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Abstract
Determining the global optima of integer andmixed-integer nonlinear problems is a useful contribution in various engineering
applications. Swarm intelligence is a well-known branch of nature-inspired algorithms which tries to determine the solution
with the help of intelligent and collective behaviour of social creatures. Grey wolf optimizer (GWO) is one of the recently
developed efficient algorithms which are quite popular nowadays. In the present study, first, the GWO is proposed for solving
integer and mixed-integer optimization problems, and secondly, an improved version of GWO named IMI-GWO is proposed.
The IMI-GWO attempts to alleviate from the major issues of premature convergence and slow convergence of classical
GWO. In IMI-GWO, the opposition-based learning maintains the diversity and the chaotic search locally exploits the regions
around the best solutions. To evaluate the performance of IMI-GWO, a set of 16 integer and mixed-integer problems and
two engineering application problems, namely gear train and pressure vessel design problems, have been considered. The
performance of the IMI-GWO is compared with other algorithms which are applied to solve these problems in the literature
and with some recent algorithms. The comparison illustrates the better performance of the proposed algorithm.

Keywords Swarm intelligence · Grey wolf optimizer · Integer and mixed-integer optimization problems · Opposition-based
learning · Chaotic local search

1 Introduction

In engineering applications, many problems are formulated
as mathematical optimization problems where the decision
variables are of integer/mixed-integer type. These optimiza-
tion problems are known as integer/mixed-integer nonlinear
optimization problems. The general form of mixed-integer
optimization problem can be stated as

Max/Min f (X) , X = (x1, x2, . . . , xd ) (1)

s.t. g j (X) ≤ 0 j = 1, 2, . . . ,m (2)

hk(X) = 0 k = m + 1,m + 2, . . . ,m + p. (3)

ai ≤ xi ≤ bi i = 1, 2, . . . , d, (4)
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where X is d-dimensional decision vector whose compo-
nents xi (i = 1, 2, . . . , d) can be integer or non-integer, ai
and bi are the lower and upper bounds for the i th compo-
nent of a decision variable X , g j , ( j = 1, 2, . . . ,m) and
hk (k = m + 1,m + 2, . . . ,m + p) are inequality and equal-
ity constraints, respectively, and f is an objective function.
The functions g j , hk and f can be linear or nonlinear.

The integer and mixed-integer optimization problems are
difficult to solve due to the nature of the decision vari-
ables. Gradient-based optimization approaches ensure that
the optima is attained and can be used to solve various
optimization problems blindly because of their theoretical
evidence. These techniques are limited to tackle only some
special formulation where mathematical structures such as
convexity, continuity and differentiability are involved. To
deal with the problems where these mathematical struc-
tures are absent, numerous optimization techniques based on
stochastic search are used. These techniques are also known
as nature-inspired techniques because they are developed by
being inspired from natural phenomena. Genetic algorithm
(GA) [1], differential evolution (DE) [2], particle swarmopti-
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mization (PSO) [3], tabu search (TS) [4], artificial bee colony
(ABC) algorithm [5], ant colony optimization (ACO) [6],
etc. are some well-known nature-inspired optimization tech-
niques. In the literature, these techniques have shown their
dominant potential against deterministic optimization tech-
niques to solve real-world nonlinear, non-convex and non-
differentiable optimization problems. The nature-inspired
algorithms are very popular nowadays because of their
simplicity, easy implementation, derivative-free mechanism
and flexibility. The flexibility of nature-inspired algorithms
allows them to be implemented on any optimization prob-
lemwithout knowing any information regarding the problem.
In the nature-inspired algorithms, two conflicting operators,
namely exploration and exploitation, play an important role
to proceed the search process towards promising regions [7].
The amount of balance between these operators decides the
search efficiency of an algorithm.

The no free lunch (NFL) theorem [8], which was the
revolutionary development in the field of nature-inspired
algorithms, violates the existence of an algorithm which
is suitable for all type of optimization problems. In this
way, the theorem answers the facts of developing new
algorithms and improvement in existing algorithms. There
are many advantages and disadvantages for working with
various nature-inspired algorithms such as low/high explo-
ration, low/high exploitation and imperfect balance between
exploitation and exploration, and therefore, various improved
versions of existing algorithms have been developed to
enhance the search-ability of existing algorithms. Since the
NFL theorem opposes the existence of an ideal algorithm, the
researchers always try to enhance the performance of existing
algorithms so that they can be applied to solve wide range of
optimization problems. The most common difficulties which
are inherent in nature-inspired algorithms are stagnation in
local optima, premature convergence, inefficient exploration
and/or exploitation.

In the field of nature-inspired algorithms, swarm intel-
ligence is a popular branch, where the individuals share
useful information about the search space with other indi-
viduals in the swarm. The information sharing helps in
exploring the search space and sometimes provides a sud-
den jump towards more promising search regions. Particle
swarm optimization (PSO) [3], ant colony optimization
(ACO) [6], artificial bee colony (ABC) algorithm [5], whale
optimization algorithm (WOA) [9], spider monkey optimiza-
tion (SMO) [10] and grey wolf optimizer (GWO) [11] are
some algorithms in the field of swarm intelligence (SI)-based
algorithms.

Nature-inspired algorithms have shown their potential to
solve integer/mixed-integer problems [12–14]. In [15], sim-
ulated annealing (SA) [16] has been used to solve MINLP.
In [17], Mohan and Nguyen proposed a random search
technique incorporating with simulated annealing to solve

MINLP. In [18], Deep et al. have solved MINLP using real-
coded genetic algorithm hybridized with Laplace crossover.

The aboveworksmotivated the authors to develop a simple
algorithmwhich is easy to implement and efficient in terms of
accuracy for solving integer and mixed-integer constrained
optimization problems. Since the recently developed algo-
rithmGWO [11] is quite efficient in the literature, it has been
applied to solve various real-life application problems. Com-
bined heat and power economic dispatch problem has been
solved using GWO in [19] and [20]. For flow shop schedul-
ing problem, GWO is used in [21]. To train the q-Gaussian
radial basis, an improved version of GWOhas been proposed
by Muangkote et al. [22]. In [23], the solution of non-convex
economic load dispatch problem is attempted with GWO. To
find the solution of optimal reactive power dispatch prob-
lem, Sulaiman et al. [24] have used GWO. Although GWO
has been successfully applied tomany real-world application
problems but like other algorithms, it suffers the problem
of stagnation at sub-optimal solutions. Therefore, to prevent
such a situation, various attempts have been made by the
researchers; for example, Mittal et al. [25] have proposed a
modified version ofGWO tomain a suitable balance between
exploration and exploitation in GWO. In [26], an improved
version of GWO is proposed by giving weight to the leaders
of the wolf pack. Gupta and Deep, in [27,28], proposed a
random walk-based GWO which explores the more promis-
ing search region and provided a better guiding direction
to find the solution of optimization problems. In [26], an
improved GWO based on Levy flight is proposed to solve
real-life problems. In [29], the search equation of GWO is
modified to enhance the exploration.

Although in the literature, various improved versions of
GWO are presented, still in some cases, GWO suffers the
problemof stagnation at sub-optimal solutions andpremature
convergence [30,31]. The performance of GWO on multi-
modal and composite problems is evidence of such cases.
Moreover, because of no free lunch theorem, there is always a
scope for improving the algorithm so that they can be applied
to a wide variety of optimization problems. Therefore, all the
above facts have motivated us to propose an improved ver-
sion ofGWOwhich ismore efficient to solve constrained and
mixed-integer optimization problems with high accuracy. In
this direction, in the present paper, constraint and discrete
version of GWO called IMI-GWO is proposed. The uncon-
straint and continuous version of this algorithm is already
proposed in [32] by the same authors. In the paper, the
performance of classical GWO is also discussed on con-
strained integer and mixed-integer problems. To handle the
constraints of the problems, a simple constraint handling
technique based on the constraint violation is employed
in algorithms, classical GWO and IMI-GWO. The discrete
components of the decision variable are handled by trunca-
tion mechanism. The integer and mixed-integer optimization
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problemsgenerally evaluate the enhanced explorative search-
ability of search agents in an algorithm. In order to evaluate
the performance of the proposed algorithm, a set of 16 integer
and mixed-integer problems and 2 well-known engineering
problems with discrete search space are considered. In the
paper, constraint and discrete version of classical GWO is
named as MI-GWO.

