Arabian Journal for Science and Engineering (2019) 44:9779-9786
https://doi.org/10.1007/513369-019-04009-z

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE l‘)

Check for
updates

Developing a Portable Human-Robot Interaction (HRI) Framework for
Outdoor Robots Through Selective Compartmentalization

Effective Integration of the Robot Operating System (ROS) and Android for Outdoor Robots

Sami Salama Hussen Hajjaj'® - Khairul Salleh Mohamed Sahari’

Received: 25 April 2018 / Accepted: 25 June 2019 / Published online: 4 July 2019
© King Fahd University of Petroleum & Minerals 2019

Abstract

One of the challenges of outdoor robots is developing effective portable Human-Robot-Interaction (HRI) frameworks. Hand-
held devices offer a practical solution. By equipping these devices with robot software, they can be made to interact with
the outdoor robots. Android devices are ideal as they are open source and can be integrated with robots powered by the
Robot Operating System (ROS), also open source. However, due to the limits of rosjava, the mechanism that links ROS with
android, and the conflicting modes of operation between ROS and android, current implementations of ROS-android offer
limited robot applications that do not support advanced operations such as autonomous navigation and others. This paper
implements selective compartmentalization to overcome these limitations, by combining ROS with android through a number
of ROS and android bridges that would facilitate the development of advanced robot applications. Through the proposed
method, authors were able to develop a portable HRI framework that allowed human operators to supervise an outdoor mobile
robot while it performed an autonomous task. From their mobile devices, users were able to initialize the robot, configure its
motion, and monitor its progress. Also, users were able to reprogram the robot to perform new tasks (not previously planned)
through a creative use of features offered in the developed HRI framework. Also, user cognitive effort was reported to be
low as evident by the positive score on the NASA-TLX scale test which was corroborated with robot performance data. This
paper presents the detailed development and implementation steps.

Keywords Autonomous mobile robots - Robot Operating System (ROS) - Android - Human-Robot-Interaction (HRI) -
Portable HRI frameworks - Outdoor robot applications

1 Introduction

Open-source robotics has gained a lot of interest in recent
years. Leading the charge is the Robot Operating Sys-
tem (ROS), which offers nearly 3000 software packages
to cover all aspects of robot operations, such as naviga-
tion, image-processing, and more [1-5]. One of the primary
challenges of implementing outdoor mobile robots is devel-
oping portable Human-Robot-Interaction (HRI) frameworks
[6,7]. An effective solution is to utilize android devices that
are equipped with the needed robot software [8—12] Being
open-source, the android platform is ideal for integration

B Sami Salama Hussen Hajjaj
ssalama@uniten.edu.my

Centre for Advanced Mechatronics and Robotics, Universiti
Tenaga Nasional, 43000 Kajang, Selangor, Malaysia

with ROS, allowing developers to tap into android’s vast
resources. Indeed, efforts to link ROS robots with android
devices have been reported [8—11]. However, due to the
inherent differences between ROS and android, and the lim-
itations of rosjava, the framework linking ROS with android,
these efforts have been limited. Rosjava allows only the sim-
plest form of ROS software (Fig. 1) to be established in
android. Higher-level constructs, such as the aforementioned
ROS Packages, would need to be re-written from scratch in
android, greatly limiting the scope of the developed ROS-
android systems [13].

This paper presents a novel approach to developing an
effective link between ROS and android, by utilizing Selec-
tive Compartmentalization for advanced robot systems. This
paper presents a detailed development procedure, followed
by an implementation on an autonomous outdoor mobile

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-019-04009-z&domain=pdf
http://orcid.org/0000-0003-1198-4802

9780

Arabian Journal for Science and Engineering (2019) 44:9779-9786

Cloud resources and other Platforms

f//\\/\“‘\/v /
' / Mega Packages, Applications |

Ssgfasass s ses o Sje = D A t—---

B ® Generic ROS nodes: Publishers, Subscribers, etc.

Fig.1 The ROS Software Architecture, edited from [14]

robot. Finally, the paper evaluates the performance of the
developed robot, the developed portable HRI framework, as
well as the proposed approach used to implement it.

