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Abstract
Coordination of overcurrent relays is a nonlinear and highly constrained optimization problem in a large distribution system 
where the operating time of all relays is to be minimized. Proper coordination of protective devices is a very crucial task 
for appropriate functioning of the electrical power system with distributed power generating stations. In order to solve this 
problem, various unconventional optimization techniques have been proposed. Random Walk Grey Wolf Optimizer (RW-
GWO) is a recently developed algorithm based on improving the search ability of the leading wolves in classical GWO 
algorithm to overcome the issues of stagnation to local optima and premature convergence while solving nonlinear and 
complex optimization problems. Therefore, in the present work, RW-GWO algorithm is employed to find the optimal set-
ting for directional overcurrent relay problem which is a highly complex problem. In the present paper, the results are also 
reported for classical GWO and the comparison is performed with several other optimization methods. The comparison of 
results demonstrates the strength of the RW-GWO in obtaining the optimal setting for the proper coordination of overcurrent 
relays as compared to other optimization methods.

Keywords  Directional overcurrent relays · Optimization · Meta-heuristic algorithms · Random Walk Grey Wolf Optimizer

1  Introduction

In power systems, various generating stations run in par-
allel to feed a high voltage network. Many equipments 
are connected via these networks. The fault that occurs in 
power system may be very harmful. Therefore, securing 
network from these faults, protective relays are integrated 
into power systems and these protective relays detach the 
non-functioning components from a system by tripping the 
circuit. Overcurrent relays which are widely used protection 
devices [1] can sense the flow of current only in one direc-
tion. Directional overcurrent relay should operate for a fault 
which occurs in its zone for the functioning of the power 
system properly. Primary relays operate on the appearance 
of a fault and are backed up by secondary relays, and the 
secondary or backup relays operate when primary relay 

fails. Proper coordination of direction overcurrent relays is 
very crucial for the better performance of the power systems 
and to escape from the problem of equipment damages, and 
this relay coordination is very time-consuming and a tedi-
ous task. The protection of directional overcurrent relays 
consists of two types of settings—TS (Time Dial Setting) 
and PS (Plug Setting)—and by determining these optimal 
settings, an efficient coordination for overcurrent relays can 
be achieved. Earlier this has been done manually which was 
very tedious. The use of computer helps engineers with labo-
rious efforts. Generally, there are two approaches that are 
used for directional overcurrent relay.

In conventional techniques, first the fault analysis is con-
ducted and after that meshed networks are broken into radial 
form, then relay at far end is set, and in the last, setup of 
back relays is established and this process is repeated for all 
the relays. Final Time Dial Setting and Plug Setting depend 
on the selection of the initial relays which are known as 
breakpoints [2]. These breakpoints are selected by using 
graph theory. The number of iterations here depends on the 
selection of breakpoints. It has been observed that the val-
ues of Time Dial Setting and Plug Setting determined by 
conventional techniques are not optimal [3]. Coordination 
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of overcurrent relays in a large distribution network with 
multi-source and multi-looped network by using determin-
istic optimization becomes infeasible [3]. Therefore, the 
unconventional parameter optimization techniques that are 
designed, especially for highly nonlinear or non-differentia-
ble problems, are more effective for these types of problems. 
These techniques are called as nature-inspired optimization 
techniques or meta-heuristic techniques. These techniques 
are designed from the inspiration of nature.

In 1988 [4], first time the optimization theory has been 
utilized to deal coordination of directional overcurrent relay. 
The practical importance of these problems inspires to apply 
different optimization strategies to solve this type of prob-
lems. In [5], linear programming is also used to find the 
optimal setting of parameters in overcurrent relay.

In the literature, various nature-inspired optimization 
techniques are used to solve the relay coordination prob-
lem. For example, in [6–10], Genetic Algorithm (GA) and 
its modified variants are used to determine the optimal set-
ting for the proper coordination of overcurrent relays. In 
[10–14], Differential Evolution (DE) and its modified vari-
ants are employed on the coordination of overcurrent relay 
problem to find the optimal setting of decision parameters 
called TS and PS. In [15, 16], mixed-integer nonlinear pro-
gramming formulation is used and the relay coordination 
problem is solved using Particle Swarm Optimization (PSO). 
In [17–19], modified variants of PSO are introduced to solve 
relay coordination problem. In [20], Random Search Tech-
nique is applied to solve the coordination problem. Seeker 
Algorithm is applied in [21] with step length and adaptive 
search direction to find the decision parameters so that the 
operating time of all relays can be minimized.

