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Abstract
Gravity-driven thin film flow of two immiscible non-Newtonian Sisko fluids over a flat inclined plane is investigated. The
equation, describing the flow, is nonlinear in nature and does not have a closed form of solution in general. In this study,
the nonlinear governing differential equations are solved analytically by employing homotopy perturbation method (HPM).
Besides, an exact solution for a special case of the non-Newtonian index is also obtained. The results of the solution based
on HPM are compared with the exact solution for the special case, and it shows close agreement between the two results.
This demonstrates the efficacy of HPM for solving nonlinear problems. The expression for the velocity is obtained, and the
effects of various parameters like Sisko fluid parameters, density ratio, and viscosity ratio are also analyzed and discussed.
The results indicate that with increase in the density ratio, it causes a significant increase in the velocity of fluids in both the
layers and the velocities in both the layers are decreasing significantly with an increase in the Sisko fluid parameters. This
study has got wider application in various industrial activities such as protective and decorative coating, painting.

Keywords Gravity-driven flow · Sisko fluid · Thin film flow · Homotopy perturbation method · Multilayer flow

1 Introduction

Gravity-driven thin filmflowof fluids down an inclined plane
has attracted researchers over the years due to its widespread
applications in various industrial applications such as pro-
tective and decorative coating, painting, etc. This coating
process includes coating of papers of various grades, protec-
tive coatings of magnetic storage media such as the audio
and video tapes, optical storage media like audio- and photo-
compact disk, etc. This coating process may be of monolayer
or multilayers. The properties of the coating depend on the
number of layers and properties of individual coating mate-
rial used in each layer. Studies [1] on coatings reveal that
the multilayer coatings have better wear resistance and resis-
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tance to fracture than monolayer coatings. To ensure quality
products, the film thickness should be uniform throughout
the entire coating region. This uniformity is possible if any
sort of flow disturbance dies out rapidly. Therefore, for a
better quality of these products, the study of flow stability is
very important and essentially requires the knowledge of the
basic state of this flow process. Knowing the basic state, the
effect of various parameters on the velocity distribution can
be investigated. Velocity distribution is significantly affected
by the pertinent parameters such as the density ratio of the
fluids, ratio of the viscosity of the fluids, thickness ratio, etc.,
which play a crucial role in the final success of the coating
process. Several researchers have investigated thin film flow
of Newtonian fluid over flat and wavy inclined planes [1–3].

In many natural and industrial processes, however, the
fluid involved is non-Newtonian in nature. The general ter-
minology for non-Newtonian fluid applies for a very large
number of fluids which deviate from Newtonian behavior
in a diverse way. It is obvious that all such behaviors can-
not be described by a single model or a single mathematical
description. Depending on the rheological behaviors, sev-
eral physical models have been suggested over the years.
Based on this, several classes of fluid such as power-law
fluid, Oldroyd-6, Ellis fluid, third-grade and fourth-grade
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fluid, Johnson–Segalman fluid, Sisko fluid, etc., have been
conceived [4–6].

Single-layer thin film flow of non-Newtonian fluids
through different geometries has been studied by the
researchers. Gravity-driven flow of a power-law fluid down
an inclined plane has been investigated byAmouche et al. [4].
Thinfilmgravity-drivenflowof anEllis fluid has been studied
[5] numerically by implicit finite difference scheme. Alam
et al. [6] investigated non-Newtonian Johnson–Segalman
fluid flow over a vertical moving belt and cylinder for lifting
and drainage problem. The nonlinear governing differential
equations have been solved by the Adomian decomposition
method (ADM) [6, 7], and the effect of pertinent parame-
ters on the velocity distribution has been discussed. Thin film
gravity-driven flowof a third-grade fluid [8] down an inclined
plane has been examined, and an analytical solution for
the velocity field employing traditional perturbation method
and homotopy perturbation method has been obtained. The
effect of various parameters on the velocity distribution has
been discussed. The same problem has been studied by the
researchers [9], and exact solution for the nonlinear gov-
erning equation has been developed. Kumaran et al. [10]
investigated thin film gravity-driven flow of a third-grade
fluid down an inclined plane and yielded exact solution and
analytical solution for the equation governing the flow phe-
nomenon. A correction of the previous [9] results has been
introduced in the study of Kumaran et al. [10].