1.1 The Challenges of ROS-Android Systems

ROS and android have different modes of operations; in ROS,
software components (nodes, packages, actions, etc.) launch
on application start and publish/receive data continuously
and simultaneously. In android, on the other hand, most mod-
ules start only when prompted by user input (screen touch,
pressing a button, etc.). These conflicting modes of operation
between ROS and android may prevent proper integration as
ROS nodes capturing user input might start before or even
without user input, causing system crashes and app failures.
Some researchers developed a low-cost telepresence robot by
embedding an android tablet onto an ROS-ready moving base
[8]. The android device would capture user hand gestures
and movements, effectively establishing a natural interface
between the robot and the operator. But by embedding the
android device onto the robot, its mobility was eliminated.
People had to be in close proximity to interact with it which
limited its range and usefulness.

Recognizing this limitation, other researchers added a sec-
ond android device to act as a remote controller. Users could
Teleop (remote control) the robot by re-orienting the second
android device [11]. Other researchers used another ROS
package, rosbridge, to extend this interaction through the
Internet for outdoor robot applications [9,10]. But although
they were able to Teleop the robots and receive image
feedback, the interaction was very network dependent. As
reported by the authors, network delays would throw user
commands and robot feedback out of sync, adversely affect-
ing its motion [9,10]. But even if we ignore networking
issues, Teleop does not cater for advanced or autonomous
robot applications because it is a direct motion command
that the user must enter to move the robot. Without Teleop,

@ Springer

ROS-ready robot android device

ROS The ROS-android bridge \ android

User Input & Instructions
Robot Performance

Robot Task
Robot updates

ROS_ready

android_ready —
Android Activities

ROS pacakges

Fig. 2 Linking ROS with android through Selective Compartmental-
ization

the robot remains idle or in its last state. Autonomous robots,
however, require a degree of autonomy to perform their tasks
(patrol, agriculture, etc.) These works were limited to Teleop
because implementing any higher-level applications would
require re-writing ROS software in android. Aside from lost
time and effort, developers need to manage the differences
between C++ and Java (and/or Native C). The challenge is
further complicated if the required ROS package is built on
a hierarchy of other ROS packages, as is generally the case.

1.2 Selective Compartmentalization

An effective ROS—android pairing can be developed by inte-
grating only selected aspects of ROS within android (such
as ROS system requirements) and retaining core software in
its habitat as shown in Fig. 2. Through this approach, ROS
applications for robot software are retained on the robot’s
computer (or embedded system), while android activities for
human interaction are retained on the android device used
by the users. The ROS-android linking is then achieved by
developing a number of ROS and android bridges that pro-
cess and pass the required data (user input, robot data) back
and forth between the ROS and android habitats, as shown
2. However, default configurations of rosjava do not readily
facilitate this approach. Developed software would crash if
default rosjava were used. So, the authors made a number of
additions and original contributions to correct this and facil-
itate the proposed approach, effectively contributing to the
growth of ROS, android, and rosjava.

The next section discusses the steps needed to implement
Selective Compartmentalization to link ROS to android.

2 Methodology

In order to meet the objectives of this work and demonstrate
its effectiveness, the following conditions must be met:

. The robot implemented must be ROS-ready

. One or more android devices need to be used

. Networking set-up already established

. rosjava already installed

. Robot task and human involvement properly defined

N AW =

Arabian Journal for Science and Engineering (2019) 44:9779-9786

9781

One can purchase an ROS-ready robot off the shelf as
ROS is supported by most robot manufacturers today. For
custom-built or in-house robots, designers need to develop
the needed ROS hardware abstraction software, a number
of ROS packages (URDF model, tf tree, etc.) to make the
robot ROS-ready; detailed instructions can be found here
[15]. Wireless connectivity between the robot and the android
devices must be established, forming the ROS network; this
can be achieved through these instructions [16,17]. rosjava
needs to be installed onto the developers’ IDE (Integrated
Development Environment, such as Android Studio), as per
these instructions [18]. rosjava (and its android extension)
offers the RosActivity, an android Activity that meets ROS’s
system requirements; it registers the android device with the
ROS robot, it establishes and maintains a continuous connec-
tion with it (assuming networking was already established),
and it provides the platform to develop and launch the needed
ROS nodes from android. By clearly defining robot task and
the level of human involvement in it, the required ROS pack-
ages and android GUI elements needed to fulfil the task can
be identified, along with their meta-data (ROS topics, mes-
sage types, parameters, variable type definitions, etc.).

