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Abstract
The aim of this study was to improve the life and performance of tungsten carbide turning tool inserts coated with TiN/AlN
multilayer thin films using physical vapor deposition technique. Quality characteristics of the coating are evaluated using
Calo and VDI 3198 tests. Thickness of the coating is found to be 3.651μm with adhesion quality of HF1. The performance
of coated tool inserts is evaluated using cutting speed (59–118 m/min), feed rate (0.062–0.125 mm/rev) and depth of cut
(0.2–0.4 mm) as process parameters in turning MDN431 steel. Experimental investigation has been carried out based on
full factorial design, and regression analysis was used to analyze and build the mathematical models for cutting force and
surface roughness. Multi-objective optimization of the process parameters has been done with the combination of desirability
approach and MOPSO technique. Optimum machining condition for least cutting force and optimum surface roughness is
found to be Vc = 59m/min, f = 0.063mm/rev and ap = 0.2mm. Cutting force and surface roughness are reduced by 9% in
TiN/AlN-coated tools compared with the uncoated tool. To improve the CoD and capability of predictive regression models,
ANNmodeling has been adopted. ANN trained model and mathematical regression models are used to predict the results and
predict the responses, which follow the experimental data with minimum absolute error. The predicted results are validated
using ANN and regression analysis found with minimum error, and developed models are adequate for further usage. Tool
wear was reduced by 105% in TiN/AlN-coated tools compared with the uncoated tool.
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Vc Cutting speed (rpm)
f Feed rate (mm/rev)
ap Depth of cut (mm)
Fx Feed force (N)
Fy Thrust force (N)
Fz Tangential force (N)
Ra Surface roughness (μm)
Vb Tool wear (μm)
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1 Introduction

In the industrial manufacturing sector for better productiv-
ity and reducing the capital investment, any manufacturing
process needs to be optimized and standardized. Among
manufacturing processes, turning has been reported as a
flexible machining process. All the manufacturing processes
need to be optimized, and optimization techniques are used
to improve the machining process by proper selection of
cutting parameters. Machinability characteristics considered
for the improvisation are tool wear, machined surface tex-
ture, surface roughness characteristics and cutting forces
[1–9]. Incoloy, Inconel and other superalloys are hard-to-
machine materials which require proper selection of cutting
tool combination. Thin-film coatings on cutting tools devel-
oped using physical and chemical vapor deposition provide
solutions tomachining of the hard-to-machinematerials [10–
14]. Machinability characteristics were used to evaluate the
performance of coated tools [1,6,7,15–18]. Optimization of
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machinability characteristics provides a correlation between
process parameters and responses [19–22]. Optimization
techniques include statistical and parametric approach which
provide validation and error analysis of the machinability
characteristics [23–27]. Some of the researches related to
machining, optimization,modeling, toolwear and coated tool
performance are briefed.

Optimization techniques have been adopted to various
studies which include tribological behavior of Mg compos-
ites reinforcedwithTiCandMoS2 particles [28,29].Addition
of TiC and MoS2 particles reduced coefficient of friction in
Mg hybrid composites during tribological studies [28–31].

W. Grzesik et al. explained tool wear measurements dur-
ing machining of Inconel 718. TiAlN/AlTiN coatings were
developedon cutting tools, andperformance of the coatings is
evaluated using tool wear results. Abrasive wear and built-up
edge are experienced during the machining [1]. K. Aslan-
tas et al. studied tool wear of Al2O3–TiCN-coated insert
during machining of AISI 52100. Crater wear type was dom-
inant in both coated and uncoated tools; coated tool is more
inclined toward built-up edge, whereas crater is formed using
uncoated transformed into chipping [32].

M. Hanief et al. combined regression and ANN model-
ing for the experimentation and validation of cutting forces
during machining of red brass. ANOVA was capable of pre-
dicting the results, but ANN model was found to be more
accurate than regression model [4]. J. Ciurana et al. used
artificial neural network (ANN) and multi-objective particle
swarm optimization (PSO) for optimization and modeling of
process parameters during micromachining hardened AISI
H13 steel. Results indicate that proposed ANN and PSO
techniques were efficient for optimization and prediction of
results [33]. B. Rajesh Kumar et al. explained the response
surfacemethodology (RSM) combinedwith a neural network
for the modeling and prediction of rock properties during
drilling [34].