Grey Wolf Optimizer Algorithm [22] is a recently devel-
oped optimization approach and is very efficient to approxi-
mate the optima of the optimization problem. This algorithm 
is designed from the inspiration of grey wolf pack where the 
dominant leadership behaviour can be observed which helps 
in the search process of prey. In [22], it has been suggested 
that GWO algorithm performs better than some state-of-the-
art algorithms like Particle Swarm Optimization (PSO) [23], 
Gravitational Search Algorithm (GSA) [24], Fast Evolution-
ary Process (FEP) [25] and is very competitive as compared 
to the Differential Evolution (DE) [26]. However, similar to 
the other meta-heuristic search algorithms, GWO also faces 
the problem of getting trapped in sub-optimal solutions and 
premature convergence in some cases.

In the literature, various efforts have been made to 
improve the search accuracy of classical GWO. Mittal et al. 
[27] have modified the parameters of GWO to maintain an 
appropriate balance between the operators’ exploration and 
exploitation. Malik et al. [28] have proposed a weighted 
position update mechanism to update the search agents. In 
[29], Levy flight search strategy is employed to enhance the 

search efficiency of wolf pack. In [30], evolutionary popula-
tion dynamics (EPD) is applied to discard the worst fitted 
wolf from the pack and introduce a new wolf with the help 
of EPD. In [31], the crossover and mutation operators are 
introduced into classical GWO to enhance its performance. 
In [32], the GWO and PSO are hybridized to maintain an 
appropriate balance between exploitation and exploration 
in GWO. In [33, 34], the concept of opposition-based learn-
ing is introduced to avoid the problem of stagnation at local 
optima. In order to accelerate the convergence rate, chaos 
theory has been integrated in GWO [35, 36]. In [37], an 
adaptive bridging mechanism based on β-chaotic sequence 
is introduced to balance exploitation and exploration in the 
classical GWO. In [38, 39], random walk strategy based on 
Cauchy distribution is applied to the leading hunters of the 
grey wolf pack to reduce the problem of getting trapped in 
sub-optimal solutions and to enhance the search accuracy 
of classical GWO. In [40], exploration of search agents 
in GWO has been enhanced by proposing a new position 
update mechanism. In [41], a weighted grey wolf optimizer 
is introduced to enhance the performance of classical GWO 
and enhance the search around the best search agents. A 
brief literature review on GWO can be found in [42].

In the present work, the Random Walk Grey Wolf Opti-
mizer (RW-GWO) [38, 39] is used to find the optimal setting 
of directional overcurrent relay problem which is nonlin-
ear, highly complex, and highly constrained in nature. The 
experimental analysis conducted in the paper also verifies 
the ability of RW-GWO to avoid the stagnation problem of 
wolf pack in local optimums as compared to the classical 
GWO.

The rest of the paper is organized as follows: in Sect. 2, 
the problem of coordination of directional overcurrent relays 
is described briefly. Section 3 presents a framework of an 
efficient swarm intelligence-based optimization approach 
called Grey Wolf Optimizer (GWO). In Sect. 4, mechanism 
of RW-GWO algorithm is described briefly. In Sect. 5, 
experimental setup and obtained results on IEEE 4-bus sys-
tem are presented. Finally, Sect. 6 concludes the work and 
suggests some future research directions.

2 � Problem Description

The coordination problem of directional overcurrent relays 
is to minimize the sum of operating time of all relays cor-
responding to the maximum fault current [17, 43, 44]. A 
mathematical form of the problem can be stated as

(1)MinT =

N∑
i=1

ti,op



2083Arabian Journal for Science and Engineering (2020) 45:2081–2091	

1 3

where T is the objective function, ti,op is the operating time 
of the ith relay, and N is the number of relays within the 
system. In Eq. (2), tj,ob and ti,op are the operating time of ith 
primary relay and its jth backup relay. In Eq. (3), TS

i,min and 
TSi,max are the lower and upper limits for the decision vari-
able TS. In Eq. (4), PS

i,min and PSi,max are the lower and 
upper limits for the decision variable PS. In Eq. (5), t

i,min 
and ti,max are the lower and upper limits on the operating 
time of ith relay.

The operating time of any relay can be obtained from its 
characteristic curve and is defined by IEEE/IEC as follows 
[45]:

where �, � , and L are the characteristic constants of the 
relays and If,i is the fault current through ith relay. TS 
and PS are the decision parameters which are to be opti-
mized. For standard inverse definite minimum time relays, 
� = 0.14, � = 0.02 , and L = 0 [45].

