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Abstract
In this paper, a decoupled backstepping sliding mode control method is proposed to control underactuated systems under
uncertainties anddisturbances. The slidingmode control technique and the backstepping control technique are combinedowing
to their merits. Since the design methodology is based on the Lyapunov theorem, the stability of the system is guaranteed.
The effectiveness of the proposed method is verified by the experimental results of the controller which is applied to a
nonlinear, underactuated inverted pendulum system. The experimental results show that the decoupled backstepping sliding
mode control achieves a satisfactory control performance rather than the decoupled sliding mode controller and the proposed
method provides a robust performance to overcome parametric uncertainties where the decoupled sliding mode control fails.

Keywords Backstepping · Sliding mode · Decoupled sliding mode · Underactuated systems · Inverted pendulum on a cart

1 Introduction

Underactuated systems are mechanical systems with less
number of actuators than their degrees of freedom. Conse-
quently, they have at least one unactuated degree of freedom;
hence, they consume less energy and their cost and com-
plexity are low due to fewer actuators used in the systems.
Because of these advantages, the control and analysis of
underactuated mechanical systems have seen an enormous
interest and active research in the last two decades [1–5].
However, the underactuated systems have nonholonomic
constraints and they are not full-state feedback linearizable
[6]. Therefore, controlling an underactuated mechanical sys-
tem presents a challenging problem than the fully actuated
systems. Hereby, a wide range of underactuated systems is
used as benchmark tools to design and compare different
control techniques, such as the beam and ball system, the
translational oscillator with rotational actuator system and
the inverted pendulum system [5,7,8].

The inverted pendulum is an underactuated system in
which both angle and position are controlled by only one
actuator. Also, other characteristics of the system such as
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nonlinearity and instability turn inverted pendulum into a
challenging problem in the field of control engineering.
Therefore, inverted pendulums have been classic tools in the
control laboratories since the 1950s [9]. It is well known that
the inverted pendulum system has two equilibrium point:
One of them is stable and it corresponds to the downward
position of the pendulum, and the other one is unstable and
corresponds to the upright position of the pendulum. There-
fore, maintaining the pendulum in the upright position using
an appropriate continuous feedback signal can be consid-
ered as the main control problem [10]. Various techniques
have been proposed to control an inverted pendulum, such
as energy-based control [9,11,12], PID control [13,14], lin-
ear quadratic regulator [10] and sliding mode control (SMC)
[4,15,16].

The SMC technique is a variable structure control method
and it has been recognized as an effective robust control
approach to model uncertainties and external disturbances
[17,18]. The main aim of the SMC technique is to design a
sliding surface to bring the system states there. The system
can handle matched uncertainties and certain disturbances
when the states reach the sliding surface [18]. Although the
conventional SMC cannot be used directly on underactu-
ated systems due to their coupled dynamics, the decoupled
sliding mode control (DSMC) technique can be used to over-
come this drawback [15]. The DSMC technique provides a
method to decouple a nonlinear system into two subsystems
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which have different control objectives. Using the DSMC
method, the second subsystem can be incorporated into the
first subsystem. Besides, the SMC can manage parametric
uncertainties in combination with other methods such as
backstepping control [19].

The backstepping technique is a nonlinear control method
based on the Lyapunov theorem and also known as adding
an integrator [20]. In the backstepping control, some of the
states are used as virtual control signals in control law design,
and the virtual signals satisfy the selected Lyapunov func-
tion in each step of the design process. Hence, the stability
of the overall system can be guaranteed. The backstepping
control design is mainly used to deal with the robust control
of the nonlinear systems with parametric uncertainties [21].
Hereby, the SMC and the backstepping techniques can be
combined to design a robust controller to uncertainties and
disturbances [4,19,22]. The backstepping sliding mode con-
trol offers an improvement in steady-state error compared
to the backstepping control and the SMC; also, it rejects
disturbance and improves robustness against the parametric
uncertainty [23].