The remainder of the paper is organized as follows—
Sect. 2 provides an overview of classical GWO algorithm. In
Sect. 3, an improved version of greywolf optimizer named as
I-GWO and based on opposition-based learning and chaotic
local search is proposed. In Sect. 4, an extended version, IMI-
GWO of I-GWO for integer and mixed-integer optimization
problems, has been proposed. In Sect. 5, the experimental
results are presented and the comparison is made with vari-
ants of GWO, recent optimization algorithms and some other
popular nature-inspired algorithms that are used to solve
mixed-integer problems in the literature. In Sect. 6, gear train
design and pressure vessel design problems are solved by
using the proposed algorithm IMI-GWO and finally, Sect. 7
concludes the paper based on the work and suggests some
future ideas.

2 GreyWolf Optimizer (GWO)

Grey wolf optimizer (GWO) was developed in 2014 by Mir-
jalili et al. [11] from the inspiration of leadership hierarchy
characteristic of the greywolves. Greywolves are considered
as the apical predator, i.e. they occupy the highest level in the
food chain. Greywolves always hunt the prey in groups, their
group is called pack and the size of the pack may vary from 5
to 11 wolves. In order to maintain the discipline, democracy
and dictatorships in the pack, wolves categorize their group
into two classes. In the first class, leading wolves (alpha,
beta and delta) are included. Alpha is the dominant wolf
which is responsible for all the important decisions within
the pack. Beta can be considered as a subsidiary wolf to the
alpha and conveys the crucial decisions to the other wolves.
Delta wolves are the caretakers, sentinels of the pack. The

remaining wolves belong to the second class and are known
as omega wolves; they iteratively follow the leaders alpha,
beta and delta to approach the prey. The leadership hierarchy
of grey wolf pack is presented graphically in Fig. 1.

Muro et al. [33] have described the three steps which are
followed by the grey wolves to kill the prey. In the first
step, wolves track the prey, in the second step, they encir-
cle the prey with the help of leaders, and in the last step, they
attack prey to accomplish their hunting process. In the algo-
rithm, the top three wolves having the best fitness value are
called as alpha, beta and delta in order to simulate the leader-
ship behaviour of a wolf pack. To incorporate the encircling
behaviour of wolves in mathematical form, Mirjalili et al.
[11] have proposed the following equations to update the
wolf position

Xt+1 = XP,t − A · D, (5)

where t is iteration count, XP,t is the prey position in iteration
t , Xt+1 is the updated position of wolf position Xt , and A and
D are the coefficient and difference vector which are defined
as

A = 2 · a · r1 − a (6)

D = |C · XP,t − Xt |, (7)

where

C = 2 · r2 (8)

r1 and r2 are the uniformly distributed random vectors whose
components lie between 0 and 1. The scalar a linearly
decreases from 2 to 0 over iterations and can be formulated
as

a = 2 − 2 ·
(
t

T

)
; (9)

here, T represents the total number of iterations which is
predefined as the termination criteria for algorithm.

Fig. 1 Leadership hierarchy of
grey wolves
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In the algorithm, it was assumed that all the leaders alpha,
beta and delta have enough information regarding the prey
location. Therefore, all the leaderswill contribute to the hunt-
ing process. Thus, in each iteration, each wolf update its state
with the help of leaders by assuming them as a hypothetical
prey for the current iteration. The equations that simulate the
hunting process of wolves can be stated as

X1 = Xα,t − Aα · Dα (10)

X2 = Xβ,t − Aβ · Dβ (11)

X3 = Xδ,t − Aδ · Dδ (12)

Xt+1 = avg(X1, X2, X3), (13)

whereavg (X1, X2, X3)denotes the average state of the posi-
tions that are obtained with the help of alpha, beta and delta.

In this way, on repeating the steps of encircling and hunt-
ing mathematically an optimum can be acquired for any
optimization problem. The overall summary of grey wolf
optimizer is described in Algorithm 1 [11].

ℎ ,

=0 ( )

< .

ℎ ℎ ℎ (5) − (13)

= +1

Algorithm 1: Grey Wolf Optimizer algorithm

3 Proposed Improved GreyWolf Optimizer
(I-GWO)

Opposition-based learning (OBL), introduced by Tizhoosh
[34], is an effective strategy to accelerate the convergence,
by considering the estimate and its opposite estimate simulta-
neously of a current solution. It was proved mathematically
that the opposite numbers are more likely to be closer to
the optimal solution than the purely random ones [35]. In the
present work, OBL has been employed in GWO to accelerate
the convergence and to explore the promising regions which
are unexplored in order to prevent GWO from the problem of
premature convergence due to stagnation at local optima. The
OBL generates opposite points which help in escaping from
local optima. Also, to maintain a proper balance between
exploration and exploitation, chaotic local search has been
incorporated in GWO. Briefly, the concept of opposition-
based learning and chaotic local search can be summarized
as follows.

3.1 Opposition-Based Learning

Generally, nature-inspired algorithms start with a random
population of solutions and try to find the optimal solution

under the predefined termination criteria. The search pro-
cess stops when the termination criteria is satisfied or the
population of solutions is trapped in a local optimum. In
opposition-based learning, the search in both directions, ran-
dom and its opposite direction provides a higher chance to
find the unknown optima of the problem. The OBL is very
fruitful when the optimum positions are just in the opposite
direction of a current solution. Therefore, in the presentwork,
an OBL phase is integrated into GWO tomove out from local
optima when the stagnation occurs and to explore the more
promising search regions of search space. The concept of
opposite numbers and the OBL phase which is used in GWO
is defined as follows.

3.1.1 Opposite Points

The concept of opposite numberswas first introduced in 2005
byTizhoosh [34]. In this concept, the solution and its opposite
solution both are considered to enhance the search process.
In [34], it is suggested that the computational cost can also be
reduced by applying the concept of opposite numbers. The
opposite number can be defined as follows.

Let x ∈ R be a point lying in the interval [a, b],
then its opposite number x̂ can be calculated as follows
[34]

x̂ = a + b − x, (14)

where a and b are lower and upper bounds for the variable
x . The similar concept can be extend to the vectors of Rd in
a following manner [34]:

Let X = (x1, x2, . . . , xd) ∈ Rd be any point in
a d-dimensional space, then its opposite point X∗ =(
x∗
1 , x

∗
2 , . . . , x

∗
d

)
can be calculate as follows

x∗
i = ai + bi − xi (15)

for i = 1, 2, . . . , d, where ai and bi are the lower and upper
limit for a component xi .

The OBL phase which is integrated in GWO is described
in Algorithm 2.

= 1:

= 1:

= +

OP = [ ]
Algorithm 2. OBL phase in I-GWO
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3.2 Chaotic Local Search

In order to maintain a balance between exploration and
exploitation in GWO, the present paper hybridizes GWO
with greedy chaotic local search. A similar chaotic local
search has been used in differential evolution [36]. The logis-
tic chaotic function is used in the chaotic local search to
generate a chaotic sequence [37] as:

αm = 4αm−1(1 − αm−1) and α0 = rand(0, 1)

m = 1, 2, . . . , N , . . . , (16)

where α0, the uniformly distributed variable between 0 and 1
is the initial value of the chaotic system. The wolf generated
by chaotic local search can be mathematically presented as
follows

z = xrand + αm · (xpbest − xrand), (17)

where xrand is a randomly chosen wolf to perform a chaotic
search and xpbest is the best wolf from the top 100 · r pop-
ulation of wolves with r = rand(0.1, 2/n). The random
number r decides the percentage of the population which
participates in chaotic local search phase. In the chaotic
local search, this random number r helps in exploiting the
promising regions around the top [10, 200/n] fitted wolves
of a pack. For example, if population size is 30, then 6 to
10 top fitted wolves are used in chaotic phase. The rea-
son behind taking some set of top fitted wolves in place
of a single fitted wolf is to prevent the wolf pack from the
stagnation at local optimums and to discover the promising
regions of a search space around the neighbourhood of top
fitted wolf of the pack. The proposed greedy chaotic local
search is helpful when the fittest solution of the pack traps
in local optima and in that case other solutions selected for
chaotic search provide a direction for the search process.
In the algorithm, the generation of a better solution in a
chaotic search is attempted up to N times. In the chaotic
phase, the value of N will be less when the dimension is
low. The reason behind selecting such value of N is to
occasionally generate the better solutions around the cur-
rent solution which is selected in the chaotic search. We
do not want to generate a solution in each generation by
chaotic local search because it has been used in the algo-
rithm to prevent from stagnation at local optimums. The
chaotic local search strategy used in GWO is presented in
Algorithm 3.