From the objective function defined in Eq. (1), it is clear 
that the operative time of primary relay is minimized with-
out any restrictions on operating time of its backup relays. 
Therefore, in [46, 47], a new objective function is introduced 
which minimizes the operating time of primary and backup 
relays simultaneously. Mathematically, the objective func-
tion is defined as follows:

where M is total number of relay pairs. �1 and �2 are the posi-
tive weights corresponding to primary and backup relays, and 
�1 + �2 = 1 . The values of weighting factors �1 and �2 provide 
a conciliation between the operating times of backup and pri-
mary relays [46]. In the present work, the value of CTI is fixed 
as 0.2. The minimum and maximum limits on the operating 
times of primary relays are fixed in the range [0.1, 4]. The 
values of TS have been considered in the range [0.1, 1.1]. In 
the present paper, the values of �1 and �2 are taken as 0.73 and 
0.27, respectively. This parameter selection is adopted from 
[47]. The description of the Grey Wolf Optimizer (GWO) 
along with their working steps is describes as follows:

(2)s.t. tj,ob − ti,op ≥ CTI

(3)TSi,min ≤ TSi ≤ TSi,max

(4)PSi,min ≤ PSi ≤ PSi,max

(5)ti,min ≤ ti,op ≤ ti,max

(6)ti,op =
� × TSi(
If,i

PSi

)�

− 1

+ L

(7)Min F = �1

N∑
i=1

t2
i,op

+ �2

M∑
i=1

(
tj,ob − CTI

)2

(8)s.t. (2) − (5)

3 � Classical Grey Wolf Optimizer Algorithm

Grey Wolf Optimizer [22] is designed from the inspiration of 
leadership and social behaviour present in a pack or group of 
grey wolves. Grey wolves are considered as apex predators, 
and they are on the top of food chain. Their pack is about 
5–11 wolves, and within the pack, discipline and leadership 
behaviour are maintained by dividing pack into 4 types of 
wolf—alpha (the dominant wolf of the pack which is respon-
sible for all the important and major decisions regarding the 
various activities of wolves within pack), beta (these are the 
subordinate wolf to the alpha and act as a leading wolf if the 
alpha wolf passes away), delta (the sentinels, caretakers, and 
elder wolves belong to this category), and omega (all the 
remaining wolves of the pack that are allowed to eat in the 
end). The wolf alpha, beta, and delta are known as leading 
wolves of the pack, and the hunting process of prey is totally 
depending on these wolves. According to Muro et al. [48], 
grey wolves perform their hunting process in 3 steps that 
can be expressed as:

1.	 Tracking and pursuing of prey,
2.	 Encircling of prey, and
3.	 The attack on prey to complete the hunting process.

All these characteristics of grey wolves are modelled in math-
ematical form by Mirjalili et al. [22] to find their food (prey). 
Briefly, the mathematical model can be summarized as:

3.1 � Mathematical Modelling of GWO

In this section, mathematical equations that are designed 
from the simulation of grey wolves’ activities, while search-
ing prey, are presented to demonstrate the ability of wolf 
pack. The stepwise description of hunting strategies that 
grey wolves follow is described as follows:

3.1.1 � Leadership Hierarchy

In a wolf pack, wolves are divided into several categories 
based on their leadership characteristics. To simulate this, 
the top three fittest solutions to the problem are elected as 
dominant hunters for the pack. These leading solutions are 
called as alpha, beta, and delta. The rest of the solutions are 
called omega solutions to the problem. These omega solu-
tions update their position according to the position of lead-
ing hunters based on exploitation and exploration operators.

3.1.2 � Encircling Prey

It is obvious that the prey is hunted by wolves when it stops 
moving, and to hunt the prey first wolves encircle the prey 
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in a group. The encircling mathematical equations that are 
designed from the inspiration of encircling behaviour of grey 
wolves are given as follows:

where yt, yt+1 are the states of the grey wolf at tth and 
(t + 1)th iteration, respectively; yp,t represents the state of 
prey at tth iteration. d represents the difference vector, a and 
c are coefficient vectors, and b is a vector that decreases lin-
early over the course of iterations and can be formulated as:

and r1, r2 are random vectors whose components are gener-
ated within the interval (0, 1) and are uniformly distributed.

