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Abstract
The device-to-device (D2D) communication is a candidate technology to implement 5G standards commercially. To initiate
D2D, device discovery is a primary issue and very few algorithms have been proposed for device discovery. A discovery
algorithm has many parameters to discover the accurate position of the devices in walking and velocity scenarios. Due to rapid
changes in the environment, LOS and NLOS algorithms become complex and accurate discovery ventures. Therefore, it is
needed to evaluate the performance of the discovery algorithms. In this paper, a methodological approach is introduced for the
performance evaluation of discovery algorithms. The performance evaluation for discovery estimation errors and complexity
is evaluated using metrics and parameters, and analysis is made for range-based RSS technique using performance metrics.
Discussion of performance evaluationmetrics and criteria is analyzed followed by numerical/experimental, simulationmodels,
and the parameters which affect performance and assessment. The metrics and criteria are defined in terms of a discovery
signal success ratio, average residual energy, accuracy, and root-mean-square error (RMSE). Two differentiating discovery
studies, Hamming and Cosine, are given and contrasted with reference RMSE for evaluation. This paper concludes with
a discovery algorithm improvement cycle overview from simulation to implementation. It decreases discovery error and
enhances RMSE accuracy by an average of 21%. It also reduces the complexity of 12 pairs by Euclidean distance by 29%.

Keywords D2D communication ·Device discovery · Performance analysis ·Discovery algorithms · Root-mean-square errors
(RMSE)

1 Introduction

In recent years, device-to-device (D2D) communication has
received special attention as a candidate technology of 5G
wireless communication. D2D communication empowers
direct connection of discovery-based services and applica-
tions of proximal devices. It will improve spectrum usage,
system throughput, and energy effectiveness. There are
two potential possibilities generally for the communication
between two distance-based proximal devices as presented
in Fig. 1. First, if the devices are near to each other, they can
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communicate in two ways, directly or via the base station.
Second, if the devices are extremely far apart, cellular infras-
tructure is used. Therefore, to initiate D2D communication,
device discovery is a fundamental problem. There are two
types of device discovery initiation procedure: autonomous
discovery and network-assisted discovery. In an autonomous
device discovery procedure, one device transmits a known
reference signal (beacon) without coordination of network
and uses a randomized procedure. The communication and
discovery without coordination are usually time- and energy-
consuming. So, the assistance of the existing system is
used for device discovery procedure by coordinating fre-
quency and time and their distribution for transmitting and
receiving discovery signals [1]. The outcomes are energy effi-
ciency, efficient resource management, interference control
andmode selection using link qualities. So, network-assisted
device discovery is considered in this research because it
improves the device discovery process and has been proved
in this work [2].
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Fig. 1 a D2D communication
and cellular communication,
b network-assisted device
discovery for D2D
communication

Many technologies for positioning and localization (dis-
covery) have been implemented for out-band D2D commu-
nication, but the fine time estimation is quite difficult due to
unlicensed spectrum [2–8]. Presently, in view of technolog-
ical innovation, the device discovery for emergency devices
can be committed as RF based, inertial measurement units
(IMU) based and hybrid [6, 9]. The primary advantage of the
RF-based discovery system is that it travels through obsta-
cles, and therefore, network performance is not disturbed
by device motion by walking and velocity. The device dis-
covery performance can be enhanced by relaying, and the
discovery process can be rehashed after relaying. However,
it requires more than three base station (triangulation) esti-
mations to discover the devices and suffers from NLOS,
weather conditions and the unavailability of relay devices.
IMU-based device discovery is another research area that
depends on inertia and movement of sensors (3D magne-
tometer and barometer, 3D accelerometer and gyroscope)
that create IMU. The upside of such discovery procedure is
low cost, no additional infrastructure, discovery continuity,
and the capability for indoor condition, while the disadvan-
tages are error exponential, effective by velocity and need
for an emergency incident commander. The hybrid may be a
combination of RF and IMU based, but due to heterogeneity
decisions and area conditions, accurate discovery is difficult.
Therefore, by taking advantage of in-band RF based, discov-
ery algorithm performance is evaluated.

Performance evaluation is essential for researchers, either
for validation of new discovery algorithm against the pre-
ceding algorithm or while selecting the current algorithm
which best fits the prerequisites of a given D2D applica-
tion. However, there is an absence of unification in the D2D
field due to new technology in terms of discovery algorithm
assessment and correlation. Also, no standard methodol-
ogy/technique exists to evaluate algorithmvia simulation and
emulation, modeling and real deployment [10]. Thus, it can
be difficult to evaluate precisely how and under what con-

ditions one algorithm is superior to another. In addition, it
can be difficult to choose what performance measures of dis-
covery algorithms are to be looked at or assessed against.
It is significant for the accomplishment of the subsequent
implementation given that diverse applications will have
divergent necessities. This is because the discovery algo-
rithm is required to be utilized as a part of real applications
and it is not definite to confirm their simulation perfor-
mance. This research here contends that algorithms ought
to be imitated and consequently implemented in equipment,
in D2D-enabled environment, as part of the entire trial of
their performance.