=0 

= /5 

0 = (0,1)

= (0.1, 2/ )

<

100

= 1 

= , + ∙ ( , , )

<

=

>

=

( ) ( )

=

= +1

=4 (1 )

Algorithm 3. Chaotic local search phase used in GWO

Thus, the OBL and chaotic local search have been incor-
porated in GWO to enhance the performance of original
grey wolf optimizer (GWO) in terms of exploring the new
promising regions and balancing the operators’ exploration
and exploitation. The framework of the modified version of
GWO, named as I-GWO in this paper, is presented in Algo-
rithm 4. In Algorithm 3, opposition probability (p) decides
whether OBL phase is introduced in I-GWO.

( )

ℎ
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ℎ

=0 ( ) 

<

= ()

0 1  

 ( )

` 
>

ℎ
ℎ (5) − (13)

ℎ ℎ

ℎ ,

= +

Algorithm 4. Algorithm of I-GWO

4 Extended GWO for Mixed-Integer
Optimization

In the present paper, to handle the constraints of integer and
mixed-integer constrained nonlinear optimization problems
a very simple constraint handling technique (based on the
constraint violation) is employed which can be summarized
as follows
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1. For each wolf x , evaluate the constraint violation [38]
c_violx as follows

c_violx =
∑m

j=1
Gi (x) +

∑p

k=m+1
Hj (x), (18)

where

Gi (x) =
{
gi (x) i f gi (x) > 0
0 otherwise

(19)

Hj (x) =
{ |h j (x) | i f |h j (x)|− ∈> 0
0 otherwise,

(20)

where ∈ is a predefined tolerance parameter, which is
fixed to be 10−4 in the present paper.

2. Sort the population in an ascending order of con-
straint violation. Furthermore, sort the feasible wolves
in increasing order of objective function value (for min-
imization problems).

3. Now select top three wolves as the leaders for the wolf
pack.

The above-described constraint handling technique is very
easy to incorporate in any search algorithm and it is just an
indirect form of constraint handling technique proposed by
Deb based on some feasibility rules [38] where each individ-
ual solution is compared with remaining solutions to select
the best one.

Moreover, to deal with the integral component of a
decision vector in integer and mixed-integer optimization
problems, truncation procedure is employed in an algorithm
which is described as follows

Let xi be the i th component of a decision vectorX. Then it
can be truncated to obtain a new component x ′

i having integer
value as for

θ = xi − [xi ] (21)

x ′
i =

{
[xi ] + 1, θ ≥ 0.5,
[xi ] , otherwise,

(22)

where [xi ] is the greatest integer value of xi less than xi .
Obviously for a integer component θ = 0.

In the present paper, the extended versions of GWO and
I-GWO with the incorporation of truncation strategy and
constraint handling technique are named as MI-GWO and
IMI-GWO, respectively.

5 Experimental Results and Analysis

In this section, the proposed algorithm (IMI-GWO) is tested
on 16 integer and mixed-integer optimization problems.
These problems have been taken from different sources of

the literature and are reported in “Appendix”. This problem
set consists of integer and mixed-integer optimization prob-
lems. All these problems together have been solved in [18].
In the present paper, these problems have been solved byMI-
GWO, IMI-GWO, variants of GWO, recent algorithms such
as SCA, MFO, SSA and other algorithms which are used to
solve the same set of problems in [18]. For a fair comparison,
same population size (10×dimension of the problem) for the
test problem P1–P15 and (3×dimension of the problem) for
the test problem P16 has been taken.

In total, 100 runs of various algorithms under consid-
eration in this study have been conducted on each prob-
lem. A particular run is considered as a successful run
if the error value in objective function value (error =
|known objective function value-obtained objective function
value|) is less than 0.01. This threshold is taken same as in
[18]. All the experiments have been conducted onMATLAB
2014a with 4GB RAM and i5 processor system.

In Table 1, the performance of the proposed algorithm is
measured using some statistical metrics—best, median, aver-
age,worst and standard deviation of objective function values
obtained in 100 runs. In this table, the results of the proposed
IMI-GWO algorithm has been compared with MI-GWO,
variants ofGWO(modifiedGWO[25], fitnessGWO[26] and
weighted GWO [26]) and some recent nature-inspired algo-
rithms such as sine–cosine algorithm (SCA) [39],moth-flame
optimization (MFO) algorithm [40] and salp swarm algo-
rithm (SSA) [41] based on the various statistical measures.
The comparison in the table has been made by considering
the same number of function evaluations. In Table 2, the com-
parison between all these algorithms is made based on the
number of success obtained in 100 runs. In this table, the
number of function evaluations used to solve the problems
and optima of the problems are also presented.

In Table 4, the performance of proposed algorithm (IMI-
GWO) is compared with AXNUM [13] which is a real-coded
genetic algorithm using non-uniform mutation, MI-LXPM
[18] which is also a real-coded genetic algorithm using
Laplace crossover and power mutation, and RST2ANU [17]
which is a random search technique using simulated anneal-
ing. These algorithms are selected for comparison because,
in the literature, these algorithms are used to solve the same
set of problems. Therefore, for a fair comparison, the results
are reported from [18]. In this table, the number of successes
obtained in 100 runs and average function evaluations usedby
algorithms are reported. To compare the results, the parame-
ter setting of population size and termination criteria is taken
the same in IMI-GWO and MI-GWO as [18].

5.1 Analysis and Discussion of Results

Tables 1 and 2 show that the proposed algorithm (IMI-GWO)
performs better as compared to other algorithms. Various sta-
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Table 1 Best, median, average,
worst and standard deviation of
objective function values
obtained in 100 runs by
proposed algorithm IMI-GWO,
MI-GWO and other variants of
GWO