The studies, cited above, clearly indicate the importance
of studying thin film gravity-driven flow of non-Newtonian
fluids over an inclined plane. Sisko fluid is a non-Newtonian
fluid model, put forward by Sisko [11], which is a three-
parameter model. Cement slurries, paintings of different
grades, and coating materials are some of the fluids observed
to follow the Sisko model. Numerous researchers have stud-
ied flow of Sisko fluids under various circumstances which
are of practical interest. Khan et al. [12], in a very recent
paper, investigated irreversibility associated with the flow
and heat transfer in Sisko nanomaterial employing homo-
topy analysis method (HAM) [12]. The effect of various
parameters on the rate of entropy generation is investigated.
Thin film flow of Sisko fluid over surface topography [13]
has been studied numerically, and the effect of the pertinent
parameters on the free surface profile has been investigated.
Boundary layer flow of a Sisko fluid over a radially stretch-
ing sheet has been investigated [14]. Mixed convection heat
transfer of a Sisko fluid over a radially stretching sheet has
been studied [15]. HAM has been adopted for solving the
governing equations, and the effect of various parameters on
the flow and temperature field is discussed. Pulsatile flow of a
Sisko fluid in an endoscope has been investigated byNadeem
et al. [16] both numerically and analytically. Flow of blood
through a stenosed artery has been examined numerically by
the researchers [17] modeling blood as a Sisko fluid. The

effect of the rheological parameters on the velocity and flow
rate is discussed. Siddiqui et al. [18] reported thin film flow
of Sisko fluid andOldroyd-6 fluid on amoving belt for lifting
problem. Governing differential equations have been solved
by HPM up to the second order, and the effect of the Sisko
fluid parameter and the non-Newtonian index is discussed as
well.

Though numerous researchers have investigated single-
layer thin film flow of non-Newtonian fluid through var-
ious geometries, only a limited number of research work
have been reported for multilayer flow of immiscible non-
Newtonian fluids. However, such flow situations are also
of importance in diverse engineering systems. Hajmoham-
mdi et al. [19] carried out an analytical investigation of the
two-layer Couette flow of a gas and power-law liquid in
microcylinder and analyzed the effect of various parameters
on the velocity field and temperature field. The present work
is carried out to study the thin film flow of two immiscible
non-Newtonian Sisko fluids over a flat, inclined plane. The
novelty of the work lies in considering multilayer thin film
gravity-driven flow of non-Newtonian Sisko fluids over an
inclined plane, which has never been reported in the open lit-
erature. Exact solution of the governing equation in terms of
the index n cannot be obtained due to the high nonlinearity of
the equation governing the flowproblem. In the presentwork,
solution for the flow problem with two layers is obtained
analytically by HPM [20, 21]. Though numerical techniques
are capable of generating accurate results even for highly
nonlinear problems, analytical solutions are always preferred
to get a deeper understanding of the parametric dependen-
cies of the dynamics of the phenomenon, presenting a better
insight into the physics of the problem without compromis-
ingwith the accuracy of the results. In the present study,HPM
has been adopted to solve the nonlinear governing equations
describing the flow phenomenon, and analytical solution for
the non-dimensional velocity is obtained. The effects of the
Sisko fluid parameter, density ratio, thickness ratio, and non-
Newtonian index on the velocity have been discussed.

2 Problem Formulation

The geometry of the problem is shown in Fig. 1. Two immis-
cible non-Newtonian Sisko fluids, with different properties,
flow down an inclined plane. The plane is inclined at an angle
θ with the horizontal. The x̂-axis is along the direction of the
flow, and the ŷ-axis is perpendicular to the plane surface.
The plane is considered very large in the ẑ-direction, which
indicates that the width of the plane is large compared to the
length of the plane.As a result, the end effect can be neglected
and the effect of the velocity in the z-direction is negligible.
This assumption indicates that the results of the present study
are valid when the plane is very large in the z-direction. The
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Fig. 1 Geometry of the flow of two immiscible Sisko fluids down a flat
inclined plane

thickness of the film is very small in coating process. Theflow
is analyzed for the fully developed regime, which indicates
that the plane is long enough in the axial direction to ensure
fully developed condition. As a result, the velocity is inde-
pendent of the coordinate in the axial direction and the length
of the plane is not required in the analysis. The thicknesses
of the bottom layer and top layer are h1, h2, respectively, and
these are uniform. The flow is assumed to be steady, laminar,
incompressible, and fully developed. The pressure acting on
the top layer is atmospheric.

2.1 Governing Differential Equations

The equations governing the flow are obtained from the con-
servation of mass and momentum principle. The thermal
effect is neglected as the flow is gravity-driven, and thus,
the temperature is assumed to be constant. The mass and
momentum conservation equations are as follows:

∇ · �V � 0 (1)

ρ

[
∂ �V
∂t

+ (∇ · �V ) �V
]

� ∇ · T̃ + ρ �B (2)

T̃ � −p Ĩ + S̃ (3)

where �V , T̃ , ρ, t, �B, p, S̃, Ĩ are velocity vector, Cauchy
stress tensor, density, time, body force per unit volume, pres-
sure, extra stress tensor, and unit stress tensor, respectively.
Depending on the behavior of the non-Newtonian fluids, the
extra stress tensor introduces various forms of nonlinearity
into the equation. The extra stress tensor for the Sisko [12]
fluid is given as follows:

S̃ �
[
â + b̂

(√
0.5tr(A2

1)