In 5G cellular, the proposed accuracy of discovery is in
centimeters (cm) [11] and latency less than 10 ms. There-
fore, the required accuracy and latency for in-band device
discovery can be achievable because of control propaga-
tion characteristics, robust signaling, and high-resolution
range. Both industry and academia are focusing on high
accuracy of device discovery for different applications and
scenarios. In this research, range-based (RF-based) device
discovery is assessed and correlation matrix introduced to
improve the accuracy. In all cases, performance metrics are
evaluated for complexity, precision, and accuracy. In this
paper, performance evaluation metrics are assessed together
with three primary criteria, which are discovery signal suc-
cess ratio (DSR), average E2E latency, and RMSE. Given
that devices are normally constrained in terms of lifetime
and per-device computational resources, tending to these
requirements prompts the trade-off in the performance of the
discovery algorithm. For instance, if boosting the discovery
accuracy is the premier need, particular equipment must be
added to everyRF-based discovery system, expanding device
size, price, andweight. On the other hand, if the device acces-
sibility is already decided, then the application requires that
performance criteria be adjusted. In this research, analysis of
the range-based RSS error is evaluated using Euclidean dis-
tance, Hamming distance, and Cosine distance. In addition,
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accuracy, precision, complexity, and cost of the proposed
algorithm are evaluated.

The rest of the paper is organized as follows: Sect. 2
explains the related work for device discovery algorithms.
The performance evaluation methodology is discussed in
Sect. 3withmetrics andparameters, and evaluation of discov-
ery error. Section 4 explains the analysis of the range-based
RSS technique with performance metric using different sce-
narios. Discovery error estimation (DEE) using triangulation
is derived in Sect. 5, and results and discussion are explained
in Sect. 6. Section 7 concludes the paper.

2 RelatedWork

AD2D communication is broadly utilized as a part of numer-
ous conditions to perform different monitoring tasks in IoTs.
To carry out these tasks, different algorithms have been pro-
posed to afford better precision regardless of whether anchor
device density is low [12], while in high-density areas, the
probability of anchor device is high. The anchor devices dis-
covery benefits use today to enhance discovery ratio and the
assignment of the anchor devices is to help other obscure
devices to discover their location. To discover the unknown
devices, range-based techniques are applied and angle of
arrival (AOA) or distance/direction information (DOA) is
required to determine the direction of obscure devices. How-
ever, while these techniques give high precision, additional
equipment is required to find device coordinates. It also per-
mits to route the discovery signal through relaying [13, 14].
So, in a D2D network, devices gather the information about
surroundings and also share their observed data to the D2D-
enabled base station. The base station holds the data in the
database unit, where devices can access the data without
searching the surroundings as presented by the model in
Fig. 2. The discovery algorithms are applied to minimize
the discovery errors and to maximize the precision.

The device discovery is an important problem for D2D
communication and its applications [3, 15, 16]; however, not
all applications require fine time determination of discovery.
For such services and applications, even though discovery
error is introduced by a discovery algorithm, this may not
be injurious. But in 5G cellular network standardization,
accuracy and time are the main parameters of discovery.
Therefore, there are very few discovery algorithms proposed
for device discovery based on the integration technologies
proposed in 5G [17, 11]. These discovery algorithms are
classified into the following groups: range based and range
free, region based and connectivity based, and many more
[5–8, 18]. It has been explained in the literature that dif-
ferent classes of algorithms introduce errors with different
characteristics. Therefore, different types of errors are added
up during the development of an algorithm [19, 20]. The

algorithm performance is compared with traditional tech-
niques using device density and discovery error as explained
in Table 1.