2.1 Experimental Set-up and Robot Task

In another related project, the authors were tasked with devel-
oping an outdoor, autonomous, mobile Patrol robot; a mobile
robot that autonomously patrols an outdoor field to prevent
intrusions. A human operator is needed to initialize the robot,
elect its task (patrol, stop, resume, goHome), define its patrol
locations, configure its motion (random, loop, intermittent,
etc.), and monitor its feedback (task progress, robot state).
Also, the operator must be on the field, and must use own
android device to interact with the robot.

As shown in Fig. 3, an empty parking lot was used to
simulate the outdoor field, traffic cones placed randomly for
each run as the intruders. The robot used in this experiment is
a customized Turtlebot2 robot, a modified ROS-ready robot,
modified to operate in the outdoors [15].

The proposed method of this paper, selective compart-
mentalization, is implemented to develop the needed ROS-

Fig.3 Robot and field used in this work

android HRI framework as discussed next. All developed
software is available on the GitHub page of this work [19].

2.2 Part I: Android-to-ROS Interactions

The objective of this interaction is to capture user input in
android, transfer it to the robot in ROS, and then use it to
trigger the robot into action as per user input.

In android: Based on task requirements (as defined
above), a number of android GUI elements were selected
to capture the required user input, as shown in Table 1.

Next, the Events (android protocols) of these elements
are configured to capture user input and pass it to rosjava
elements. For example, when the goHome button is clicked
(or when the onClick event is triggered), the corresponding
variable is assigned a pre-defined value. Similar Events are
also defined when other input methods are triggered (voice
command or when a point on the map is clicked).

In rosjava: based on the input captured, a correspond-
ing rosjava publisher is called to publish that input to the
robot. For example, when a user clicks on a command button,
the robotCommandPublisher captures the correspond-
ing commandID and publishes it to the robot (through the
already established ROS network, as discussed above). Sim-
ilarly, other input types are shown in Fig. 4.

In ROS: User input is divided into two types: initializa-
tion and task selection/configuration. Initialization is needed
to start the robot and define its patrol locations; this input
is written into a number of config files for later use. Task
selection/configuration input is saved as runtime variables
and used to trigger the needed robot task programs and
algorithms, as shown in Fig. 4 As shown in the figure,

ROS-ready robot | android device

ROS | ROS - android bridge | android
obot Loc Robot Loc I ﬂ I
Llslener < Publisher < onConghress LERIED I
files I Patrol Lo(s
Listener

Patrol Locs <

Publlsher = ,I onClick Iq_l Blttons I
v - - { IsRandom? |<I_IT°EE‘¢B““°"‘]
1 Robot Robot
Robot Patrol command 4‘ command o 1 Isintermittent? lq—&glellunonzl
Igorith Listener Publisher

= IonVoiceCornmand |< H Voice l
I onShakePattern |< l——I Shake l

Fig.4 android-to-ROS interactions

Table 1 Required user input and implemented android GUIs

Required user input Android GUI

Initialize (localize) robot MapView (with GoogleMaps)

Define Patrol locations MapView (with GoogleMaps)
Button, Switch, CheckBox

Button, VoiceCommand, Shake

Configure robot motion
Select robot task

@ Springer

9782

Arabian Journal for Science and Engineering (2019) 44:9779-9786

the robotCommandLi ster captures the commandID sent
from android, and uses it to call the corresponding ROS pro-
gram to perform that task, feeding it any parameters passed
along as well. For example, doPatrol task corresponds to
commandID = 4, and so on. The ROS programs that facil-
itate robot tasks (patrol, pause, resume, stop, goHome) are
also developed by the author, but they are not discussed here
since the focus of this paper is on the ROS—android interac-
tion and not on ROS development. However, the source code
of these programs is also available on the GitHub page of
this paper [19]

2.3 Part Il: ROS-to-Android Interactions

The objective of this interaction is to capture robot state in
ROS, and display it in android, Fig. 5.

In ROS: To achieve this, a number of ROS publishers
were developed to publish robot status, as shown in Table 2.
Collectively, these updates provide a comprehensive picture
of what the robot is doing. Status updates include job status,
system updates, and task completion status. Other updates
are self-explanatory. Part of being an ROS-ready robot, the
robot_state_publisher publishes a comprehensive
set of robot data: its current speed, sensor data, odometry,
power level, etc. [20]. For this work, only speed and battery
level were used.