R.T. Coelho et al. explained TiAlN nanocoating per-
formed better in terms of tool wear and surface roughness
during turning of hardened AISI 4340 steel among TiAlN,
TiAlN nanocoating and AlCrN. TiAlN nanocoating is out-
performed due to its high hardness and oxidation at high
temperature [17].

Based on the literature survey, it has been found that per-
formance of Al- and Ti-based multilayer coatings on WC
inserts for machinability studies is minimal. In spite of sub-
stantial growth, the optimization ofmachinability parameters
and the influence of multilayer thin-film coating on cutting
forces and surface roughness study were not fully under-
stood. Hence, in the present work, Al and Ti multilayer
coatings are developed on WC tool insert with the chem-
ical composition of TiN/AlN. Performance of multilayer
coated insert is studied based on machinability properties of
MDN431 alloyed steel (widely used in turbine forgings) in

comparison with the uncoated tool and the effect of machin-
ing parameters on cutting forces (Fx , Fy and Fz) and surface
roughness (Ra) during the machining of MDN431 steel.
Quadratic mathematical models using regression analysis
and artificial neural network predictive models are devel-
oped. Adequacy of the mathematical model was determined
by coefficient of determination (R2). Machining parameters
are optimized using the desirability andPSO techniques. Tool
wearmechanism is studied for coated tool in comparisonwith
the uncoated tool.

2 Experimental Work

An experimental investigation was carried out on alloyed
steel MDN431 specimens of dimension 250 mm length and
30 mm in diameter. Table 1 presents the chemical composi-
tion of the test specimen. Based on operability of the cutting
tool and machine tool, the pilot runs are carried out to select
the machining parameters and are represented in Table 2.

Self-centered three-jaw panther lathe machine tool was
used for experimental work. Kennametal Germany-make
SNMG120408 WC tool insert was attached to the
DSSNR2020K12 tool holder. Ti multilayer coatings were
developed using PVD technique with the composition of
TiN/AlN (commercially called as FTR coating) at Oerlikon
Balzers Coating India Pvt., Ltd. VDI 3198 and Calo test were
carried out for qualitative analysis of coating adhesion atOer-
likon Balzers Coating India Pvt., Ltd. Calo test (Anton Paar,
Switzerland) is a spherical abrasion test method. To this end,
a small crater is ground into a coating with a ball of known
geometry, providing a tapered cross section of the film when
viewed under an optical microscope. Calo test was used to
measure the thickness of the thin-film coating. Coated sur-
face was cleaned with IPA solution. Steel ball is run against
the surface at 200 rpm for the period of 120–180 s in the
presence of diamond paste as lubricant. Wear scar created on

Table 1 Composition of MDN431

Type of substrate C Mn Si Cr Ni Fe

MDN 431 0.15 0.7 0.7 17 2.5 Balance

Table 2 Experimental conditions

Levels Speed (Vc)
(m/min)

Feed rate ( f )
(mm/rev)

DoC (ap)
(Mm)

Level 1 59 0.062 0.2

Level 2 75 0.093 0.3

Level 3 118 0.125 0.4
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the surface after the Calo test is analyzed using microscope,
and coating thickness is calculated with its built-in software.

VDI 3198 test was used tomeasure the qualitative analysis
of adhesion of coatings. Using a Brinell hardness machine
(ball indenter) with the load of 100 kg for the constant
dwell time, indentation is created. Deformed coatings after
indentation are cross-referred with the standard to obtain the
conclusion of results [35].