There are alsomany types of researches that have explored
the different types of errors for D2D discovery [21, 22].Most
research considers the Euclidian distance between definite
discovery and estimates discovery as an error metric to judge
the accuracy discovery algorithms. The direct functions for
Euclidian distance are also used to normalize the error val-
ues based on communication range [12, 23]. However, there
is no significant research that contemplates the other met-
rics such as Hamming distance, Cosine distance, precision,
complexity, and cost that are argued in this research, and
it is sure that this paper is the first attempt to incorpo-
rate various other metrics to judge the accuracy of device
discovery algorithm in D2D communication. We have pro-
posed more than two algorithms [1, 2, 24] that will be also
evaluated to measure the performances. Some metrics are
popular and well known in other domains such as WSN,
but not recognized in D2D communication. Besides these
popular metrics, novel metrics that can fit D2D applica-
tions and will be tolerated according to applications are
suggested, and therefore, this research can be considered
as an alternative metric in discovery domain. Hence, this
study is considered here as a unique and innovative con-
tribution for performance evaluation of device discovery
algorithms.

Among the extensive literature survey on device discov-
ery, two performance indicators are very important, namely
energy efficiency and discovery latency [25, 26]. Device dis-
covery in a single cell and multicell and in dense areas is
equally important. Energy efficiency strongly depends on
the discovery latency, and discovery latency has statistical
properties which may change in the different application
context [27]. Very few researchers have donework on discov-
ery latency. However, in some applications, initial discovery
latency is the only concern while final discovery latency is
the main concern in others. While it is attractive to have a
high energy efficiency and a low discovery latency [28], it
is not hard to perceive a trade-off between energy efficiency
and discovery latency. A higher energy efficiency usually
prompts a lower discovery latency. Therefore, how to adjust
these two conflicting measurements becomes key. To shorten
the discussion, a compositemetric is proposed in [29], known
as power-latency product, resulting in average energy con-
sumption on worst discovery latency. Another important
parameter is the discovery accuracy [30] to assess the perfor-
mance of discovery procedure and algorithm. It demonstrates
the difference between true value and the estimated value of
discovery. Precision is also another parameter to calculate
the reproducibility of progressive discovery measures [31].
This value can be utilized to evaluate the robustness of the
discovery algorithm as it uncovers the variety of discovery
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Fig. 2 Discovery algorithm
model

Table 1 Comparison of the
proposed algorithm Metrics Standard discovery algorithm based on

Centroid Weighted centroid DV hop Improved DV hop

Equations Xest �
∑n

i�1 Xi
n

Yest �
∑n

i�1 Yi
n

Xest �
∑n

i�1 Wi Xi
Wi

Yest �
∑n

i�1 WiYi
Wi

Wi � 1
Hopi Wi �

(
1

Hopi

) 1
n

Complexity Simple Simple Complex Complex

Range based Yes Yes No No

Error rate High High Low Low

Accuracy High High High Low

Distribution LOS Uniform Non-uniform Uniform

Anchor devices
density

High High Moderate low

appraisals over several iterations. To calculate the precision,
it is needed to initially find the median discovery of random
devices in the first iteration. After that, Euclidean error of
each estimated device using median position is computed
[21].

3 Performance EvaluationMethodology

In this section, discovery model for multiuser and orthog-
onal frequency-division multiple-access (OFDMA) system
and discovery using sphere decoder-like (SDL) algorithm
[1, 2] in in-band 5G networks performance is evaluated for
both moveable and static devices. The performance metrics
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Fig. 3 Methodology for device discovery using the proposed algorithm
for performance evaluation

evaluation, simulation parameters, and simulation results are
discussed. The RSS andDOA are applied to discover devices
in areas of interest as presented in Fig. 3. The discovery
performance can be assessed through least square, analyt-
ical modeling, Taylor series and (extended) Kalman filter
[30]. The algorithms were assessed under many situations
with various propagation conditions for static and moving
devices and under the human body’s impact. A NLOS error
mitigation and identification algorithm was likewise used
to enhance the ranging measurements. Performance met-
rics are defined which help in comparing device discovery
algorithms. In this way, the performance of the proposed dis-
covery algorithm under the diverse situations is compared in
view of the accompanying measurements: precision, accu-
racy, and RMSE. The accuracy is expressed by the average
distance error, and precision is characterized as the suc-
cess probability of estimated discovery regarding accuracy
using traditional methods. In any case, this methodology
needs to give helpful information for an indoor discovery
precision, since the precision is constantly connected with
the accuracy and these measurements are autonomous. So,
precision and accuracy are presented as a cumulative dis-
tribution function (CDF) and expressed in numerical value
[32].