In rosjava: The rosjava listeners are next developed
to capture the information published by ROS, and con-
vert it into data understood by android. For example,

[ROS-ready robot android device

l ROsS | ROS - android bridge |

android

robot status

Robot Patrol robot status e
Algorithm Publishers 7[> > Toast (Notifications)
D GPS MapView (Google Maps)
Listener
D barfery level —{ >| TextView (animated) I
Listener
robot state robot speed :
P | — D LiStene M ProgressBar (customized) I

robot camera "
D ImageView (LiveFeed)

Fig.5 ROS-to-android interactions

Table 2 Required robot output and used ROS publishers

Required robot output ROS Publisher

statusPublisher
GPSPublisher

status updates

robot current Location
robot speed robot_state_publisher
robot battery level robot_state_publisher

robot image feedback imagePublisher

@ Springer

the rsListener captures robot status (published by the
statusPublisher from ROS) and stores its content (sta-
tusID, statusText, etc.) as android objects. Other listeners are
developed to capture other robot updates, Fig. 5.

2.4 Part lll: Concurrency of Interactions

Unfortunately, the default settings of RosActivity would
cause every node within the ROS—android app (all android
and rosjava nodes) to start onAppStart, with all given the
same default node-name, and continuously run till it is
stopped by the user. This meant all notifications, all robot
commands, all clicks and checks, and all robot status updates
were all launched at the same time. Obviously, this resulted
in errors, overlapping and conflicting processes, killed pro-
cesses, over-utilized network bandwidth, and ultimately
system crashes and App shutdowns.

To resolve this, default rosjava settings were overwritten
to achieve the following: initialization and task selection pub-
lishers were reconfigured to run only when prompted by the
user; status publishers were to publish only when there is new
data (publishOnce), and finally, all nodes were launched with
a uniquely identifiable name. To achieve these changes, the
init method within RosActivity was modified, Fig. 6.

As seen in the figure, the NodeMainExecutor and
the NodeConfiguration objects are set global, making
them available to all other methods, such as the newly devel-
oped startNode method. Then, the startNode method was
placed where it was needed; if a node is needed to start
onAppStart, it is then called from within the init method

protected void init(NodeMainExecutor nodeMainExecutor) {
this.nodeMainExecutor = nodeMainExecutor;
nodeConfiguration = NodeConfiguration.newPublic(
getRosHostname(), getMasterUri());

startNode(rjsListener, "rjsListener_android");
startNode(gpsListener, "gpsListener_android");
startNode(speedListener, "speedListener_android");
startNode(batteryListener, "batteryListener_android");
startNode(liveFeedListener, "LiveFeedListener_android");}

protected void startNode(NodeMain node, String nodeName) {
nodeConfiguration.setNodeName (nodeName) ;
nodeMainExecutor.execute(node, nodeConfiguration);}

Fig.6 Establishing Concurrency for ROS—Android

protected void loop() throws InterruptedException {

if (publishoOnce) {
while (publisher.getNumberOfSubscribers()==0)
Thread.sleep(100);
if (i > 0) throw new InterruptedException();}

std msgs.Header msg = publisher.newMessage();
msg.setStamp(command_time) ;

msg.setSeq((byte) command_id);
msg.setFrameId(command_name) ;

Fig.7 The robotCommandPublisher

Arabian Journal for Science and Engineering (2019) 44:9779-9786

9783

.
(~ & Cloud Robotics / PortForwarding 5\
e (For outdoor robots) > =

ROS resources
robot software libraries
advanced modules:
actionlibs, pluginlibs, etc.
3 party packages

Networking
link to a cloud service
or a remote computer

(for outdoor robots)
local WiFi hotspot))))
ROS
q initialization receivers
Autonomous robot ¥ configuration receivers
ROS-ready robot
Sens)('" data <] T v autonomous tasks nodes "
processing T state publishers

Fig.8 The developed ROS—android HRI framework

35

= = @= = : Shake
v 1= ge =« \/OiCE
3
-« <@ - «Buttons __.—".
- e Qv erall ’_-—"
2 J
c
8
&
E
o
E
3
5
7
]
['4
W--.a-.. -g-- Sl s -8
0
Go Home Stop Resume Work

Fig.9 Response time of online input methods

(default behaviour), but if it was needed only on user input,
then it was called from that input’s Event method, as is
already discussed and shown in Fig. 4. Figure 6 shows how
each node was called with a unique name to prevent naming
conflicts. In ROS, publishers publish their messages contin-
uously regardless of the status of the message (changed or
not). While this behaviour is needed to facilitate robot per-
formance, not all publishers need to behave this way. User
commands, robot status updates, and notifications need to
be published only when a new data arrives; republishing the
same message over and over could over-burden the network,
which in turn could affect robot performance. The solution
was to implement the publishOnce approach, where the ROS
Publisher is modified to publish just one message and then
stop, Fig. 7.