Mechanical properties of the coatings are evaluated using
nanoindentation technique and are presented in Table 5. Dur-
ing the nanoindentation, a Berkovich indenter was used.
Nanoindenter (Agilent G200, USA) hardness tests are con-
ducted as per ISO 14577(1-4). At clean room conditions,
all the experiments are done with loading and unloading
cycles keeping depth of penetration constant (70% coat-
ing thickness). Cutting forces are measured using Kistler
9257B piezoelectric dynamometer mounted on the tool post
with the help of Kistler Dynoware software 2825D-02 data
acquisition system. Kistler Dynamometer 9257B is used
to measure the cutting forces during the machining stud-
ies. Kistler Dynamometer 9257B is equipped with 5070A
charge amplifier, which is connected to a computer withA2D
Board and is controlled by Kistler 2825 DYNOWARE soft-
ware.Machined surfacewasmeasuredby “MitutoyoTalysurf
SJ301” surface tester, and average surface roughness (Ra)
was considered; there are many different roughness param-
eters in use, but Ra the arithmetic mean roughness is by
far the most common. Other common parameters include:
Rz ten-point mean roughness and Rt the maximum height
of the surface profile measured according to Standard ISO
468:1982. Five measurements were taken for Ra of each
machined sample with a cutoff length (λ) of 4 mm, and
average was taken as actual values. Olympus LEXT 4000,
Japan-make confocal microscopy, was used to build the
profile of the machined surface topography, tool wear mea-
surement, indented surface and fretting worn surface. It uses
a monochromatic laser to build the 3D profile of a surface,
using which height, width and depth of the worn surfaces
were measured and analyzed. Experimental results of cut-
ting forces and surface roughness are presented in Table 6.
Experiments for each combination are repeated thrice tomin-
imize the errors and to ensure the accurate readings. Using
ANN and regression analysis, predictive models for cutting
force and surface roughness are developed.

2.1 Regression Analysis

In the present investigation, the full factorial design was used
for the design and analysis of experiments. Based on L27

full factorial design, different levels of experiments are con-
ducted for the input variables such as speed, feed rate and
depth of cut, and results are mentioned in Table 6.

In regression analysis, the correlation between input
parameters and output responses is established using quad-
ratic mathematical regression model. Results are predicted
for the 27 experimental combinations using the mathemat-
ical regression model. In Fig. 8, the predicted results are
compared with experimental results. It was found that the
predicted data by the regression model closely follow the
experimental data. Multi-objective optimization for the out-
put responses is carried out using desirability approach
for minimization function (smaller is better). Desirability
approachwas first introduced by Suich andDeringer in 1980.
The desirability approach finds experimental conditions “tar-
geted” as the most advisable response value.

2.2 Multi-objective Particle SwarmOptimization

MOPSO and desirability approach are employed to achieve
the optimal process parameters. MOPSO was implemented
using MATLAB software, and Minitab software tool was
used for desirability approach. Figures 1 and 2 represents
the optimization plots for desirability and MOPSO approach
respectively. The parameters of MOPSO algorithms are rep-
resented in Table 3, and the working conditions for the
MOPSO model are illustrated in the algorithm. Parame-
ters indicated in the table play a vital role in obtaining
finer convergence characteristics. If the population of parti-

Fig. 1 Multi-objective optimization result using desirability approach
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Fig. 2 MOPSO convergence plot

cle increases, the learning rate increases. In turn, the number
of iterations increases in the search space. If the convergence
was attained within a smaller number of iterations, then the
outcome probability of getting global optimum solutions is
at a higher rate. Velocity of the particles is kept within the
boundary range of variables. The particles movements are
governed by the mathematical functions (1, 2).

xt+1
i = xti + vti . (1)

vti = vt−1
i + c1r1(pbest

t − xt−1
i )+ c2r2(gbest

t − xt−1
i )

(2)

where xti and xt+1
i are the position of the particle i in steps t

and t+1, vti is the velocity of the particle i in time t , xt−1
i and

vt−1
i are the position and velocity in the (t − 1) time, c1 and
c2 are the acceleration factors, r1 and r2 are the randomized
vectors for the particle direction and pbest is the local best
solution of the particle i in time t and gbest is the global best
solution among all the particles i .

Steps involved in MOPSO algorithm

1. Initialize the population of particles (n) randomly.
2. For every particle, the fitness value ( f ) is evaluated.

Table 3 Parameters of MOPSO

Number of parameters (m) 3

Number of iterations (i) 1000

Number of particles (n) 100

Acceleration factor c1 2

Acceleration factor c2 2

Lower bounds of variables (LB) [59 0.062 0.2]

Upper bounds of variables (UB) [118 0.125 0.4]

3. If the calculated fitness value of the particle is better than
the best fitness value (pbest) in history, then the present
value is assigned as a new best fitness value (new pbest).