In this study, both the backstepping control and the SMC
techniques are combined and the decoupled backstepping
sliding mode control (DBSMC) technique is proposed to
control underactuated systems. The main objective of the
DBSMC is to design a robust controller compared to DSMC
when the system is subjected to parametric uncertainties.
To demonstrate the performance and effectiveness of the
proposed method, a decoupled backstepping sliding mode
controller has been experimentally applied to an inverted pen-
dulum on a cart system. The rest of the paper is organized as
follows. In Sect. 2, the problem formulation is presented. The
DBSMC method is explained and a decoupled backstepping
sliding mode controller is designed in Sect. 3. Experimental
results and the conclusion of the study are presented in Sects.
4 and 5, respectively.

2 Problem Formulation

In this study, a digital pendulum mechanical unit is used to
perform experiments. The pendulum mechanical unit con-
sists of an inverted pendulum hinged on a cart and a belt
mechanism with a DC motor on adjustable foot. The pen-
dulum angle and the cart position signals are transferred
to the digital pendulum controller and then to the PC,
where the control algorithm is placed. The experimental
setup of the inverted pendulum on a cart is presented in
Fig. 1.

The inverted pendulum system consists of a cart moving
along a rail and a rod which is hinged to cart as shown in
Fig. 2. Let x be the displacement of the cart from the initial
position and θ is the angle in the vertical direction. Hence,

Fig. 1 Inverted pendulum on a cart system

Fig. 2 Parametric representation of the inverted pendulum

the equation ofmotions in both translationalmotion and rota-
tional motion can be written as follows, respectively [24]:

ẍ = −(Jp + ml2)bẋ + m2l2g cos(θ) sin(θ)

Γ

− ml cos(θ)d θ̇ + (Jp + ml2)ml θ̇2 sin(θ)

Γ

+ (Jp + ml2)F

Γ
(1)

θ̈ = (M + m)mgl sin(θ) − m2l2 cos(θ) sin(θ)θ̇2

Γ

−mlb cos(θ)ẋ + (M + m)d θ̇ − ml cos(θ)F

Γ
, (2)

where Γ = (Jp + ml2)(M + m) − m2l2 cos 2(θ). And also,
m and l are the mass and the length of the pendulum, respec-
tively; M is the mass of the cart; Jp is the moment of inertia;
d is the pendulum damping coefficient; g is the acceleration
due to gravity; F is the force applied to the cart; and b is the
cart friction coefficient. The inverted pendulum parameters
are presented in Table 1.

The cart of the inverted pendulum system is driven by a
DC motor. The motor characteristics should be added to the
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Table 1 Parameters of the
inverted pendulum [26]

Parameter Value

M 2.3 kg

m 0.2 kg

l 0.3 m

g 9.81 m/s2

Jp 0.009 kgm2

d 0.005 Nms/rad

b 0.00005 Ns/m

Table 2 Parameters of the DC
motor [24]

Parameter Value

R 2.5 Ω

r 0.0314 m

Kt 0.05

Kb 0.05

n1 18.84

n2 0.986

inverted pendulum model to design a more realistic system.
Therefore, a differential equation for electromechanical sig-
nal conversion from voltage e(t) to force F(t) can be written
as follows [23]:

F(t) = −
(n1
r

) (n2
r

) KbKt

R
ẋ(t) +

(n1
r

) Kt

R
e(t), (3)

where R is the rotor circuit resistance; Kt is the torque con-
stant; and Kb is the backelectromotive force constant. Also
n1 and n2 are gear ratios and r is the pulley radius. The DC
motor parameters are presented in Table 2.