The publisher first waits till it is connected with at least
one listener, then it publishes the message and then shuts
down. The figure also shows other modifications, such as set-
ting the commandID, commandName, and commandTime,
which are passed along to the robot. Command_time is
used for logging and later analysis.

- The Supervisory ROS-android HRI Framework

android o=
multiple input methods E
> multiple output views

ROS/android (rosjava)
initialization publishers
configuration publishers

task selection android resources Operator
state receivers | Ul elements Through android
phones, tablets,

I Google resources

g recognition algorithms
for natural interface
Google maps resources
(for outdoor robots)

Wearables, etc.

Config files (on robot)
home position

travel points

old tasks completion

With this, the set-up of the ROS—android HRI frame-
work, through selective compartmentalization, is complete
and ready for testing, which is discussed next.

3 Findings

Figure 8 shows all the android-to-ROS and ROS-to-android
interactions developed above. Along with the support
resources from android and ROS, they form the complete
ROS-android HRI framework, as developed through selec-
tive compartmentalization.

3.1 The Android-to-ROS Interactions

To test the effectiveness of input methods used for Task Selec-
tion and motion configuration, each was used to trigger the
robot ten times. Then, using data from ROS logs (Fig. 7), the
chart shown in Fig. 9 was produced.

Google recognition algorithms were implemented for
Voice and Shake, but due to noise and other factors, these
algorithms caused response delays and were not always suc-
cessful. As seen from the chart, Buttons scored 100%, Voice
77.5%, and Shake 62.5%. The Stop command scored a 100%
success rate by all methods; this happened because its voice
command, the word stop was easily pronounced, and its shake
pattern, a rapid left-to-right-to-left motion, were easily per-
formed by the test subjects.

To test the effectiveness of the interactive MapView, it
was put to the test and the robot was filmed in action, using
a flaying camera drone flown above the field; a screen grab
of that footage is shown in Fig. 10.

The figure is a composite showing the mapView from
android, the aerial view of the actual robot in the field, and
ROS’s visualization of the robot as captured remotely in the
home computer [17]. As the user selects the target locations
in android, the robot captures these locations, and then it

@ Springer

Arabian Journal for Science and Engineering (2019) 44:9779-9786

P T

Fig. 10 Evaluating the interactive Map View

begins to roam through these locations as per its motion con-
figuration, with the visualization tools following the robot
and showing its location in real time [19]. As an alterna-
tive, Google’s EarthView could also be used, as it provides a
different look and feel of the required area.

During testing, it was found that, through a creative use of
the input methods, the same robot could be made to perform
other tasks (other than patrol). This unplanned feature was
further tested and implemented indoors, as shown in Fig. 11.
By defining just one target location (aside from home) and
selecting intermittent motion, the robot became a delivery
robot to that location. Also, by selecting multiple locations
with the default motion (Loop), the robot became a tour guide
robot. This demonstrated that the robot performance could
be reconfigured from android, without re-programming or
hard-coding the robot software.

3.2 The ROS-to-Android Interactions

The output views were successfully able to capture the robot
output, as shown in Figs. 10 and 12. The developed interface
is highly customizable; the user could hide, show, and group
the views/input modules as well, this can be seen by compar-
ing Figs. 10 and 12. Furthermore, the framework supported
different android devices with different screen sizes; Fig. 12
shows a tablet layout, while Fig. 10 (the android component)
shows a phone layout.

3.3 Concurrency of the ROS-Android Interactions

Figure 13 shows the outcome of the modifications on rosjava
and RosActivity, as discussed above.

This is the ROS Node Graph of the framework (partial) as
produced by ROS’s rgt_graph package. The figure shows
the simultaneous processes established linking between ROS
and android and forming the developed framework. As seen
from the figure, all processes are parallel and independent of
each other, indicating concurrency.