4. Choose the particle with the best fitness value among all
the pbest values which are considered to be the global
best (gbest).

5. The velocity (vti ) and position (xti ) of each particle are
calculated.

6. Each particle velocity is stored to a maximum velocity.
If the sum of the acceleration causes the velocity on that
dimension to surpass the specified range set by the user,
then velocity needs to be limited.

7. Terminate if a minimum error condition is reached or the
maximum iteration is reached; else go to step 2.

A mathematical regression model of the output response
was used as the function of the input parameters. Each out-
put response (cutting forces and surface roughness) was
considered as a objective function with a suitable weight
(contribution). The objective function was used to predict the
fitness value in the algorithm. A best particle with least fit-
ness value is considered as the optimum result and optimum
machining condition for multi-objectives. Optimummachin-
ing conditionwas used for toolwearmeasurement. Toolwear
measurement was carried out with an increment of the con-
stant time interval.

2.3 Artificial Neural NetworkModeling

ANNmodeling consists of the three steps, i.e., training, test-
ing and validation. ANNmodeling was developed according
to the training parameters mentioned in Table 4.

2.3.1 ANN Training

The ANN training for the combinations of 27 FFD exper-
iments has been carried out using “trainglm” learning rate
training procedure of MATLAB neural network toolbox
(MathWorks Incorporation 2015). The number of neurons in
the hidden layer and the learning parameters are selected by
a trial-and-error procedure and repeated training simulation
as shown in Fig. 3.

Table 4 ANN training parameters

Learning rate (α) 0.10

Learning rate increment 10

Momentum constant (β) 0.90

Maximum number of epochs 1000
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Fig. 3 Architecture of ANN
network
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2.3.2 ANN Testing and Validation

The trained ANN network was used to predict the results for
error and accuracy by presenting 27 input process parame-
ter combinations. For every input training combination, the
predicted results of cutting forces and surface roughness are
compared with corresponding experimental results. It was
found that the predicted data by the ANN model closely fol-
low the experimental data.

3 Results and Discussion

3.1 Coating Quality Characteristics

Results of Calo test and VDI 3198 tests are shown in Fig. 4.
Multilayer coating was developed on the insert with the com-
binations of TiN and AlN layers in the sequence of TiN/AlN.
The coating thickness of 3.651μm and HF1 failure which is
industrially acceptable were observed during adhesion test
mentioned in Fig. 4a, b. Performance of Ti coatings is better
in terms of frictional properties due to the presence of DLC,
TiC and TiN phase in the coatings [36].

Mechanical properties of the thin films are investigated
using nanoindentation technique, which are represented in
Table 5. Hardness of the coatings was found to be 27.62 GPa
and elastic modulus 490.3 GPa [37].

3.2 Machinability Studies

In the present work, machinability characteristics for
MDN431 were studied using the TiN/AlN multilayer coated
tool.Machinability study is carried out based on full factorial
with three factors varied to three levels. Experimental results
of TiN/AlN multilayer coated tools are presented in Table 6.
Full factorial design has been used to develop second-order
regression models represented in Eqs. (3–6), and the same is
used to predict results for cutting force (Fx , Fy and Fz) and
surface roughness (Ra).

Regression models developed from full factorial design:

Fx =
⎛
⎜⎝
130− 1287× ap + 4.52× Vc − 2183× f + 2.05

× ap × Vc + 1856× ap × f + 10.05× Vc × f

+ 1593× a2p − 0.0262× V 2
c + 6035× f 2

⎞
⎟⎠ (3)

Fig. 4 a, b Calo result, c VDI 3198 result of FTR-coated WC–Co tool
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Table 5 Mechanical properties
of coatings

Coating Hardness
(GPa)

Elastic modulus
(GPa)

Thickness
(μm)

Surface roughness
(μm)

