
Arabian Journal for Science and Engineering (2019) 44:9599–9625
https://doi.org/10.1007/s13369-019-03817-7

RESEARCH ART ICLE - COMPUTER ENGINEER ING AND COMPUTER SC IENCE

Performance Comparison of Multi-objective Algorithms for Test Case
Prioritization DuringWeb Application Testing

Munish Khanna1 · Achint Chaudhary2 · Abhishek Toofani1 · Anil Pawar1

Received: 21 July 2018 / Accepted: 14 March 2019 / Published online: 27 March 2019
© King Fahd University of Petroleum &Minerals 2019

Abstract
Test case prioritization (TCP) is a widely accepted and extensively used strategy during regression testing. TCP is the
permutation of test cases to enhance efficiency in achieving performance goals. These goals can belong to the category of
single objective problem or multi-objective problem. This empirical study focuses on three objectives wherein two objectives
are to be maximized and the remaining one minimized. During this study, three websites and various versions were created
on which non-dominated sorting genetic algorithm-II and variant of non-dominated sorting artificial bee colony algorithm
were applied to prioritize sequence of test cases. The problem size varies from small-size fault matrix (34 × 27) to mid-size
fault matrix (157 × 128). Performance of the two algorithms was measured on various parameters and also verified on the
basis of statistical testing. An alternate approach for solving this multi-objective problem, based on dynamic programming,
is also proposed in this study, and it is concluded that performance of this algorithm is at par with other suggested ones.

Keywords Multi-objective optimization ·NSGA-II ·NSABC ·Dynamic programming ·Test case prioritization · Search-based
software engineering

1 Introduction

In the current scenario, E-commerce is spreading wings
throughout the world, in both developed countries and under-
developed countries, and the number of web-based systems
and their users are increasing at a fast pace. To remain sus-
tainable in this highly competitive era and retain the customer
base bymeeting their endless expectations, web-based appli-
cations (dynamic websites in our case) have to undergo
technology enhancement and frequent updates. Regression
testing is performed to ensure high quality and to validate
such updates without interrupting the provided services of
end products/deliverables.

B Munish Khanna
Munishkhanna.official@rocketmail.com

Achint Chaudhary
Chaudharyachint08@gmail.com

Abhishek Toofani
abhishektoofany@gmail.com

Anil Pawar
anilpawar25@gmail.com

1 Hindustan College of Science and Technology,Mathura,India

2 Indian Institute of Sciences, Bengaluru, India

Regression testing [1–3] is an inevitable and expensive
process implemented during the maintenance phase of the
evolving software so as to attain best quality. It makes up a
significant percentage of the overall cost of software devel-
opment and maintenance. It is undertaken when updates are
made to an existing software system. The ultimate purpose of
regression testing is to provide best quality assurance prac-
tices and to ensure that the updated features do not influence
the behavior of the existing, unchanged part of the original
flawless software. Different strategies are followed for the
implementation of regression testing, test case prioritization
being one of them.

TCP [4] is formulated to find new permutation of test
cases, T ′ belonging to a set of permutations SP such that
the value for f (T ′) would be greater than or equal to any
other permutation T ′′ belonging to SP, i.e., to find T ′ ∈ SP
such that (∀T ′′)(T ′′ ∈ SP) (T ′′ �= T ′)| f (T ′) ≥ f (T ′′)
where f is a function when applied to any such permuta-
tion would yield an award value for that permutation. This
prioritized permutation of test cases should execute in such
a fashion that the test case having the highest award value
as per the given testing criteria would be executing earli-
est, followed by test cases having lesser award value. The
testing criteria can be uni-objective, where one parameter

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-019-03817-7&domain=pdf
http://orcid.org/0000-0002-7682-1089

9600 Arabian Journal for Science and Engineering (2019) 44:9599–9625

has to be maximized/minimized, or multi-objective where
there are multiple parameters out of which some are to be
minimized and the remaining ones maximized. Therefore,
TCP problem can be categorized into a single objective opti-
mization problem or amulti-objective optimization problem,
similar to other software engineering problems. In the pre-
sented study, three parameters are taken into consideration
which are: minimization of testing cost (execution time of
test cases), maximization of severity detection per test case
execution (early detection of severe faults) andmaximization
of fault severity detected per unit of test cost.

The efficacy of prioritized test cases is measured in terms
of average percentage of parameter detection where the
parameter can be faults, branch, loops, blocks or statements.
The focus of this study is on faults detection; hence, efficiency
ismeasured in terms of average percentage of faults detection
(APFD). While calculating, APFD execution time of each
test case was considered unit time; at the same time, severity
of each fault was also considered to be unity. These values
are not practically feasible in the real-life scenario. Rother-
mal et al. [4,5] improved this formula, by introducing cost
cognizant average percentage of faults detection (APFDC),
which is more viable and practical. It is the measure of unit
of fault severity detected per unit of test cost.

The APFDC for the test suite is calculated using Eq. 1.

APFDc =
∑m

i=1

(
fi ×

(∑n
j=TFi Tj − 1

2TTFi
))

∑n
i=1 Ti ×

∑m
i=1 fi

(1)

where T is a test suite consisting of n test cases whose costs
are T1, T2, . . . , Tn, respectively, F is a set ofm faults exposed
by T with severities f1, f2, . . . , fm, TFi is the first test case
of an ordering T ′ of T that exposed fault i , m is the total
number of faults and n is the total number of test cases.

Harman et al. [6] discussed various parameters and
their coverage within the program such as block coverage,
decision coverage and statements coverage by different cat-
egories of algorithms. In the presented work, focus is laid
on the coverage of faults since their coverage would cover
blocks, decisions and statements proxywise. In this empirical
study, faults belonging to diverse categories were manually
transplanted at random locations in the dynamic website
under test. Relevant test cases having the capability to expose
these manually seeded faults were generated using Selenium
testing tool.

In the present work, two state-of-the-art multi-objective
algorithms [non-dominated sorting genetic algorithm-II
(NSGA-II) and variant of non-dominated sorting artifi-
cial bee colony algorithm (vNSABC)] are applied to solve
the above-stated multi-objective optimization problem. The
results generated on a range of size instances of different
versions of various dynamic websites from both algorithms

are compared. Meanwhile, performances of these two algo-
rithms are also measured on other parameters such as time
taken to solve the problem and how many iterations are
required to compute the best results. Statistical testing is also
performed to compare these two algorithms. Concurrently,
one non-incremental approach, the Dynamic Programming-
based approach, is also discussed for solving the problem.
In this approach, various parameters are presented includ-
ing count of recursive calls and count of dynamic table look
up for solving the problem. A complete code of dynamic
programming, written by the authors in Python, is presented
in the “Appendix” section. Moreover, a diagrammatic pre-
sentation of two parameters is also presented in the sections
dealingwith results and discussions. The proposedwork is an
attempt to answer the discrete combinatorial multi-objective
optimization problem having contradictory objectives.

Academic contribution of this experimental study can be
considered as solving the following questions:

Q1 Is vNSABC able to generate better results, within less
time and less number of iterations, in comparison with
NSGA-II, in solving the suggested problem? and

Q2 Is there any other non-incremental algorithm-based
approach to solve the problem in feasible exponential
time?

This experimental study provides three different solutions to
the tester fraternity. They can make use of it according to
requirements and objectives.

The rest of the paper is organized as follows: Sect. 2
presents prior studies related to TCP, TCP in multi-objective
environment, usability of NSGA-II and NSABC. Section 3
gives a brief description of implemented algorithms and sug-
gested objectives (proposed approach). Section 4 presents
in detail the experimental setup and experiments conducted.
Section 5 illustrates results, analysis and discussion. Sec-
tion 6 presents the conclusion, future scope and threats to
validity. In Sect. 7, the “Appendix” section, an algorithm
based on dynamic programming approach, memo (created
in random access memory) table and a detailed Python code
for dynamic programming implementation are provided.

2 RelatedWorks

This section has been divided into three subsections. First
subsection focuses on prior published studies on TCP. Next
subsection showcases previous studies which present practi-
tioners efforts in solving various problems using NSGA-II.
Finally, the last subsection presents earlier studies which
give researcher’s efforts for solving various problems using
NSABC.

123

Arabian Journal for Science and Engineering (2019) 44:9599–9625 9601

2.1 PriorWorks Related to TCP

Diverse attempts have been made by the researcher’s fra-
ternity to solve TCP, some prominent work being discussed
below.

Elbaum et al. [7] introduced two factors, varying test costs
and severity, while prioritizing test sequence so as to enhance
rate of fault detection, i.e., verifying how fast the given test
set exposes faults during the testing process. They also pro-
posed a new metric for analyzing rate of fault detection of
a prioritized test set that incorporates varying test cases and
fault costs.

Another benchmark study by Jiang et al. [8] proposed a
coverage-based adaptive random testing test case prioritiza-
tion technique which is supported by white-box coverage
information and tested on empirical study. Authors justified
that their proposed approach is superior to random ordering
for earlier detection of failures.

Tanzeem et al. [9] proposed a quality metric that estimates
quality of test cases using their similarity to previously fail-
ing test cases. The experimentation process executed on five
software’s reveals that anticipated similarity-based quality
measure is appreciably more effective for prioritizing fault-
revealing test cases compared to existing test case quality
measures (or traditional history-based approach). Authors
also revealed that their quality metrics is superior to supple-
mentary test quality metrics, e.g., coverage and test size in
prioritizing tests.

The next prioritization approach presented by Arafeen et
al. [10] investigated whether efficiency of test case prior-
itization can be improved if requirement-based clustering
approach (incorporating traditional code analysis informa-
tion) is applied. They also proved that results may vary by
cluster sizes, and by grouping similar type of requirements,
efficiency can be improved. They have used requirements to
group test cases—on two projects and their versions, rather
than focusing on utilizing source code information.

Laali et al. [11], in their recent published study, focus
on online test cases prioritization technique (using feedback,
i.e., localization of fault), rather than classical offline test case
prioritization, and to justify the innovativeness, they applied
the proposed approach on Siemens 7 programs data set.

In a recently published experimental study, Wang et
al. [12] focus on limitations of the traditionally followed
coverage-based test case prioritization and proposed a new
QTEP, quality aware test case prioritization technique, which
leverages two dominant code inspection techniques, i.e., a
typical statistic defect prediction model and a typical static
bug finder, to weight source code in terms of fault proneness.
They experimented using 16 variants of the proposed tech-
nique on various versions of seven open source Java projects
to show the improvement in results over coverage-based test
case prioritization technique.

Mei et al. [13] proposed a new approach named as JUPTA,
JUnit test case prioritization techniques operating in the
absence of coverage information, which specifically works
on the Java programs which are tested under JUnit frame-
work. The proposed approach understands the static call
graphs of JUnit test cases and the program under test to guess
the capability of each test case to attain code coverage and
then schedules the sequence of these test cases based on these
estimates.

Stephen et al. [14] in their empirical work concluded
that the presented static black-box TCP technique performs
better than existing static black-box TCP techniques and
has comparable or better performance than two existing
execution-based TCP techniques.

2.2 PreviousWorks Completed Using NSGA-II

There exists prior studies which conclude that NSGA-II has
been successfully applied by researcher’s fraternity working
in various domains [15,16], of engineering, not limited to
software engineering. Some studies related to optimization
problems, of software engineering attempted by NSGA-II,
are reported below.

Zhang et al. [17] reported the suitability of NSGA-II for
solving a multi-objective next released problem under the
class of requirement engineering.

Ruiz et al. [18] in their experimental study included three
conflicting objectives: development time, cost and productiv-
ity, to support software project managers in taking decisions
in a multi-objective perspective. It was reported that NSGA-
II algorithm was able to converge quickly to a set of optimal
solutions.