@ Springer

W

Tour guide robot

-
4

Delivery robot

Fig. 11 Supporting multiple robot applications through the configura-
tion/selection classes

000000 K=

Fig. 12 The developed android interface

frobotJobStatus rjsListener_android robotJob_status_id

Fig. 13 Establishing ROS—android Concurrency

aptop_charg

HIE

3.4 Evaluating User Cognitive Workload

The success of an HRI framework depends heavily on its
cognitive workload. An interface might offer many features,
but they would be meaningless if the users required a lot
of thinking or were confused when using these features. In
this work, the NASA Task Loading index (TLX) test was
administered to gauge user cognitive workload.

Each participant was required to guide the robot to patrol
the field and find an intruder, three separate times. Ten final
year students participated in this experiment, and none of

Arabian Journal for Science and Engineering (2019) 44:9779-9786

9785

100

70

20

10

0
1 2 3 4 5

Participants

8

Score
&8 &8 8

8

mmmm Mental demand s Physical d d Temp mmmm Performance

— Efiort ——— TLX Score

m— Frustraton

Fig. 14 Overall results of the NASA TLX test

them had prior experience with the framework. Test results
showed that the developed framework scored 34.2 out of
100 on the combined TLX test scale, indicating a low-to-
moderate workload requirement. In this test, raw TLX results
were used (each TLX scale was treated equally). On its own,
TLX results may be subjective, but when corroborated with
the above findings, a clearer picture is established.

4 Discussion

As seen from the above, the ROS—android framework devel-
oped in this work offers a number of appealing features that
cater for advanced and autonomous robots.

The framework offers multiple input methods, such as
Buttons, Voice, Shake, and the interactive MapViews. These
methods collectively allowed users to enter higher-level robot
commands such as robot initialization, task selection, and
configuration. This is far more sophisticated than any of the
current implementations of ROS—android HRI frameworks,
which usually offer Teleop motion commands.

Teleop robots are not truly autonomous as they require
continuous and direct motion commands from user, which
place a heavy burden on the wireless network and its band-
width. That is why, the current implementations are mostly
indoor or very limited outdoor systems (as reported by their
authors [9,10]). On the other hand, the input commands of
the developed framework do not require continuous input
because they are mostly user notifications and user updates.
This greatly reduces networking burden and bandwidth uti-
lization and allows the robot to focus on its task, making it
truly autonomous.

Furthermore, through a creative use of input commands
(initialization, configuration, and selection), the framework
can configure the same ROS robot to perform multiple
jobs without re-programming or hard-coding. In this work,

three applications were demonstrated using the same robot:
delivery, tour guide, and patrol (outdoors). Furthermore, the
framework could also support other robot jobs as well, such
as Search & Rescue, agriculture operations, and a variety of
social robots tasks. Current implementations do not offer the
same flexibility and versatility.

Also, the platform offers a number of android views that
provide a comprehensive representation of the condition of
the whole system; from the state of the robot, to the task
being performed and its completion status, to the current
configuration of the platform itself. In contrast, currentimple-
mentations offer only the robot’s image feed.

Indirectly, the developed framework resulted in improved
robot energy efficiency and battery life. Through shorter
robot response time, Fig. 9, and the lowered cognitive effort,
Fig. 14, the robot has become more time-efficient and there-
fore better utilizes its battery power.

Collectively, the above features offer an effective portable
HRI framework that allows for the development of advanced
robot system, that would require minimal software re-
creation, would even result in improved robot efficiency and
battery life, and one that requires only the use of android
devices.

5 Conclusions

The paper began by reviewing current implementations of
ROS-android-based HRI frameworks. After the review, it
was found that current implementations focused mostly on
Teleop or remote control of the robot, using ROS-android.
While impressive, Teleop does not cater for autonomous
robots, and is very network dependent. This greatly limits
the scope and potential of these current implementations.

On the other hand, this work presents a novel approach to
linking ROS with android, by developing a number of ROS
and android bridges that process and pass the required data
(user input and robot data) back and forth between the ROS
robot and the android device, as shown in Fig. 2.

To test the validity of the developed framework, it was
tested on three robot applications, an indoor delivery robot,
an indoor tour guide robot, and an outdoor patrol robot.
The framework supported these three applications without
any further re-programming or hard-coding (aside from the
remote-networking set-up for the outdoor application [17]).

