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Abstract
This paper presents the design and development of a novel, fuzzy-based algorithm for the detection and diagnosis of drive
faults in an induction motor drive system (IMDS). A detailed investigation on the performance of IMDS under various faults
and load conditions revealed that the combination of root-mean-square value and total harmonic distortion (THD) of the stator
currents can accurately transpire various fault conditions. In this work, the efficacy of fuzzy logic is employed to characterize
and diagnose the fault since it is difficult to find crisp boundaries for the correlation between the extracted parameters and
fault conditions. The performance of the developed algorithm is tested and verified using simulation in MATLAB Simulink.

Keywords Fault detection · Fuzzy logic · Induction motor ·Motor drives · Total harmonic distortion

1 Introduction

Induction motors (IMs) have dominated the industrial envi-
ronment ever since their invention. This domination bears
testimony to the manifold advantages of the induction motor,
viz. simple and rugged construction, reliable operation irre-
spective of operating environment, absence of brushes,
reasonable efficiency, etc. Owing to rapid industrial automa-
tion,majority of IMs in the industries are currently controlled
automatically with IMDS. Yet, certain tasks continue to
demand manual interference. Detection and diagnosis of
faults in IMDS is one such task that demands the pres-
ence of experienced operators for instantaneousmanagement
of post-fault activities. Therefore, an interest has arisen to
develop innovative solutions to aid the operators in these
tasks.

There have been many studies discussing the different
types of faults and associated detection techniques in the
IMs [1–6]. The important factors that determine the genre of
the faults are the nature of fault and the part where the fault
occurs. Accordingly, faults occurring in the IM, such as bro-
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ken rotor bar faults, stator faults, bearing failures, are termed
as internal faults and the faults external to the IM are called
external faults. Supply faults and drive faults (in rectifier, dc
link capacitor, and inverter) constitute the external faults.

The onset of faults in an IM is marked by alterations
in the motor’s operation, such as variations in temperature,
vibration, stator current fluctuations, electromagnetic field
variations. Careful monitoring of these trends is the key
to precise detection and diagnosis of faults. Accordingly,
researchers have suggested fault detection techniques based
on variations in nonelectrical parameters like vibration, tem-
perature, acoustics, etc. [7–11] and electrical parameters,
particularly motor current [12–14].

The analysis of motor current gained tremendous pop-
ularity due to the availability of simple signal processing
techniques like wavelet analysis [12], fast Fourier transform
(FFT) [13], Hilbert transform [14], etc. In addition to the
above-mentioned signal processing techniques, the literature
also records the extensive use of soft computing techniques.
These systems mainly use fuzzy, neural network and rule-
based expert systems to detect and diagnose faults [15–18].
Hybrid systemshave also been proposed bymany researchers
in this area to improve the effectiveness of the system [19].

An analysis of the existing research works reveals that
even though the literature is rich in works related to inter-
nal faults in the IMs [12–20],the studies related to drive
faults are not so diverse. In [21], the classification of exter-
nal faults of the IM has been presented. Faults such as single
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phase, unbalanced, under voltage, over voltage, and over load
have been included in the study. Though the study provides
reliable analysis for specific external faults, the proposed
methodology is yet to be implemented with online condi-
tion monitoring and fault diagnosis. The various faults in the
drive of an IMDShave been analyzed in [22–31].Normalized
values of voltage ripple and the energy profiles of the first
three harmonics are used in [22] to detect faults in the rectifier
stage of the IMDS. The work proposes a two-stage algorithm
for the diagnosis of open-circuit faults in uncontrolled rec-
tifiers. However, this algorithm is based on the assumption
that the input to the rectifier is always periodic.

Open-circuit and short-circuit faults in uncontrolled recti-
fier have been investigated in [23]. Detection is done based on
the DC link voltage and root-mean-square value of the input.
In [24], several detection methods for open-circuit faults are
evaluated. However, the detection time in these techniques is
relatively long and is dependent on the frequency of current.
The symmetry of the physical topology of voltage source
inverter(VSI) and allelic points have beenproposed as param-
eters for fault diagnosis in [25]. Diagnosis of open circuit in
power electronic switches in the inverter side has been stud-
ied in [26] using Park’s vector approach on average current.

