

−1

1 − b1z
−1 − b2z

−2

]
.

Table 11  p values calculated for 
the Wilcoxon rank-sum test for 
three IIR models

RWOA vs BA GSA PSO GOA WOA

Model 1
 Case 1 1.1737e−09 9.7555e−10 2.5721e−07 3.99E−04 6.2828e−06
 Case 2 0.0406 2.1540e−06 1.1674e−05 0.2643 0.7172

Model 2
 Case 1 5.5727e−10 0.4733 1.4643e−10 0.6308 3.1821e−04
 Case 2 8.1014e−10 1.7290e−06 3.0199e−11 0.3790 1.6980e−08

Model 3
 Case 1 3.0199e−11 3.0199e−11 4.9752e−11 5.08E−03 0.0156
 Case 2 5.0723e−10 3.0199e−11 3.6897e−11 2.68E−04 8.8411e−07
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9.31E − 04, 1.50E − 03, and 4.59E − 04 for the BA, GSA, 
PSO, GOA, WOA, and RWOA, respectively. These results 
show that the proposed RWOA provided very competitive 
results for this IIR case. The p values in Table 11 also pro-
vide evidence that the superiority of the RWOA was sig-
nificant compared with all the other algorithms, except the 
GOA.

Model 3 For the third experiment, a fourth-order plant 
with a transfer function as shown in Eq. (16) is modeled to 
test the efficiency of the RWOA:

Case 1 In this section, this fourth-order plant can be defined 
as a fourth-order IIR filter given by the transfer function

The results in Table 8 show that the RWOA estimated the 
coefficients more accurately than the WOA algorithm and 
the other four algorithms. Table 9 shows that the RWOA 
provided the best average results according to the four cri-
teria “Best,” “Worst,” “Mean,” and “Std,” which were much 
smaller than those of the other algorithms. Figure 10 shows a 
qualitative measurement of the performance of all six algo-
rithms in terms of the MSE values. It shows clearly that the 
BA, GSA, GOA, and PSO became trapped in local optima 
quite soon, and then their convergence rates remained flat 
over approximately 50 iterations. Although the basic WOA 
took approximately 200 iterations to achieve the correspond-
ing lowest MSE, which was faster than the RWOA, which 
converged to the corresponding lowest MSE after 450 itera-
tions, the minimum MSE for the RWOA was much smaller 
than that of the basic WOA. The p values shown in Table 10 
for the IIR model-3, case 1 suggest that the RWOA was sta-
tistically significantly superior to the other five algorithms 
because all the p values in this case were less than 0.05. All 
of the results confirmed the superior ability of the RWOA 
in solving the fourth-order IIR filter problem.

Case 2 In this case, the fourth-order plant shown in Eq. (15) 
is modeled using a reduced order, which is a third-order IIR. 
The transfer function of this model is defined as

The comparison of the statistical results for all the 
algorithms is presented in Table 10. Similar to the previ-
ous experiment, the RWOA had the best average results 
and the smallest standard deviation in terms of MSE. The 

(15)

Hp(z) =

[
1 − 0.9z−1 + 0.81z−2 − 0.729z−3

1 + 0.04z−1 + 0.2775z−2 − 0.2101z−3 + 0.14z−4

]
.

(16)Hm(z) =

[
a0 + a1z

−1 + a2z
−2 + a3z

−3

1 − b1z
−1 − b2z

−2 − b3z
−3 − b4z

−4

]
.

(17)Hm(z) =

[
a0 + a1z

−1 + a2z
−2

1 − b1z
−1 − b2z

−2 − b3z
−3

]
.

convergence characteristics for reduced-order modeling are 
shown in Fig. 11. The figure shows that the WOA, BA, GSA, 
GOA, and PSO were trapped in a local minimum very early 
and result in premature. However, the RWOA did not stag-
nate and continued to search for its corresponding minimum 
MSE during the optimization process. In this case, all the 
results show that the RWOA outperformed the other algo-
rithms with the fastest convergence speed and smallest MSE 
value. Moreover, the p values in Table 11 provide strong 
evidence that the results of the RWOA for the IIR model-3, 
case 2 were significantly better than those of all the other 
algorithms.