)n−1
]
A1 (4)

where A1 is the rate of deformation tensor, â, b̂, n are con-
stants which vary for different fluids. We seek a solution of
the form (u(y), 0, 0) and assume the extra stress tensor to be

function of ŷ only. Using Eqs. (3) and (4) in the momentum
equation of Eq. (2), the x̂ momentum equation is obtained as
follows:

x̂ - momentum − ∂ p̂i
∂ x̂

+ âi
d2ûi
dŷ2

+ b̂i
d

dŷ

[
dûi
dŷ

]n
+ ρi g sin θ � 0 (5)

ŷ - momentum − ∂ p̂i
∂ ŷ

− ρi g cos θ � 0 (6)

where x̂, ŷ are dimensional coordinates in the direction of the
flow and in the perpendicular direction, respectively. p̂, û
are the pressure and the velocity components in the flow
direction, g is the acceleration due to gravity, and θ is the
angle of inclination of the plane. It is important to mention
here that θ is maintained within the limiting value so that the
laminar flow regime is ensured. With an increase in θ , the
velocity increases and for a certain angle, depending on the
other parameters, the flow may become turbulent. The exact
range of θ varies for different situations. If the densities of
the fluids are less, then the value of θ can be in the higher side
and still the flow may be laminar. The specific range of θ ,
to maintain the flow in laminar regime, needs to be obtained
from experimental investigation or from stability analysis, i
� 1, 2 for the bottomand the top layer. For b̂i � 0 inEq. (5), âi
represent the viscosities of the fluids, which is the Newtonian
fluid case. n is the non-Newtonian index, which represents
the measure of deviation from the Newtonian fluid. Since the
flow is gravity-driven, pressure gradient in the flow direction
is zero. Therefore, Eq. (5) reduces to the following form:

âi
d2ûi
dŷ2

+ nb̂i

[
dûi
dŷ

]n−1 d2ûi
dŷ2

+ ρi g sin θ � 0 (7)

Shear stress equation for Sisko fluid [12] is given as follows:

τ̂i � âi
dui
dy

+ b̂i

(
dui
dy

)n
(7.1)

From Eq. (7.1), the effective viscosity can be written as fol-
lows:

μeffective �
{
âi + nb̂i

[
dûi
dŷ

]n−1
}

(8)

To convert the governing differential equations into dimen-
sionless form, following non-dimensional variables are intro-
duced:

ui � ûi
u0

, yi � ŷi
h

, h � h1 + h2 (9)

where u0 is the reference velocity, ui is the non-dimensional
velocity in the ith layer (i�1 for bottom layer and i�2 for top
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layer), in x-direction, and h is the length scale, respectively.
Substituting these dimensionless variables inEq. (7), the non-
dimensional momentum conservation equations for the top
and bottom layers are obtained as follows:

d2ui
dy2

+
nb̂i

âi
(

h
u0

)n−1

(
dui
dy

)n−1 d2ui
dy2

+
ρi gh2 sin θ

âi u0
� 0 (10)

In the present study, no predefined reference velocity exists
and it needs to be identified. The third term in Eq. (10) rep-
resents the ratio of gravity force and viscous force, and for
the present study, these are of the same strength. Therefore,
the reference velocity can be obtained as follows:

u0 � ρ1g sin θh2

â
(11)

Therefore, from Eqs. (10) and (11), the governing equation
for bottom layer is obtained as follows:

d2u1
dy2

+ nb1

(
du1
dy

)n−1 d2u1
dy2

+ 1 � 0 (12)

Substituting the dimensionless variables and u0 in Eq. (10),
for the top layer, we obtain

d2u2
dy2

+ nb2

(
du2
dy

)n−1 d2u2
dy2

+
k1
k2

� 0 (13)

where

b1 � b̂1

â1
(

h
u0

) , b2 � b̂2

â2
(

h
u0

) , k1 � ρ2

ρ1
, k2 � â2

â1

(14)

where b1, b2 are the Sisko fluid parameters of the bottom and
top layer fluids, respectively, and from Eq. (14), we get

b2 � b1
k3
k2

(15)

Two second-order ordinary differential equations (ODE)
describe the flow, and to obtain the solution, four bound-
ary conditions are required. Following boundary conditions
are applicable for the two-layer flow:

û1(0) � 0 (No slip at the plane) (16.1)

û1(h1) � û2(h1) (Continuity of velocity at the interface)
(16.2)

τ̂1(h1) � τ̂2(h1) (Continuity of tangential stress at the interface)
(16.3)

dû2(h)

dŷ
� 0 (Zero shear at the free surface) (16.4)

Non-dimensional boundary conditions are as follows:

u1(0) � 0 (17.1)

u1(r ) � u2(r ), where r � h1
h1 + h2

(17.2)

Using Eqs. (7.1) and (16.3), in the dimensionless form,
reduces to the following:

du1
dy

+ b1

(
du1
dy

)n
� k2

du2
dy

+ k3b1

(
du2
dy

)n
(18.1)

where

k3 � b̂2

b̂1
. (18.2)

Equation (16.4), in the dimensionless form, gives

du2(1)

dy
� 0 (18.3)