Soft computing techniques have been extensively used to
detect and diagnose power converter faults in IMDS. Among
the various soft computing techniques, fuzzy systems have
been preferred in many works due to its effectiveness in rep-
resenting expert knowledge. Researchers have considered
different parameters to formulate membership functions in
fuzzy-based systems. In [27], the electrical fault analysis of
a three-phase IMDS was performed in MATLAB/Simulink.
An algorithm based on fuzzy logic for detecting and ana-
lyzing the electrical faults in the IM was then developed
based on the stator current amplitudes, negative sequence
current and speed of the drive. Fundamental component and
the polarity of DC component of voltage have been chosen
as fuzzy inputs in [28]. While this system can successfully
identify the switching faults, spurious supply side voltage
variations can also trigger false positives. In [29], instanta-
neous current and time are the fuzzy membership function
parameters chosen to identify the fault. Similarly, stator cur-
rent magnitude has been used in [30] for fault detection. The
dependence of instantaneous currents on the load condition
of the motor reduces the effectiveness of this strategy. Con-
cordia stator current pattern, which claims cost-effectiveness
through reduction in number of sensors, is suggested in [31].
However, practical implementation of the technique in pulse
width modulation (PWM)-based VSI is not feasible.

Despite the varied research in the field of detecting and
analyzing faults in IMDSs, it is observed that many of them
are restricted to instantaneous values of voltages or currents
or similar parameters that are prone to vary with load. In
other words, these works were developed at specific load

conditions. Further, a fair share of the researches was limited
to diagnosing a single genre of external fault at a time. Hence,
a single system capable of taking care of all the drive fault
conditions, based on fault characteristics at different load
condition, is yet to be investigated. This paper proposes the
design and development of an intelligent system for accurate,
timely detection and diagnosis of drive faults in an IMDS.

Section 2 elaborates the step-by-step development of the
proposed system. Design of the IM is presented in Sect. 3,
and the analysis of faults is detailed in Sect. 4. The proposed
fuzzy-based fault diagnosis algorithm and the validation
of the proposed fuzzy-based fault diagnosis algorithm are
explained in Sects.5 and 6, respectively. The conclusions and
future scope are given in Sect. 7.

2 Development of Decision Support System

Development of the intelligent decision support system for
fault detection and diagnosis starts with offline simulation-
based examination of the drive behavior, followed by the
design of the fault detection system. Figure 1 depicts the
various phases involved in the process.

First phase involves the design of the IM using ANSYS
Maxwell software. The parameters of IM are extracted
from this phase. Further, the IMDS is modeled in MAT-
LAB/Simulink using these parameters. The simulation stud-
ies are then done to acquire the various parameters of the
IMDSunder normal and faulted conditions.Detailed analysis
of the parameters is then conducted to identify the variables
that can be used as fault features to diagnose the fault. The
fault detection and diagnosis algorithm are then designed
based on the observations made from the fault analysis and
tested using simulation.

3 Design of InductionMotor

The three-phase IMDS consists of an IM fed from a VSI that
uses sinusoidal PWMtechnique for its control. In this study, a
5-HP squirrel cage IM is used for the analysis. The IMmodel
developed using ANSYS Maxwell is shown in Fig. 2. The
specifications of the IM and the parameters extracted from
the ANSYS Maxwell model of IM are given in Tables 1

Fig. 1 Phases in the development of intelligent decision support

123



Arabian Journal for Science and Engineering (2020) 45:1385–1395 1387

Fig. 2 Model of induction motor in Maxwell

Table 1 Specifications of the
IM

Parameter Value

Power (HP) 5

Rated voltage (V) 400

Number of poles 4

Frequency (Hz) 50

Table 2 Extracted parameters of the IM from Maxwell model

Parameter Value

Stray losses (W) 49

Operating temperature (Deg. C) 30

Stator resistance (ohm) 1.6363

Stator leakage reactance (ohm) 8.5941

Rotor resistance (ohm) 2.6728

Rotor leakage reactance (ohm) 9.8496

Mutual inductance (H) 0.1543

and 2, respectively. These parameters are used for modeling
the IMDS in MATLAB/Simulink.

4 Fault Analysis

The faults in the drive are analyzed under two heads—
switching faults and DC link faults. The open-circuit and
short-circuit faults in the power switches of the rectifier and
inverter constitute the switching faults. In IMDS, switching
devices such as IGBT and MOSFET with appropriate gate
drive circuit are used as switches in the inverter circuit. Inap-
propriate gate trigger signals and high thermal stresses in the
switching devicesmay result in switching faults. On the other
hand, earth faults and short circuit in the DC link capacitor
comprise the DC bus faults.