Table 2 Simulation parameters

Parameters Rate

Coverage area 100×100 m2

Devices 10, 15, 20 and 25 pairs

Mobility model Haphazard walk, velocity

Velocity Haphazard walk 0.25, 1 and 1.5 m/s

Velocity 10, 50 and 100 m/s

3.1 Metrics and Parameters

The performance evaluation algorithm is developed in MAT-
LAB and evaluated in terms of discovery signal success ratio
(DSR), end-to-end (E2E) latency, energy consumption, and
signaling overhead by changing the parameters [33]. The
important changing parameters are the number of devices
and mobility (haphazard walk and velocity) as presented in
Table 2. The main metrics are:

3.1.1 DSR (%)

It is the ratio of discovery signal delivered to discovery
devices to discovery signal sent by all discoverer devices
and calculated as:

DSR% �
∑

all discovery signal received by all destination devices
∑

all discovery signal sent by all discoverer devices
(1)

3.1.2 Average E2E Latency

It is ameasurement of the taken time for delivery of discovery
signal to the destination devices. It is measured from the first
discovery signal to be recognized by the discovery device. It
embraces propagation and hop delay, NLOS, and scattering.
It is computed as

E2E Latancy �
∑N

1 Timer − Times
N

(2)

where Timer and Times are reception time and the sending
time, respectively, and N is the number of successful discov-
ery signals.

3.2 Evaluation of Discovery Errors

The D2D applications that insist on discovery (position
information) of devices, which can be estimated by vari-
ous discovery algorithms, unavoidably may present different
kinds of error in their estimation. How an application is influ-
enced by errors and a discovery error metrics reaction to
errors may rely upon the error characteristics [30] as
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a b c

Fig. 4 a Euclidean distance, b Cosine distance, c Hamming distance

3.2.1 Accuracy

Accuracy is the most important parameter to assess the per-
formance of discovery algorithm. It shows the difference
between true and estimated discovery. This parameter ismea-
sured as the Euclidean error and defined as

D2
Accuracy � (xEst − xActual)

2 + (yEst − yActual)
2 (3)

where xEst, yEst are estimated coordinates by the discovery
algorithm and xActual, yActual are the true coordinates.

3.2.2 Precision

Precision calculates the reproducibility of progressive dis-
covery measures. This value can be utilized to evaluate the
robustness of the discovery algorithm as it uncovers the
variety of discovery appraisals over several iterations. To cal-
culate the precision, it is necessary to initially find themedian
discovery of random 50 (25 pairs) devices in first iteration.
After that, Euclidean error is computed for each estimated
device using median position as:

D2
Precision � (xEst − xmedian)

2 + (yEst − ymedian)
2 (4)

3.2.3 RMSE

Unlike accuracy, using RMSE gives error for X and Y coor-
dinates. The RMSE on coordinates can be calculated as

RMSE2
i �

∑
(Esti − Actuali )2

Number of Estimates
(5)

where i is the axis. The joint values of RMSEX and RMSEY

give net RMSEof the discovery algorithm, and the net RMSE
can be calculated as:

(Net RMSE)2 � RMSE2
X + RMSE2

Y (6)

Therefore, it is important to compute the correct error metric
to assess the error performance of substitute discovery pro-
cedure that is conceivable to use for an application. To date,
unfortunately, only shortsighted error metric relies upon the
Euclidean distance between a base station or anchor device
position and discovery device. To evaluate the performance
of the proposed algorithm, two common metrics, Euclidian
error and Hamming error, are used, and results are compared
with Cosine error.

3.2.4 Euclidean Distance

It gives the shortest distance metric between true value and
estimated value as shown in Fig. 4a and is calculated as:

dEuc �
√
(
xi − x̂i

)2 +
(
yi − ŷi

)2 (7)

μEuc � 1

N

N∑

i�1

dEuc (8)

where xi and yi are true value coordinates and x̂i and ŷi are
estimated values of the device. N is the number of devices in
search space and μEuc discovery error calculated by the dis-
covery algorithm for all devices. In this metric, every device
discovery and its estimates are thought of in isolation from
other device discoveries and their estimates. Since this met-
ric does not have the direction information of device in the
network, it does not do well in NLOS conditions. This is
why it may not be a decent metric in applications for which
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evaluating relative discovery is more critical than evaluating
absolute discovery.

3.2.5 Hamming Distance

Hamming error is another two-dimensional and prevalent
metric. It is the measured distance of coordinates along axis
at right angles as presented in Fig. 4c. It has finite field with x
and y elements. TheHamming error between any two vectors
x and y is μHam � d(0112, 0122) � 1 and usually satisfies
conditions as

μHam � 0 onlywhen x � y (9)

μHam(x, y) � μHam(y, x) (10)

μHam(x, z) ≤ μHam(y, x) + μHam(y, z)when x, y, zEF
(11)

Therefore,

dHam(x, y) � (∣
∣x̂i − xi

∣
∣ +

∣
∣ŷi − yi

∣
∣
)

(12)

μHam � 1

N

N∑

i�1

dHam (13)

It does well even in dense areas, but due to binary constraints,
its accuracy and complexity are not good.