2.2 Solution by HPM

Equations (12) and (13) are nonlinear in nature, and HPM is
an effective analytical tool for solving nonlinear ODEs. HPM
is a coupling method of the homotopy theory and perturba-
tion method introduced by He [22, 23]. It does not require
the presence of any small parameter in the problem, but it
can take the full advantages of the traditional perturbation
method. For solving Eqs. (12) and (13), the following homo-
topy is constructed:

(1 − m)

[
d2v1
dy2

− d2u10
dy2

]
+ m

[
d2v1
dy2

+ nb1
d2v1
dy2

(
dv1
dy

)n−1

+ 1

]
� 0

(19)

(1 − m)

[
d2v2
dy2

− d2u20
dy2

]
+ m

[
d2v2
dy2

+ nb2
d2v2
dy2

(
dv2
dy

)n−1

+
k1
k2

]
� 0

(20)

where v1, v2 are the approximate solutions for u1, u2.
u10, u20 are guess solutions for u1, u2, and m is an embed-
ding parameter. In velocities u10, u20, the first suffix indicates
the layer and the second one signifies the order (zeroth order,
first order, and second order) of the solution. For example,
u10 indicates the zeroth-order solution for the bottom layer.
If m� 0 is substituted in Eqs. (19) and (20), a simplified
linear equation is produced which can be solved easily; m�
1 reduces Eqs. (19) and (20) into the actual nonlinear equa-
tions.

v1 and v2 are expanded in terms of the embedding param-
eter m as follows:

v1 � v10 + mv11 + m2v12 + · · · (21)
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v2 � v20 + mv21 + m2v22 + · · · (22)

where v10, v11, v12, v20, v21, v22 are the approximate zeroth-
order, first-order, and second-order velocities in the bottom
and top layers.

To obtain the boundary conditions, we construct a homo-
topy for Eq. (18.1) as follows:

dv1
dy

− k2
dv2
dy

+ m

[
b1

(
dv1
dy

)n
− k3b1

(
dv2
dy

)n]
� 0 (23)

Substituting Eqs. (21) and (22) in Eqs. (19), (20), and (23)
and equating the coefficients ofm0,m1,m2 to zero, the equa-
tions and boundary conditions for zeroth-order, first-order,
and second-order system are obtained as follows.

2.2.1 Zeroth-Order Equations

d2v10
dy2

− d2u10
dy2

� 0 (24)

d2v20
dy2

− d2u20
dy2

� 0 (25)

Boundary Conditions
Equations (24) and (25) are second order and require two

boundary conditions each for obtaining the solution. At y �
0 (at the plane surface), velocity is zero (the plane is at rest)
because of no-slip boundary condition. From Eq. (21), we
obtain zeroth-order, first-order, and second-order velocity to
be zero. Therefore, the first boundary condition is obtained
as follows:

At, y � 0, v10 � 0 (26.1)

At the interface of the two layers, velocity is same in both lay-
ers, because velocity at a point must be same irrespective of
the layers considered. Therefore, the second boundary con-
dition is obtained by using Eqs. (21) and (22) and equating
the like coefficients of like power of m, which is given as
follows:

At, y � r , v10 � v20 (26.2)

At the interface, in addition to the velocity, shear stress is also
same irrespective of the layers considered. Using Eq. (23)
and equating the coefficients of like powers of m, we get the
zeroth-order equation for shear stress is obtained as follows:

At, y � r ,
dv10
dy

� k2
dv20
dy

(26.3)

The fourth boundary condition required for solving the sys-
tem equations given by Eqs. (24) and (25) is obtained from

the condition of negligible shear stress at the free surface.
From Eq. (23), using the condition of negligible shear stress,
we obtain the boundary condition at the free surface as fol-
lows:

At, y � 1,
dv20
dy

� 0 (26.4)

2.2.2 First-Order Equations

d2v11
dy2

+
d2u10
dy2

+ nb1
d2v10
dy2

(
dv10
dy

)n−1

+ 1 � 0 (27)

d2v21
dy2

+
d2u20
dy2

+ nb2
d2v20
dy2

(
dv20
dy

)n−1

+
k1
k2

� 0 (28)

Boundary Conditions
For solving Eqs. (27) and (28), four boundary conditions

are required, which are obtained by following the same pro-
cedure as followed in Eqs. (26.1)–(26.4). From Eq. (21),
equating the coefficient of m to zero, the first boundary con-
dition is obtained. As the velocity in the plane surface is
zero, the first-order velocity should vanish, which is given as
follows:

At, y � 0, v11 � 0 (29.1)

At the interface, velocity is same in both the layers, which
yields the second boundary condition for the first-order prob-
lem, given as follows:

At, y � r , v11 � v21 (29.2)

Equality of shear stress at the interface produces the third
boundary condition for the first-order problems as follows:

At, y � r ,
dv11
dy

+ b1

(
dv10
dy

)n
� k2

dv21
dy

+ k3b1

(
dv20
dy

)n
(29.3)

Thenegligible (zero) shear at the free surface yields the fourth
boundary condition for the first-order problem, given as fol-
lows:

At, y � 1,
dv21
dy

� 0 (29.4)