CoF

TiN/AlN 27.62 490.3 3.651 0.52 0.35

Table 6 Taguchi FFD experimental design with results

Process parameters TiN/AlN-coated tool

ap Vc f Fx Fy Fz Ra

0.2 59 0.062 76.76 102.2 179.3 0.54

0.093 74.34 126.5 154.3 0.76

0.125 76.48 136.5 175 1.05

75 0.062 99.37 121.2 102.3 0.64

0.093 121.6 149.2 195 0.75

0.125 118.3 176.9 241 0.99

118 0.062 142 180.2 242.3 0.44

0.093 167.4 178.4 275.3 0.79

0.125 160.2 221.9 299.8 1.05

0.3 59 0.062 60.67 100.5 127.9 0.67

0.093 62.19 111 142 0.79

0.125 74.77 127.4 159.6 1.05

75 0.062 93.93 122.3 181.8 0.94

0.093 104.5 134.8 206.9 0.83

0.125 111.5 158.3 239.5 1.05

118 0.062 123.8 142.9 192.1 0.65

0.093 128.4 171.1 263.1 0.84

0.125 146.2 196.3 280.1 0.96

0.4 59 0.062 60.36 114.5 116.4 0.77

0.093 64.76 125.2 158.8 0.87

0.125 74.83 144.2 190.4 1.19

75 0.062 120.1 188.3 232 0.58

0.093 105.8 146 237.1 0.83

0.125 118.5 183.4 265.2 1.10

118 0.062 144.6 166.4 191.6 0.67

0.093 135.6 179.6 254.2 0.89

0.125 237.7 200.6 316.9 1.15

Fy =
⎛
⎜⎝

− 29.8− 661× ap + 5.38× Vc − 625× f − 2.02

× ap × Vc + 1914× ap × f + 3.83× Vc × f

+ 1733× a2p − 0.02316× V 2
c + 7590× f 2

⎞
⎟⎠ (4)

Fz =
⎛
⎜⎝

− 178− 657× ap + 8.33× Vc − 164× f − 2.28

× ap × Vc + 1077× ap × f + 13.04× Vc × f

+ 1338× a2p − 0.0404× V 2
c + 2786× f 2

⎞
⎟⎠ (5)

Ra =
⎛
⎜⎝
0.194+ 2.37× ap + 0.002× Vc − 1.82× f

+ 0.00092× ap × Vc − 1.65× ap × f + 0.0170

× Vc × f − 2.87× a2p − 0.000014× V 2
c + 39.5× f 2

⎞
⎟⎠

(6)

Regression models are represented in Eqs. (3), (4) and (5)
for cutting forces Fx , Fy and Fz andEq. (6) for surface rough-
ness (Ra). ANOVA results for cutting forces (Fx , Fy and Fz)
and surface roughness (Ra) are summarized in Table 7. The
probability value (p value) is the level of marginal signif-
icance within a statistical hypothesis test representing the
probability of the occurrence of a given event. The p value is
used as an alternative to rejection points to provide the small-
est level of significance at which the null hypothesis would
be rejected. In the majority of analyses, an alpha of 0.05 is
used as the cutoff for significance. If the p value is less than
0.05, we reject the null hypothesis that there is no difference
between the means and conclude that a significant difference
does exist. ANOVA table represents p = 0 for cutting forces
and surface roughness, which confirms the developed regres-
sionmodels are significant. Coefficient of determination (R2)
gives the capability of the developed regressionmodel. Coef-
ficient of determination (R2) for Fx , Fy , Fz and Ra is close
to 1, which confirms developed models are adequate for the
prediction of results.

3.3 Analysis of Surface Roughness

Figure 5 represents the interaction effects of surface rough-
ness TiN/AlNmultilayer coated tool. Figure 5a represents the
effect of depth of cut and speed on surface roughness with a
constant feed rate of 0.093 mm/rev. Figure 5b represents the

Table 7 ANOVA result summary of FTR-coated tool for FFD

Response Sum of squares Degrees of freedom Mean square F ratio p* CoD (R2)