Wong et al. [19] presented a solution for multi-objective
optimal test resource allocation problem, considering relia-
bility of the system, testing cost and total testing resources
consumed as parameters with the help of NSGA-II and
harmonic distance-based multi-objective evolutionary algo-
rithm (HaD-MOEA).

Chaudhary et al. [20] considered two conflicting objec-
tives, uniform distribution of test cases over the given range
and maximization of code coverage, while solving multi-
objective automatic test data generation

Mondal et al. [21] investigated multi-objective test case
selection problem with the help of NSGA-II, with three con-
flicting objectives maximizing code coverage, maximizing
diversity among the selected test cases and minimizing test
execution time.

Yoo et al. [22] attempted to solve the multi-objective test
case selection problem considering fault coverage, code cov-
erage and cost, using additional greedy algorithm, NSGA-II
and its variant vNSGA-II.

Of late, researcher’s fraternity has turned its attention to
solving test case reduction problem in amulti-objective envi-

123

9602 Arabian Journal for Science and Engineering (2019) 44:9599–9625

ronment, with objectives such as code coverage, requirement
coverage and execution time [23], rather than in the classi-
cal single objective scenario. Authors of the presented study
propose multi-objective test case reduction (MORE) tech-
nique and apply NSGA-II for validation of the proposed
technique on multiple Java programs. The generated results
were promising and show that there is scope of improvement.

Zheng et al. [24] applied classical greedy, NSGA-II,
MOEA/D and variant of MOEA/D on SIR repository for
solving multi-objective problem, with conflicting objectives,
code coverage vs. execution time, test case minimization
problem, during regression testing.

Canfora et al. [25], in a recently published empirical
work, consider maximum effectiveness and minimum cost
as objectives which are to be optimized while solving multi-
objective logistic regression problem and multi-objective
decision trees problem using formulated defect prediction.

In another published study by Marchetto et al. [26],
21 java applications were considered as the subject for
test case prioritization in a multi-objective scenario where
source code coverage, requirements and test case execu-
tion time were the objectives. Authors proved that NSGA-II
outperforms other competitive algorithms on the basis of
APFD.

Thus, the literature survey covered above reveals that no
major significant work has been presented by researcher’s
community in test case prioritization in the multi-objective
scenario using NSGA-II. This motivates us to solve the sug-
gested problem using the said algorithm.

2.3 Previous Attempts Successfully Accomplished
Using ABC and NSABC

Regarding usability andmotivation behindABCandNSABC
for solving the problem in hand, a small literature survey
is presented below in which some prior relevant stud-
ies are discussed where similar types of problems of
software engineering/testing have been solved. Moreover,
the discussion presented below also proves that no key
work has been published in solving the suggested prob-
lem with selected parameters using NSABC. This gives
us the motivation for solving the same using NSABC, as
there are indications in some prior studies, like [27], that
the algorithm has the capability to solve similar category of
problems.

Karaboga et al. [27] presented a comprehensive survey of
the applications of ABC in a choice of engineering prob-
lems from various fields such as industrial engineering,
mechanical engineering, electrical engineering, electronics
engineering, control engineering, civil engineering, software
engineering image processing, datamining, sensor networks,
protein structure and many more.

Karaboga et al. [28] proposed combinatorial ABC for
solving traveling salesman problem which falls under the
category of NP-Hard combinatorial optimization problem.

Lam et al. [29] compare ABC with other algorithms such
as ant colony optimization (ACO) and genetic algorithm
(GA), while proposing automatic generation of feasible inde-
pendent paths followed by test suite optimization.

Chong et al. [30] applied ABC algorithm for solving job
shop scheduling problem which also falls under the cate-
gory of NP-hard problems. The results generated by ABC
were promising, and they were compared with the perfor-
mance of ACO and tabu search to evaluate the performance
of ABC.

Kaur et al. [31] proposed ABC algorithm for regression
test suite prioritization. Average percentage of conditions
covered was the criteria to measure efficacy of the proposed
algorithm. Maximum code coverage was used for explaining
functioning of the algorithm.

Srikanth et al. [32] applied ABC to generate optimal
number of test cases to be executed on the software, i.e.,
generation of optimized test suite. Full path coverage has
been assured by the approach.

Joseph et al. [33] blended particle swarm optimiza-
tion with ABC and named it as particle swarm artificial
bee colony algorithm (PSABC) for test case optimization.
PSABC prioritizes test cases to reduce time and cost of
regression testing. Maximum statement and fault coverage
with minimum execution time was the main objective of the
work.

Mala et al. [34] proposed a framework for software test
suite optimization using ABC approach. Dahiya et al. [35]
applied ABC for structural testing of ten real-world pro-
grams. Konsaard et al. [36] made use of ABC algorithm to
prioritize test suites based on code coverage.

Aghdam et al. [37] applied ABC algorithm for solving the
issue of test data generation where branch coverage was the
criteria as a fitness function. The process was implemented
on seven standard programs, and the generated results were
outstandingwhen comparedwith other competitive soft com-
puting techniques.

Li et al. [38] presented ABC algorithm for multi-objective
optimization problem. Simulation results on multi-objective
test functions verified the validity of the presented algo-
rithm.

Amarjeet et al. [39], in their empirical study, try to solve
software module clustering problem using a variant of many-
objective artificial bee colony algorithm. They compare the
proposed algorithm with other four algorithms over seven
clustering problems to prove better performance.

Mann et al. [40] made use of ABC algorithm for path-
specific approach for automatic test case generation. Based
on thefindings, authors conclude thatABCoutperformsother
suggested soft computing-based algorithms.

123

Arabian Journal for Science and Engineering (2019) 44:9599–9625 9603

3 Proposed Approach

Description of the algorithmic details is presented in the first
half of this section, while a discussion on suggested param-
eters is presented in the second half.

3.1 Implemented Algorithms

Three algorithms have been shortlisted for implementation
in the present study for performance evaluationwhile solving
the problem in hand.

As mentioned in the previous section, NSGA-II has been
widely accepted by the researcher’s community worldwide
and has been used not only in computer science but also in
other fields of engineering such as civil, mechanical, electri-
cal and system engineering [15,16]. The algorithm is used to
solve problems where care needs to be taken for more than
one objective simultaneously and; moreover, these objec-
tives may conflict with each other in many instances. It is
basically a selection technique which helps us to select best
solutions (with respect to all objectives) among all solu-
tions, and this selection is done by non-dominated sorting.
Fronts are created in this algorithm on the basis of dom-
inance; Pareto front (first front) consists of solutions that
are non-dominated to each other; no other solution is dom-
inating it nor are of major interest. Thus, Pareto optimal
fronts are created in this algorithm, where solutions in one
front dominate solutions of other fronts, and solutions in
the same front are non-dominated. Within a front, we cal-
culate crowding distance to find diversity between solutions
in any front. It is implemented by incorporating special fast
non-dominated sorting technique into the genetic algorithm.
Crowding distance is used to estimate versatility, density
of solutions surrounding any particular solution. It is used
to preserve the shape of the front and to remove redun-
dant solutions in the high-density region. During this work,
non-dominated sorting functionality and crowding distance
functionality of NSGA-II are implemented as presented in
relevant prior studies [41,42]. Meanwhile, implementation
information, at the abstract level, about NSGA-II and genetic
algorithm (GA) is shown below. Certain modifications have
been made in available NSGA-II which can be considered as
author’s contribution. After the completion of the last iter-
ation of GA, three best solutions from the first front (for
the suggested three parameters) are ascertained with applica-
tion of linear search among the stored solutions. These three
solutions satisfy maximum unit of fault severity detected per
unit of test cost, maximum severity detection and minimum
test case execution time to expose all the faults, respec-
tively.

The NSGA-II algorithm, at abstract level, is presented
below.
NSGA-II algorithm

1. Initialize population size
2. Start loop till max iteration
3. Calculate fitness of each individual based on Pareto

front and crowding distance [41]
4. Generate new population (children) using selection

crossover and mutation technique
5. Select best population among previous (parents) and

new (child) populations
6. Terminate loop if reach max iteration
7. Select best k solutions from population

Pareto front (and crowding distance) is not discussed in
a detailed manner because it is computed in similar fashion
for related problems. Previous published study [41] can be
further referred to generate Pareto fronts and to calculate
crowding distance required in the algorithm.

The genetic algorithm, at abstract level, is as follows.
Genetic algorithm

1. Generate 2n number of initial solutions randomly,
where n is the problem size (test cases in our case)

2. Apply tournament selection procedure for parent’s
selection

3. Apply crossover operation on selected parents
4. Implement mutation process on the children

generated during step 3
5. Retain the best 50% solutions on the basis of

dominance. Generate remaining 50% solutions
randomly

6. If the number of iterations performed is less than fifty
times the problem size, goto step 2, otherwise exit

The practical usability of ABC and NSABC in research
area is already presented in the previous section. The variant
of NSABC (vNSABC) algorithm is presented below. Similar
toNSGA-II, non-dominated sorting functionality and crowd-
ing distance functionality are implemented as mentioned in
relevant prior studies [41,42]. The ABC algorithm is imple-
mented as presented belowalongwith detailed explanation of
each and every step since a few modifications are suggested
by the authors within the traditional ABC algorithm. Since
modifications are recommended in the ABC algorithms, it is
termed as variant ABC, by introducing a function called pool
(), which is author’s contribution.

123

9604 Arabian Journal for Science and Engineering (2019) 44:9599–9625

ABC algorithm

Input to algorithm: test cases versus fault matrix (TCVFM), severity
matrix (SM) and test case execution time matrix (TCETM)

1. Create the initial solutions randomly whose count is twice the
number of test cases; moreover, every test case will appear
only once in these solutions. One constraint that has been
compulsory implied on the solutions is that every test case
will be given an opportunity to occupy first position in the
solution; remaining positions can be filled randomly by the
remaining n − 1 test cases. This implies that in the first and
second solutions, the first position is occupied by the first test
case, T1. Similarly, in third and fourth solution, first posi-
tion is occupied by second test case T2 and so on. Thus,
finally, we have 2n number of solutions where in 2n − 1
and 2nth solutions first position is occupied by Tn th test
case

2. Functionality of employee bees
(a) The solutions, generated during the above step, are supplied
to the employee bees.
(b) The employee bees having solution X(i) with them start
searching for the neighbor of this solution, named as X(k), to
produce a new solution Y (i) in accordance with Eq. (2) where ∅
is a random number between 0 and 1
Y (i) = X(i) + ∅∗(X(i) − X(k)) (2)
All the solutions will play the role of X(i) once; in the meantime
X(k) is selected out of the remaining ones, randomly in such a
manner that X(i) and X(k) are dissimilar. A pool function has
been devised, our contribution, for the implementation of Eq.
(2). In depth explanation of the function pool is presented after
this algorithm
(c) Calculate the fitness of the original one X(i) and the newly
generated solution Y (i). On the basis of their finesses, select the
better choice and reject the poorer one

3. Functionality of onlooker bees
(a) Sort all the sequences on the basis of dominance
(b) Discard lower half, 50%, of the solutions
(c) Now onlooker bee will again search and select the neighbor
randomly from these selected solutions and try to generate a new
solution Y (i), using Eq. (2)

4. Functionality of scout bees
(a) Sort all the sequences on the basis of dominance. Best prof-
itable 50% of the solutions will be retained on the basis of
dominance and the remaining ones will be discarded
(b) Produce new solutions randomly, equal to the number of
solutions discarded; the imposed restriction mentioned in step
1 is non-applicable on these newly generated random solu-
tions
(c) These solutions will become food source for the employee
bees and process switches toward Step 2 (a)