2.2.3 Second-Order Equations

d2v12
dy2

+ n(n − 1)b1
d2v10
dy2

(
dv10
dy

)n−2 dv11
dy

+ nb1
d2v11
dy2

(
dv10
dy

)n−1

� 0 (30)

d2v22
dy2

+ n(n − 1)b2
d2v20
dy2

(
dv20
dy

)n−2 dv21
dy
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+ nb2
d2v21
dy2

(
dv20
dy

)n−1

� 0 (31)

Boundary Conditions
Four boundary conditions are required for solving the

second-order problem, which are obtained using the con-
dition of no slip at the plane surface, equality of velocity at
the interface, equality of shear stress at the interface, and the
vanishing of shear stress at the free surface, as discussed in
Eqs. (26.1)–(26.4) and in Eqs. (29.1)–(29.4). From no-slip
condition, we get the first equation as follows:

At, y � 0, v12 � 0 (32.1)

From equality of velocity at the interface, second equation is
obtained, which is as follows:

At, y � r , v12 � v22 (32.2)

From the condition of equality of shear stress, the third con-
dition is obtained, given as follows:

At, y � r ,
dv12
dy

+ nb1

(
dv10
dy

)n−1 dv11
dy

� k2
dv22
dy

+ nk3b1

(
dv20
dy

)n−1 dv21
dy

(32.3)

Vanishing of the shear at the free surface generates the last
boundary condition, given as follows:

At, y � 1,
dv22
dy

� 0 (32.4)

2.2.4 Zeroth-Order Solutions

Guess solutions are selected, satisfying the boundary condi-
tions given by Eqs. (26.1)–(26.4) as follows:

u10 � − y2

2(1 + b1)
+ c1y (33)

u20 � − y2k1
2(1 + b2)k2

+ c3y + c4 (34)

where

c3 � k1
(1 + b2)k2

(35.1)

c1 � r

(1 + b1)
+
k1(1 − r )

(1 + b2)
(35.2)

c4 � c1r − r2

(1 + b1)2
+

k1
(1 + b2)k2

(
r2

2
− r

)
(35.3)

From Eqs. (24) and (25), the solutions of the zeroth-order
equations are obtained as follows:

v10 � − y2

2(1 + b1)
+ c1y (36)

v20 � − y2k1
2(1 + b2)k2

+ c3y + c4 (37)

2.2.5 First-Order Solution

Equations (36) and (37) are substituted in Eqs. (27) and (28),
and first-order solutions are obtained satisfying the boundary
conditions given by Eqs. (29.1)–(29.4). The solutions are:

v11 � − y2b1
2(1 + b1)

+
b1(1 + b1)

(n + 1)

(
c1 − y

(1 + b1)

)n+1
+ c5y + c6

(38)

v21 � − y2b2k1
2(1 + b2)k2

+
b2(1 + b2)k2
(n + 1)k1

(
c3 − k1y

k2(1 + b2)

)n+1
+ c7y + c8 (39)

c5 � k1b2(1 − r )

(1 + b2)
+

b1r

(1 + b1)
(40.1)

c6 � −b1(1 + b1)

(n + 1)

[
r

(1 + b1)
+
k1(1 − r )

(1 + b2)

]n+1
(40.2)

c7 � k1b2
k2(1 + b2)

(40.3)

c8 � − b1r2

(1 + b1)2
+
b1(1 + b1)

(1 + n)2

(
c1 − r

(1 + b1)

)n+1

+ c5r + c6 +
k1b2r2

k2(1 + b2)2

k2b2(1 + b2)

k1(1 + n)

(
c3 − k1r

k2(1 + b2)

)n+1
− c7r (40.4)

2.2.6 Second-Order Solution

Equations (38) and (39) are substituted in Eqs. (30) and
(31), and satisfying the boundary conditions given by
Eqs. (32.1)–(32.4), the second-order solutions are obtained
as follows:

v12 �
(
b1c5 − b21c1

)
(1 + b1)

(
c1 − y

(1 + b1)

)n

+

(
n − 1

n + 1

)
b21(1 + b1)

(
c1 − y

(1 + b1)

)n+1

− (n − 1)b21
2(2n − 1)

(
c1 − y

(1 + b1)

)2n
(1 + b1) + c9y + c10

(41)
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v22 � (b2c7 − b22c3
)( k2

k1

)
(1 + b2)

(
c3 − k1y

k2(1 + b2)

)n

+

(
n − 1

n + 1

)
b22(1 + b2)

(
k2
k1

)(
c3 − k1y

k2(1 + b2)

)n+1

− (n − 1)b22
2(2n − 1)

(
k2
k1

)
(1 + b2)

(
c3 − k1y

k2(1 + b2)

)2n
+ c11y + c12

(42)

c9 � n
(
b1c5 − b21c1

)(
c1 − r

(1 + b1)

)n−1

+ (n − 1)b21

(
c1 − r

(1 + b1)

)n

− (n − 1)nb21
(2n − 1)

(
c1 − r

(1 + b1)