Problems Algorithms Best Median Average Worst STD

P1 MI-GWO 2 2.0002 2.10172 2.2379 0.11757

IMI-GWO 2 2.0001 2.00024 2.0070 0.00072

mGWO 2 2.0006 2.10186 2.2382 0.11756

Fitness GWO 2 2.0004 2.10884 2.2382 0.11836

Weighted GWO 2 2.0004 2.101768 2.2374 0.11757

SCA 2 2.003 2.078054 2.2441 0.11089

MFO 2 2 2.021249 2.2361 0.06791

SSA 2 2 2.080391 2.2363 0.112332

P2 MI-GWO 2.124 2.126 2.133 2.497 0.04688

IMI-GWO 2.124 2.125 2.126 2.131 0.00145

mGWO 2.124 2.127 2.134 2.497 0.04673

Fitness GWO 2.125 2.126 2.126 2.132 0.00171

Weighted GWO 2.125 2.126 2.133 2.497 0.04693

SCA 2.124 2.131 2.134 2.161 0.00838

MFO 2.125 2.125 2.140 2.558 0.07417

SSA 2.1245 2.14065 2.15154 2.2694 0.032628

P3 MI-GWO 1.0771 1.25 1.18215 1.2500 0.08215

IMI-GWO 1.0767 1.0793 1.07953 1.0830 0.00139

mGWO 1.0770 1.0864 1.07647 1.2500 0.19290

Fitness GWO 1.0767 1.0802 1.07361 1.2500 0.19279

Weighted GWO 1.0772 1.0800 1.06673 1.2500 0.18958

SCA 1.1534 1.2500 1.24820 1.2500 0.01272

MFO 1.0765 1.2500 1.16537 1.2500 0.08679

SSA 1.0858 1.25 1.248358 1.25 0.01642

P4 MI-GWO −6924.32 −6812.77 −6802.78 −6613.11 70.50406

IMI-GWO −6944.91 −6861.52 −6838.72 −5876.2 124.60240

mGWO −6937.21 −6752.60 −6738.32 −6279.88 128.97570

Fitness GWO −6950.46 −6859.83 −6841.48 −6674.14 66.65962

Weighted GWO −6937.76 −6814.16 −6801.53 −6511.85 90.13805

SCA −6394.02 −6162.97 −6072.82 −5713.53 262.17450

MFO −6938.93 −6220.97 −6032.55 −1471.14 989.71420

SSA −6950.76 −4410.49 −4405.49 −1236.8985 1798.513

P5 MI-GWO −68 −68 −67.68 −36 3.2

IMI-GWO −68 −68 −68 −68 0

mGWO −68 −68 −67.68 −36 3.2

Fitness GWO −68 −68 −68 −68 0

Weighted GWO −68 −68 −58.07 0 21.82

SCA −68 −68 −60.72 −8 14.69

MFO −68 −68 −67.28 −56 2.86

SSA −68 −42 −42.69 −12 14.16119

P6 MI-GWO −6 −6 −6 −6 0

IMI-GWO −6 −6 −6 −6 0

mGWO −6 −6 −6 −6 0

Fitness GWO −6 −6 −6 −6 0

Weighted GWO −6 −6 −5.97 −3 0.3

SCA −6 −6 −6 −6 0

MFO −6 −6 −5.97 −3 0.3

SSA −6 −6 −6 −6 0
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Table 1 continued Problems Algorithms Best Median Average Worst STD

P7 MI-GWO 99.2452 99.2452 99.2452 99.2452 100

IMI-GWO 99.2452 99.2452 99.2452 99.2452 100

mGWO 99.2452 99.2452 99.2452 99.2452 100

Fitness GWO 99.2452 99.2452 99.2452 99.2452 100

Weighted GWO 99.2452 99.2452 99.2452 99.2452 100

SCA 99.2452 99.2452 99.2452 99.2452 100

MFO 99.2452 99.2452 99.2452 99.2452 100

SSA 99.2452 99.2452 99.2452 99.2452 1.43E−14

P8 MI-GWO 3.5575 4.2508 4.1674 4.9502 0.57079

IMI-GWO 3.5575 3.5576 3.5705 4.8159 0.12582

mGWO 3.5578 3.5578 3.6032 4.9501 0.33899

Fitness GWO 3.5576 3.5576 3.6092 4.5577 0.24658

Weighted GWO 3.5575 3.5576 3.6188 4.9501 0.29299

SCA 3.5590 4.5854 4.4084 5.5908 0.50736

MFO 3.5575 3.5590 3.6528 4.6369 0.24699

SSA 3.5575 3.55815 3.591677 4.6328 0.154735

P9 MI-GWO −32217.42 −32217.42 −32217.42 −32217.42 0

IMI-GWO −32217.42 −32217.42 −32217.42 −32217.42 0

mGWO −32217.40 −32217.40 −32217.40 −32217.40 3.29E−11

Fitness GWO −32217.40 −32217.40 −32217.40 −32217.40 3.29E−11

Weighted GWO −32217.40 −32217.40 −32217.40 −32217.40 3.29E−11

SCA −32217.42 −32217.42 −32217.42 −32217.40 3.29E−11

MFO −32030.90 −31042.30 −30965.60 −29306.50 584.59

SSA −32033.8 −31080.7 −30960.3 −29256.673 552.8311

P10 MI-GWO −0.94347 −0.94347 −0.94224 −0.91896 0.00432

IMI-GWO −0.94347 −0.94347 −0.94311 −0.93634 0.00129

mGWO −0.94347 −0.94347 −0.94308 −0.93555 0.004101

Fitness GWO −0.94347 −0.94347 −0.94310 −0.93555 0.004906

Weighted GWO −0.94347 −0.94347 −0.94308 −0.93175 0.004297

SCA −0.94347 −0.94347 −0.94314 −0.93164 0.008678

MFO −0.94347 −0.94347 −0.94310 −0.94115 0.001945

SSA −0.9532 −0.9508 −0.94794 −0.91664 0.0077

P11 MI-GWO 8 8 8.58 18 1.90

IMI-GWO 8 8 8 8 0

mGWO 8 8 8.6 14 1.81

Fitness GWO 8 8 8.78 14 2.03

Weighted GWO 8 8 8.48 14 1.63

SCA 8 14 12.64 18 3.96

MFO 8 8 8.47 14 1.51

SSA 8 13 11.76 18 3.429286

P12 MI-GWO 14 14 14.44 16 0.83

IMI-GWO 14 14 14.38 16 0.79

mGWO 14 14 14.50 16 0.87

Fitness GWO 14 14 14.66 16 0.95

Weighted GWO 14 14 14.28 16 0.70

SCA 14 14 14.22 16 0.63

MFO 14 14 14.16 16 0.51

SSA 14 14 14.3 16 0.689019
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Table 1 continued Problems Algorithms Best Median Average Worst STD

P13 MI-GWO −42.6321 −42.6321 −42.6321 −42.6321 0

IMI-GWO −42.6321 −42.6321 −42.6321 −42.6321 0

mGWO −42.6321 −42.6321 −42.6321 −42.6321 8.57E−14

Fitness GWO −42.6321 −42.6321 −42.6321 −42.6321 8.57E−14

Weighted GWO −42.6321 −42.6321 −42.6321 −42.6321 8.57E−14

SCA −42.6321 −42.6321 −42.247409 −23 2.11198

MFO −42.6321 −42.6321 −40.3834 −23 5.34957

SSA −42.6321 −42.6321 −40.3834 −23 5.349567

P14 MI-GWO 5.83E−07 5.50E−04 5.50E−04 2.64E−03 5.30E−04

IMI-GWO 1.14E−06 5.30E−04 6.60E−04 2.71E−03 5.70E−04

mGWO 8.29E−07 5.83E−04 7.99E−04 5.86E−03 9.14E−04

Fitness GWO 9.46E−07 5.17E−04 6.65E−04 2.13E−03 5.38E−04

Weighted GWO 2.63E−06 5.25E−04 6.85E−04 3.48E−03 6.15E−04

SCA 1.07E−05 1.31E−03 2.48E−03 1.40E−02 3.31E−03

MFO 1.61E−05 5.32E−03 8.06E−03 2.85E−02 7.83E−03

SSA 1.46E−05 7.21E−03 9.20E−03 2.85E−02 8.86E−03

P15 MI-GWO 807 807 830.70 947 43.97899

IMI-GWO 807 807 807 807 0

mGWO 807 807 832.10 1032 47.99505

Fitness GWO 807 807 842.49 1361 73.93602

Weighted GWO 807 807 832.75 1062 50.71895

SCA 892 1361 1504.92 4863 772.91030

MFO 807 815 827.14 1032 38.17266

SSA 807 807 808.06 821 2.469286

P16 MI-GWO −0.99995 −0.99927 −0.99893 −0.99593 0.00103

IMI-GWO −0.99995 −0.99990 −0.99989 −0.99938 0.00101

mGWO −0.99987 −0.99713 −0.99573 −0.979 0.00405

Fitness GWO −0.99995 −0.9989 −0.9983 −0.9899 0.0021

Weighted GWO −0.99995 −0.9984 −0.9979 −0.9895 0.0021

SCA −0.99995 −0.97565 −0.96774 −0.85535 0.029733

MFO −0.99995 −0.9985 −0.9989 −0.9897 0.00368

SSA −0.99995 −0.97589 −0.96863 −0.85785 0.009853

tistical measures which are presented in Table 1 demonstrate
the competitive ability of the proposed algorithm than other
algorithms. The success rates of variants of GWO are as
follows: mGWO has achieved 100% success in four prob-
lems, fitness GWO has achieved 100% success in seven
problems and weighted GWO has achieved 100% success in
five problems, while the proposed IMI-GWO has achieved
100% fitness in thirteen problems. Therefore, in terms of
the success rate and accuracy in obtaining the solutions,
the proposed algorithm (IMI-GWO) outperforms its variants
and other recent algorithms. In order to prove that the bet-
ter results are not being obtained just by chance, statistical
analysis of the results is very essential [42,43]. Therefore,
in the present work, to verify the significant improvement in
the proposed algorithm, a nonparametricWilcoxon rank-sum

test [43] is employed on the obtained results through var-
ious algorithms. The obtained p−values and the statistical
decisions are presented inTable 3. Table 3 shows that the IMI-
GWO is significantly better thanMI-GWO (classical version
of GWO) in the problems F1 to F4, F8, F10 to F12, F15 and
F16, while in the other problems both the algorithms are
statically equivalent. Similarly, the IMI-GWO either signifi-
cantly beats or performs equal to the mGWO, fitness GWO
and weighted GWO. In the problems F7, F9 and F13, the
classical GWO (MI-GWO) and variants of GWO such as
mGWO, fitness GWO and weighted GWO provide the simi-
lar and optimum results; therefore, the statistical comparison
shows the equivalent performance. The statistical compari-
son of the IMI-GWO algorithm with recent algorithms such
as SCA, SSA and MFO also demonstrates the better ability
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Table 2 Success and average function evaluations ( fE ) used by proposed IMI-GWO, variants of GWO and some recent optimization approaches