3.2.6 Cosine Distance

It is a similarity measure metric that incorporates multiple
values at one time instead of single value. It is used in data
recovery domain. Device discovery domain considers two

devices having twovectors
⇀

Xi j and
⇀

X
′

i j , actual and estimated,
respectively. The Cosine values depend on θ between the
vectors as presented in Fig. 4b. It is opposite to Euclidian
matric and good for where directivity is needed [21]. It has
range between -1 and +1. From Fig. 4b, the Cosine distance
between two devices is calculated as 1−cos θ

2 . For multiple
devices in dense area, the topology distance is computed as

cos θ �
⇀

Xi j · ⇀

X
′

i j
∣
∣
∣
∣

⇀

Xi j

∣
∣
∣
∣

∣
∣
∣
∣

⇀

X
′

i j

∣
∣
∣
∣

(14)

dCos(x, y) � 1 − cos θ

2
(15)

μCos � 2

N (N − 1)

N∑

i�1

N∑

j�i+1

dCos (16)

Table 3 Overview of proposed error metrics

Error metrics Proposed error metrics based on

Euclidean error Hamming error Cosine error

Equations (8) (13) (16)

Complexity Low High Low

Operating
environment

Range
based/free

Range based Range based

Error rate High High Low

Accuracy Low Medium High

Energy
consumption

Low High Low

Convergence
time

Low High Low

Precision High Moderate High

RMSE Low High Low

It doeswell even inNLOSconditions due to its characteristics
(14). Therefore, this error metric has been applied for perfor-
mance evaluation in this research. A shortsighted overview
of proposed error metrics is explained in Table 3.

4 Analysis of the Range-Based RSS
Technique

The RSS presents the relationship between transmitted and
received power of discovery signal with respect to the dis-
tance of discoverer:

Pr (dB) � A − 10a log� (17)

where PR is the received power, � is the distance between
discoverer and discovery and a is the propagation constant
that is dependent on the environment. From (17), the values of
A describe the association between the RSS and the distance
of a discovery signal transmission. There are two RSS prop-
agation models: log-normal shadow fading and free-space
models. Log-normal shadow fading model is appropriate for
both indoor and outdoor [34]. It is best suited for discov-
ery signal due to its flexibility to different environmental
conditions. On the other hand, free-space models have some
advantages such as longer transmission distance than antenna
size and carrier wavelength. In addition, free-space models
are not affected as much by obstacles. The received power at
distance � device is

PR(�) � PTGTGRλ2

(4π�)2L (18)

PL(dB) � 10 log
PT
PR

� −20 log

[
λ

4π�

]

(19)
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where GT and GR are the antenna gains, L is the system loss,
PT is the transmitted power and (19) is the attenuation factor.
For log-normal shadowing fading, it gives many parameters
for different environments as

PL(�)(dB) � PL(�) + Xσ � PL(�0) + 10 log a

(
�

�0

)

+ Xσ

(20)

where �0 is reference distance and depends on empirical
values, a is path loss exponent and depends on propagation
characteristics andXσ is Gaussian random variable with zero
mean. It also depends upon the frequency and power so,

P(�) � P(�0) − 10a log
�

�0
+ Xσ (21)

P(�) is received power for exact located devices at � and
Xσ ∼ N

(
0, σ 2

)
. P(�0) is the free-space path loss and relies

upon frequency used by the discovery signal. Therefore, it is
considered as frequency-dependent parameter [35]. Further-
more, path loss exponent depends on transmission frequency
a ∝ f(MHz). In the RSS-based device discovery, signal prop-
agation parameters are computed online or off-line. Online
RSS measurements consume more radio resources than off-
line, but when devices are moving, RSS updating is not
possible. If σ and a are found precisely in any environment,
then RSS discovery will be quite perfect. Moreover, the RSS
pattern has been gathered from the experimental setup and
RSS

(
rm,n

)
database values are

� �

⎡

⎢
⎢
⎢
⎣

r1,1 r1,2 . . . r1,n
r2,1 r2,2 . . . r2,n
...

...
. . .