5.2  Discussion

In this section, we discuss our incorporation of a ranking-
based mutation operator into the basic WOA method before 
whales update their position, which we called RWOA. The 
RWOA was applied to three sets of IIR system identification. 
From the experimental results, we found that our proposed 
RWOA approach was effective and efficient. It provided the 
best results compared with other algorithms for solving the 
IIR model identification problem in four cases, whereas in 
the other two cases, it was slightly worse than the GSA algo-
rithm, but still much better than the remaining algorithms. 
The well-known NFL proves that no single heuristic algo-
rithm exists that is best for dealing with all optimization 
problems and outperforms all other algorithms [13]; there-
fore, it is reasonable that the RWOA performed well in the 
majority of cases, but not all.

The reasons that the performance of our proposed RWOA 
was superior to all the other compared algorithms, including 
the basic WOA, for solving different IIR models is attrib-
uted to the ranking-based mutation operator because this 
mechanism helped to improve the probability of choosing 
good solutions, and then they had more of a chance to propa-
gate to the offspring. Thus, the exploitation ability of the 
basic WOA was enhanced and the entire performance also 
improved. Additionally, the RWOA always saved the best 
obtained solution during the optimization process; hence, 
the search agent could update its position according to the 
best obtained solution (the best hunting agent). Therefore, 
guiding search agents always existed for the exploitation 
of the most promising regions in the search space. Moreo-
ver, because of the value of parameter A , which helped the 
RWOA to conduct exploration and exploitation simultane-
ously, when |A| > 1 , half the iterations were forced to per-
form exploration to search for a more promising space. By 
contrast, when |A| < 1 , the remaining iterations were devoted 
to exploitation. This mechanism helped the RWOA to be 
more flexible, and it had a superior ability to avoid local 
optima, which was helpful for obtaining a tradeoff between 
the exploration and exploitation ability of the RWOA. 
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Finally, the RWOA maintained the simple framework of 
the basic WOA, and it had fewer parameters to control than 
other algorithms, such as the BA, GSA, PSO, and GOA, 
during the optimization process. A good combination of the 
above four components thus lead to the RWOA being suit-
able to real applications and efficiently solving the different 
IIR models.

It is also worth discussing the poor performance of the 
BA, GSA, PSO, and GOA in this subsection. These four 
algorithms belong to the class of swarm-based algorithms. 
In contrast to evolutionary algorithms, they have no mecha-
nism for significant abrupt movements in the search space, 
and this is likely to be the reason for the poor performance of 
the BA, GSA, PSO, and GOA. Although the RWOA is also a 
swarm-based algorithm, its mechanisms, summarized in the 
previous paragraph, are the main reasons why it is advanta-
geous in terms of IIR system identification.

The comprehensive study conducted in this paper clearly 
demonstrates that the RWOA has the ability to avoid local 
optima and obtain the global optimal solution, which makes 
it suitable for IIR system identification. All the statistical 
results proved the superiority of the RWOA.

6  Conclusions and Future Work

In this paper, we proposed a modified version of the WOA 
called the RWOA, in which a ranking-based mutation 
operator was embedded into the standard WOA to speed up 
the rate of convergence and then enhance the algorithm’s 
exploitation capability. This new approach was applied to 
the identification of three sets of benchmark IIR plants. 
The performance assessment of the RWOA for different 
unknown identification systems with different corresponding 
reduced models was also presented in this paper. Addition-
ally, the Wilcoxon rank-sum nonparametric statistical test 
was conducted at a 5% significance level to assess whether 
the results of the RWOA differed from the best results of the 
other algorithms in a statistically significant manner. The 
comparison efficiency for parameter identification achieved 
using the RWOA and the other five state-of-the-art evolu-
tionary algorithms, including the basic WOA, and the simu-
lation results clearly demonstrated that the RWOA exhibited 
superior identification performance in terms of convergence 
speed, accuracy (average MSE), and robustness (Std values 
of MSE) within a statistically significant framework (the 
Wilcoxon test). Incorporating a ranking-based mutation 
operator into the pure WOA helped to improve identifica-
tion accuracy because it was useful to allow good solutions 
to have high selection probabilities so that they had more 
opportunities to propagate to the next generation.

Our future work will consider the following two issues: 
First, we will apply our RWOA to solve more practical 

engineering optimization problems. Additionally, we will 
develop other swarm-based algorithms to deal with IIR sys-
tem identification.
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