Regression Residual Regression Residual Regression Residual

Fx 38,102.1 4698.8 9 17 4233.6 274.6 15.41 0.00 0.8902

Fy 25,418.5 2328.8 9 17 2824.28 136.99 20.61 0.00 0.9161

Fz 70,670.7 14,048.5 9 17 7852.3 826.38 9.46 0.00 0.8342

Ra 0.8380 0.1455 9 17 0.0931 0.0086 10.825 0.00 0.8520

*Significant at 95% confidence level
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Fig. 5 Interaction plots for surface roughness during full factorial analysis

effect of depth of cut and feed rate on surface roughness with
a constant speed of 75m/min. Figure 5c represents the effect
of feed rate and speed on surface roughness with a constant
depth of cut of 0.3 mm. The effect of feed rate and speed is
phenomenal in the study of surface roughness. An increase in
surface roughness is observed with an increase in feed rate.
Surface roughness has been less affected by the change in
depth of cut during machining. Surface roughness tends to
decrease with an increase in speed.

A slight change in feed rate and speed leads to variations
in the surface roughness. Contact between tool and material
reduces with an increase in the speed, which leads to the
reduction in the surface roughness.

Figure 6a represents the machined surface topography
at the test condition of Vc = 75m/min, ap = 0.3mm
and f = 0.062mm/rev, the surface roughness of 0.93μm
for TiN/AlN-coated tool, and the lower the feed rate, the
lesser the surface roughness. Similarly, with a higher feed
rate of f = 0.125mm/rev represented in Fig. 6b surface
roughness increased to 1.05μm for TiN/AlN-coated tool,
respectively.

Variations in feed rate and speed lead to a change in the
surface roughness. With the increase in the speed, contact
between tool and material reduces, which results in lesser
surface roughness. With the increase in the feed rate, tool
traverse speed against the work material increases, which
leads to an increase in friction between tool and workpiece
results in higher surface roughness [38]. With the higher
cutting speed, there will more rotational torque in the mate-
rial which will reduce the surface roughness [39]. Surface
roughness has been reduced by 9% compared with uncoated
tool. TiN/AlN coating exhibited lower magnitude of cutting
force comparedwith uncoated tool. The lower surface rough-
ness obtained with the coated inserts is partly attributed to
the presence of hard TiN and AlN phases present in the
coatings and partly due to lower coefficient of friction 0.35
[30,31].

3.4 Analysis of Cutting Force

Figure 7a–c, d–f, d–i shows the interaction effects of cutting
force for Fx , Fy and Fz , respectively. Figure 7a, d, g repre-
sents the effect of depth of cut and speed on cutting forces
with a constant feed rate of 0.093 mm/rev. With the increase
in speed, cutting forces are increasing linearly. Figure 7b,
e, h represents the effect of depth of cut and feed rate on
cutting forces with a constant speed of 75m/min. With the
increase in feed rate, cutting forces are increased linearly.
Figure 7c, f, i represents the effect of feed rate and speed on
cutting forces with a constant depth of cut 0.4 mm. With the
increase in feed rate, cutting forces are increasing linearly,
and with an increase in depth of cut, the cutting forces are not
affected [4].

Feed rate and speed are observed linearly affecting the
cutting force. For lower feed rate and speed, cutting force
has been reduced, and with an increase in feed rate and
speed, steady rise in the cutting force is observed. The
depth of cut is not much influencing the cutting forces dur-
ing machining. Speed and feed rate are contributing more
(affecting the cutting force) in the factorial analysis results
compared with speed [38,39]. Summary of ANOVA given
in Table 7 indicated that both the regression models devel-
oped for cutting forces and surface roughness are significant
(p < 0.05) [40].

Figure 6c represents the machined surface topography at
the test condition of Vc = 75m/min, ap = 0.2mm and f =
0.093mm/rev, cutting forces and surface of Fx = 121.6N,
Fy = 149.2N, Fz = 195N, Ra = 0.75μm observed for
TiN/AlN-coated tool, respectively; the lower the depth of
cut, the lesser the cutting force and surface roughness. Sim-
ilarly, with a higher feed rate of f = 0.4 mm represented
in Fig. 6d, cutting forces and surface roughness increased to
Fx = 105.8N, Fy = 146N, Fz = 237.1N, Ra = 0.83μm
for TiN/AlN-coated tool.