)2n−1

+ k2

⎡
⎢⎢⎢⎣

n(n − 1)b22
(2n − 1)

{
c3 − k1r

k2(1 + b2)

}2n−1

− n
(
b2c7 − b22c3

)(
c3 − k1r

k2(1 + b2)

)n

−(n − 1)b22

(
c3 − k1r

k2(1 + b2)

)n
+ c11

⎤
⎥⎥⎥⎦ (43.1)

c10 � (n − 1)b21c
2n
1 (1 + b1)

2(2n − 1)
− (n − 1)b21

(n + 1)
(1 + b1)c

n+1
1

+ (1 + b1)
(
b1c5 − b21c1

)
cn1 (43.2)

(43.3)

c11 � −n(n − 1)b22
(2n − 1)

{
c3 − k1r

k2(1 + b2)

}
2n−1

+ n
(
b2c7 − b22c3

){
c3 − k1

k2(1 + b2)

}
n−1

+ (n − 1)b22

{
c3 − k1

k2(1 + b2)

}
n

c12 �
(
b1c5 − b21c1

)
(1 + b1)

(
c1 − r

(1 + b1)

)n

+
(n − 1)b21(1 + b1)

(n + 1)

(
c1 − r

(1 + b1)

)n

− (n − 1)nb21
(2n − 1)

(
c1 − r

(1 + b1)

)n+1

− (n − 1)b21(1 + b1)

2(2n − 1)

{
c1 − r

(1 + b1)

}
2n

+ c9r + c10

−
(
b2c7 − b22c3

)
(1 + b2)

(
k2
k1

)(
c3 − k1r

k2(1 + b2)

)n

− (n − 1)b22(1 + b2)

(n + 1)

(
k2
k1

)(
c3 − k1r

k2(1 + b2)

)n+1

+
(n − 1)b22(1 + b2)

2(2n − 1)

(
k2
k1

){
c3 − k1r

k2(1 + b2)

}
2n

− c11r

(43.4)

Therefore, the expressions for the velocity in bottom and top
layers are found to be:

u1 � v1 � v10 + v11 + v12 (substituting m � 1 in Eq. (21))
(44)

u2 � v2 � v20 + v21 + v22 (substituting m � 1 in Eq. (22))
(45)

2.3 Exact Solution for n� 2

The governing equations are nonlinear, and they do not have
any closed-form solution for all values of n. However, for the
special cases of n� 1 and 2, exact solutions are available.
But, n� 1 represents the case for the Newtonian fluids and
can easily be obtained. Here, the exact solution for n� 2 is
presented. Through a suitable substitution in Eq. (12), the
solution can be obtained as follows:

u1 � 0.5

b1

[
−y − 1

6b1
{1 − 4b1(y − c1)}3/2

]
+ c2 (46)

Similar procedure is followed to solve u2 from Eq. (13) to
obtain:

u2 � 0.5

b2

⎡
⎣−y − 1

6b2
(
k1
k2

){1 − 4b2

(
k1
k2

y − c1

)}3/2⎤⎦ + c4

(47)

where c1, c2, c3, c4 are evaluated from the boundary condi-
tions given by Eqs. (18.1)–(18.3). The details of the solution
procedure of the governing equation and the evaluation of
the boundary conditions are given in “Appendix A.”

3 Results and Discussion

In this section, at first, a comparison between the results from
the analytical solution and those obtained from the exact solu-
tion is made. Then, the results from the analytical solution
are presented graphically. The property ratios of the two flu-
ids have been varied widely to investigate the effect of such
variation on the velocity.
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Fig. 2 Comparison between the
dimensionless velocity
distribution from the analytical
results and from the exact
solution for n� 2, k1 � 0.9, k2
� 2, k3 � 3, and b1 � 0.25 and
0.15
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Fig. 3 Dimensionless velocity
distribution for b1 � 0, 0.15,
0.25 and for a n� 2, b n� 3,
and c n� 4 and k1 � 0.9, k2 �
2, k3 � 3
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Fig. 4 Velocity distribution for
k1 � 0.3, 0.6, 0.9 and for a n�
2, b n� 3, and c n� 4 and b1 �
0.25 and k2 � 2, k3 � 3
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In Fig. 2, the non-dimensional velocity distributions from
the exact solution Eqs. (46) and (47) for the Sisko fluid with
the non-Newtonian index n� 2 and from the analytical solu-
tion Eqs. (44) and (45) are compared graphically for two
different values of b1 while keeping other parameters same.
It is evident from the figure that the results of the analytical
solution are in close agreement with those obtained from the
exact solution. Figure 2a displays the comparison between
the results of HPM and exact solution when b1 � 0.25. The
percentage of maximum error (in the free surface) is 5.6%.
Thepercentage error decreaseswith a decrease inb1 as shown
in Fig. 2b. The discrepancy in the results is zero in the plane
surface (velocity is zero because of no-slip condition) and
gradually increases as the distance from the plane surface
increases. The discrepancy is maximum at the free surface.