The developed framework offered its users the avenue
to assume a supervisory role over the autonomous robots,
through the following interaction features:

— The framework supports multiple input methods, allow-
ing users to input higher-level commands to initiate,
configure, and select robot tasks.

@ Springer

9786

Arabian Journal for Science and Engineering (2019) 44:9779-9786

— These input commands are notification or offline in
nature, which frees the robots from user interaction while
they perform their autonomous tasks.

— This also reduces networking burden and bandwidth uti-
lization, as demonstrated by the response time data shown
in the figures above.

— This has a number of output views that display a compre-
hensive representation of the state of the whole system:
robot state, job status and completion, and others.

— The platform also offers a number of customization tools
for a greater user experience; user can hide/show com-
ponents, or use phones or tablets of different sizes.

With this, this work achieved its objectives, by providing
a ROS-android HRI framework that truly realizes the full
potential of ROS, android, and other open-source technolo-
gies, hopefully opening the door for more research in this
area and facilitating more practical robot systems.

6 Future Works

There is plenty of room for further development; researchers
could develop specialized input/output classes that focus on
specific ROS sensors, to be developed separately and added
when that sensor is used. Android support could be extended
to wearables, which would allow humans to use their android
watches or glasses to interact with the ROS robots, opening
a variety of new and exciting implementation.

Acknowledgements The authors would like to thank the Innovative
& Research Management Centre (iRMC), and College of Engineer-
ing, Universiti Tenaga Nasional (UNITEN), for their continued support
of this work. Also, the authors would like to thank Mr. Ismail I. M.
Al.Mahdy for his contributions in the development of some of the
android GUIs and their components.

References

1. Boren, J.; Cousins, S.: New exponential growth of ROS [ROS top-
ics]. IEEE Robot. Autom. Mag. 18(1), 19 (2011). https://doi.org/
10.1109/MRA.2010.940147

2. O’Kane, J.M.: A gentle introduction to ROS (Independently pub-
lished, 2013). http://www.cse.sc.edu/~jokane/agitr/

3. G, Z.; et al.: ALLIANCE-ROS: a software framework on ROS
for fault-tolerant and cooperative mobile robots. Chin. J. Electron.
27(3), 467 (2018). https://doi.org/10.1049/cje.2018.03.001

4. Mishra, R.; Javed, A.: ROS based service robot platform. In:
2018 4th International Conference on Control, Automation and
Robotics (ICCAR) (2018), pp. 55-59. https://doi.org/10.1109/
ICCAR.2018.8384644

@ Springer

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

. B.M.etal.: A two-layer network Orchestrator offering trustworthy

connectivity to a ROS-industrial application. In: 2017 19th Inter-
national Conference on Transparent Optical Networks (ICTON)
(2017), pp. 1-4. https://doi.org/10.1109/ICTON.2017.8025148

. Albani, D. et al.: Monitoring and mapping with robot swarms for

agricultural applications. In: 2017 14th IEEE International Confer-
ence on Advanced Video and Signal Based Surveillance (AVSS)
(2017), pp. 1-6. https://doi.org/10.1109/AVSS.2017.8078478

. Choubisa, T. et al.: Comparing chirplet-based classification with

alternate feature-extraction approaches for outdoor intrusion detec-
tion using a pir sensor platform. In: 2017 International Conference
on Advances in Computing, Communications and Informatics
(ICACCI) (2017), pp. 371-379. https://doi.org/10.1109/ICACCI.
2017.8125869

. Do, HM. et al.,An open platform telepresence robot with natu-

ral human interface. In: The 2013 IEEE 3rd Annual International
Conference on Cyber Technology in Automation, Control and
Intelligent Systems (CYBER) (2013), pp. 81-86. https://doi.org/
10.1109/CYBER.2013.6705424

. Speers, A. et al.: Lightweight tablet devices for command and

control of ROS-enabled robots. In: The 2013 16th International
Conference on Advanced Robotics (ICAR) (2013), pp. 1-6. https://
doi.org/10.1109/ICAR.2013.6766481