5. Termination criteria
(a) This procedure will be repetitive utmost up to five times the
number of test cases

Function pool () is implemented as follows
Pool function

1. Randomly select the solution Y as a neighbor of X such that X �= Y .
Let X1 and Y1 be the first test cases of the sequences X and Y ,
respectively. Append the test case, having the highest parameter,
AOC, value (Eq. 2), in the initial new empty test sequence which is
to be generated; left one will become a part of the initially created
empty pool

2. Select second test case, X2 and Y2, respectively, from X and Y ,
compare X2, Y2 and the test cases which are part of pool on the basis
of factor f . Choose one, out of these, which has the highest value of
factor f at this point of time. Factor f , of any arbitrary test case, i is
calculated as the sum of severity of all the undetected faults exposed
by test case i divided by execution time of the test case. Add the
unexecuted test case(s) to the pool

3. If two of more candidate test cases have equal and highest factor f ,
select one test case randomly to come out of the tie situation. This
selected test case will get appended to the new solution. Revise
TCVFM on the basis of this selection. If all members of the pool
along with Xi and Y i have equivalent factor f , then add Xi and Yi
into the pool then select Xi + 1 and Y i + 1 and compare these with
pool members. Repeat this step till the tie condition breaks down

4. If all the faults are exposed, but some test cases are still left in the
pool or have yet not become part of the pool, select all the remaining
test cases and append these into the solution in a random fashion

Dynamic programming is another classical algorithmic
approach to solve many classical problems, not only related
to computer science but also in other fields of engineering
[43]. This motivates the authors to apply this algorithm for
solving the problem in hand. The algorithm is devised for the
suggested multi-objective problem. Detailed explanation of
the algorithm along with code and performance generated by
the algorithm is comparedwith the vNSABC in the upcoming
sections. For the reader’s understanding, Table 1 has been
compiledwhich lists the acronyms (abbreviations) alongwith
the expanded forms.

3.2 Multi-objective Functions Setup

Three parameters are selected in these studies which are to be
either minimized or maximized. The first parameter that is to
be maximized is unit of fault severity detected per unit of test
cost, also known asAPFDC (Eq. 1). This is a standard param-
eter followed worldwide by researchers and testers fraternity
for calculating efficiency of prioritized test sequences. We
have thoroughly analyzed the behavior of how the APFDC

actually works, i.e., how the area of the graph which is to
be maximized is filled. This is explained below. Let there be
following relevant notations:

∑
cost: total cost of all the test cases.

SEV[i]: severity exposed by i th test case/
∑

sev.
Cost[i]: cost of i th test case/

∑
cost.

Undet: undetected faults.
FRC: fraction of remaining cost.
∑

sev: total severity of all the faults.

123

Arabian Journal for Science and Engineering (2019) 44:9599–9625 9605

Table 1 Acronyms of various terms used in this empirical study

Acronym Expanded form Acronym Expanded form

GA Genetic algorithm APFDC Cost cognizant average percentage of
fault detection

vNSABC Variant of non-dominated sorting artificial
bee colony algorithm

NSGA-II Non-dominated sorting genetic
algorithm-II

TCVFM Test cases versus fault matrix SM Severity matrix

TCETM Test case execution time matrix Unexec Unexecuted test cases

Undet Undetected faults FRS Fraction of remaining severity

FRC Fraction of remaining cost
∑

cost Total cost of all the test cases
∑

sev Total severity of all the faults AOR Area of this region

US Undetected severity SDT Severity detected by i th test case, out of not
yet detected

PT Position of the i th test case in test sequence n Number of test cases in test sequence

CDS Current detected severity RSD Rate of severity detection

WiVj j th version of i th website

Fig. 1 Filling up of graph
region per execution of test case,
where cost and severity are the
concern

sev[j]: severity of j th fault/
∑

sev.
Unexec: unexecuted test cases.
FRS: fraction of remaining severity.

Suppose K −1 test cases are executed and that next chance is
given to K th test case for which the cost, COST[K], will be
incurred and possibly new severity SEV[K] (out of remain-
ing one) will be exposed. In other words, SEV[K] will be
exposed/deducted from FRS and COST[K] is deducted from
the FRC. Region shown in Fig. 1 is guaranteed to account
for APFDC.

Area of this region (AOR, refer Fig. 1) can be calculated
as

Parameter (AOR) = (FRC∗SEV[K])
−(1/2∗COST[K]∗SEV[K])

= SEV[K](FRC − 1/2COST[K]) (3)

The value obtained from Eq. (1) is equal to summation of
parameter (AOR) resulting from the first test case to the last

test case of the test sequence. That is, summation of the area
is covered by first test case through last test case. The ultimate
objective of TCP is to find the test sequence for which the
generated area would be maximum.

A test case, next in order, will be selected for execution.
The algorithm given below, with complexity n2, will gen-

erate total APFDC from the test sequence.

The next suggested parameter which is related to severity
of the faults is rate of severity detection per execution of test
case which is to be maximized. Authors have devised the
equation for this, which is given below:

123

9606 Arabian Journal for Science and Engineering (2019) 44:9599–9625

Sev =
n∑

i=1

US(%) × SDT

PT
(4)

where

US undetected severity;
SDT severity detected by i th test case, out of not yet
detected;
PT position of the i th test case in test sequence;
n number of test cases in test sequence.

The value of severity of the fault varies with the stakeholder’s
perspective. Four stakeholders are taken into considerations
which are designer, coder, tester and end user. A survey has
been conducted among these stakeholders having sufficient
relevant experience, and severity has been finalized on the
basis of their responses.

Another question which comes to mind: is it really worth
to consider severity as a parameter?

This question is justified by the scenario given below. Sup-
pose there exist three test cases, T1, T4 and T7, which have
equal candidature for next execution. T1 detects six faults of
three severities each; T4 detects eight faults of four severi-
ties each; and T7 exposes seven faults of five severities each.
When maximization of fault detection per execution of test
case is the objective, then T4 will be the first choice; but in
case of maximization of severity detection per execution of
test case, T7 will be the premium choice. Hence, it can be
said that the ultimate purpose of parameter “rate of severity
detection” is earlier detection ofmore severe faults. Similar to
the discussion on the above parameter, we have also devised
the equation and finally drawn the graph for this parameter
also. The summation of the covered area of Fig. 2 is equal to
summation in Eq. (4) (Sev).

Let there be following relevant notations

RSD rate of severity detection;
US undetected severity;
CDS current detected severity;

Initially, since no test case is executed, undetected severity
is equal to summation of all the elements of the severity array.
US multiplied by CDS gives area of the rectangle formed
inside the region. Factor “position” is divided to put more
concern on earlier detection of faults with same severity. The
equation of RSD is given below (Eq. 5)

RSD =
∑length

position
US×CDS
position

Total_Severity
(5)

Let us consider a scenario for which Fig. 2 has been built
as shown above. In this scenario, there are three test cases,

Fig. 2 Filling up of graph region per execution of test case, where
severity is the concern

TC1, TC2 and TC3,which can detect fault whose summation
of severity is 5, 7 and 8, respectively. Initially, the total unde-
tected severity is equal to summation of all severities, which
is 20 in this case. When the first test case is executed, faults
are detected whose summation of severity is 5, the covered
area, byTC1 of the graph,will be ((20×05)/1). Now, the sec-
ond test case TC2 is going to be executed for which US value
reduces to 15 from the initial value of 20; area covered by
TC2 is ((15×07)/2); now, the severity to be detected would
be 8. Finally, the remaining undetected severity is 8. TC3 is
going to be executed and will detect the whole remaining
severity; meanwhile, the area covered by this test case will
be ((8× 8)/3). The value of summation of these three areas
would be equal to the value computed from Eq. (4).

The third objective is minimization of test case execution
time so as to expose all the faults. It should be noted here
that the sequence of selected test cases does not matter. The
ultimate purpose is so select the minimum number of test
cases which can expose all the faults.

4 Experimental Setup

Four jsp-based dynamic websites, consisting of 50–100
pages and 5000–11,500 lines of code, were selected for test-
ing purpose. Various versions of these websites were created
by addition/deletion/modification at code and functionality
levels. Three websites belong to major projects of postgradu-
ate students while the remaining one belongs to an inventory
company that was built by IT professionals. As previously
mentioned, faults were manually injected into the websites;
up to 157 faults were introduced in the websites to make
the system faulty [44]. These faults belonged to various
categories and were manually injected at random locations
in different versions. For exposing these faults, test cases
were created using Selenium testing and replay tool. It was
installed on the client side and used to capture/replay user
interactions with the system (website). For calculation of
execution time of test cases, EMMA and Selenium test tools

123

Arabian Journal for Science and Engineering (2019) 44:9599–9625 9607

Fig. 3 Framework of the
proposed model

Table 2 Version data of the five websites used in test case prioritization

Websites and
their versions

W1v1 w1v2 w1v3 w1v4 w2v1 w2v2 w2v3 w3v1 w3v2 w3v3 w3v4 w4v1 w4v2 w4v3 w4v4

KLOC 5.93 7.76 9.20 8.98 8.20 8.99 10.78 6.87 6.10 7.28 7.34 11.76 12.07 12.92 14.03

Test cases 34 41 61 74 52 58 78 89 90 126 134 69 84 97 157

Faults 27 23 25 35 23 49 36 64 73 109 105 31 45 52 128

Table 3 Result matrix depicting performances in achieving all the parameters by NSGA-II and vNSABC when applied on all versions of all the
websites under test

Version Matrix
size

NSGA-A
(APFDC)

NSABC-A
(APFDC)

NSGA-E
(execution time)

NSABC-E
(execution time)

NSGA-S
(severity)

NSABC-S
(severity)

W1V1 34 × 27 0.930979 0.930979 52,128.571 52,128.571 48.5815 48.5815

W1V2 41 × 23 0.868163 0.870644 45,071.428 41,071.428 48.9428 48.9428

W1V3 61 × 25 0.961182 0.961198 51,400 52,014.285 66.7787 66.7787

W1V4 74 × 35 0.964828 0.964828 70,585.714 70,585.714 60.6035 60.6035

W2V1 52 × 23 0.95603 0.958206 45,414.285 41,157.142 55.9158 55.9158

W2V2 58 × 49 0.898458 0.90204 101,857.14 99,900 66.3265 66.3265

W2V3 78 × 36 0.956201 0.956201 69,157.142 69,157.142 71.9676 71.9676

W3V1 89 × 64 0.897991 0.899895 117,000 114,985.71 58.6413 58.7132

W3V2 90 × 73 0.930515 0.931094 161,914.28 159,200 93.3363 93.3874

W3V3 126 × 109 0.927944 0.932738 248,171.42 237,714.28 134.1887 134.6791

W3V4 134 × 105 0.941938 0.943005 239,528.57 238,242.85 135.9258 135.9258

W4V1 69 × 31 0.957867 0.95813 59,028.571 58,385.714 65.4502 65.4502

W4V2 84 × 45 0.951509 0.951509 86,328.571 84,842.857 84.1923 84.2278

W4V3 97 × 52 0.942733 0.945702 104,242.85 102,500 71.3426 71.3426

W4V4 157 × 128 0.94679 0.949908 315,657.14 282,757.14 149.1875 150.1198

were used. Test cases were executed several times on various
platforms. Thereafter, the average of these values was taken.
On the other side, a survey was conducted to decide severity
of the manually seeded faults. Five students of postgradu-
ate level were permitted to go through the system (websites)
thoroughly. After this, they were asked to introduce faults
anywhere randomly so that the system became faulty and it

was shared with the tester. The tester could execute test cases
randomly or follow the prioritized test sequence generated
by the suggested algorithms. Technique of creating system
faulty by manual fault injection has been widely practiced by
researcher’s community, and various studies have been pub-
lished which used the same methodology for performance
evaluation rationale [44–47].