Problem Optima fE MI-GWO mGWO Fitness GWO Weighted GWO SCA MFO SSA IMI-GWO

P1 2 1300 57 57 54 57 66 91 66 100

P2 2.124 320 98 95 100 98 58 89 44 100

P3 1.07654 9000 38 24 32 37 0 48 1 100

P4 −6961.8138 10,000 0 0 0 0 0 0 0 0

P5 −68 630 99 99 100 80 79 94 8 100

P6 −6 160 100 100 100 99 100 99 100 100

P7 99.2452 1200 100 100 100 100 100 100 100 100

P8 3.5575 2×105 40 72 72 73 6 63 86 98

P9 −32217.42 50 100 100 100 100 100 0 0 100

P10 −0.94347 1760 97 96 96 96 96 100 95 100

P11 8 3250 91 90 87 92 24 91 40 100

P12 14 39,000 78 75 67 86 84 90 83 81

P13 −42.632 40 100 100 100 100 89 74 74 100

P14 0 90 100 100 100 100 95 66 62 100

P15 807 50,000 76 76 57 75 0 34 68 100

P16 −0.99995 170 100 89 99 99 23 100 100 100

Table 3 Comparison of statistical results obtained from Wilcoxon rank-sum test

Problem MI-GWO mGWO Fitness GWO Weighted GWO SCA MFO SSA

P1 2.36E−27(+) 2.29E−32 (+) 7.65E−31(+) 2.48E−29(+) 2.14E−38(+) 9.12E−21(+) 9.12E−15(+)

P2 5.59E−38(+) 5.59E−39(+) 5.56E−39(+) 5.52E−39 (+) 5.64E−39 (+) 5.64E−40 (+) 5.64E−39 (+)

P3 4.08E−11(+) 9.21E−06 (+) 3.31E−01 (=) 1.69E−01(=) 2.06E−09(+) 3.29E−09(+) 8.02E−39(+)

P4 2.07E−05(+) 2.25E−10(+) 3.15E−01(=) 3.08E−04(+) 1.00E−07(+) 1.67E−04(+) 5.01E−23(+)

P5 6.62E−01(=) 3.22E−01(=) 1.00E−00(=) 2.71E−06 (+) 6.03E−05(+) 3.12E−30(+) 1.62E−34(+)

P6 1.00E−00(=) 1.00E−00(=) 1.00E−00(=) 1.37E−04(+) 1.00E−00(=) 3.97E−04(+) 1.00E−00(=)

P7 1.00E−00(=) 1.00E−00(=) 1.00E−00(=) 1.00E−00(=) 1.00E−00(=) 1.00E−00(=) 1.00E−00(=)

P8 1.39E−18(+) 2.61E−02 (+) 1.22E−01 (=) 2.65E−02 (+) 9.34E−16(+) 2.11E−06 (+) 1.06E−07(+)

P9 1.00E−00(=) 1.00E−00(=) 3.42E−01(=) 1.24E−01(=) 1.11E−04(+) 1.34E−37(+) 5.64E−39(+)

P10 3.41E−10(+) 9.06E−01(=) 4.91E−01(=) 5.59E−01(=) 2.51E−01(=) 6.51E−07(+) 7.81E−06(+)

P11 1.73E−03 (+) 1.22E−03(+) 2.02E−04(+) 4.03E−03 (+) 6.64E−27(+) 2.33E−04 (+) 1.35E−19(+)

P12 3.45E−02 (+) 3.08E−01(=) 2.45E−02 (+) 3.43E−01(=) 6.03E−01(=) 1.38E−02 (+) 6.14E−01(=)

P13 1.00E−00(=) 1.00E−00(=) 8.92E−01(=) 7.12E−01(=) 6.78E−04(+) 3.62E−12(+) 5.34E−08(+)

P14 3.32E−01(=) 3.21E−19 (+) 8.69E−01(=) 8.69E−01(=) 3.26E−18(+) 9.48E−20(+) 1.38E−20(+)

P15 6.11E−07(+) 2.01E−07(+) 2.27E−13(+) 1.02E−07(+) 1.78E−39(+) 1.78E−06(+) 8.96E−10(+)

P16 1.68E−35(+) 5.18E−36(+) 3.96E−29(+) 1.69E−30(+) 5.18E−36(+) 2.32E−38(+) 3.34E−41(+)

of search in the proposed algorithm. In most of the problems,
the IMI-GWO algorithms outperform SSA, MFO and SCA.
Thus, the table clearly indicates the better performance of
the proposed IMI-GWO algorithm as compared to the other
comparative algorithms, and therefore, the IMI-GWO algo-
rithm can be considered a better optimizer.

In Table 4, the comparison of the proposed IMI-GWO
is made with some other state-of-the-art algorithms which
are applied in the literature to solve the same problem set.
The table shows that out of sixteen problems in thirteen

problems IMI-GWO gives 100% success and only in one
problems algorithm is not able to find any success. However,
RST2ANU algorithm is 100% successful in seven prob-
lems, and in seven problems, the success is below 50%. In
AXNUM algorithm, 100% success is obtained only in four
problems, and in six problems, success is below 50%. MI-
LXPM able to solve six problems with 100% success and
provides success below 50% only in two problems. Thus,
in most of the problems IMI-GWO algorithm outperforms
other algorithms in sense of success rate. Overall in terms of
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Table 4 Comparison of results
for problems P1–P16

Problem IMI-GWO RST2ANU AXNUM MI-LXPM

S fE S fE S fE S fE

P1 100 1300 47 173 86 1728 84 172

P2 100 300 54 657 67 82 85 64

P3 100 9000 4 2, 21, 129 35 65, 303 43 18, 608

P4 0 − 2 14, 89, 713 82 45, 228 93 10, 933

P5 100 630 75 2673 95 13, 820 100 671

P6 100 120 100 108 100 432 100 84

P7 100 1200 0 − 45 16, 077 59 7447

P8 98 2, 00, 000 15 1, 80, 859 3 1950 41 3571

P9 100 50 100 189 100 4946 100 100

P10 100 1760 100 545 33 700 93 258

P11 100 3250 100 2500 97 863 100 171

P12 81 39, 000 29 6445 19 3, 80, 115 71 2, 99, 979

P13 100 40 100 35 91 456 99 77

P14 100 90 19 214 100 1444 100 78

P15 100 50, 000 100 3337 9 2, 67, 177 92 2437

P16 100 170 100 697 100 256 100 250

S = average percentage of success, fE = average number of function evaluations
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Fig. 2 Performance of various algorithms in terms of total number of
success

success and average function evaluations, IMI-GWO gives
very competitive results as compared to other search algo-
rithms. Figures 2 and 3 show the performance of IMI-GWO,
RST2ANU, AXNUM and MI-LXPM in terms of success
and total average function evaluations used by algorithms. In
these figures, problems where the algorithm is successful at
least ones are considered.

5.2 Convergence Analysis

The convergence behaviour for the algorithms IMI-GWOand
MI-GWO corresponding to the various problems are plotted
in Figs. 4 and 5. These curves are plotted corresponding to
the mean value of the objective functions for intermediate
iterations in 100 runs. In these graphs, the horizontal axis
represents the number of iterations and the vertical axis rep-
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Fig. 3 Performance of various algorithms in terms of total function
evaluations

resents the objective function value. The convergence curve
shows the efficiency of the proposed IMI-GWO algorithm in
terms of better convergence behaviour.