Figure 3 shows the circuit diagramof aPWM-based IMDS
in which various switching faults are represented. These
faults are F1: short circuit of diode in rectifier, F2: open
circuit of diode in rectifier, F3: the earth fault in DC bus,
F4: DC link capacitor short circuit, F5: inverter IGBT open

Fig. 3 Circuit diagram of IMDS with fault representation

Fig. 4 Current responses of healthy IMDS (6Nm)

Fig. 5 Current responses of IMDS under fault (F1)

Fig. 6 Current responses of IMDS under fault (F2)

circuit, and F6: inverter IGBT short circuit. In this study,
the performance of the three-phase IMDS under normal and
faulty operating conditions with varying loads is analyzed by
simulating PWM-controlled IMDS in MATLAB/Simulink.

The stator current response of the developed PWM-
controlled IMDS when operated in normal condition (with-
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Fig. 7 Current responses of IMDS under fault (F3)

Fig. 8 Current responses of IMDS under fault (F4)

Fig. 9 Current responses of IMDS under fault (F5)

Fig. 10 Current responses of IMDS under fault (F6)

out fault) with load torque of 6 Nm is shown in Fig. 4. To
simulate the response of the systemunder various fault condi-
tions, a breaker-switch arrangement is used at the appropriate
fault locations. With the intention of deducing an index
to identify the fault, the stator currents Ia, Ib, and Ic are
recorded. Figures 5, 6, 7, 8, 9, and 10 show the stator cur-
rent responses at various fault conditions with 6 Nm load
torque. Similar analysis is done for various load conditions,
and the results are illustrated in Figs. 11, 12, and 13, and the
parameters are tabulated in Table 3.

From a detailed analysis of the recorded data, it is inferred
that while magnitude of Ia, Ib, and Ic can often indicate fault

Fig. 11 Current magnitude (Ia) of IMDS under normal and faulty state

Fig. 12 Current magnitude (Ib) of IMDS under normal and faulty state

Fig. 13 Current magnitude (Ic) of IMDS under normal and faulty state

states clearly for a particular load condition; they fail under
circumstances of varying load. Table 4 illustrates three typ-
ical cases to demonstrate the disadvantage of relying solely
on stator current magnitude for fault diagnosis. In Case 1,
the stator current magnitudes of a healthy IMDS operating
at 18 Nm load and during Fault F5 with 6 Nm load are
listed. From the values, it is evident that the stator currents
magnitudes are comparable and hence cannot distinguish the
fault. Similarly, in Case 2, the magnitudes of stator currents
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Table 3 Stator currents of IMDS under normal and faulty condition with different loads

Condition of IMDS Load torque (Nm) Ia (rms) (A) Ib (rms) (A) Ic (rms) (A) Speed (rps)

Normal 0 3.452 3.457 3.455 156.00

6 4.119 4.146 4.146 154.00

12 5.142 5.171 5.165 150.80

18 6.611 6.641 6.626 147.20

24 7.403 8.429 8.416 143.10

Fault F1 6 3.457 3.300 3.654 153.90

12 4.273 4.365 4.621 150.70

18 5.787 5.890 6.146 147.10

24 7.678 7.738 8.023 142.90

Fault F2 6 4.121 4.145 4.145 153.90

12 5.149 5.175 5.167 150.70

18 6.629 6.659 6.644 147.10

24 8.460 8.488 8.477 142.90

Fault F3 6 4.100 4.010 4.210 153.20

12 4.910 4.930 4.920 151.60

18 6.209 6.231 6.218 148.06

24 8.400 8.560 8.670 141.20

Fault F4 6 11.230 9.348 14.328 135.00

12 12.278 18.221 24.396 130.00

18 16.513 23.198 14.098 110.00

24 18.512 26.276 16.245 100.00

Fault F5 6 6.640 6.420 5.780 150.00

12 6.640 6.440 5.670 150.00

18 8.550 8.330 7.310 146.00

24 10.900 10.510 9.310 142.00

Fault F6 6 30.406 11.809 19.546 151.00

12 30.617 12.119 19.849 147.00

18 30.516 12.564 19.832 143.00

24 30.587 12.915 20.261 138.00

Table 4 TYPICAL cases where
IMDS has identical current
response for different operating
conditions

Case Condition of IMDS Load torque (Nm) Ia (rms) (A) Ib (rms) (A) Ic (rms) (A)

1 Normal 18 6.611 6.641 6.626

Fault F5 6 6.640 6.420 5.780

2 Fault F2 6 4.121 4.145 4.145

Fault F3 6 4.100 4.010 4.210

3 Fault F2 24 8.460 8.488 8.477

Fault F5 18 8.550 8.330 7.310

observed under fault F2 and fault F3 with a load torque of
6 Nm are seen to be identical. Case 3 shows yet another
instance where comparable current magnitudes are obtained
for different operating conditions of the IMDS. Thus, a fault
diagnosis system relying solely on stator current magnitudes
fails to make a correct diagnosis and hence necessitates the
search for more reliable fault identifiers.