...
rm,1 rm,2 . . . rm,n

⎤

⎥
⎥
⎥
⎦

(22)

where� is used as off-line and online training data. The PDF
of gathered RSS data using path loss model can be composed
as

fx,y(�) �
k∏

i�1

10

log 10
√
2πσ 2

i �
exp

[

−�

4

(

log
di

d̂

)2
]

(23)

where � � [
rm,1 . . . rm,n

]
, d̂ � d0

(
RSS(d0)

Pi

) 1
ai

Different measurements are used to quantify the perfor-
mance of discovery techniques. The accuracy is not the only
parameter to explain the performance of the algorithms.
Alluding to the literature, most discussed performance eval-
uation parameters are complexity, robustness, accuracy,
scalability, coverage, and cost. They are basically associ-
ated with thrifty or technical requirements, for example,
equipment cost, stumpybattery power, andminimumcompu-
tational complexity. The discovery accuracy (DA) is a very

important parameter for requirement of discovery system,
and mean error is considered as performance metric. It is
explained as follows:

DA% � 1

k

K∑

i�1

x̂i − x2i
r2i

(24)

where K is the number of devices to be discovered, di and
d̂i are true value and estimated value, respectively, and ri is
the RSS range of the device inside the network coverage.
It is presented in percentage and normalized with coverage
range. Cooperative and centralized discovery system gives
more accurate discovery than distributed ones [1]. Clearly,
the greater the accuracy, the better the discovery framework.
However, it is trade-off between discovery estimation accu-
racy and other features as coverage, complexity, and many
more. Therefore, a bargain between the required accuracy
and other features is required. These features are coverage,
complexity, scalability, robustness, and cost [36].

The device discovery depends on the network coverage
and device transmission range. If the devices are out of
coverage, then accurate device discovery is much difficult.
Cooperative coverage will help to improve the discovery
range. Complexity is attributed as software, hardware, and
operation factors. Range-based discovery is much complex
due to hardware involvement than range free. Discovery
algorithm has also computing complexity. So, a centralized
discovery process is preferred due to low complexity. Scala-
bility is a measure in which right discovery is ensured when
network coverage area is expanding or changing. A discov-
ery system should scale as per network size, density, and
dimensional space. Robustness is a measure of discovery sta-
bility even discovery signal is noisy or unavailable. In some
cases, especially in indoor discovery, the discovery signal is
blocked due to obstructions and NLOS condition. Therefore,
some devices in the network could be uncertain. The cost of
discovery system depends on software, hardware andweight,
energy, and time. But the RSS-based device discovery does
not need any extra hardware. To get better resolution, addi-
tional hardware is generally required that altogether increases
the cost of every device and besides enhances the weight of
the devices.

The development and evaluation of discovery algorithm
cycle implies modeling, simulation and validation. Every
cycle is characterized and validates precise feature of the
algorithm. The algorithm is modeled based on the prescribed
parameters of discovery such as RSS, DOA, and AOA. After
modeling, simulation validates the algorithm under specific
and simulated conditions, and this verifies the function of
the algorithm. After simulated verification, the algorithm is
applied to real applications. To evaluate the performance
of the proposed algorithm, worst-case scenario is consid-
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Fig. 5 Discovery time divisions

ered, when no device is discovered during discovery interval.
It is divided into three probable groups: (1). A� no other
devices receive when every device is transmitting its dis-
covery request in transmission state, (2) B � one device
receives when all other devices’ discovery signals are trans-
mitting, and (3) C � when all the devices answer, and N is
the total number of devices in dense area. The discovery is
apportioned into three states: request state, offset state, and
response state, as presented in Fig. 5. The request has fur-
ther two states, transmit and receive, while response time is
converted to observe and answer. It will work as presented in
flowchart shown in Fig. 6. When group A occurs, transmitter
and receiver patterns overlap. Therefore,

P(A) � 1

2

(
1

2

(
1

(
d(tmax) − d

(
tmin

)
+ 1

)

))N−1

(25)

When group B occurs, some devices choose the same dis-
covery signal on whole discovery channel,

P(B) �
[
N−1∑

M�2

(〈
x
y

〉(
1

2

)N
)

×
(
1

j

)M−1
]X

(26)

whereM is devices at the same frequency, N is total devices,
and X is maximum discovery time and minimum discover-
able time is 1. C case is the combination of A and B [32].