5.3 Performance Index Analysis

In order to analyse the comparative performance of IMI-
GWO, RST2ANU, AXNUM andMI-LXPM algorithms, the
performance index (PI) is calculated [44] for all the algo-
rithms. PI analyses the performance of algorithms based on
theweights assigned to success and function evaluations. The
performance index for the i th algorithm can be evaluated as

P Ii = 1

N

∑N

j=1
w1a

j
1 + w2a

j
2 , (23)
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Fig. 4 Convergence graphs for selected mixed-integer problems

123



Arabian Journal for Science and Engineering (2019) 44:7277–7296 7289

0 4 8 12 16 20

-10
-0.025

-10
-0.024

-10
-0.023

-10
-0.022

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Convergence graph P10

MI-GWO
IMI-GWO

0 15 30 45 60
8

9

10

11

12

13

14

15

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Convergence graph P11

MI-GWO
IMI-GWO

0 100 200 300 400 500
14

16

18

20

22

24

26

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Convergence graph P12

MI-GWO
IMI-GWO

0 1 2

-10
1.54

-10
1.56

-10
1.58

-10
1.6

-10
1.62

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Convergence graph P13
MI-GWO
IMI-GWO

1 2

-10
1.628

-10
1.629

0 1 2 3
10

-4

10
-3

10
-2

10
-1

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Convergence graph P14

MI-GWO
IMI-GWO

0 2 4 6

-10
-0.02

-10
-0.01

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Convergence graph P16

MI-GWO
IMI-GWO

Fig. 5 Convergence graphs for selected mixed-integer problems

123



7290 Arabian Journal for Science and Engineering (2019) 44:7277–7296

Table 5 Performance index (PI)
value for various algorithms
with ranking corresponding to
different weights (w)

Algorithm weight(w) →
↓ 0 0.2 0.4 0.6 0.7 0.8 1

IMI-GWO 0.5842(3) 0.6643(3) 0.7445(2) 0.8247(2) 0.8647(1) 0.9048(1) 0.9850(1)

RST2ANU 0.7245(2) 0.7143(2) 0.7041(3) 0.6939(3) 0.6889(3) 0.6838(3) 0.6736(3)

AXNUM 0.5011(4) 0.5315(4) 0.5619(4) 0.5923(4) 0.6075(4) 0.6227(4) 0.6531(4)

MI-LXPM 0.7828(1) 0.7992(1) 0.8155(1) 0.8319(1) 0.8401(2) 0.8483(2) 0.8646(2)
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Fig. 6 Performance index graph for various algorithms

where

a j
1 = Sr j

T r j
and a j

2 =
⎧⎨
⎩

M f j

A f j
if Sr j > 0

0 otherwise,
(24)

Sr j denotes the number that the algorithm i is successful on
the problem j and Tr j denotes the total number of times
the j th problem is solved. Also, N is the total number of
problems, and M f j is the minimum of average function
evaluations used by all the considered algorithm for the j th
problem. A f j is the average number of function evaluations
used by i th algorithm for the j th problem.

Furthermore, w1 and w2 are non-negative weights such
that w1 + w2 = 1. If w1 = w, then w2 = 1 − w. The
performance index (PI) value is calculated corresponding
to the weights w = 0, 0.2, 0.4, 0.6, 0.7, 0.8 and w = 1.
The obtained PI values for all the algorithms are reported in
Table 5, and the algorithms are ranked for different weights
corresponding to the PI value in the same table. The PI graphs
for all the algorithms are shown in Fig. 6. The figures show
that IMI-GWO algorithm has better PI thanMI-LXPMwhen
w ≥ 0.7, i.e. when more weight is assigned to the success
factor than function evaluations, while IMI-GWO algorithm
has better PI thanAXNUMandRST2ANUfor all theweights
w ≥ 0.4.

Therefore, the analysis of results based on PI shows that
IMI-GWO algorithm solves all the problems with better suc-
cess as compared to other algorithms. The PI analysis also

shows that when function evaluations and success both are
the requirements of the user then the IMI-GWO algorithm
outperforms all other reported algorithms.

5.4 Computational Complexity

The computational complexity of an optimization algorithm
is a key metric for evaluating the run-time of an algorithm.
The computational complexity can be defined based on the
structure of the algorithm. The computational complexity
of GWO depends on the number of wolves in a pack, the
dimension of the problem and themaximum number of itera-
tions. Overall, by analysing the steps of algorithms from their
pseudo-codes, the computational complexity of the proposed
algorithm IMI-GWO, classical GWO and other algorithms
is defined as follows:

O(IMI-GWO) = O(T (n × d) + N × d) (25)

O(GWO) = O(T (n × d)) (26)

O (mGWO) = O (Fitness GWO)

= O(Weighted GWO) = O(T (n × d)) (27)

O (SC A) = O (MFO) = O (SSA) = O(T (n × d)),

(28)

where T represents the maximum number of iterations, n
represents the size of the wolf pack, d represents the size
of the dimension and N represents the number as defined in
chaotic search phase. The complexity of all the algorithms is
calculated with the help of their pseudo-codes.

Thus, from the experimental results, it can be observed
that the proposed algorithm (IMI-GWO) has solved the inte-
ger and mixed-integer optimization problems with better
accuracy and better success rate in most of the test prob-
lems as compared to the algorithms. Therefore, in terms
of acquiring better accuracy, the proposed algorithm can
be considered a better optimizer than classical GWO and
other algorithms. But, in terms of computational complexity,
the proposed algorithm is more complex than other algo-
rithms.
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Table 6 Comparison of results
on gear train design problem

Algorithm Optimal solution f1.min Max function evaluations

Td Tb Ta T f

IMI-GWO 19 16 43 49 2.7009 × 10−12 600

CS 19 16 43 49 2.7009 × 10−12 5000

MBA 16 19 49 43 2.7009 × 10−12 1,120

GA 33 14 17 50 1.3620 × 10−9 N/A

ABC 19 16 44 49 2.78 × 10−9 40,000

ALM 33 15 13 41 2.147 × 10−8 N/A

MI-GWO 20 20 47 59 9.7409 × 10−10 600

Cauchy GWO 19 16 43 49 2.7009 × 10−12 600

SSA 31 13 49 57 9.9399 × 10−11 850

MFO 23 16 50 51 1.1834 × 10−09 850

WOA 17 14 30 55 1.3616 × 10−09 850

SCA 28 17 55 60 2.7009 × 10−12 1270

6 Applications of IMI-GWO

6.1 Gear Train Design Problem

This problem is the study of parameters Td , Tb, Ta and
T f with the objective to minimize the gear ratio [45,46].
Td , Tb, Ta and T f denote the number of tooth for four gears
of a train. The mathematical formulation of the problem can
be stated as follows:

Min f1 (X) =
(

1

6.931
− TdTb
Ta, T f

)2

=
(

1

6.931
− x1x2
x3, x4

)2

(29)

X = (
Td , Tb, Ta, T f

) = (x1, x2, x3, x4)

s.t. 12 ≤ Td , Tb, Ta, T f ≤ 60. (30)

The obtained best solution by IMI-GWO, MI-GWO and
other algorithm is reported in Table 6. The table shows that
obtained solution for IMI-GWO is same as algorithm CS
[47], MBA [48], but CS and MBA consume more function
evaluations. Also this problem has been solved by artifi-
cial bee colony (ABC) [49], genetic algorithm (GA) [50],
ALM [51] and cauchy GWO [52]. In the table, the results
are also reported for some recent studies such as SSA [41],
MFO [40], WOA, [9] and SCA [39]. The results presented in
Table 6 verify the better performance of IMI-GWOalgorithm
as compared to the other algorithms.