Therefore, in this work, THD analysis is also carried out
for different fault and load conditions to analyze its effec-
tiveness in fault identification. The variation of % THD of
stator currents under different fault conditions with variable
load is shown in Fig. 14, 15, and 16. These parameters are
tabulated in Table 5. From the detailed analysis of Table 5,
it is realized that the combination of stator currents and their
respective THDmay be potential fault identifiers. However,it
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Fig. 14 %THD of Ia during normal and fault F1 to F6

Fig. 15 %THD of Ib during normal and fault F1 to F6

Fig. 16 %THD of Ic during normal and fault F1 to F6

is evident from Table 5 that a direct mapping between the
extracted performance parameters and fault condition is not
possible. Moreover, the nonlinear variation of the extracted
features with respect to the fault condition makes the bound-
aries between the severity levels of a specific fault or between
two faults hard to define. A typical true or false logic fails
due to this lack of crisp boundaries. Thus, the fault signatures
necessitate the use of fuzzy approach for fault detection and
diagnosis.

5 Proposed Fuzzy-Based Fault Diagnosis
Algorithm

The fault detection and diagnosis strategy proposed in this
work are based on the relationship between the stator currents
and their THD. However, the use of six variables (current in
each phase and their respective THD) can impact the compu-
tational effectiveness of fuzzy systems. Therefore, this work
considers the sum of the magnitudes of the rms value of the
stator current in each phase as one input variable to fuzzy
system. In addition, the THD of each phase accounts for the
other three variables. Thus, fuzzy rules are formulated using
the four inputs. Each input is divided into four fuzzy sets, and
output is divided into seven fuzzy sets, and these are shown
in Figs. 17 and 18, respectively.

Linguistic variables, the fundamental tool in fuzzy logic,
form the bridge between the input and output variables. They
systematically manage ambiguous concepts through words
or sentences. In this paper, output fuzzy linguistic variable
can be expressed as normal (N), rectifier short-circuit fault
(F1), rectifier open-circuit fault (F2), DC link earth fault
(F3),DC link capacitor short-circuit fault (F4), inverter IGBT
open-circuit fault(F5), and inverter IGBT short-circuit fault
(F6). The input variables of the fuzzy system can also be
expressed in a similar manner. The sum of the RMS currents
which forms the first input is interpreted as I. The linguistic
variable I can be expressed as very small (IVS), small (IS),
large(IL), and very large (IVL). The linguistic variables of
all input fuzzy sets and their membership values are given
in Table 6, and the output fuzzy set and their membership
values are listed in Table 7. A partial representation of fuzzy
rule system is shown in Fig. 19, and the main fuzzy rules are
listed in Table 8.

The structure of the proposed fault detection algorithm is
shown in Fig. 20. The continuous online monitoring of stator
current of the IMDS forms the crux of the algorithm. The sta-
tor currents in all the phases are measured and given as input
to the algorithm. In the next stage, the rms value of the stator
currents and the THD of the currents are computed. Further,
the sum of the rms value of the currents and the computed
THD is given as the input to the fuzzy inference system.
The output from the fuzzy inference system is the type of
fault in the IMDS. This information can be communicated
to the operating personnel through graphical user interfaces
specially designed to suit the industry. As the fault features
that form, the inputs to the fuzzy inference system can be
computed by measuring the stator current alone; the require-
ment of cumbersome measurement and acquisition setup is
eliminated in this system.
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Fig. 17 Input fuzzy sets