Codd-Downey, R.; Jenkin, M.: Dynamic mobile interfaces for
command and control of ROS-enabled robots. In: The 2015 12th
International Conference on Informatics in Control, Automation
and Robotics (ICINCO), vol. 02 (2015), vol. 02, pp. 66-73

de A. Barbosa, J.P. et al.: ROS, Android and cloud robotics: How
to make a powerful low cost robot. In: The 2015 International Con-
ference on Advanced Robotics (ICAR) (2015), pp. 158-163

. B.G. et al.: Android application for simultaneously control of mul-

tiple land robots which have different drive strategy. In: 2017
International Conference on Computer Science and Engineering
(UBMK) (2017), pp. 724-728. https://doi.org/10.1109/UBMK.
2017.8093513

Cerruti, J.: Using native ROS packages on android. http://wiki.ros.
org/android_ndk (2016)

Mohanarajah, D.H.G.; D’ Andrea, R.; Waibel, M.: Rapyuta: a cloud
robotics platform. IEEE Trans. Autom. Sci. Eng. 12(2),481 (2015).
https://doi.org/10.1109/TASE.2014.2329556

Hajjaj, S.S.H.; Sahari, K.S.M.: Bringing ROS to agriculture
automation: hardware abstraction of agriculture machinery. Int. J.
Appl. Eng. Res. 12(3), 311 (2017)

The ROS Wiki. Running ROS across multiple machines. http:/
wiki.ros.org/ROS/Tutorials/MultipleMachines (2016).

Hajjaj, S.S.H.; Sahari, K.S.M.: Establishing Remote ROS Net-
works via Port Forwarding: a Detailed Tutorial. Int. J. Adv. Robot.
Syst. 14(3), 1 (2017). https://doi.org/10.1177/1729881417703355
Stonier, D.: The android package in ROS [indigo], ros wiki. http://
wiki.ros.org/android (2015).

Hajjaj, S.S.H.: The GitHub Repository of this work. https://github.
com/sami-s-hajjaj (2018)

Satellite imagery: Astrium, DigitalGlobe. The android world—
hardware. https://www.android.com/ (2014)

https://doi.org/10.1109/MRA.2010.940147
https://doi.org/10.1109/MRA.2010.940147
http://www.cse.sc.edu/~jokane/agitr/
https://doi.org/10.1049/cje.2018.03.001
https://doi.org/10.1109/ICCAR.2018.8384644
https://doi.org/10.1109/ICCAR.2018.8384644
https://doi.org/10.1109/ICTON.2017.8025148
https://doi.org/10.1109/AVSS.2017.8078478
https://doi.org/10.1109/ICACCI.2017.8125869
https://doi.org/10.1109/ICACCI.2017.8125869
https://doi.org/10.1109/CYBER.2013.6705424
https://doi.org/10.1109/CYBER.2013.6705424
https://doi.org/10.1109/ICAR.2013.6766481
https://doi.org/10.1109/ICAR.2013.6766481
https://doi.org/10.1109/UBMK.2017.8093513
https://doi.org/10.1109/UBMK.2017.8093513
http://wiki.ros.org/android_ndk
http://wiki.ros.org/android_ndk
https://doi.org/10.1109/TASE.2014.2329556
http://wiki.ros.org/ROS/Tutorials/MultipleMachines
http://wiki.ros.org/ROS/Tutorials/MultipleMachines
https://doi.org/10.1177/1729881417703355
http://wiki.ros.org/android
http://wiki.ros.org/android
https://github.com/sami-s-hajjaj
https://github.com/sami-s-hajjaj
https://www.android.com/

	Developing a Portable Human–Robot Interaction (HRI) Framework for Outdoor Robots Through Selective Compartmentalization
	Effective Integration of the Robot Operating System (ROS) and Android for Outdoor Robots
	Abstract
	1 Introduction
	1.1 The Challenges of ROS-Android Systems
	1.2 Selective Compartmentalization

	2 Methodology
	2.1 Experimental Set-up and Robot Task
	2.2 Part I: Android-to-ROS Interactions
	2.3 Part II: ROS-to-Android Interactions
	2.4 Part III: Concurrency of Interactions

	3 Findings
	3.1 The Android-to-ROS Interactions
	3.2 The ROS-to-Android Interactions
	3.3 Concurrency of the ROS–Android Interactions
	3.4 Evaluating User Cognitive Workload

	4 Discussion
	5 Conclusions
	6 Future Works
	Acknowledgements
	References