3.1.3 � Hunting

Grey wolves have the ability to recognize the position of 
prey and encircle them. Generally, the hunting procedure 
is guided by alpha wolves, but occasionally, beta and delta 
wolves also participate in hunting process with the assump-
tion that they have enough information about the prey. 
Therefore, these leading wolves are gathered in each itera-
tion of algorithm and updated when the better location is 
achieved. Having the useful information about prey, these 
leading wolves of pack help to estimate the prey location 
with the help of the following mathematical equations:

where y�,t , y�,t , and y�,t are the locations of leading wolves 
(alpha, beta, and delta) at tth iteration, respectively. c� , c� , 
and c� are the random vectors as defined in Eq. (9). With the 
help of difference vectors d� , d� and d� , the states of wolves 
for (t + 1)th iteration can be updated as:

(9)yt+1 = yp,t − a ⋅ d

(10)d =
|||c ⋅ yp,t − yt

|||

(11)a = 2 ⋅ b ⋅ r1 − b

(12)c = 2 ⋅ r2

(13)b = 2 − 2 ⋅
(

t

maximumno. of iterations

)

(14)d� = ||c� ⋅ y�,t − yt
||

(15)d� =
|||c� ⋅ y�,t − yt

|||

(16)d� =
||c� ⋅ y�,t − yt

||

(17)y1 = y�,t − a� ⋅ d�

(18)y2 = y�,t − a� ⋅ d�

(19)y3 = y�,t − a� ⋅ d�

Therefore, the leading wolves alpha, beta, and delta estimate 
the state of prey and omega wolves update their states around 
the prey. In this way, on repeating the process of encircling 
and hunting activity of grey wolves in mathematical form the 
optima can be found for any optimization problem.

3.1.4 � Exploration (Search for Prey) and Exploitation (Attack 
on Prey) in GWO

In GWO algorithm, the search process of prey stops when 
wolf pack chases the prey and prey stops moving. In order to 
simulate the behaviour of chasing the prey, the value of b is 
linearly decreased as the iteration proceeds. In the algorithm, 
the exploration of a search space by grey wolves is con-
trolled by vectors A and C. When |A| > 1 or |C| > 1 , the new 
search regions are discovered by wolves in order to explore 
the unvisited regions of search space that helps in preventing 
the pack from stagnation in local optima and this situation 
refers the process of searching prey within search space.

When |A| < 1 or |C| < 1 , the search spaces are exploited 
locally by grey wolves in order to discover the better posi-
tions around the explored regions and this situation demon-
strates the attacking behaviour by wolves on prey.

As the iterations increase, the value of b decreases, 
and therefore, the value of A decreases, and when 
t → maximumno. of iterations , the value of A → 0 , and 
therefore, the vector C is accountable for the exploration of 
search space at this state.

4 � Random Walk Grey Wolf Optimizer

This algorithm was proposed by the authors [38, 39] for 
unconstraint and constraint optimization problem to enhance 
the search ability of leading wolves alpha, beta, and delta of 
the pack. It has been observed experimentally that the clas-
sical GWO faces the problem of premature convergence in 
local optimum as the algorithm is completely dependent on 
the leading guidance of alpha, beta, and delta wolves, and if 
they trapped in sub-optimal solutions, then the whole wolf 
pack trapped in local optima due to the absence of optimum 
leading guidance. Another reason of proposing this modified 
GWO (RW-GWO) is to update the states of leading hunters, 
alpha, beta and delta of the pack. Because, in the classical 
GWO, it has been observed that these leading wolves were 
updating their states with the guidance of low fitted wolf. 
For example, alpha wolf was updating with the guidance of 
beta and delta. Similarly, beta wolf was updating with the 
help of delta wolf. Therefore, a proper optimum guidance 
should be there so that the leaders can improve their states 

(20)yt+1 =
(
y1 + y2 + y3

)
∕3
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to find prey. With the motivation of improvement in leaders 
with optimum direction, authors proposed a novel search 
strategy for leading wolves based on the Cauchy random 
walk.