Contact between the tool and material increases with less
time which leads to an increase in cutting forces. With the
reduced time, the amount of materials removed increases
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Ra=0.93µm
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Ra=0.89µm

Fig. 6 Machined surface topography

which require more force to deform the material plastically
and hence the increase in cutting force is observed. Tool tra-
verse speed against the work material increases with the feed
rate, and this attributes to an increase in the amount of mate-
rials removed in less time resulting in a rise in cutting force
[39].

Cutting forces are reduced by 9% in compared to uncoated
tool, which is due to increased hardness of coating, presence
of hard nitride phases of Ti and Al nitrides. Increased hard-
ness requires less force to deform the material plastically,
which in turn resulted in lower cutting force during machin-
ing using coated inserts [28,29].
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Fig. 7 Interaction plots for cutting force, a–c Fx , d–f Fy and g–i Fz during full factorial analysis

3.5 Optimization of the Results

Multi-objective optimization of cutting force and surface
roughness is carried out using desirability and PSOoptimiza-
tion techniques.

Desirability approach and PSO technique for the mini-
mization of the cutting force and surface roughness have
been adopted in the present work indicated in Table 8 for
the TiN/AlN multilayer coated tool.

Combination of Vc—59m/min, f—0.062 mm/rev and
ap—0.25 mm is the optimum conditions for the machining

Table 8 Optimal process parameters for TiN/AlN-coated tool

Parameters Vc f ap Fx Fy Fz Ra

Desirability 59 0.062 0.25 65.44 95.05 122.31 0.66

MOPSO 59 0.062 0.28 60.57 95.68 121.99 0.68

Experimental 59 0.062 0.3 60.67 100.5 127.9 0.67

of MDN431 using TiN/AlN multilayer coated tool obtained
from both the desirability and PSO approach as given in
Table 8. Machined surface topography for TiN/AlN multi-
layer coated tool is represented in Fig. 6e.

The depth of cut is kept at 0.3 mm, and the amount of
materials deformed is optimal which in turn gives the better
surface roughness and lower cutting forces. The feed rate
of 0.062 mm/rev is ideal for achieving better roughness and
lower cutting forces for the MDN431 material. Using Ti-
coated tool, lesser cutting forces and tool better surface are
observed which are due to the reduced coefficient of friction
[36].

3.6 Confirmation Experiments

Mathematical models for the cutting forces and surface
roughness are developed for the TiN/AlN multilayer coated
tool using ANN and mathematical regression models.
Regression models and trained ANN network are used to
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predict the results for all the experimental conditions shown
in Fig. 8 TiN/AlN multilayer coated tool.

Regressionmodels are limited to predict the results within
the boundary limits; hence, ANN models are developed to

predict beyond the boundary limits. The coefficient of deter-
mination (R2) represents the quality of the model. If it is
closer to 1, the quality of the developed model is better.
Regressionmodels for TiN/AlNmultilayer coated the cutting
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Fig. 8 Plots of experimental and predicted results

Table 9 Validation results for FTR-coated tool

Input Fx Fy Fz Ra

ap Vc f Exp Rega ANNa Exp Rega ANNa Exp Rega ANNa Exp Rega ANNa

0.2 59 0.062 75.29 83.26 76.59 101.20 101.10 101.93 125.50 128.68 113.20 0.56 0.61 0.55

0.25 75 0.07 99.50 99.48 93.58 118.65 128.82 115.64 178.99 181.40 144.06 0.70 0.69 0.96

0.35 118 0.078 136.56 137.02 98.14 150.65 160.79 125.34 226.57 227.82 210.10 0.85 0.74 0.88

0.2 59 0.087 78.98 75.29 77.55 120.65 109.82 116.55 159.50 147.01 160.67 0.70 0.73 0.71

0.25 118 0.093 140.56 138.96 108.75 175.55 171.33 177.32 255.65 254.20 269.52 0.88 0.78 0.99

0.35 75 0.1 100.56 102.15 91.10 146.56 146.64 156.44 218.86 217.76 231.44 0.90 0.91 0.92

0.2 59 0.117 76.56 75.67 70.15 138.56 132.81 141.17 166.56 164.42 153.32 0.93 0.93 0.97

0.25 118 0.125 168.55 164.03 164.81 223.50 203.41 219.66 295.56 297.86 273.60 1.00 1.05 0.91