Fig. 18 Output fuzzy sets

Table 6 Linguistic variables and membership values of input fuzzy set

Parameter Fuzzy set Membership value

I (A) IVS 0–20

IS 18–30

IL 28–50

IVL 48–70

% THD Ia TAVS 0–2

TAS 1–25

TAL 20–60

TAVL 50–100

% THD Ib TBVS 0–2

TBS 1–25

TBL 20–60

TBVL 50–100

% THD Ic TCVS 0–2

TCS 1–25

TCL 20–60

TCVL 50–100

Table 7 Membership values for output fuzzy sets

Fuzzy sets (Fault condition) Membership value range

Normal 0–1

Fault F1 3–4

Fault F2 4–5

Fault F3 5–6

Fault F4 6–7

Fault F5 1–2

FaultF6 2–3

Fig. 19 Partial rule representation for the fault detection of three-phase
IMDS

Table 8 Fuzzy rules for fault diagnosis

I % THD Ia % THD Ib %THD Ic Operating condition

IVS TAVS TBVS TCVS N

IS TAVS TBVS TCVS N

IVS TAVL TBL TCS F5

IVS TAL TBL TCS F5

IVS TAL TBS TCL F6

IVS TAL TBS TCS F6

IVS TAL TBS TCVL F6

IL TAVS TBVS TCVS F6

IL TAL TBS TCL F6

IVS TAS TBS TCS F1

IS TAS TBS TCS F1

IVL TAVL TBVL TCVL F1

6 Validation of Fuzzy-Based Fault Detection
and Diagnosis Algorithm

In this section, the performance of the proposed fuzzy-
based detection and diagnosis algorithm under various fault
scenarios is presented. First, the normal operating condition

123



Arabian Journal for Science and Engineering (2020) 45:1385–1395 1393

Fig. 20 Flow chart of the proposed algorithm for fault detection and
diagnosis

Fig. 21 Rule viewer for normal condition

Fig. 22 Rule viewer for F5

Fig. 23 Rule viewer for F6

Fig. 24 Rule viewer for combined fault F1,F2,F6

of the IMDS is considered. In Fig. 21, it is seen that when
the membership function value of I is 7.64 (IVS), % THD
of Ia is 1.78 (TAVS), %THD of Ib is 0.585 (TBVS), and
%THD of Ic is 0.568 (TCVS), the output fuzzy set is 0.586.
Any fuzzy output value between 0 and 1 is indicative of
normal operating condition of the IMDS. Thus, by providing
an output of 0.586 as depicted by Fig. 21, the fuzzy algorithm
successfully identifies the normal condition of the IMDS. On
a similar note, IMDS under fault F5 was tested next. As seen
from Fig. 22, when I is (14.3), %THD of Ia is 17.7, %THD
of Ib is 8.3, and %THD of Ic is 5.36, the output membership
function is 1.48. This clearly lies within the range specified
for Fault F5 in Table 6. Similar testing was done for the other
faults as well. Figure 23 shows the simulation results in the
event of Fault F6. From simulation studies, it is evident that
the designed fuzzy algorithm is capable of detecting the faults
based on the variations in the four inputs, viz. the total rms
value and the THD of IM stator currents corresponding to
the three phases.

In order to illustrate the performance of the proposed algo-
rithm for multiple faults, the algorithm has also been tested
for multiple faults scenarios, even though the probability of
occurrence of such faults simultaneously is fairly small. Fig-
ure 24 shows the fuzzy rule viewer for IMDS when operated
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in combined fault condition (F1,F2, and F6) with load torque
of 12Nm. FromFig. 24, it is seen that the algorithm identifies
the fault as F6 which is the most severe fault as compared to
F1 and F2. Thus, in the event of combined faults, the most
severe fault among the combination is diagnosed.

7 Conclusion

A fuzzy-based intelligent fault diagnosis algorithm for IMDS
is designed and developed in this work. All drive fault
conditions are simulated with different load conditions and
analyzed to extract the characteristics that are affected by the
fault conditions. From the fault analysis, it is observed that
the stator current alone cannot accurately diagnose the fault.
On detailed investigation of the results, it is identified that
the sum of the rms value and the THD of the stator currents
can accurately diagnose various drive fault conditions. Since
the direct mapping between the input and output condition at
different loads involves fuzziness, a fuzzy rule-based system
is designed and tested usingMATLAB. The system proposed
in this work involves the measurement of rms value of stator
currents alone which makes system design simple and cost-
effective. It is envisaged that with the help of the proposed
algorithm, the burden of cumbersome manual fault diagno-
sis process on the operating staff can be greatly reduced, and
shut down time can be significantly minimized. In future, the
system can be enhanced with the analysis and diagnosis of
supply side faults of IMDS.
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