123

9608 Arabian Journal for Science and Engineering (2019) 44:9599–9625

Table 4 Result matrix depicting the performance in terms of number of iterations and time to solve the problem in case of NSGA and vNSABC
when applied on all versions of the websites under test

Version Matrix size Smallest iteration
for finding best
APFDC in
NSGA

Smallest iteration
for finding best
APFDC in
vNSABC

Smallest iteration
for finding best
TIME in
NSGA

Smallest iteration
for finding best
TIME in
vNSABC

Smallest iteration
for finding best
SEVERITY in
NSGA

Smallest iteration
for finding best
SEVERITY in
vNSABC

W1V1 34 × 27 68 (2.119) 58 (1.9188) 233 (7.264) 37 (1.224) 175 (5.455) 322 (10.666)

W1V2 41 × 23 152 (5.91) 42 (1.715) 106 (4.122) 15 (0.613) 50 (1.944) 155 (6.34)

W1V3 52 × 23 82 (3.95) 34 (1.902) 32 (1.543) 29 (1.710) 20 (0.9664) 5 (0.29)

W1V4 58 × 49 268 (16.51) 43 (2.9968) 268 (16.508) 137 (9.451) 2682 (165.08 357 (24.628)

W2V1 61 × 25 699 (51.4) 30 (2.695) 210 (15.456) 565 (50.837) 76 (5.593) 29 (2.60)

W2V2 69 × 31 73 (7.25) 25 (3.267) 89 (8.851) 112 (14.757) 646 (64.24) 165 (21.56)

W2V3 74 × 35 305 (43.89) 49 (7.316) 592 (67.29) 429 (64.05) 298 (33.875) 218 (32.581)

W3V1 78 × 36 738 (39.79) 110 (18.65) 492 (64.3191) 35 (5.934) 492 (64.301) 139 (22.2)

W3V2 84 × 45 3470 (518) 590 (113.2) 2567 (383.79) 245 (47.116) 3471 (518.9) 855 (164.09)

W3V3 89 × 64 1878 (295) 416 (79.02) 1221 (192.17) 104 (18.75) 2948 (463.9) 2928 (444.80)

W3V4 90 × 73 3702 (628) 554 (130.8) 2826 (479.65) 1413 (282.8) 8043 (1365) 976 (189.388)

W4V1 97 × 52 1109 (268) 150 (40.57) 959 (230.29) 339 (103.43) 948 (227.8) 387 (118.162)

W4V2 126 × 109 6286 (1519) 700 (199.3) 4272 (749.90) 720 (238.76) 5444 (929.9) 1478 (299.21)

W4V3 134 × 105 8612 (2081) 3011 (849) 3686 (684.76) 1239 (399.4) 8945 (1548) 5009 (1009)

W4V4 157 × 128 6802 (1643) 956 (274.5) 2591 (489.56) 756 (249.98) 5161 (894.9) 1397 (287.78)

Bracketed value represents the execution time taken by the algorithm(s) to execute mentioned number of iterations

Table 5 Average performance of NSGA-II and vNSABC algorithms on all the parameters while testing all the versions of all the websites under
test

NSGA-A vNSABC-A NSGA-E vNSABC-E NSGA-S vNSABC-S

APFDc 0.93554 0.93707 – – – –

Severity – – – – 80.758 80.864

Cost – – 117,832 113,642 – –

Number of iterations required 2283 451 1343 412 2627 961

Time taken to solve the problem (in s) 474.85 115.123 226.364 99.254 419.323 175.553

Proposed framework of the presented work is depicted
using Fig. 3. A short description is as follows. In the first
phase, error-free websites are shortlisted for testing and later
on, faults are transplanted into them manually. In the next
phase, all the required matrices are generated on the basis
of observation, conducted survey and software tools. In the
final phase, all the algorithms are applied on the matrices and
the resultant test sequences generated from these algorithms
are evaluated on various parameters. Table 2 depicts the lines
of code, faults introduced and corresponding test cases in all
versions of all the websites under test.

The codes of NSGA-II and NSABC were implemented
using C language and were executed on the same hardware
platformwhich isWindows platform, Intel (R) Core(TM) i3-
4150 CPU@3.5GHz. However, the dynamic programming-
based approach was coded in Python language and imple-
mented on the same hardware platform.

5 Results, Discussion and Analysis

In this part, under the first section, results generated by
NSGA-II and vNSABC and analysis on the same are
reported. In the last Sect. 5.1, a thorough discussion on every
aspect related to dynamic programming is presented.

Results generated by both the algorithms Tables 3 and 4
on all versions of the website are presented below.

Depending upon the scenario and requirement, the tester
may be interested in finding a solution fulfilling one of the
objectives such as finding the test sequence having high-
est fault detection capability, or finding the test sequence
which takes least amount of time to detect all the faults
in case of hard deadline of product delivery during main-
tenance phase. The generated Tables 3, 4 and 5 present
solutions generated by vNSABC performing better or equiv-
alent than that of NSGA-II, either in single objective scenario
or multi-objective scenario. Results Tables 3, 4 and 5 clearly

123

Arabian Journal for Science and Engineering (2019) 44:9599–9625 9609

indicate that the vNSABC has the capability to generate
better (some time equivalent also) solutions as compared
with NSGA-II in all versions of all the websites. All the
solutions which are part of the first front are equally impor-
tant and non-dominating to each other; if linear search is
applied, we can get the best among these with respect to sug-
gested objectives. These algorithms are called NSGA-E and
vNSABC-E, if linear search on the first front is applied for
execution time; similarly, for the remaining parameters, they
are called NSGA-A/vNSABC-A (for APFDC) and NSGA-
S/vNSABC-S (for severity as parameter).

Table 5 draws attention toward average performance of
the suggested algorithms during all versions of all the web-
sites, which shows the results in the form of values from
which comparison can be made. Table 5 clearly indicates
that NSGA-A (sorted for APFDC) was not able to outper-
form vNSABC average wise also. Similarly, vNSABC-E and
vNSABC-S perform better average wise than NSGA-E and
NSGA-S, respectively. If comparison is made on the basis of
the parameters “Number of iterations required” and “Time
taken to solve the problem,” vNSABC performs far better
than NSGA-II. For example, in case of comparison between
NSGA-A and vNSABC-A, the latter takes less than 25% of
the total iterations required byNSGA-Aalgorithm. Similarly,
in case of execution time, vNSABC-A takes less than 24%
of the total time taken by NSGA-A. Hence, the algorithms
clearly outperform in terms of result generated, number of
iterations required to generate the result and time taken to
solve the problem.

With the help of programs, log files of each and every
version of websites under test were created so as to analyze
the behavior of vNSABC algorithm toward reaching the final
result (maximization or minimization, whatever may be the
objective). Iteration-wise values generated by all the algo-
rithms were recorded for all suggested objectives. Figure 4
represents visualization of this recorded behavior in the form
of graphs. Result values for all the objectives are normalized
between 0 and 1 so as to represent in the scale of 0 to 1 on
the graph’s Y axis. Similarly, X axis represents the normal-
ized number of iterations required, as some of the parameters
become saturated/converge very fast and reach the optimal
value earlier than the remaining ones. Hence, it can be said
that these graphs are the visual representation of the working
of vNSABC during each iteration and illustrate how param-
eters converge iteration wise.

As a part of the analysis, we have also performed t test
(statistical testing) betweenNSGA and vNSABC to compare
vNSABC vs. NSGA-II.

Above Tables 6a–c depict the results of paired one-tail t
test. In this problem, we have considered three hypotheses,
separate hypothesis for each parameter, i.e., APFDC, execu-
tion time and severity.

HA0 = NSGA (APFDC) and NSABC (APFDC) give
same result, and there is no significant difference between
them.
HE0 = NSGA (execution time) and NSABC (execution
time) generate same results and there is no significant
difference between them.
HS0 = NSGA (severity) and NSABC (severity) gen-
erate same results and there is no significant difference
observed.

If any hypothesis is rejected, then we can conclude that there
are significant differences between results; to show which
result is best, we have used average value.

To analyze hypothesis, we use significance level value
0.05.

As we can see in Table 6a, b, one pair one-tail P value
(0.0011, 0.036) is less than the significant value (0.05),
which means the first two null hypotheses are rejected.
This means there is significant difference between results
of NSGA and NSABC for the first two cases. If we com-
pare the average value of NSGA–APFDc (0.935541867)
with NSABC–APFDc (0.9370718), we find that NSABC–
APFDc gives better results compared to NSGA–APFDc. In
the same way, we found that NSABC-execution time gives
better results compared to NSGA-execution time.

With the help of Table 6, we observe that the hypothesis
is not rejected which means there is no significant difference
between results. The reason is that out of 15, 10 versions
have same severity of NSGA and NSABC value. But if we
see the other five values, we find that NSABC outperforms
NSGA in severity. Thus, we can say NSABC severity gives
better result than NSGA severity.

5.1 Finding Optimal Objective Function of Test Case
Execution in FeasibleWorst Case Exponential
Time and Space Complexity

Finding optimal solution of a permutation-based problem
can be naively tackled by finding all permutations. But this
will take up a large amount of time since time rises to
O(N !) complexity. Based on previous execution performed
on above-stated hardware, it was observed that to find all per-
mutations of 10 test cases in 30min, from which evaluation
of 15 permutations will be done would take approximately
20years (practically unfeasible).

A test case execution sequence consists of two parts; the
first part contains test cases that detect fault upon execu-
tion; the second part consists of redundant test cases that are
not capable of detecting any new fault. When all faults are
detected, further execution of test cases and their order would
make no effect on the performance of the testing system.

So, finding entire permutations will be of no use and will
be justwaste of valuable time and resources.But the sequence

123

9610 Arabian Journal for Science and Engineering (2019) 44:9599–9625

Fig. 4 Graphical representation of log files of Websites 1 and 2 where wi represent website number and v j represents version number of wi

up to which all faults are detected, further called as truncated
sequence can be of variable length depending upon the ele-
ments in it.

So, we have developed an approach to find all such trun-
cated sequences using recursion. We begin with an empty
sequence at root, adding each available test case into that

123

Arabian Journal for Science and Engineering (2019) 44:9599–9625 9611

Fig. 4 continued

sequence one at a time. Further recursive calls are made with
this partial sequence built. Recursion terminates whenwe are
left with no more faults to be detected. Solutions obtained at

the leaves will be returned back level by level to the root and
can be evaluated for optimality.

123

9612 Arabian Journal for Science and Engineering (2019) 44:9599–9625

Table 6 t test of various
parameters between NSGA-II
and vNSABC

t test: paired two sample for means between APFDc of NSGA-II and vNSABC

NSGA (APFDC) NSABC (APFDC)

(a): t test of APFDC between NSGA-II and vNSABC

Mean 0.935541867 0.9370718

Variance 0.000768798 0.00072893

Observations 15 15

Pearson correlation 0.998670448

Hypothesized mean difference 0

d f 14

t Stat. −3.731686744

P(T ⇐ T) one-tail 0.001116407

t critical one-tail 1.761310115

t test: paired two sample for means between execution time of NSGA-II and vNSABC

NSGA (execution time) NSABC (execution time)

(b): t test of execution time between NSGA-II and vNSABC

Mean 117,832.3788 113,642.8555

Variance 7,259,810,463 6,266,240,757

Observations 15 15

Pearson correlation 0.99749027

Hypothesized mean difference 0

d f 14

t Stat. 1.933906893

P(T ⇐ T) one-tail 0.036800411

t critical one-tail 1.761310115

t test: paired two sample for means between severity of NSGA-II and vNSABC

NSGA (severity) NSABC (severity)

(c): t test of severity between NSGA-II and vNSABC

Mean 80.75874 80.86415333

Variance 1079.635022 1092.44196

Observations 15 15

Pearson correlation 0.999986075

Hypothesized mean difference 0

d f 14

t Stat. −1.565590907

P(T ⇐ T) one-tail 0.069881239

t critical one-tail 1.761310115

For example, when trying for a sequence of 10 test cases,
recursion leads to 69,459 truncated sequences,which ismuch
less as compared to seeking 10! (3,628,800) solutions.