6.2 Pressure Vessel Design

The objective of the problem is to minimize the total cost
including the cost of welding, material, forming. This prob-
lem consists of two discrete parameters, namely thickness of
shell (Ts) and thickness of head (Th), and two other parame-

ters, namely inner radius (R) and length of cylindrical section
of vessel (L). The discrete parameters (Ts) and (Th) are inte-
gral multiple of 0.0625. Mathematically the problem can be
stated as follows:

Min f 2 (x) = 0.6224 x1x3x4 + 1.7781 x2x
2
3

+ 3.1661 x21 x4 + 19.84 x21 x3 (31)

x = (x1, x2, x3, x4) = (Ts,Th,R,L)

s.t. g1 (x) = −x1 + 0.0193 x3 ≤ 0 (32)

g2 (x) = −x2 + 0.00954 x3 ≤ 0 (33)

g3 (x) = −πx23 x4 − 4

3
πx33 + 1296000 ≤ 0 (34)

g4 (x) = x4 − 240 ≤ 0 (35)

1 × 0.0625 ≤ x1, x2 ≤ 99 × 0.0625 (36)

10 ≤ x3, x4 ≤ 200. (37)

In the literature, this problem is solved by augmented
Lagrangian multiplier [51], branch-and-bound [53] classical
techniques. Some nature-inspired algorithms, for example,
PSO [54], GA (Coello) [55] and GA (Deb and Gene) [56],
PSO (He and Wang) [57], GSA [58] are also used to solve
this problem. For this problem, 30 runs have been consid-
ered and 2,40,000 function evaluations are used by proposed
algorithm. The obtained results are presented in Table 7. In
the table, the results are also reported for some recent stud-
ies such as SSA [41], MFO [40], WOA, [9] and SCA [39].
The table verifies the better search-ability of the proposed
algorithm in obtaining the optimal cost.
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Table 7 Comparison of results
on pressure vessel design
problem

Algorithm Optimal solution Optimum cost f2,min

x1 x2 x3 x4

IMI-GWO 0.8125 0.4375 42.09844 176.6378 6059.7408

Branch-and-bound 1.125 0.625 47.70 117.701 8129.1036

Lagrangian multiplier 1.125 0.625 58.291 43.69 7198.0428

GA (Deb and Gene) 0.9375 0.500 48.329 112.6790 6410.3811

GA (Coello) 0.8125 0.4345 40.3239 200.00 6288.7445

GWO 0.8125 0.4375 42.09834 176.6389 6059.7506

PSO (He and Wang) 0.8125 0.4375 42.0913 176.7465 6061.0780

GSA 1.1250 0.6250 55.9887 84.4542 8538.8360

SSA 0.9375 0.5 48.57508 110.0682 6370.7870

MFO 0.8125 0.4375 42.098445 176.636596 6059.7143

WOA 0.8125 0.4345 42.0983 176.6390 6059.7410

SCA 1.000 0.5 51.5833 87.2884 6467.8195

7 Conclusion and Future Scope

In the present study, an improved version of classical GWO
called IMI-GWO is proposed to solve constrained and non-
linear integer and mixed-integer optimization problems. To
handle the constraints, a simple constraint handling technique
based on constraint violation is employed which is a natural
way of selecting the best solutions from the set of solutions.
In the paper, two aims are focused: firstly to investigate the
exploration and exploitation ability of classicalGWO in solv-
ing the integer and mixed-integer problems, MI-GWO has
been proposed, and secondly, an improved version called
IMI-GWO is proposed to solve integer and mixed-integer
problems with high accuracy. The IMI-GWO uses the con-
cept of opposite numbers in enhancing the exploration ability
of grey wolves in the algorithm. In the proposed IMI-GWO
algorithm, the chaotic local search is used to explore the
new regions around the set of best solutions. To investigate
the performance of the proposed IMI-GWO algorithm, a set
of 16 integer and mixed-integer optimization problems and
two engineering optimization problems with discrete search
space are taken. The comparison with state-of-the-art algo-
rithms which are applied to solve these problems in the
literature and the comparison with some recently improved
version of GWO shows that the proposed algorithm IMI-
GWO solves the problems having discrete search space with
high accuracy and high success rate. The convergence analy-
sis and performance index (PI) analysis also verify the better
search efficiency of the proposed IMI-GWO algorithm as
compared to other algorithms.The results ongear train design
and pressure vessel design problems also demonstrate the
better ability of IMI-GWO than other algorithms. Overall,
from the experimental results and analysis through various
metrics, it can be concluded that the proposed IMI-GWO is
better optimizer than other comparative algorithms in terms

of accuracy in determining the solution when dealing with
discrete search space.

In the future, the proposed IMI-GWO algorithm can
be used for discrete and mixed-integer programming prob-
lems of engineering applications. Also, we will investigate
the performance of the proposed algorithm in solving the
constrained and unconstrained multiobjective optimization
problems. The binary version of the proposed algorithm can
also be developed in future, and its performance can be
examined on binary problems such as knapsack problem and
quadratic assignment problem.
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Appendix

Integer/Mixed-Integer Optimization Problems

P1 : Min f1 (x1, x2) = 2 x1 + x2

s.t. 1.25 − x21 − x2 ≤ 0

x1 + x2 − 1.6 ≤ 0

0 ≤ x1 ≤ 1.6

x2 ∈ {0, 1}.

The global optima is 2 corresponding to (x1, x2) = (0.5, 1).
This problem has been taken from [59] and also reported in
[12,16,18,60].

P2 : Min f2 (x1, x2) = 2 x1 − x2 − log(x1/2)

s.t. − x1 − log
( x1
2

)
+ x2 ≤ 0
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0.5 ≤ x1 ≤ 1.5

∗x2 ∈ {0, 1}.

The global optima is 2.124 corresponding to (x1, x2) =
(1.375, 1). This problem is picked up from [12] and it is
the modified form of the problem reported in [16,18,60].

P3 : Min f3 (x1, x2, x3) = 0.8 + 5(x1 − 0.5)2 − 0.7x3

s.t. − e(x1−0.2) − x2 ≤ 0

1 + x2 + 1.1 x3 ≤ 0

x1 − 1.2 x3 − 0.2 ≤ 0

0.2 ≤ x1 ≤ 1.1

− 2.22554 ≤ x2 ≤ −1

x3 ∈ {0, 1}.

Theglobal optima is 1.07654 corresponding to (x1, x2, x3) =
(0.94194,−2.1, 1). This problem is selected from [60] and
also solved in [12,16,18].

P4 : Min f4 (x1, x2) = (x1 − 10)3 + (x2 − 20)3

s.t. 100 − (x1 − 5)2 − (x2 − 5)2 ≤ 0

(x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

13 ≤ x1 ≤ 100

0 ≤ x2 ≤ 100.

The global optima is−6961.81381 corresponding to (x1, x2)
= (14.095, 0.84296). This example is taken from [13] and
also solved in [18].

P5 : Min f5 (x1, x2, x3) = x21 + x1x2

+ 2 x22 − 6 x1 − 2 x2 − 12 x3

s.t. − 15 + 2 x21 + x22 ≤ 0

− 3 − x1 + 2 x2 + x3 ≤ 0

0 ≤ x1, x2, x3 ≤ 10 and integers.

The global optima is −68 corresponding to (x1, x2, x3)
= (2, 0, 5). This problem is chosen from [61] and also given
in [18].

P6 : Min f6 (x1, x2, x3, x4) = (x1 + 2 x2 + 3 x3 − x4)

· (2 x1 + 5 x2 + 3 x3 − 6 x4)

s.t. 4 − x1 − 2 x2 − x3 − 3 x4 ≤ 0

xi ∈ {0, 1} for i = 1, 2, 3, 4.

The global optima is −6 corresponding to (x1, x2, x3, x4)
= (0, 0, 1, 1). This problem has been taken from [59] and
this represents a quadratic capital budgeting problem. This
problem is also given in [16,18].

P7 : Min f7 (x1, x2, x3) = 7.5 x1 + 5.5 (1 − x1) + 7 x2

+ 6 x3 + 50
x1/(2 x1 − 1)

0.9[1 − e(−0.5 x2)]
+ 50

1 − [x1/(2 x1 − 1)]
0.8[1 − e(−0.4 x3)]

s.t. 0.9
[
1 − e(−0.5 x2)

]
− 2 x1 ≤ 0

0.8
[
1 − e(−0.4 x3)

]
− 2 (1 − x1) ≤ 0

x2 − 10 x1 ≤ 0

x3 − 10(1 − x1) ≤ 0

x2, x3 ≥ 0

x1 ∈ {0, 1} .

The global optima is 99.245209 corresponding to (x1, x2, x3)
= (1, 3.514237, 0). This problemhas been chosen from [12].