0.35 75 0.078 120.76 95.65 119.71 141.25 139.09 140.66 194.65 195.25 199.44 0.75 0.78 0.70

aPredicted results
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force and surface roughness (Fx , Fy , Fz and Ra) are obtained
with R2 values of 0.8902, 0.9161, 0.8342 and 0.8520 and
absolute errors of 0.57, 0.34, 2.07 and 1.04%. Similarly, for
ANN trained models for Fx , Fy , Fz and Ra are obtained
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Fig. 9 Tool wear measurements for uncoated and coated tools

with R2 values are 0.9649, 0.9510, 0.9224 and 0.9094 and
absolute errors of 1.17, 1.51, 2.12 and 2.59% (Fig. 8).

Plots of experimental and predicted results (Fig. 8) are
found to be with least error and no significant deviation for
the TiN/AlNmultilayer coated tool. CoD (R2) values of both
the predictivemodels are close to 1, confirming the developed
models are adequate. Validation of the developed models is
represented in Table 9, and results are with negligible error
[39]

3.7 ToolWear Measurements

Tool wear occurred during machining of the uncoated and
coated tools at optimal process parameters studiedwith incre-
ments of time. Similar results are observed during studies of
Inconel 718 in dry and cryogenic environments conducted
by Musfira et al. [2].

(b) (d)(c)(a) (e)

(g)(f) (i)(h) (j)

5min 10min 15min 20min 25min

5min 10min 15min 20min 25min

BUEBUE

Fig. 10 Tool wear measurements for a–e uncoated tool and f–j coated tool
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Figure 9 represents the tool wear analysis for uncoated
and coated tools. According to the test results, the growth of
tool wear under the uncoated tool is higher compared with
the coated tool. Tool wear in TiN/AlN-coated tools is less
compared with the uncoated tool. Figure 10 represents the
tool wear measurements in coated and uncoated tools. For-
mation of built-up edge (BUE) was observed in the uncoated
tool (Fig. 10d, e), andBUE is reduced in the coated tools. The
abrasion wear mechanism was observed in both the coated
and uncoated tools due to the presence of Cr and Ni phases
in the MDN431 material [17]. Flank wear was observed in
both the coated and uncoated tools. Tool wear was reduced
by 105% in TiN/AlN-coated tool which is due to an increase
in hardness of the coated tool and presence of nitrides of Ti
andAl.AlN andTiN are hard phases of nitridewhich restricts
the tool wear propagation. Flank wear propagation from the
tool surface will be arrested by TiN layer; thereafter, AlN
layer restricts which helps in increasing the tool life with-
out affecting the performance. Due to an increase in elastic
modulus on the coated surface, the stiffness in the coating is
increased, which leads to an increase in deformation resis-
tance. Tool wear which is being initiated from the top surface
of the coatings is restricted by the hard phases with their high
hardness and elasticmodulus; though they deformelastically,
it will regain its structure due to its modulus properties.

4 Conclusions

Experimental examination on the performance of TiN/AlN
multilayer coated tools has been presented. The full factorial
design was used for the analysis and validation of experi-
ments.

• Multilayer thin-film coatings with the combination of
TiN/AlN layers are successfully developed on WC–Co
tool inserts. Coatings exhibit excellent adhesion quality
characteristics with a coating thickness of 3.651μm and
HF1 adhesion quality observed for multilayer coatings.

• Mathematical regression models are developed for cut-
ting forces and surface roughness using regression analy-
sis and artificial neural network. CoD (R2) of regression
and ANN model is close to 1, confirming the devel-
oped model is adequate for TiN/AlN multilayer coated
tool. Validation experiments indicate that themodels pre-
sented can be further used for the selection, design and
optimization of the machine tool, cutting tool in the pro-
cess planning.

• Cutting force and surface roughness are optimized (min-
imization function) using MOPSO and desirability tech-
niques and optimal process parameters are combination
of Vc = 59m/min, f = 0.062mm/rev and ap =
0.28mm for TiN/AlN multilayer coated tool.

• Using TiN/AlN multilayer coated tools resulted in 9%
reduction in surface roughness and cutting force. Tool
wear has been reduced by 105% compared with the
uncoated tool.
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