Both approaches of finding optimal sequences, either by
finding all permutations or doing recursion to find all trun-
cated sequences will not take more than linear space.

But recursion itself accounts for exponential time com-
plexity, making it non-feasible to extend this approach above
sequence of 15 test cases. Neither of these approaches is

much scalable, because we are using very large amount of
CPU time, but paying no attention to use of availablememory
resources.

The objectives under consideration to be optimized are
based on prefix–suffix optimization (this term will be dis-
cussed shortly), where dynamic programming (DP) tech-
nique can be greatly used. First,wewill seewhat this property
is, then have a look at how DP can be used to find optimal
solution in least possible time.

123

Arabian Journal for Science and Engineering (2019) 44:9599–9625 9613

5.1.1 Prefix–Suffix (P–S) Optimization Problem

In this class of problems, each solution can be divided into
P&S, order of elements in P contributes something to objec-
tive function and same is applicable to S part too.

But order of elements in P&S and the contribution made
by them to objective function are independent of each other.
Thismeans that a fixed P contributed to the objective function
is independent of any order of elements in S; vice versa is
also true.

5.1.2 Dynamic Programming Approach

As explained earlier with recursive approach, we move the
tree in top–downmanner to explore leaves. Suppose, we have
created P and elements from the remaining test cases that
contribute to an optimal S. Reaching up to leaf of tree, we
get a sequence as P–S in which assume S to be discovered
optimal. But assume that the order of elements in P does not
lead to optimality; a different order in P can do so.

While traveling another path of recursion tree, when we
reach the node, where elements of P are in certain order
which can led to optimality, the remaining S part need to
be concatenated with this new built P.

There is no use of reevaluating S part again. Our dynamic
programming approach does exactly the same; it saves the
optimal discovered S part, corresponding to the set of ele-
ments in a discovered P (which can be nonoptimal on some
node).

When we reach a node where a different order of elements
of P is discovered, we just simply concatenate the S part from
the look-up table created during execution. In this manner,
we save a lot of computation time involved in redundant
evaluation of optimal S for all possible orders of elements in
P.

Below are the total solutions generated by each explained
approach from the beginning of the document for a test suite
of ten test cases.

Finding all permutation = 10! (3,628,800)
Truncated sequence finding by Recursion = 69,459

Actual andMemo calls by dynamic programming= 944
and 1913, respectively.

It should be noted that actual calls are recursive calls where
solutions (S parts) are built and, saved to look-up table
for future usage. Memo call on the other hand denotes the
number of times entries are taken from look-up table for con-
catenation of S.

Given below (Fig. 5) is the snap shot of the results gen-
erated, along with other parameters, by our Python code.
The first time, recursion is applied, while in the other case,
dynamic programming-based approach is applied. The gen-
erated results clearly indicate that dynamic programming-
based approach is able to present optimal results for 10× 10
matrixes.

A detailed example (Fig. 6) on 5×5 test cases versus fault
matrix along with its running is given below.

Let us consider the given below test case versus fault
matrix

0 1 0 0 0
1 0 0 0 0
0 1 0 1 0
1 1 1 0 0
0 1 0 0 1

Suppose execution time (cost) array of test cases, in millisec-
onds, is given below

1842.857143 1471.428571 3200.000000 4371.428571 2942.857143

Severity of these five faults is as given below

6 9 4 3 3

It is manually verified that the results generated are opti-
mal for all the three parameters. Here, in the pruned tree
constructed (T 1, T 2 and T 3 given below) for all the param-
eters A represents actual calls, D represents Dynamic call
and “–“ means the level of the tree.

Fig. 5 Snapshot of results
generated through both
approaches on running example
of 10 × 10 matrix

Enter Folder Name10x10
0 // Do not use Dynamic Programming, instead go for Recursion
OPT_APFDC (0.8188884108957796, 69459, 0, 0, 0.784543, [4, 0, 2, 3, 8])
OPT_SEVERITY (0.8188884108957796, 69459, 0, 0, 36.284, [0, 4, 3, 8, 2])
OPT_COST (0.8188884108957796, 69459, 0, 0, 18528.5714, [0, 2, 3, 8, 4])

Enter Folder Name10x10
1 //Go for Dynamic Programming Approach
OPT_APFDC (0.027552050663750615, 944, 1913, 895, 0.784543, [4, 0, 2, 3, 8])
OPT_SEVERITY (0.027552050663750615, 944, 1913, 895, 36.284, [0, 4, 3, 8, 2])
OPT COST (0.027552050663750615, 944, 1913, 895, 18528.5714, [0, 2, 3, 8, 4])

123

9614 Arabian Journal for Science and Engineering (2019) 44:9599–9625

Fig. 6 Snapshot of results
generated through dynamic
programming on running
example of 5 × 5 matrix

The result generated, along with other parameters, by dynamic programming is as mentioned below.
OPT_APFDC (0.8638361850167635, 28, 19, 16, 0.751818, [3, 4, 2])
OPT_SEVERITY (0.8638361850167635, 28, 19, 16, 19.48, [3, 2, 4])
OPT_COST (0.8638361850167635, 28, 19, 16, 10514.2857, [2, 3, 4]).

TreeT1:APFDC parameter dynamic programming preorder pruned tree

A [] 0.0 A -- [0, 3] 0.283471 D --- [1, 4, 2, 3] 0.046612
A - [0] 0.336012 A --- [0, 3, 2] 0.05219 All faults detected 0.719504
A -- [0, 1] 0.195248 D --- [0, 3, 2, 4] 0.025537 A --- [1, 4, 3] 0.083636
A --- [0, 1, 2] 0.077355 All faults detected 0.697211 D --- [1, 4, 3, 2] 0.029876
A ---- [0, 1, 2, 3] 0.059339 A --- [0, 3, 4] 0.053306 All faults detected 0.718595
A ----- [0, 1, 2, 3, 4] 0.012769 A ---- [0, 3, 4, 2] 0.026653 A - [2] 0.424463
All faults detected 0.680723 All faults detected 0.699442 A -- [2, 1] 0.171694
A ---- [0, 1, 2, 4] 0.050702 A -- [0, 4] 0.09124 D -- [2, 1, 4, 3] 0.113306
A ----- [0, 1, 2, 4, 3] 0.025289 A --- [0, 4, 1] 0.144174 All faults detected 0.709463
All faults detected 0.684607 D --- [0, 4, 1, 2, 3] 0.077107 A -- [2, 3] 0.244215
A --- [0, 1, 3] 0.096364 All faults detected 0.648533 A --- [2, 3, 4] 0.041529
A ---- [0, 1, 3, 2] 0.039421 A --- [0, 4, 2] 0.064587 All faults detected 0.710207
D ---- [0, 1, 3, 2, 4] 0.012769 D --- [0, 4, 2, 1, 3] 0.113926 A -- [2, 4] 0.079463
All faults detected 0.679814 All faults detected 0.605764 A --- [2, 4, 1] 0.12062
A ---- [0, 1, 3, 4] 0.040537 A --- [0, 4, 3] 0.198347 D --- [2, 4, 1, 3] 0.046612
A ----- [0, 1, 3, 4, 2] 0.013884 D --- [0, 4, 3, 2] 0.026653 All faults detected 0.671157
All faults detected 0.682045 All faults detected 0.652252 A --- [2, 4, 3] 0.159091
A --- [0, 1, 4] 0.078471 A - [1] 0.227231 All faults detected 0.663017
A ---- [0, 1, 4, 2] 0.051818 A -- [1, 0] 0.297707 A - [3] 0.639876
D ---- [0, 1, 4, 2, 3] 0.025289 D -- [1, 0, 4, 2, 3] 0.155579 A -- [3, 2] 0.068182
All faults detected 0.686839 All faults detected 0.680517 D -- [3, 2, 4] 0.041529
A ---- [0, 1, 4, 3] 0.062314 A -- [1, 2] 0.373388 All faults detected 0.749587
D ---- [0, 1, 4, 3, 2] 0.013884 A --- [1, 2, 3] 0.080661 A -- [3, 4] 0.069298
All faults detected 0.68593 A ---- [1, 2, 3, 4] 0.02876 A --- [3, 4, 2] 0.042645
A -- [0, 2] 0.090124 All faults detected 0.710041 All faults detected 0.751818
A --- [0, 2, 1] 0.139711 A --- [1, 2, 4] 0.066694 A - [4] 0.428926
D --- [0, 2, 1, 4, 3] 0.075992 A ---- [1, 2, 4, 3] 0.046612 A -- [4, 1] 0.176157
All faults detected 0.641839 All faults detected 0.713926 D -- [4, 1, 2, 3] 0.114421
A --- [0, 2, 3] 0.190909 A -- [1, 3] 0.382479 All faults detected 0.719504
A ---- [0, 2, 3, 4] 0.025537 A --- [1, 3, 2] 0.055413 A -- [4, 2] 0.080579
All faults detected 0.642583 D --- [1, 3, 2, 4] 0.02876 D -- [4, 2, 1, 3] 0.167231
A --- [0, 2, 4] 0.063471 All faults detected 0.693884 All faults detected 0.676736
A ---- [0, 2, 4, 1] 0.088636 A --- [1, 3, 4] 0.056529 A -- [4, 3] 0.251653
D ---- [0, 2, 4, 1, 3] 0.025289 A ---- [1, 3, 4, 2] 0.029876 D -- [4, 3, 2] 0.042645
All faults detected 0.603533 All faults detected 0.696116 All faults detected 0.723223
A ---- [0, 2, 4, 3] 0.105785 A -- [1, 4] 0.377851
All faults detected 0.595393 A --- [1, 4, 2] 0.06781