5 Discovery Error Estimation (DEE) Using
Triangulation

RSS from more than two base stations creates a triangle as
presented in Fig. 7. It enhances the discovery ratio and quality

with minimum error. It is relatively meek, since it associates
the base station with strongest RSS as device discovery.
One fundamental function in mobile devices is to discover
the base station with strongest RSS. Accordingly, this tech-
nique can be accomplished without hardware enhancement
of either device or base station. Therefore, to enhance the
accuracy, algorithm for estimation andmaximization of asso-
ciated parameters is needed. The algorithm calculates the
device discovery with location error. Regarding each base
station, it often has different error values due to shadowing
fading. With the RSS of the base station, it is conceivable
to evaluate the distance between the device and the base sta-
tion and devices can get their positions from several adjacent
cells or base stations. This will transform the problem into
the outstanding triangulation situating issue [37], which is
depicted in Fig. 7. This issue can be portrayed as below:

x2m + y2m � d2 (27)

(xm − xb1)
2 + (ym − yb1)

2 � d21 (28)

(xm − xb2)
2 + (ym − yb2)

2 � d22 (29)

(xm − xb3)
2 + (ym − yb3)

2 � d23 (30)

Here, (xbi , ybi ), i ∈ [1, 2, 3 . . .], is the location of base
stations, d2i ∈ [1, 2, 3 . . .] is the separation from the device
to base stations, and (xm, ym) is the location of the device.
Equation (27) has two obscure factors (xm and ym) and three
different equations for three cells. If di can be gained pre-
cisely, the solution of equationswill also be precise. The issue
is that the distance di is considered with RSS. In the trans-
mission, the signal would endure interference and shadow
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Fig. 6 Discovery signal transmission and reception with device states

Fig. 7 Triangulation positioning

fading, and di would not be correct distance between base
station and device [38]. In this case, (28)–(30) will advance
into

(31)

(32)

(33)

where ei (t), i ∈ {1, 2, 3 . . .}, is distance error brought about
by the shadow fading and interference which is a function
of time. Equations (31)–(33) may not have an analytical
solution. However, the numerical solution may solve it. The
solution equations give the shortest distance from the base
station and provide the device discovery solution. By com-
bining from (27)–(30) and subtracting (27) from (28), (29)
and (30) yield

x2b1 + y2b1 − 2xmxb1 − 2ym yb1 � d21 − d2 (34)

x2b2 + y2b2 − 2xmxb2 − 2ym yb2 � d22 − d2 (35)

x2b3 + y2b3 − 2xmxb3 − 2ym yb3 � d23 − d2 (36)

To solve the above equations, convert them into matrix form
for LLME solution as
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⎡

⎣
xb1 yb1
xb2 yb2
xb3 yb3

⎤

⎦

︸ ︷︷ ︸
	

[
xm
ym

]

︸ ︷︷ ︸
αi

� 1

2

⎡

⎣
d21 − d2 − k21
d22 − d2 − k22
d23 − d2 − k23

⎤

⎦

︸ ︷︷ ︸
ki

(37)

[
xm
ym

]

� 1

2

⎡

⎣
xb1 yb1
xb2 yb2
xb3 yb3

⎤

⎦

−1⎡

⎣
d21 − d2 − k21
d22 − d2 − k22
d23 − d2 − k23

⎤

⎦ (38)

where k2i � x2bi + y2bi in which xbi and ybi are the true posi-
tions of ith base station and xm and ym are the estimated
device positions. If ki represents the measured range and di
represents the true range, di can be written in terms of ki as di
� αiki, where αi is NLOS propagation and has values 0<αi

≤1. The values αi are limited in such a way that the NLOS
error is a vast positive bias that makes the measured ranges
to be more prominent than the exact ranges. From the RSS
(ri ) measured values,

ri � αi − 10β log(di ) + ηi (39)

where β is path loss exponents and η ∼ Norm(0, σ ). The
RSS from ith base station and the distance can be calculated
by

di � log−1
(

αi + ηi − ri
10β

)

(40)

θ � tan−1
(
yb − ym
xb − ym

)

+ η (41)

User position is changing simultaneously due to themobil-
ity, so it is necessary that every base station tracks the
behavior of the device using environmental information.
Therefore, device discovery procedure can be performed by
every base station independently, and many intriguing prac-
tices arise when numerous base stations running a device
discovery procedure coordinate to distinguish an entering
user. The accessibility of more base stations reduces the dis-
covery time because of the parallelism search. From (39),
the αi could be calculated using the pseudoinverse of � as
follows:

α̂i � 1

2

(
99T

)−1
�ki (42)

6 Results and Discussion

There are many measures to evaluate the device dis-
covery algorithms. These metrics are accuracy, precision,
root-mean-square error, complexity and robustness against
attacks. Other parameters that may help to evaluate the
performance of discovery procedure are discovery signal

success ratio, average end-to-end latency, average residual
energy and signaling overhead. From Eqs. (31) to (33) and
(42), the can be defined as

(43)

where is the estimation error of ith devices, αi �
[xm, ym]T , which has ith device coordinates and is exces-
sively complex. It is appealing to calculate and investigate
discovery estimation errors (DEE) as