4.1 � Cauchy Random Walk Search Strategy 
for Leading Wolves

The random walk [48] is a random search process in which 
search proceeds with consecutive random steps. Mathemati-
cally the random walk can be defined as:

where st is a step length that can follow any random distribu-
tion. Mathematically a relation can be established between 
any two successive random walks as:

(21)wT =

T∑
t=1

st

(22)

wT = s1 + s2 +⋯ + sT−1 + sT

=

T∑
t=1

st =

T−1∑
t=1

st + st+1

where aj is a parameter used to control the step length. In our 
proposed algorithm Random Walk GWO, random steps yj 
follow the Cauchy distribution. The reason behind choosing 
Cauchy distribution is the variance of Cauchy distribution 
which is infinite and which helps the leaders to explore the 
search space with the exploitation of search regions which 
are already explored as the parameter yj sometimes takes a 
higher value which helps in taking a long jump when the 
leaders are trapped in local solution, and the small value 
of yj that is obtained from distribution helps in discovering 
the optimum states in a neighbourhood of already explored 
states. Thus, the Cauchy-distributed random steps help in 
local as well as a global search of search space. In this strat-
egy, parameter aj is considered as a vector that is decreased 
linearly from 2 to 0 as the iterations proceed to converge the 
wolf pack (population of solutions). The framework of the 
algorithm Random Walk Grey Wolf Optimizer is presented 
in Algorithm 1.

(23)yN = y0 + a1y1 +⋯ + aNyN = y0 +

N∑
j=1

ajyj

Algorithm 1. Pseudo code of Random Walk Grey Wolf Optimizer

From this relation, it can be observed that next position 
depends only on current state and selected step length from 
current state to next state. In a random walk, the step can be 
fixed or can be varied. For our algorithm, assume that the 
current state of the wolf is y0 and the final state after N steps 
by a random walk is yN , i.e.

4.2 � Computational Complexity of Random Walk 
Grey Wolf Optimizer

Since the algorithm complexity plays an important role to 
analyse the complexity of algorithms, the user always pre-
fers less complex algorithm. Therefore, in the present sec-
tion, the worst time complexity of classical GWO and the 
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RW-GWO algorithms has been calculated in terms of big 
O notation. The pseudocode of the algorithms presented in 
Algorithm 1 can be used to evaluate the complexity. There-
fore, the complexity of algorithm for classical GWO and 
Random Walk Grey Wolf Optimizer is calculated as:

Similarly, for RW-GWO,

where T is the total number of iterations and N is the size 
of wolf pack and D represents the dimension of the prob-
lem under consideration. Hence, it can be concluded that 
in terms of computational complexity, both the algorithms 
classical GWO and the RW-GWO are same.

4.3 � Constraint Handling

A majority of the meta-heuristic algorithms are designed 
initially to obtain an efficient result of unconstraint optimiza-
tion problems. However, in real life, most of the problems 
are constrained optimization problem. In the present study, 
the considered coordination of overcurrent relay problem is 
highly complex and highly constrained. Therefore, to deal 
with the constraints a static penalty approach [49] is used 
to obtain a solution of the problem in which the objective 
function is defined as

O(GWO) = O(position update) + O(selection of leaders)

= O(T × (N × D)) + O(N)

= O(T × N × D)

O(RandomWalkGreyWolf Optimizer) = O(T × N × D)

(24)

obj =

⎧
⎪⎨⎪⎩

f (x) if the solution x is feasible

f (x) +
m∑
j=1

cj ×
�
max

�
0, gj(x)

���
otherwise

where the value of � can be 1 or 2 and cj (j = 1, 2,… ,m) 
are the penalty parameters. The equality constraint h can be 
transformed easily into inequality constraint by the simple 
transformation

where ∈ is predefined tolerance parameter and h(x) is the 
equality constraint.

5 � Experimental Setup and Results

In the present work, Random Walk Grey Wolf Optimizer is 
applied to solve the complex nonlinear coordination over-
current relay problem. The population size is a very crucial 
parameter for any meta-heuristic algorithm. As very small 
size of the population fails to explore the search space of the 
problem, very large population size may fail to determine an 
efficient solution. Therefore, a suitable population size for 
algorithm should be chosen. In the present study, the popula-
tion size is fixed as 30 for each algorithm, and the 30 runs of 
each algorithm are executed on each case of bus system to 
analyse the search efficiency of applied algorithms. In order 
to compare the performance of the RW-GWO algorithm, the 
recent optimization methods such as classical GWO [22], 
improved Grey Wolf Optimizer (mGWO) [27], Exploration 
Enhanced Grey Wolf Optimizer (EEGWO) [40], Weighted 
Grey Wolf Optimizer (wGWO) [41], Salp Swarm Algorithm 
(SSA) [50], Chaotic Salp Swarm Algorithm (cSSA) [51], 
and Sine Cosine Algorithm (SCA) [52] are used. For fair 
comparison, the maximum number of iterations are fixed as 
100 for each algorithm. Since each search agent is evaluated 
once in an iteration of each algorithm, the total number of 
function evaluations which are utilized to solve the prob-
lem is 3 × 103. The 4-bus system which is used to evaluate 