123

Arabian Journal for Science and Engineering (2019) 44:9599–9625 9615

Tree T2: Severity parameter dynamic programming preorder pruned
tree

A [] 0.0 A -- [0, 3] 3.2 D --- [1, 4, 2, 3] 0.16
A - [0] 9.0 A --- [0, 3, 2] 0.24 All faults detected 11.0
A -- [0, 1] 1.92 D --- [0, 3, 2, 4] 0.09 A --- [1, 4, 3] 0.3733
A --- [0, 1, 2] 0.4 All faults detected 12.53 D --- [1, 4, 3, 2] 0.09
A ---- [0, 1, 2, 3] 0.28 A --- [0, 3, 4] 0.24 All faults detected 11.0233
A ----- [0, 1, 2, 3, 4] 0.072 A ---- [0, 3, 4, 2] 0.09 A - [2] 12.0
All faults detected 11.672 All faults detected 12.53 A -- [2, 1] 1.56
A --- [0, 1, 2, 4] 0.21 A -- [0, 4] 0.96 D -- [2, 1, 3, 4] 0.4633
A ----- [0, 1, 2, 4, 3] 0.128 A --- [0, 4, 1] 1.04 All faults detected 14.0233
All faults detected 11.658 D --- [0, 4, 1, 3, 2] 0.352 A -- [2, 3] 2.6
A --- [0, 1, 3] 0.5333 All faults detected 11.352 A --- [2, 3, 4] 0.12
A ---- [0, 1, 3, 2] 0.18 A --- [0, 4, 2] 0.52 All faults detected 14.72
D ---- [0, 1, 3, 2, 4] 0.072 D --- [0, 4, 2, 3] 1.0 A -- [2, 4] 0.78
All faults detected 11.7053 All faults detected 11.48 A --- [2, 4, 1] 0.8
A ---- [0, 1, 3, 4] 0.18 A --- [0, 4, 3] 1.7333 D --- [2, 4, 1, 3] 0.16
A ----- [0, 1, 3, 4, 2] 0.072 D --- [0, 4, 3, 2] 0.09 All faults detected 13.74
All faults detected 11.7053 All faults detected 11.7833 A --- [2, 4, 3] 1.3333
A --- [0, 1, 4] 0.4 A - [1] 6.0 All faults detected 14.1133
A ---- [0, 1, 4, 2] 0.21 A -- [1, 0] 3.42 A - [3] 19.0
D ---- [0, 1, 4, 2, 3] 0.128 D -- [1, 0, 3, 2, 4] 0.7853 A -- [3, 2] 0.36
All faults detected 11.658 All faults detected 10.2053 D -- [3, 2, 4] 0.12
A ---- [0, 1, 4, 3] 0.28 A -- [1, 2] 4.56 All faults detected 19.48
D ---- [0, 1, 4, 3, 2] 0.072 A --- [1, 2, 3] 0.3733 A -- [3, 4] 0.36
All faults detected 11.672 A ---- [1, 2, 3, 4] 0.09 A --- [3, 4, 2] 0.12
A -- [0, 2] 0.96 All faults detected 11.0233 All faults detected 19.48
A --- [0, 2, 1] 1.04 A --- [1, 2, 4] 0.28 A - [4] 12.0
D --- [0, 2, 1, 3, 4] 0.352 A ---- [1, 2, 4, 3] 0.16 A -- [4, 1] 1.56
All faults detected 11.352 All faults detected 11.0 D -- [4, 1, 3, 2] 0.4633
A --- [0, 2, 3] 1.7333 A -- [1, 3] 4.94 All faults detected 14.0233
A ---- [0, 2, 3, 4] 0.09 A --- [1, 3, 2] 0.24 A -- [4, 2] 0.78
All faults detected 11.7833 D --- [1, 3, 2, 4] 0.09 D -- [4, 2, 3] 1.3333
A --- [0, 2, 4] 0.52 All faults detected 11.27 All faults detected 14.1133
A ---- [0, 2, 4, 1] 0.6 A --- [1, 3, 4] 0.24 A -- [4, 3] 2.6
D ---- [0, 2, 4, 1, 3] 0.128 A ---- [1, 3, 4, 2] 0.09 D -- [4, 3, 2] 0.12
All faults detected 11.208 All faults detected 11.27 D -- [4, 3, 2] 0.12
A ---- [0, 2, 4, 3] 1.0 A -- [1, 4] 4.56 All faults detected 14.72
All faults detected 11.48 A --- [1, 4, 2] 0.28

123

9616 Arabian Journal for Science and Engineering (2019) 44:9599–9625

Tree T3: Execution time tree parameter dynamic programming preorder
pruned tree

A [] 0 A -- [0, 3] 4371.4286 D --- [1, 4, 2, 3] 4371.4286
A - [0] 1842.8571 A --- [0, 3, 2] 3200.0 All faults detected 11985.7143
A -- [0, 1] 1471.4286 D --- [0, 3, 2, 4] 2942.8571 A --- [1, 4, 3] 4371.4286
A --- [0, 1, 2] 3200.0 All faults detected 12357.1429 D --- [1, 4, 3, 2] 3200.0
A ---- [0, 1, 2, 3] 4371.4286 A --- [0, 3, 4] 2942.8571 All faults detected 11985.7143
A ----- [0, 1, 2, 3, 4] 2942.8571 A ---- [0, 3, 4, 2] 3200.0 A - [2] 3200.0
All faults detected 13828.5714 All faults detected 12357.1429 A -- [2, 1] 1471.4286
A ---- [0, 1, 2, 4] 2942.8571 A -- [0, 4] 2942.8571 D -- [2, 1, 3, 4] 7314.2857
A ----- [0, 1, 2, 4, 3] 4371.4286 A --- [0, 4, 1] 1471.4286 All faults detected 11985.7143
All faults detected 13828.5714 D --- [0, 4, 1, 2, 3] 7571.4286 A -- [2, 3] 4371.4286
A --- [0, 1, 3] 4371.4286 All faults detected 13828.5714 A --- [2, 3, 4] 2942.8571
A ---- [0, 1, 3, 2] 3200.0 A --- [0, 4, 2] 3200.0 All faults detected 10514.2857
D ---- [0, 1, 3, 2, 4] 2942.8571 D --- [0, 4, 2, 3] 4371.4286 A -- [2, 4] 2942.8571
All faults detected 13828.5714 All faults detected 12357.1429 A --- [2, 4, 1] 1471.4286
A ---- [0, 1, 3, 4] 2942.8571 A --- [0, 4, 3] 4371.4286 D --- [2, 4, 1, 3] 4371.4286
A ----- [0, 1, 3, 4, 2] 3200.0 D --- [0, 4, 3, 2] 3200.0 All faults detected 11985.7143
All faults detected 13828.5714 All faults detected 12357.1429 A --- [2, 4, 3] 4371.4286
A --- [0, 1, 4] 2942.8571 A - [1] 1471.4286 All faults detected 10514.2857
A ---- [0, 1, 4, 2] 3200.0 A -- [1, 0] 1842.8571 A - [3] 4371.4286
D ---- [0, 1, 4, 2, 3] 4371.4286 D -- [1, 0, 2, 3, 4] 10514.2857 A -- [3, 2] 3200.0
All faults detected 13828.5714 All faults detected 13828.5714 D -- [3, 2, 4] 2942.8571
A ---- [0, 1, 4, 3] 4371.4286 A -- [1, 2] 3200.0 All faults detected 10514.2857
D ---- [0, 1, 4, 3, 2] 3200.0 A --- [1, 2, 3] 4371.4286 A -- [3, 4] 2942.8571
All faults detected 13828.5714 A ---- [1, 2, 3, 4] 2942.8571 A --- [3, 4, 2] 3200.0
A -- [0, 2] 3200.0 All faults detected 11985.7143 All faults detected 10514.2857
A --- [0, 2, 1] 1471.4286 A --- [1, 2, 4] 2942.8571 A - [4] 2942.8571
D --- [0, 2, 1, 3, 4] 7314.2857 A ---- [1, 2, 4, 3] 4371.4286 A -- [4, 1] 1471.4286
All faults detected 13828.5714 All faults detected 11985.7143 D -- [4, 1, 3, 2] 7571.4286
A --- [0, 2, 3] 4371.4286 A -- [1, 3] 4371.4286 All faults detected 11985.7143
A ---- [0, 2, 3, 4] 2942.8571 A --- [1, 3, 2] 3200.0 A -- [4, 2] 3200.0
All faults detected 12357.1429 D --- [1, 3, 2, 4] 2942.8571 D -- [4, 2, 3] 4371.4286
A --- [0, 2, 4] 2942.8571 All faults detected 11985.7143 All faults detected 10514.2857
A ---- [0, 2, 4, 1] 1471.4286 A --- [1, 3, 4] 2942.8571 A -- [4, 3] 4371.4286
D ---- [0, 2, 4, 1, 3] 4371.4286 A ---- [1, 3, 4, 2] 3200.0 D -- [4, 3, 2] 3200.0
All faults detected 13828.5714 All faults detected 11985.7143 All faults detected 10514.2857
A ---- [0, 2, 4, 3] 4371.4286 A -- [1, 4] 2942.8571
All faults detected 12357.1429 A --- [1, 4, 2] 3200.0

Eight running examples (Table 7), test cases versus fault
matrix, are also generated for the evaluation of performances
of dynamic programming while solving the problem in hand.
We have created Python code for the implementation of
dynamic programming-based approach for solving the prob-
lem. Three separate programs are created for evaluation of
each parameter. The time taken to solve problem of different
instances, for each parameter, is depicted Table 6.Meantime,
it is also shown howmany actual recursive calls aremade and
howmany times the tables created by dynamic programming
have been referred. After that, we have merged all the three
programs into one. This complete program is shown in the
“Appendix” section along with comments so that users can
understand and reuse it as per their requirements. Results
generated for all the three parameters by dynamic program-
ming are at par with vNSABC.

A graph (Fig. 7) between the log of time and space taken
versus instance size is shown below. The color coding is as
below:

Before concluding this Section, we would like to answer
two research questions that we have raised in earlier sections.

Q1 Is vNSABC is able to generate better results, within less
time and less number of iterations,in comparison with
NSGA-II, in solving the suggested problem?
Answer: Yes, while solving the suggested problem, on
the dataset in hand, the generated results shown using
Tables 2, 3 and 4 revealed that the vNSABC is able to
generate better results when compared with NSGA-II.
To support the statement, statistical testing is also per-
formed, as shown in previous section, which also arrives
at the same conclusion. Tables 2, 3 and 4 also clearly

123

Arabian Journal for Science and Engineering (2019) 44:9599–9625 9617

Table 7 Presentation of data related to time to compute eight problem instances along with information related to actual calls and memo calls of
dynamic programming

S. no. Problem size
(test case vs.
fault matrix)

Time to compute
“APFDC

Time to compute
“Severity”

Time to compute
“Time”

Actual calls in
dynamic
programming

Memo calls (dynamic
lookups) in dynamic
programming

1 8 × 8 0.00570234 0.00575793 0.0042457 206 361

2 10 × 10 0.02925369 0.02728148 0.0204654 861 1947

3 12 × 12 0.12443800 0.12803244 0.0984199 3187 7402

4 14 × 14 0.93817187 0.97851678 0.7047538 14,982 48,513

5 16 × 16 3.42653176 3.63070763 2.7733889 59,392 195,729

6 18 × 18 18.1885335 19.3485216 15.900950 247,480 1,049,777

7 20 × 20 86.3752897 90.3063283 75.553968 1,012,500 4,499,453

8 22 × 22 338.217244 372.280950 281.36895 3,516,323 16,040,586

Table 8 Color coding for
different parameters that are
used in Fig. 5

Color Parameter Color Parameter

Red APFDC Blue Severity

Green Time Yellow Actual calls in dynamic programming

Black Dynamic lookups

Fig. 7 Behavior of test matrices with log of time and space

depict that vNSABC is able to generate better results
(or equivalent results in a few cases) in less iterations
and in less interval of time.

Q2 Is there any other non-incremental algorithm-based
approach to solve the problem in feasible exponential
time?
Answer: Yes, there exists non-incremental algorithm-
based approach, dynamic programming-based algo-
rithm, which will be able to solve the suggested problem
for smaller size instances. To strengthen the statement,
the algorithm, its code and its full functioning are pre-
sented in Sect. 5 and “Appendix” section.

123

9618 Arabian Journal for Science and Engineering (2019) 44:9599–9625

6 Conclusion and Future Scope

The presented study focuses on TCP under multi-objective
scenario where there are three conflicting objectives. Many
prior studies focus only on single objective. However, the
presented study manages several conflicting objectives in
parallel. TCP helps the software industry by saving software,
hardware, human resources, time and effort at one end, while
at the other end, it raises the standard of software quality
assurance levels by finding severe faults earlier during test-
ing practices so that they can be eliminated at the earliest.
TCP supports the tester fraternity by prioritizing test cases
with the support of suggested algorithms rather than running
all the test cases blindly so that maximum optimization of
the testing parameter takes place.