Figure 3 depicts the non-dimensional velocity distribu-
tion from the analytical solution for different values of the
non-Newtonian index n and the Sisko fluid parameter b1.
It is evident that the velocity in both the layers of the fluid
decreases with an increase in the values of b1. It may be noted
that an increase in b1 can be interpreted in twoways. For fixed

values of â1, higher values of b̂1 result in an increase in b1.
As b̂1 increases, from Eq. (8), it is clear that the effective
viscosity increases which results in a decrease in the veloc-
ity for the gravity-driven flow. It is evident from the figure
that the change in velocity is comparatively higher near the
top layer. The presence of the solid surface suppresses any
significant change in the vicinity of the plane surface. In this
context, to demonstrate how the results of the present study
can be used in real-life situation, a two-layer gravity-driven
flow of Sisko fluids has been considered. In the absence of
the data from experiments on Sisko fluids, realistic values of
the properties and parameters involved are considered. The
following values are used:

h1 � 10 mm, h2 � 10 mm, θ � 20°, a1 � 100 kg/m s, a2
� 300 kg/m s, b1 � 100 kg sn−2/m, b2 � 300 kg sn−2/m, ρ1

� 900 kg/m3, ρ2 � 700 kg/m3, n� 2.
From Eqs. (11) and (14), we obtain u0 � 0.003 m/s, b1

� 0.30, b2 � 0.225. If the threshold velocity, obtained from
experiment or from stability analysis, is� 5mm/s, then from
Fig. 3a, the maximum non-dimensional velocity is obtained
as 0.4, which yields dimensional velocity to be 1.2 mm/s. If

123



8090 Arabian Journal for Science and Engineering (2019) 44:8081–8093

Fig. 5 Velocity distribution for
k2 � 0.5, 1.5, 2.5 and a n� 2,
b n� 3, and c n� 4 for k1 �
0.9, b1 � 0.15, and k3 � 3
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the velocity crosses the threshold value or approaches near
this, by changing the values of a1, a2, b1, b2, ρ1, h1, and
h2, the maximum velocity can be controlled and maintained
well below the limiting value. In this way, by changing the
properties of the fluids, different fluids can be selected for
controlling the velocity.

Figure 4 presents the dimensionless velocity distributions
for different values of the non-Newtonian index n and the
density ratio k 1 as a parameter. It is evident from the figure
that an increase in the density ratio of the top and bottom
layer fluid causes significant increase in the velocity in the top
layer. In the bottom layer, increase in the velocity is less near
the plane due to the presence of the solid surface as discussed
earlier. As the density ratio increases, the higher body force
results in a significant increase in the velocity. It is important
to note that the non-dimensional velocity increases slightly
with an increase in n, as indicated in Fig. 4a–c. From Eq. (8),
it is evident that an increase in n results in an increase in the
effective viscosity of the fluid which should cause a decrease
in the velocity. The reverse trend displayed by the figures can
be explained as follows. TheSiskofluid parametersb1 andb2,

as defined in Eq. (14), have u0 in the numerator. Any increase
in n causes an increase in the numerator. If the values of b1
and b2 aremaintained, fixed values of b̂1, b̂2 have to decrease.
The effect of b̂1, b̂2 on velocity is more dominant than the
influence of n. Therefore, the non-dimensional velocities are
observed to increase with an increase in n.

Dimensionless velocity distribution for different values of
n and k2 is depicted in Fig. 5. The results imply that with an
increase in k2, the velocity decreases. As discussed earlier,
once u0 is chosen, du1

dy � z1 becomes fixed. Therefore, an

increase in k2 can be caused only due to an increase in
dz1
dy +

2b1z1
dz1
dy + 1 � 0. Increase in k2 signifies increase in the

effective viscosity ratio which results in a decrease in the
velocity. Compared to the density ratio, the effect of k2 on
the velocity is relatively less.

The effect of the thickness ratio on the non-dimensional
velocity distribution is presented in Fig. 6. The results indi-
cate an increase in the velocity in the top layer and a decrease
in the velocity in the bottom layer with an increase in the
thickness ratio. The force due to gravity decreases in the
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Fig. 6 Non-dimensional velocity distribution for different r when b1 �
0.1, k1 � 0.2, k2 � 0.25, and k3 � 0.1

bottom layer as the thickness of the bottom layer decreases,
which leads to the lower velocity in the bottom layer.