(25)g(x) = |h(x)|− ∈

Fig. 1   4-Bus system
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the search efficiency of RW-GWO algorithm is described 
as follows:

5.1 � Test Model

To evaluate the performance of the RW-GWO algorithm, 
a 4-bus distribution network (DN) with distributed energy 
resources (DERs) is considered which is shown in Fig. 1. 
The DN consists of three DERs such as synchronous-based 
DER (SBDER) and inverter-based DERs (IBDERs) con-
nected at buses B2, B3, and B4, respectively. The capacity of 
SBDER and IBDER is 3MVA and 2 MW, respectively. The 
current transformer (CT) ratio is calculated based on maxi-
mum load current (ILmax) flowing through each relay and 
is given in Table 1. Three phase-to-ground faults (F1–F3) 
are considered at midpoint of all three feeders to determine 
fault currents flowing through primary and backup relays. 
The DN with DERs fault logic is developed using real-time 
digital simulator (RTDS) [53]. The three phase-to-ground 
fault and line-to-line fault are considered as maximum and 
minimum faults, respectively.

The RW-GWO algorithm is tested for three different oper-
ating modes (cases) of 4-bus DN with DERs and is given as:

1.	 Grid-connected mode (GCM).
2.	 Islanded mode (IM).
3.	 Disconnection of DERs (DCDERs).

5.1.1 � Grid‑Connected Mode (GCM) of Operation

The DN is operated in grid-connected mode when switches 
S1, S2, S3, and S4 are closed as shown in Fig. 1. In this 
mode of operation, whenever fault occurs, the fault current 
is contributed by both main grid and DERs connected to 

Table 1   Current transformer 
(CT) ratio for relays

Relay R1 R2 R3 R4 R5 R6

CT ratio 2000/5 1000/5 1000/5 1500/5 1250/5 2000/5

Table 2   Load current, fault current, and CT ratio for case 1 of 4-bus 
system

Currents are in kiloampere

S. nos. ILmax Ifmin Ifmax CT ratio

1 0.0575 5.9604 6.904 2000/5
2 0.0575 0.7148 0.7645 1000/5
3 0.0869 2.1776 2.542 1000/5
4 0.0869 0.8646 1.092 1500/5
5 0.0216 2.9548 3.46 1250/5
6 0.0216 0.159 0.2818 2000/5

Table 3   Primary-backup relay pairs and the corresponding fault cur-
rents for case 1 of 4-bus system

Currents are in kiloampere

Relay pair Primary 
relay

Backup relay Iprimary Ibackup

1 2 6 0.7645 0.1856
2 2 4 0.7645 0.7148
3 3 6 2.542 0.075
4 3 1 2.542 2.434
5 5 4 3.46 0.6695
6 5 1 3.46 2.886

Table 4   Comparison of result 
for case 1 of 4-bus system

Decision 
variable

GWO mGWO EEGWO wGWO SSA cSSA SCA RW-GWO

TS1 0.1898 0.1553 0.0500 0.1919 0.1407 0.2422 0.3661 0.1864
TS2 0.0500 0.0500 0.0500 0.0500 0.0503 0.0505 0.0970 0.0500
TS3 0.0789 0.0834 0.0500 0.0879 0.1927 0.0720 0.1740 0.0618
TS4 0.0856 0.0934 0.0500 0.0893 0.0502 0.0503 0.0714 0.0573
TS5 0.1115 0.1112 0.0500 0.1132 0.1229 0.0835 0.0504 0.0819
TS6 0.0500 0.0500 0.0500 0.0500 0.0502 0.0504 0.0610 0.0783
PS1 120.3939 218.0614 120.0000 120.8840 615.0625 127.3707 311.7155 150.4693
PS2 150.5918 150.7642 150.0000 150.5923 260.8937 210.7318 157.2245 150.1939
PS3 180.4084 188.7195 130.3500 158.3529 186.0213 327.5188 216.7141 317.5247
PS4 172.2688 151.5529 130.3500 163.0350 382.7351 369.8752 524.3663 275.6706
PS5 84.7871 92.9261 75.0000 79.3736 139.2822 260.1958 184.7804 272.2695
PS6 104.9400 104.9400 50.0000 104.9400 104.1693 104.8918 103.7143 50.0000
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the DN. The maximum load current, minimum fault cur-
rent, and maximum fault current flowing through all the 
relays (R1–R6) are provided in Table 2. The fault current 
flowing through all primary and backup relays is shown in 
Table 3. The obtained setting of decision variables TS and 
PS by RW-GWO and classical GWO algorithms is shown 
in Table 4. The value of the obtained relay operating time 
is also presented in Table 11. In the same tables, the results 
are also compared with several optimization methods such as 
improved Grey Wolf Optimizer (mGWO) [27], Exploration 
Enhanced Grey Wolf Optimizer (EEGWO) [40], Weighted 
Grey Wolf Optimizer (wGWO) [41], Salp Swarm Algorithm 