This study presents the usability of vNSABC over other
algorithms based on same strategy or different strategy.
The presented study compares the performance and rela-
tive effectiveness of NSGA-II with vNSABC while solving
the discrete combinatorial test cases prioritization problem
in multi-objective environment. The performance was eval-
uated on all the three objectives; moreover, in this work,
we also tried to analyze how much time and how much
iterations these algorithms take to generate the best results.
Results show that vNSABC performs better than or equiva-
lent to NSGA-II, most of the time, with respect to achieving
all the three suggested objectives. Almost in all the cases
and all the objectives, results generated by vNGSA were
not inferior to the results generated by NSGA-II. Moreover,
the results obtained by vNSABC take less time as well as
less number of iterations with respect to NSGA-II. The aver-
age performance is also better, or sometimes equivalent, in
case of vNSABC. Hence, it can be inferred from this study
that vNSABC comes out as the better choice in a resource
constrained environment. The resultant values of objectives
generated by vNSABC play the role of upper bound for
all the algorithms in hand. The vNSABC suggests the test
cases which should be executed first so as to generate best
APFDC, least execution time and highest severity detection
rate.

At the same time, we have also devised a dynamic
programming-based algorithm to solve the suggested prob-
lem.Depth analysis of the functioning of the algorithm is also
presented with respect to various parameters. Python code is
also presented for the readers. It is also shown that for small-
size instances of the problem, dynamic programming-based
approach is able to replicate the same results as generated by
vNSABC for all the objectives. However, due to exponential
time complexity of the algorithm, the computation was not
performed for large size instances.

Finally, the authors want to communicate that this study
not only presents the best algorithm among suggested com-
petitors, but also suggests three solutions to the tester
community. They can make use of it on the basis of require-
ment, needs and priority.

A few parameters, such as requirement changes, priorities
in requirements, coder experiences, can be still incorpo-
rated in the proposed model so that it can be converted
into a many objectives optimization problem. Artificially
implanted faults may be a threat to the model; however, they
are symbolic of real-life faults. Matrices up to 150 sizes
of faults are tested through the model; real-life test sce-
nario may contain larger size problems. If the memo can
be smartly managed (i.e., shrink/grow/optimized), large size
problem instances can be solved using the proposed dynamic
programming-based algorithm.

7 Appendix

Appendix section is divided into three parts. The first sec-
tion presents the algorithm based on dynamic programming.
Second section presents the memo required by dynamic pro-
gramming for the given problem. Finally, the last section
presents the whole Python code for dynamic programming
algorithm along with a thorough discussion on amortized
constant time complexity of dictionaries and set.

7.1 Dynamic Programming-Based Algorithm
Combined for All the Three Parameters

123

Arabian Journal for Science and Engineering (2019) 44:9599–9625 9619

123

9620 Arabian Journal for Science and Engineering (2019) 44:9599–9625

7.2 Memo (Stored in RAM) for APFDc Evaluation,
Severity Evaluation and Execution time
Evaluation

//Here, the first argument represents prefix, third argument
represents suffix and second argument represents contribu-
tion by suffix.

Memo for APFDC parameter evaluation

{0, 1, 2, 3} : 0.012769 [4] {1,2,3} : 0.02876 [4]
{0, 1, 2, 4} : 0.025289 [3] {1, 2, 4} : 0.046612 [3]
{0, 1, 2} : 0.075992 [4, 3] {1, 2} : 0.113306 [4, 3]
{0, 1, 3, 4} : 0.013884 [2] {1, 3, 4} : 0.029876 [2]
{0, 1, 3} : 0.054421 [4, 2] {1, 3} : 0.086405 [4, 2]
{0, 1, 4} : 0.077107 [2, 3] {1, 4} : 0.114421 [2, 3]
{0, 1} : 0.155579 [4, 2, 3] {1} : 0.492273 [4, 2, 3]
{0, 2, 3} : 0.025537 [4] {2, 3} : 0.041529 [4]
{0, 2, 4} : 0.113926 [1, 3] {2, 4} : 0.167231 [1, 3]
{0, 2} : 0.216446 [3, 4] {2} : 0.285744 [3, 4]
{0, 3, 4} : 0.026653 [2] {3, 4} : 0.042645 [2]
{0, 3} : 0.079959 [4, 2] {3} : 0.111942 [4, 2]
{0, 4} : 0.225 [3, 2] {4} : 0.294298 [3, 2]
{0} : 0.36343 [3, 4, 2] set() : 0.751818 [3, 4, 2]

Memo for severity parameter evaluation

{0, 1, 2, 3} : 0.072 [4] {1, 2, 3} : 0.09 [4]
{0, 1, 2, 4} : 0.128 [3] {1, 2, 4} : 0.16 [3]
{0, 1, 2} : 0.352 [3, 4] {1, 2} : 0.4633 [3, 4]
{0, 1, 3, 4} : 0.072 [2] {1, 3, 4} : 0.09 [2]
{0, 1, 3} : 0.252 [2, 4] {1, 4} : 0.4633 [3, 2]
{0, 1, 4} : 0.352 [3, 2] {1} : 5.27 [3, 2, 4]
{0, 1} : 0.7853 [3, 2, 4] {2, 3} : 0.12 [4]
{0, 2, 3} : 0.09 [4] {2, 4} : 1.3333 [3]
{0, 2, 4} : 1.0 [3] {2} : 2.72 [3, 4]
{0, 2} : 1.8233 [3, 4] {3, 4} : 0.12 [2]
{0, 3, 4} : 0.09 [2] {3} : 0.48 [2, 4]
{0, 3} : 0.33 [2, 4] {4} : 2.72 [3, 2]
{0, 4} : 1.8233 [3, 2] set() : 19.48 [3, 2, 4]
{0} : 3.53 [3, 2, 4]

M
em

o
fo
r
ex
ec
ut
io
n
tim

e
pa
ra
m
et
er

ev
al
ua
tio

n

{0
,1
,2

,3
}

:2
94
2.
85
71
42
99
99
99
3
[4
]

{1
,2

,3
}

:2
94
2.
85
71
43
00
00
01

[4
]

{0
,1
,2

,4
}

:4
37
1.
42
85
71

[3
]

{1
,2

,4
}

:4
37
1.
42
85
71
00
00
01

[3
]

{0
,1
,2

}
:7

31
4.
28
57
14

[3
,4

]
{1
,2

}
:7

31
4.
28
57
14
00
00
01
5
[3
,4

]
{0
,1
,3

,4
}

:3
20
0.
0
[2
]

{1
,3

,4
}

:3
20
0.
0
[2
]

{0
,1
,3

}
:6

14
2.
85
71
42
99
99
99

[2
,4

]
{1
,3

}
:6

14
2.
85
71
43
00
00
01

[2
,4

]
{0
,1
,4

}
:7

57
1.
42
85
70
99
99
99
5
[2
,3

]
{1
,4

}
:7

57
1.
42
85
71

[3
,2

]
{0
,1
}

:1
05
14
.2
85
71
4
[2
,3

,4
]

{1
}

:1
05
14
.2
85
71
4
[4
,3

,2
]

{0
,2
,3

}
:2

94
2.
85
71
43
00
00
01

[4
]

{2
,3

}
:2

94
2.
85
71
43
00
00
01

[4
]

{0
,2
,4

}
:4

37
1.
42
85
71

[3
]

{2
,4

}
:4

37
1.
42
85
71
00
00
01

[3
]

{0
,2
}

:7
31
4.
28
57
14
00
00
01

[4
,3

]
{2
}

:7
31
4.
28
57
14
00
00
01
5
[3
,4

]
{0
,3
,4

}
:3

20
0.
0
[2
]

{3
,4

}
:3

20
0.
00
00
00
00
00
01

[2
]

{0
,3
}

:6
14
2.
85
71
43

[4
,2

]
{3
}

:6
14
2.
85
71
43
00
00
01

[2
,4

]
{0
,4
}

:7
57
1.
42
85
71

[2
,3

]
{4
}

:7
57
1.
42
85
71
00
00
01

[2
,3

]
{0
}

:1
05
14
.2
85
71
40
00
00
1
[2
,4

,3
]

se
t(
)

:1
05
14
.2
85
71
40
00
00
1
[2
,3

,4
]

123

Arabian Journal for Science and Engineering (2019) 44:9599–9625 9621

7.3 Python’s Amortized Constant Time Complexity
of Dictionaries and Set

Mathematical notations of set provides its unordered nature
and capability of having only a unique element. In Python,
this element values must be Hashable, which means that
they cannot be changed once placed in set. Entries placed
in set are known as “Keys” which are said to be hash-
able. With dictionaries, we also have a data associated with
each key, called its “Value.” Sets only have collection of
keys.

As the name hashable suggest, both sets and dictionar-
ies utilize the concept of O(1) time of basic operations of
hash tables such as search, insert and delete. This speed is
achieved using an open address hash table as the supporting
data structure.

With all these pros of faster time taken in operations, there
are also cons of their usage. They do take more amount
of space in memory than ordered types; also, the speed
of operation and amortized O(1) time complexity depend
upon the hashing function in use. Hash function should be
fast to evaluate and probe each entry into slots with equal
probability.

7.3.1 Working Process of Sets and Dictionaries

Both data types use open address hash table, which according
to theory should provide for O(1) time for basic operations.
This is achieved by application of Hash function on key pro-
vided which generates a Hash value, which is used as index
into list of hash values. To the user it seems to have access
using an arbitrary keywhich can be anyHashable/Immutable
data type

7.3.2 Searching and Insertion

The search begins with an empty open address hash table
allocated in memory-Hash function is probed continuously
until we get an empty slow where our key (and reference
to value also in case of dictionary) is stored. Hash value
obtained by key, is masked on lower bits, so that output
numeric index would be the valid index of stored hash
table.

Linear Probing is used with slight modification in Python,
to eliminate clustering by providing a contribution of higher
bits, which are removed during masking.

Choice of algorithm for hashing is open to user in Python,
but it is important to hash into each slotwith equal probability.
Uniformity of data in hash table is related with load factor,
which is relatable to entropy of hash function.

7.3.3 Deletion

It is a common practice in open addressing to place special
sentinels in place of NULL, when an entry is deleted. This
sentinel (special value) signifies further search using modi-
fied linear probing. These empty slots can be overwritten in
future or can also be removed during resizing of hash table.

7.3.4 Resizing

One of the most important aspects of majority of mutable
data types in Python is how we can let our data structure
grow or shrink. Hash table should grow when it gets filled
and more entries are coming for further insertion. There is
a critical limit (generally 2/3 of maximum size) of storage;
when that fraction of hash table is filled, a larger table is
allocated and keys are rehashed into a new hash table, then
further insertion takes place directly into the new hash table,
and the previous one is de-allocated from memory.

This operation of rehashing is quite expensive during
insertion of element which requires resizing (not on every
element); it is proved to be amortized O(1) times.

7.3.5 Effect of Faults/Testcase Density on Size of Memo

Our dynamic programming, based on recursive back-
tracking, does carry some inherent properties. Let Faults/
Testcase be ‘k,’ if worst case of ‘k’ is 1, then depth of recur-
sion tree will be equal to number of test cases. Hence, there
will be maximum possible entries in memo. On the other
hand, if ‘k’ is equal to number of faults, then depth of tree
will be equal to one and memo will contain no entries at all.

On the basis of the above conclusion, we get to know that
low values of ‘k’ favor high number of entries in memo and
also more computation to be done.