(44)

where and . gi(m) is the
global discovery estimation error with the help of the base
station. Suppose, in a dense area like stadium and shopping
mall where there are a large number of devices, by applying
the law of large numbers (LLN)

(45)

where−→ p → 1 is the convergence probability toward one.
is not only a statistical average, but it converges to

any realization of ((xm, ym),m � 1, . . . , N ). To calculate
average discovery estimation from (44),

(46)

where �i is the small changes and can be calculated as ς1 −
ςN , . . . , ςN−1 − ςN with ςN � d̂2i− j − d2i− j . Applying the
trace on gives

(47)

(48)

�
⎛

⎝
N−1∑

i�1

W j j
(
�i j

)2 +
N−1∑

i�1

N−1∑

j�1, j 
�k

W jk
(
�i j

)
(�ik)

⎞

⎠ (49)

E
{(

�i j
)
(�ik)

} �
{

σ 2 i f j�k
0 i f j 
�k (50)

(51)

Standard concepts of computational complexity of any
algorithm in time and space can be utilized as correlation
measurements for the relative cost of discovery algorithms.
For instance, in dense areas, the discovery algorithm withO(
n3

)
complexity takes extensive time to converge as com-

pared to O(
n2

)
and the same is valid for space complexity

[39]. This is because, as the number of devices increases,
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Fig. 8 a Cosine distance, b Hamming distance, c Euclidean distance

Fig. 9 3D view of Cosine distance of devices in dense areas

volume of memory (RAM) is required and will increment
at a specific rate. The algorithm that requires less memory
at a given scale might be ideal. This may help stimulate a
trade-off between distributed and centralized algorithms; for
example, centralized approach is better for dense areas.

To evaluate the discovery algorithms, the primary parame-
ter is an evaluation of the discovery error, which is explained
in Sect. 3. Further, it has three basic parameters, which are
accuracy, precision, andmean square error. Accuracy defines
the difference between estimated values and true values,
while precision revolves around the median and gives a more
robust accuracy of discovery algorithm. The mean square
error gives the difference inX and Y coordinates and depends
on the number of estimations. If estimations are large like in
dense areas or in multicell, it gives small values. To calcu-

late these parameters, Cosine error metrics is applied and
compared with Euclidean error metrics and Hamming error
metrics. To compare these metrics, simulation parameters
mentioned in Table 1 are used and results are presented in
Fig. 8. The Cosine error metrics give more accurate discov-
ery than Hamming and Euclidean error metrics. A 3D view
of Cosine error metrics of discovered devices in dense area
is presented in Fig. 9.

The discovery accuracy depends upon variance and the
number of devices. Variance shows the difference of obser-
vation with each other. There are two states of variance:
probability of discovery (p) and probability of no discovery
(1 − p). By applying the binomial distribution to measure
the variance, n ∗ p(1 − p), where n is the number of itera-
tions dependent on device density. So, the proposed scheme
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Fig. 11 Error performance of the proposed discovery algorithm

is also verified by the variance as presented in Fig. 10. The
main parameter of discovery algorithm is discovery accu-
racy, and it represents the algorithm precision and accuracy.
The accuracy error (in meters) depends on the transmission
power (dBm). As power increases, decreases toward zero
and proposed method reduces accuracy of RMSE by 21% as
proved in Fig. 11. In the last, the algorithm performance is
assessed using algorithm complexity. Initially, it is supposed
that the algorithm is complex and when Euclidean distance
is applied, the complexity is reduced at 12 pairs of devices

to 11%, while at the same conditions, that of the proposed
algorithm decreases to 29% as verified in Fig. 12.

7 Conclusion

In conclusion, the discovery algorithms’ performance eval-
uation is not undervalued by the researchers. To entirely
evaluate a discovery algorithmand its performance, itmust be
verified by simulation, imitation and realistic atmospheres.
Although simulation is cheap and the most applied tool for
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algorithm evaluation, awareness of some constraints as RF
communication and mobilization (walk and velocity model)
is required. To fulfill the best fit for discovery algorithm,
the design and advancement for new discovery algorithms
require that attention be paid to trade-offs of accuracy, com-
plexity, and scalability the discovery system is required to
achieve. The parameter metrics are used to describe the dis-
covery quality, and it is important for overall evaluation
criteria, but most significant for accuracy evaluation. The
Hamming andEuclidean errormetrics are theweakest, but do
not always measure if the discovery solution fits for ground
truth. Therefore, equivalent metric, Cosine error metrics, is
applied to measure the inter-devices distance estimates. It
gives the significant performance for performance evalua-
tion of discovery algorithms. This work can be extended for
IoTs application, where small sensors are moving randomly.
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