P8 : Min f8 (x1, x2, x3, x4, x5, x6, x7) = (x4 − 1)2

+ (x5 − 1)2 + (x6 − 1)2 + (x1 − 1)2

+ (x2 − 2)2 + (x3 − 3)2 − log ( x7 + 1)

s.t. x1 + x2 + x3 + x4 + x5 + x6 − 5 ≤ 0

x21 + x22 + x23 + x26 − 5.5 ≤ 0

x1 + x4 − 1.2 ≤ 0

x2 + x5 − 1.8 ≤ 0

x3 + x6 − 2.5 ≤ 0

x1 + x7 − 1.2 ≤ 0

x22 + x25 − 1.64 ≤ 0

x23 + x26 − 4.25 ≤ 0

x23 + x25 − 4.64 ≤ 0

x1, x2, x3 ≥ 0

x4, x5, x6, x7 ∈ {0, 1} .

The global optima is 3.557463 corresponding to (x1, x2, x3,
x4, x5, x6, x7) = (0.2, 1.280624, 1.954483, 1, 0, 0, 1). This
problem has been given in [12] and also solve in [16,18,59,
62].

P9 : Min f9 (x1, x2, x3, x4, x5) = 5.357854 x21
+ 0.835689 x3x4 + 37.29329 x4 − 40792.141

s.t. a1 + a2 x5 x3 + a3 x4 x2 − a4 x1 x3 − 92 ≤ 0

a5 + a6 x5 x3 + a7 x4 x5 + a8x
2
1 − 110 ≤ 0

a9 + a10 x1 x3 + a11 x4 x1 + a12x1 x2 − 25 ≤ 0

27 ≤ x1, x2, x3 ≤ 45

x4 ∈ {78, 79, . . . , 102}
x5 ∈ {33, 34, . . . , 45} .
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Theglobal optima is−32217.42 corresponding to (x1, x3, x4)
= (27, 27, 78) and for any combination of (x2, x5). This
problem is reported in [12,16,18]. The coefficients of this
problem are presented in Table 7.

P10 : Min f10 (x1, x2, x3, x4, x5, x6, x7, x8)

= − (
1 − 0.1x10.2x20.15x3

)
× (

1 − 0.05x40.2x50.15x6
)
(1 − 0.02x70.06x8)

s.t. 1 − x1 − x2 − x3 ≤ 0

1 − x4 − x5 − x6 ≤ 0

1 − x7 − x8 ≤ 0

3 x1 + x2 + 2 x3 + 3 x4 + 2 x5x6 + 3 x7
+ 2x8 − 10 ≤ 0

xi ∈ {0, 1} for i = 1, 2, . . . , 8.

The global optima is −0.94347 corresponding to (x1, x2
, x3, x4, x5, x6, x7, x8) = (0, 1, 1, 1, 0, 1, 1, 0) . This prob-
lem is taken from [63] and also solved in [16,18].

P11 : Min f11 (x1, x2, x3, x4, x5)

= x21 + x22 + x23 + x24 + x25
s.t. 4 − x1 − 2 x2 − x4 ≤ 0

3 − x2 − 2 x3 ≤ 0

5 − x1 − 2 x5 ≤ 0

x1 + 2 x2 + 2 x3 − 6 ≤ 0

2 x1 + x3 − 4 ≤ 0

x1 + 4 x5 − 13 ≤ 0

0 ≤ xi ≤ 3 and integer for i = 1, 2, 3, 4, 5.

Theglobal optima is 8 corresponding to (x1, x2, x3, x4, x5)
= (1, 1, 1, 1, 2). This problemhas been chosen from [64] and
also reported in [18,61].

P12 : Min f12 (x1, x2, x3, x4, x5, x6, x7)

= x1x7 + 3 x2x6 + x3x5 + 7 x4

s.t. 6 − x1 − x2 − x3 ≤ 0

8 − x4 − x5 − 6 x6 ≤ 0

7 − x2 − 3 x5 − x1x6 ≤ 0

25 − 4x2x7 − 3 x4x5 ≤ 0

7 − 3 x1 − 2 x3 − x5 ≤ 0

3 x1x3 + 6 x4 + 4 x5 − 20 ≤ 0

x6x7 + 2 x3 + 4 x1 − 15 ≤ 0

0 ≤ x1, x2, x3 ≤ 4

0 ≤ x4, x5, x6 ≤ 2

0 ≤ x7 ≤ 6

xi ′s are integer for i = 1, 2, . . . , 7.

The global optima is 14 corresponding to (x1, x2, x3, x4,
x5, x6, x7) = (0, 2, 4, 0, 2, 1, 4). This problem is chosen
from [64] and also solved in [18,62].

P13 : Min f13 (x1, x2) = exp (−x1) + x21 − x1x2

− 3 x22 − 6 x2 + 4 x1

s.t. 2 x1 + x2 − 8 ≤ 0

− 2 + x2 − x1 ≤ 0

0 ≤ x1, x2 ≤ 3 and integers.

Theglobal optima is−42.632 corresponding to (x1, x2) =
(1, 3). This problem is chosen from [65] and also solved in
[18,61].

P14 : Min f14 (x1, x2, x3) =
∑9

i=1

⎡
⎣e

(
− (vi−x2)x3

x1

)
−0.01 i

⎤
⎦
2

where vi = 25 + (−50 · log(0.01 i))2/3
s.t. 0 ≤ x1 ≤ 100

0 ≤ x2 ≤ 25.6

0 ≤ x3 ≤ 5

x1, x2 integers.

The global optima is 0 corresponding to (x1, x2, x3) =
(50, 25, 1.50). This problem is reported in [66] and also
reported in [17,18].

P15 : Min f15 (x1, x2, x3, x4, x5) = x21 + x22 + 3 x23

+ 4 x24 + 2 x25 − 8 x1 − 2 x2 − 3 x3 − x4 − 2 x5
s.t. 55 ≤ x1 + x2 + x3 + x4 + x5 ≤ 400

x1 + 2 x2 + 2 x3 + x4 + 6 x5 − 800 ≤ 0

2 x1 + x2 + 6 x3 − 200 ≤ 0

x3 + x4 + 5 x5 − 200 ≤ 0

48 − x1 − x2 − x3 − x4 ≤ 0

34 − x2 − x4 − x5 ≤ 0

104 − 6 x1 − 7 x5 ≤ 0

0 ≤ xi ≤ 99 and integer for i = 1, 2, . . . , 5.

The global optima is 807 corresponding to (x1, x2, x3, x4,
x5, x6, x7, x8) = (16, 22, 5, 5, 7). This problem is taken
from [67].

P16 : Min f16 (m, r) =
∏4

i=1
[1 − (1 − ri )

mi ]
s.t.

∑4

j=1
u jm

2
j ≤ uQ

∑4

j=1
C

(
r j

) [m j + e

(m j
4

)
] ≤ cQ

∑4

j=1
w j [m j · e

(m j
4

)
] ≤ wQ
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Table 8 Data set for the coefficients in problem P9

a1 85.334407 a5 80.51249 a9 9.300961

a2 0.0056858 a6 0.0071317 a10 0.0047026

a3 0.0006262 a7 0.0029955 a11 0.0012547

a4 0.0022053 a8 0.0021813 a12 0.0019085

0 ≤ mi ≤ 10 and integers

0 ≤ r j ≤ 1 − 10−6 ,

where u j is the product of weight and volume per element
at stage j, w j is the weight of the components at stage j and
C

(
r j

)
is the cost of components with reliability r j at stage j

which is defined as

C
(
r j

) = α j

( −T

ln r j

)β j

.

cQ 400
uQ 250
wQ 500
Operating time (T) 100h
j 105α j β j u j w j
1 1.0 1.50 1 6
2 2.3 1.50 2 6
3 0.3 1.50 3 8
4 2.3 1.50 2 7

Here α j and β j are the physical characteristics of compo-
nents at stage j and T is the operating time during which the
components must not fail (Table 8).

The global optima is −0.999955 corresponding to
(r1, r2, r3, r4,m1,m2,m3,m4) = (5, 5, 4, 6, 0.899845,
0.887909, 0.948990, 0.851017). This problem is taken from
[68] and also reported in [13,18].
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