In our experimental setup, wewere limited by thememory
resource available for storage of large memo and could reach
maximum of 23 × 23.

As the last part of “Appendix” section, we present here
the complete Python code for optimal parameter evaluation
using dynamic programming.

123

9622 Arabian Journal for Science and Engineering (2019) 44:9599–9625

123

Arabian Journal for Science and Engineering (2019) 44:9599–9625 9623

123

9624 Arabian Journal for Science and Engineering (2019) 44:9599–9625

References

1. Mathur, A.: Foundations of Software Testing, Seventh Impression.
Pearson Education, London (2012)

2. Chauhan, N.: Software Testing Principles and Practices, 1st edn.
Oxford University Press, Oxford (2010)

3. Singh, Y.: Software Testing, 1st edn. Cambridge University Press,
Cambridge (2012)

4. Rothermal, G.; Untch, R.; Harrold, M.: Prioritizing test cases
for regression testing. IEEE Trans. Softw. Eng. 27(10), 929–948
(2001)

5. Malishevsky, A.G.; Ruthruff, J.R.; Rothermel, G.; Elbaum, S.:
Cost-cognizant test case prioritization. Technical Report TR-UNL-
CSE-2006-0004, Department of Computer Science and Engineer-
ing, University of Nebraska-Lincoln, Lincoln (2006)

6. Harman, M.; Li, Z.; Hierons, R.: Search algorithms for regression
test case prioritization. IEEE Trans. Softw. Eng. 33(4), 225–237
(2007)

7. Elbaum, S.; Malishevsky, A.; Rothermel, G.: Incorporating vary-
ing test costs and fault severities into test case prioritization. In:
Proceedings of the 23rd International Conference on Software
Engineering, pp. 329–338 (2001)

8. Jiang, B.; Zhang, Z.; Chan, W.K.; Tse, T.H.: Adaptive random test
case prioritization. In: ASE2009, 24th IEEE/ACM International
Conference on Automated Software Engineering, pp. 233–244
(2009)

9. Noor, T.B.; Hemmati, H.: A similarity-based approach for test case
prioritization using historical failure data. In: 26th International
Symposium on Software Reliability Engineering ISSRE, pp. 58–
68 (2015)

10. Arafeen, M.J.; Do, H.: Test case prioritization using requirements-
based clustering. In: 6th International Conference on Software
Testing, Verification and Validation, pp. 312–321 (2013)

11. Laali, M.; Liu, H.; Hamilton, M.; Spichkova, M.; Schmidt, H.:
Test case prioritization using online fault detection information. In:
Ada-Europe International Conference on Reliable Software Tech-
nologies, pp. 78–93 (2016)

12. Wang, S.; Nam, J.; Tan, L.: QTEP: quality-aware test case prior-
itization. In: Foundations of Software Engineering, pp. 523–534.
ACM, New York (2017)

13. Mei, H.; Hao, D.; Zhang, L.; Zhou, J.; Rothermel, G.: A static
approach to prioritizing Junit test cases. IEEE Trans. Softw. Eng.
38(6), 1258–1275 (2012)

14. Thomas, S.W.; Hemmati, H.; Hassan, A.E.; Blostein, D.: Static test
case prioritization using topic models. Empir. Softw. Eng. 19(1),
182–212 (2012)

15. Mohanty, R.; Suman, S.; Das, S.K.:Modelling the pull-out capacity
of ground anchors using multi-objective feature selection. Arab. J.
Sci. Eng. 42(3), 1231–1241 (2017)

16. Shapiai, M.I.; Ibrahim, Z.; Adam, A.: Pareto optimality concept
for incorporating prior knowledge for system identification prob-
lem with insufficient samples. Arab. J. Sci. Eng. 42(7), 2697–2710
(2017)

17. Zhang, Y.; Harman, M.; Mansouri, S.A.: The multi-objective next
release problem. In: GECCO’07, pp. 1129–1137. ACM, London
(2007)

18. Ruiz, M.; Roderiguez, D.; Riquelme, J.; Harrison, R.: Multi-
objective Simulation Optimization in Software Project Manage-
ment. Oxford Brookes University, Oxford (2011)

19. Wang, Z.; Tang, K.; Yao, X.: Multi-objective approaches to opti-
mal testing resource allocation in modular software systems. IEEE
Trans. Reliab. 59(3), 563–575 (2000)

20. Choudhary, K.; Purohit, G.: A Multi-objective optimization algo-
rithm for uniformly distributed generation of test cases. In: IEEE

International Conference on Computing for Sustainable Global
Development, pp. 455–457 (2014)

21. Mondal, D.; Hemmati, H.; Durocher, S.: Exploring test suite diver-
sification and code coverage in multi-objective test case selection.
In: IEEE Conference on Software Testing, Verification and Valida-
tion, pp. 1–10 (2015)

22. Yoo, S.; Harman, M.: Pareto efficient multi-objective test case
selection. In: ISSTA 2007, pp. 140–150. ACM, London (2007)

23. Marchetto, A.; Islam, M.; Scanniello, G.; Susi, A.: A multi-
objective technique for test suite reduction. In: The 8th Inter-
national Conference on Software Engineering Advances. IARIA
(2013)

24. Zheng, W.; Hierons, R.; Li, M.; Liu, X.; Vinciotti, V.: Multi-
objective optimization for regression testing. Inf. Sci. 334, 1–16
(2015)

25. Canfora, G.; Lucia, A.D.; Penta, M.D.; Oliveto, R.; Panichella, A.;
Panichella, S.: Defect prediction as a multi-objective optimization
problem. Softw. Test. Verif. Reliab. 25(4), 426–459 (2015)

26. Marchetto, A.; Islam, M.; Scanniello, G.; Asghar, W.; Susi, A.:
A multi-objective technique to prioritize test cases. IEEE Trans.
Softw. Eng. 42(10), 918–940 (2016)

27. Karaboga, D.; Goremli, B.; Ozturk, C.; Karaboga, N.: A compre-
hensive survey: artificial bee colony (ABC) and applications. Artif.
Intell. Rev. 42(1), 21–57 (2014)

28. Karaboga, D.; Beyza, G.: A combinatorial artificial bee colony
algorithm for travelling salesman problem. In: INISTA IEEE Inter-
national Symposium, pp. 50–53 (2011)

29. Lam, S.S.B.; Raju, M.LH.P.; Kiran, U.M.; Swaraj, C.; Srivastava,
P.R.: Automated generations of independent paths and test suite
optimization using artificial bee colony. In: ICCTSD2011, Procedia
Engineering 30, pp. 191–200 (2012)

30. Chong, C.S.; Low, M.Y.H.; Sivakumar, A.I, Lay.: A bee colony
optimization for job shop scheduling. In: IEEE Proceedings of the
38th Conference on Winter Simulation, pp. 1954–1961 (2006)

31. Kaur, A.; Goyal, S.: A bee colony optimization algorithm for code
coverage test suite prioritization. IJEST 3(4), 2786–2795 (2011)

32. Srikanth; Kulkarni, N.J.; Naveen, K.V.; Singh, P.; Srivastava, P.R.:
Test case optimization using artificial bee colony algorithm. In:
International Conference on Advances in Computing and Commu-
nication, pp. 570–579 (2011)

33. Joseph, A.K.; RadhaMani, G.: A hybrid model of particle swarm
optimization and artificial bee colony algorithm for test case opti-
mization. IJCSE 3(5), 459–471 (2011)

34. Mala, D.J.; Mohan, V.; kamalapriya, M.: Automated software
test optimization framework and artificial bee colony optimization
based approach. IET Softw. 4(5), 334–348 (2010)

35. Dahiya, S.K.; Chhabra, J.K.; Kumar, S.: Application of artificial
bee colony algorithm to software testing. In: 21st IEEE Australian
Software Engineering Conference, pp. 149–154 (2010)

36. Konsaard, P.; Ramingwong, L.: Using artificial bee colony for code
coverage based test suite prioritization. In: 2nd International Con-
ference on Information Science and Security, pp. 1–4 (2015)

37. Aghdam, Z.K.; Arasteh, B.: An efficient method to generate test
data for software structural testing using artificial bee colony opti-
mization algorithm. Int. J. Softw. Eng. Knowl. Eng. 27(6), 951–966
(2017)

38. Li, X.; Li, Z.; Lin, L.: An artificial bee colony algorithm for
multi-objective optimization. In: 2nd International Conference on
Intelligent Systems Design and Engineering Application, pp. 153–
156 (2012)

39. Amarjeet, P.; Chhabra, J.K.: Many-objective artificial bee colony
algorithm for large-scale software module clustering problem.
Soft Comput. 22(19), 6341–6361 (2017). https://doi.org/10.1007/
s00500-017-2687-3

123

https://doi.org/10.1007/s00500-017-2687-3
https://doi.org/10.1007/s00500-017-2687-3

Arabian Journal for Science and Engineering (2019) 44:9599–9625 9625

40. Mann, M.; Tomar, P.; Sangwan, O.P.: Bio-inspired meta heuristics:
evolving and prioritizing software test data. Appl. Intell. 48(3),
687–702 (2017). https://doi.org/10.1007/s10489-017-1003-3

41. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.: A fast and elitist
multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 6(2), 182–197 (2002)

42. Deb, K.: Multi-objective Optimization Using Evolutionary Algo-
rithms, 1st edn. Wiley, London (2010)

43. Coreman, T.H.: Introduction to Algorithms, 2nd edn. PHI Printing
Press, New York (2001)

44. Elbaum, S.; Rothermal, G.; Karre, S.; FisherII, M.: Leveraging
user-session data to support web application testing. IEEE Trans.
Softw. Eng. 31(3), 187–202 (2005)

45. Elbaum, S.; Malishevsky, A.G.; Rothermal, G.: Test case priori-
tization: a family of empirical studies. IEEE Trans. Softw. Eng.
28(2), 159–182 (2002)

46. Hutchins, M.; Foster, H.; Goradia, T.; Ostrand, T.: Experiments on
the effectiveness of dataflow and control flow based test adequacy
criteria. In: International Conference Software Engineering, pp.
191–200 (1994)

47. Wong, W.; Horgan, J.; London, S.; Mathur, A.: Effect of test
set minimization on fault detection effectiveness. In: Proceedings
17th International Conference on Software Engineering, pp. 41–50
(1995)

123

https://doi.org/10.1007/s10489-017-1003-3

	Performance Comparison of Multi-objective Algorithms for Test Case Prioritization During Web Application Testing
	Abstract
	1 Introduction
	2 Related Works
	2.1 Prior Works Related to TCP
	2.2 Previous Works Completed Using NSGA-II
	2.3 Previous Attempts Successfully Accomplished Using ABC and NSABC

	3 Proposed Approach
	3.1 Implemented Algorithms
	3.2 Multi-objective Functions Setup

	4 Experimental Setup
	5 Results, Discussion and Analysis
	5.1 Finding Optimal Objective Function of Test Case Execution in Feasible Worst Case Exponential Time and Space Complexity
	5.1.1 Prefix–Suffix (P–S) Optimization Problem
	5.1.2 Dynamic Programming Approach

	6 Conclusion and Future Scope
	7 Appendix
	7.1 Dynamic Programming-Based Algorithm Combined for All the Three Parameters
	7.2 Memo (Stored in RAM) for APFDc Evaluation, Severity Evaluation and Execution time Evaluation
	7.3 Python's Amortized Constant Time Complexity of Dictionaries and Set
	7.3.1 Working Process of Sets and Dictionaries
	7.3.2 Searching and Insertion
	7.3.3 Deletion
	7.3.4 Resizing
	7.3.5 Effect of Faults/Testcase Density on Size of Memo

	References