(SSA) [50], Chaotic Salp Swarm Algorithm (cSSA) [51], 
and Sine Cosine Algorithm (SCA) [52].

5.1.2 � Islanded Mode (IM) of Operation

The DN is operated in islanded mode when switches S2, S3, 
and S4 are closed as shown in Fig. 1. In this mode of opera-
tion, whenever fault occurs, the fault current is contributed 
by only DERs connected to the DN. The maximum load 
current, minimum fault current, and maximum fault current 
flowing through all the relays are provided in Table 5. The 
fault current flowing through all primary and backup relays 
is shown in Table 6. The obtained value of decision variables 
TS and PS by RW-GWO and classical GWO algorithms is 
shown in Table 7. The value of the obtained relay operating 
time is also presented in Table 11. In the same tables, the 
results are also compared with several optimization methods 
as similar to case 1.

5.1.3 � Disconnection of DERs (DCDERs)

The DN is operated in disconnection of DERs mode when 
only the switch S1 is closed as shown in Fig. 1. In this mode 
of operation, whenever fault occurs, the fault current is 
contributed by only main grid. The maximum load current, 
minimum fault current, and maximum fault current flow-
ing through all the relays are provided in Table 8. The fault 

Table 5   Load current, fault current, and CT ratio for case 2 of 4-bus 
system

Currents are in kiloampere

S. nos. ILmax Ifmin Ifmax CT ratio

1 – – – –
2 0.0979 0.8612 0.9064 1000/5
3 0.0442 0.2601 0.4253 1000/5
4 0.0442 0.9408 1.041 1500/5
5 0.0213 0.8127 0.8691 1250/5
6 0.0213 0.1866 0.2437 2000/5

Table 6   Primary-backup relay pairs and the corresponding fault cur-
rents for case 2 of 4-bus system

Currents are in kiloampere

Relay pair Primary 
relay

Backup relay Iprimary Ibackup

1 1 5 0.9064 0.2465
2 1 3 0.9064 0.728
3 2 5 0.4253 0.217
4 4 3 0.8691 0.7608

Table 7   Comparison of result 
for case 2 of 4-bus system

Decision 
variable

GWO mGWO EEGWO wGWO SSA cSSA SCA RW-GWO

TS1 0.0503 0.0532 0.0500 0.0510 0.0500 0.0500 0.0535 0.0533
TS2 0.0594 0.0516 0.0500 0.0627 0.0501 0.0551 0.0907 0.0554
TS3 0.1205 0.0789 0.0500 0.0990 0.0500 0.0886 0.1308 0.0838
TS4 0.0646 0.0668 0.0500 0.0702 0.0500 0.0714 0.0903 0.0506
TS5 0.0818 0.0503 0.0500 0.0500 0.0500 0.0632 0.1279 0.0766
PS1 163.5773 149.8020 146.8500 158.2433 251.9130 208.7664 233.3046 149.8568
PS2 66.3825 89.1695 66.3000 68.5332 83.1245 119.2741 90.1519 67.9033
PS3 100.0082 200.0759 90.0000 144.7169 518.7295 180.7045 226.9727 182.0433
PS4 99.4707 92.6221 75.0000 85.0233 307.4134 84.6307 181.5967 153.3558
PS5 60.7087 103.8565 60.0000 104.2950 117.7020 92.5882 64.0884 66.5975

Table 8   Load current, fault current, and CT ratio for case 3 of 4-bus 
system

S. nos. ILmax Ifmin Ifmax CT ratio

1 0.3069 3.277 0 2000/5
2 –
3 0.12925 1.155 0.4253 1000/5
4 –
5 0.0994 1.37 0.8691 1250/5
6 –
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current flowing through all primary and backup relays is 
shown in Table 9. The obtained value of decision variables 
TS and PS by RW-GWO and classical GWO algorithms is 
shown in Table 10. The value of the obtained relay operating 
time is also presented in Table 11. In the same tables, the 
results are also compared with several optimization methods 
as similar to cases 1 and 2.