4 Conclusions

Single-layer thin film gravity-driven flow of non-Newtonian
fluidhas been studiedby the researchers, but thinfilmgravity-
driven flow of multilayer non-Newtonian Sisko fluids has
never been considered before, as revealed by the open liter-
ature. This kind of flow, however, is important in multilayer
coating process. In the present study, thin film gravity-driven
flow of two immiscible non-Newtonian Sisko fluids has been
examined for the first time. A closed-form analytical solution
of two-layer flow of typical Sisko fluids down a flat inclined
plane is obtained for a special case, and for other cases of
the non-Newtonian index, approximate analytical solution is
yielded by solving the governing equations employing He’s
homotopy perturbationmethod.Considering awide variation
of the property ratios of the two fluids, the flow behavior (dis-
tribution of velocity) in the two layers has been investigated.
Following important observations are made:

The velocity distribution is the most sensitive toward any
change in density ratio of the top and bottom fluid layers. A
100% increase in the non-dimensional velocity is observed at

all the points when the density ratio increases by around three
times. At lower values of the density ratio, the velocity in the
top layer is practically constant.However, in the bottom layer,
a significant change in velocity is observed at different points.
With an increase in the Sisko fluid parameter, the velocity
decreases significantly in both the layers. For higher values of
the non-Newtonian index n, however, the effect of the Sisko
fluid parameter b diminishes on the velocity distribution as
depicted in the figures. An increase in the value of k2 results
in a decrease in the velocity; this decrease is significant in the
top layer. In the bottom layer, the nonlinearity of the velocity
distribution is much less due to the effect of the solid wall.
Velocity in the bottom layer decreases, and in the top layer,
velocity increases with an increase in the thickness ratio.

Using the results of the present study, themaximumveloc-
ity in the layers can be controlled so that the threshold
velocity, at which flow is unstable, is never reached and
quality of the coating is ensured. The threshold velocity
can be obtained from the experimental investigation. The
parameters such as density ratio, viscosity ratio, and ratio of
thickness can be varied accordingly to maintain the velocity
in each layer much lower than the threshold limit. Further,
Sisko fluids with different properties and non-Newtonian
index can be selected to obtain the required density ratio
or viscosity ratio, required for limiting the velocity lower
than the limiting value. Moreover, the thickness ratio can be
varied to maintain the velocity. However, the limitation of
the present study is the inability to fix the number of layers
required to achieve the velocity as only two layers are con-
sidered. But, the study can further be extended to more than
bilayer case following the similar procedure adopted in the
present investigation. The practical application of the present
study is that it can be used for multilayer coating purposes.

Appendix A

Equation (12) is solved by substituting

du1
dy

� z1 (A.1)

which gives:

dz1
dy

+ 2b1z1
dz1
dy

+ 1 � 0 (A.2)

⇒ dz1
dy

(1 + 2b1z1) � −dy (A.3)
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Integrating Eq. (A.3) and solving, we get: z1 �
−1+

√
1−4b1(y−c1)
2b1

(taking the+ve value for du1
dy , asu1 increases

with y)

�>
du1
dy

� −1 +
√
1 − 4b1(y − c1)

2b1
(A.4)

�> u1 � 0.5

b1

[
−y − 1

6b1
{1 − 4b1(y − c1)}3/2

]
+ c2

(A.5)

Similar procedure is used to solve u2 from Eq. (13) which
gives the solution as follows:

u2 � 0.5

b2

⎡
⎣−y − 1

6b2
(
k1
k2

){1 − 4b2

(
k1
k2

y − c1

)}3/2⎤⎦ + c4

(A.6)

Now, using the boundary conditions given by Eqs. (17.1,
17.2), we get the following equations:

0.5

b1

[
− 1

6b1
{1 + 4b1c1}3/2

]
+ c2 � 0 (A.7)

0.5

b1

[
−r − 1

6b1
{1 − 4b1(r − c1)} 3/2

]
+ c2

� 0.5

b2

⎡
⎣−r − 1

6b2
(
k1
k2

) {1 − 4b2

(
k1
k2
r − c3

)}
3/2

⎤
⎦

+ c4

(A.8)

0.5

b1

[
−1 +

√
1 − 4b1(r − c1)

]

+
(0.5)

b1

2[
−1 +

√
1 − 4b1(r − c1)

]2

� 0.5

b2
k2

[
−1 +

√
1 − 4b2

(
k1
k2
r − c3

)]

+
(0.5)2

(b2)
2 b1k3

[
−1 +

√
1 − 4b2

(
k1
k2
r − c3

)]2
(A.9)

−1 +

√
1 − 4b2

(
k1
k2

− c3

)
� 0 (A.10)

c3 � k1
k2
. These four equations are solved for c1, c2, c3, and

c4, and velocity in both layers is found as follows:

c3 � k1
k2

(A.11)

c1 � r − 1

4b1

⎡
⎢⎢⎢⎢⎢⎢⎣
1 −

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
0.5 +

√√√√√√√√√√0.25 + b1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.5k2
b1
b2

(
−1 +

√
1 − 4b2

(
k1
k2

)
(r − 1)

)

+0.25b1k3

(
−1 +

√
1 − 4b2

(
k1
k2

)
(r − 1)

)2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎦

(A.12)

c2 � −0.5

6b1

{
1 + 4b1c1

}
(A.13)

c4 � 0.5

b1

[
−r − 1

6b1

{
1 − 4b1(r − c1)

} 3/2] + c2

− 0.5

b2

⎡
⎣−r − 1

6b2

(
k1
k2

) {1 − 4b2

(
k1
k2
r − c3

)}
3/2

⎤
⎦

(A.14)
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