From Table 11, where the operating time for each case of 
4-bus system is presented, it can be observed that the RW-
GWO algorithm determines the minimum operative time 
and optimal setting for overcurrent relays as compared to 
the other comparative algorithms.

The diversity plot in terms of average distance 
between the solutions in each generation is plotted in 
Fig. 2. The Euclidean distance ||.|| between two solutions 
X =

(
x1, x2,… , xd

)
 and Y =

(
y1, y2,… , yd

)
 is calculated as 

follows:

From the diversity curves, it can be analysed that the aver-
age distance between the search agents in RW-GWO is less 
as compared to classical GWO which shows the better bal-
ance between the exploration and exploitation in RW-GWO. 
From these curves, it can be also observed that the leading 
hunters which are improved through random walk provide 
a better guidance as compared to classical GWO because 
RW-GWO provides better solution to the problem and the 
average distance between the search agents is less as com-
pared to classical GWO.

(26)||X − Y||2 =
√√√√ d∑

j=1

(
xj − yj

)2

6 � Conclusion and Future Scope

Coordination of directional overcurrent relays is a very 
trending and complex nonlinear problem in the field of elec-
trical engineering. The problem consists of a large number of 
constraints which makes the problem more difficult to solve 
compared to unconstrained problems. In the present work, to 
find the optimal setting for overcurrent relays, a Novel Ran-
dom Walk Grey Wolf Optimizer is employed. In the paper, 
three cases of 4-bus system are used. The performance com-
parison of RW-GWO algorithm is conducted with classical 
GWO, improved Grey Wolf Optimizer (mGWO), Explora-
tion Enhanced Grey Wolf Optimizer (EEGWO), Weighted 
Grey Wolf Optimizer (wGWO), Salp Swarm Algorithm 
(SSA), Chaotic Salp Swarm Algorithm (cSSA), and Sine 
Cosine Algorithm (SCA). The experimental analysis and 
performance comparison with algorithms indicate the bet-
ter quality of solution accuracy of RW-GWO algorithm to 
solve the coordination problem. Analysing the comparative 
performance, it can be recommended to use Random Walk 
Grey Wolf Optimizer to find the efficient optimal setting for 
the coordination of overcurrent relays.

In future, another complex bus model can be consid-
ered for the evaluation of search ability of Grey wolf opti-
mizer and Random Walk Grey Wolf Optimizer. The other 

Table 9   Primary-backup relay pairs and the corresponding fault cur-
rents for case 3 of 4-bus system

Relay pair Primary 
relay

Backup relay Iprimary Ibackup

1 3 1 2.316 2.541
2 5 1 2.799 2.96

Table 10   Comparison of result 
for case 3 of 4-bus system

Decision 
variables

GWO mGWO EEGWO wGWO SSA cSSA SCA RW-GWO

TS1 0.0760 0.0880 0.0500 0.0777 0.0816 0.0888 0.1454 0.0760
TS2 0.0705 0.0681 0.0500 0.0598 0.0621 0.0654 0.0783 0.0637
TS3 0.0856 0.0731 0.0500 0.0825 0.0842 0.0598 0.0925 0.0848
PS1 799.9250 655.5816 460.3500 776.0894 724.2289 641.1648 763.5282 799.4056
PS2 211.9911 238.2476 193.8750 302.5423 306.8994 302.0440 335.6851 263.3001
PS3 154.2958 234.7489 149.1000 170.1429 160.0080 360.6551 274.7722 157.5032

Table 11   Comparison of results on different cases of 4-bus system 
with various state-of-the-art algorithms

a Indicates the infeasibility of the obtained solution

Algorithm 4-Bus system 
case 1

4-Bus system 
case 2

4-Bus 
system 
case 3

RW-GWO 1.5622 1.3501 0.6416
GWO 1.6022 1.3844 0.6433
mGWO 1.6175 1.3739 0.6610
EEGWO 0.8567a 0.8988a 0.3790a

wGWO 1.6216 1.3967 0.6448
SSA 2.1643 1.7907 0.6578
cSSA 1.8147 1.5452 0.6748
SCA 2.9231a 2.3262 1.0017
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constraint-handling mechanisms can also be integrated in the 
RW-GWO to develop a constrained RW-GWO.
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