Taking the states as [x1 x2 x3 x4] = [x ẋ θ θ̇ ] and substitut-
ing Eq. 3 into Eqs. 1 and 2, the state equations of the inverted
pendulum can be written as follows:

ẋ1 = x2

ẋ2 = δ1
(
φx2 + ϕ cos(x3) sin(x3) + γ sin(x3)x24

)

ψ − ρcos2(x3)

+ δ1η cos(x3)x4 + λu

ψ − ρcos2(x3)
+ ξ1(t)

ẋ3 = x4

ẋ4 = δ2 (μx2 cos(x3) + ϑ sin(x3) + σ x4)

ψ − ρcos2(x3)

+ δ2ρ cos(x3) sin(x3)x24 + τ cos(x3)u

ψ − ρcos2(x3)
+ ξ2(t),

(4)

where

φ = −(Jp + ml2)
(
b + (

n1
/
r
) (
n2

/
r
) (

KbKt
/
R
))

ϕ = m2l2g

γ = −(Jp + ml2)ml

η = −mld

λ = (Jp + ml2)
((
n1

/
r
) (

Kt
/
R
))

μ = −ml
(
b + (

n1
/
r
) (
n2

/
r
) (

KbKt
/
R
))

ϑ = (M + m)mgl

ρ = m2l2

σ = (M + m)d

τ = ml
((
n1

/
r
) (

Kt
/
R
))

ψ = (Jp + ml2)(M + m);

δ1 and δ2 stand for the parametric uncertainties as constants;
ξ1(t) and ξ2(t) are the total amounts of external disturbances
and unmatched uncertainties. ξ1(t) and ξ2(t) are assumed to
be bounded as |ξ1(t)| ≤ ξ1max and |ξ2(t)| ≤ ξ2max.

3 DesignMethods

Dynamical equations of a general single-input single-output
nonlinear system can be described by

ẋ1(t) = x2(t)

ẋ2(t) = δ f (x) + g(x)u(t) + ξ(t)

y(t) = x1(t),

(5)

where f (x) and g(x) are nonlinear functions, x = [x1, x2]T
is the state vector, δ is the parametric uncertainty, ξ(t) is
the total amounts of external disturbances and unmatched
uncertainties, y(t) is the output and u(t) is the control input.
In order to design a sliding mode controller for this system,
a sliding surface can be defined as

s(t) = k1e(t) + ė(t) (6)

using the tracking error

e(t) = y(t) − yd, (7)

where k1is a real positive constant and yd is the desired out-
put.

Considering a Lyapunov function

V (s) = 1

2
s2(t) (8)
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and differentiating V (s) yield

V̇ (s) = s(t)ṡ(t)

= s(t)(k1ė(t) + ë(t))

= s(t) (k1ė(t) + δ f (x) + g(x)u(t) + ξ(t)) .

(9)

V̇ (s) in Eq. 9 will be negative definite if the control law is
defined as

u(t) = ueq(t) + usw (10)

with

ueq(t) = 1

g(x)
(−k1ė(t) − δ f (x)) , (11)

usw(t) = − 1

g(x)
K sign (s(t)) , (12)

and

sign(s(t)) =
⎧⎨
⎩
1, s(t) > 0
0, s(t) = 0
− 1, s(t) < 0

(13)

where K ≥ ξmax. Substituting Eq. 10 into Eq. 9 yields

V̇ (s) = s(t) [k1ė(t) + δ f (x)]

+ s(t)
[
g(x)

(
ueq(t) + usw(t)

) + ξ(t)
]
.

(14)

Substituting Eqs. 11 and 12 into Eq. 14, one has

V̇ (s) = −Ks(t)sign (s(t))

= −K |s(t)| ≤ 0.
(15)

According to the Lyapunov theorem, due to the fact that
V̇ (s) is negative definite, the system trajectory will be driven
to sliding surface and remain there until the origin is reached
asymptotically.

Using sign (s(t)) function will lead the chattering. A
boundary level with width Δ can be defined. and sign (s(t))
function can be replaced with a saturation function in Eq. 12
to overcome this problem as follows:

usw(t) = − 1

g(x)
K sat (s(t)/Δ) (16)

with

sat(Γ ) =
{
sign(Γ ), |Γ | ≥ 1
Γ , |Γ | < 1

(17)

where Δ > 0.
The SMC design can be applied to systems presented in

the canonical form.Nevertheless, the dynamic representation

of the inverted pendulum on a cart system presented in Eq. 4
has a form shown as follows rather than the canonical form

ẋ1(t) = x2(t)

ẋ2(t) = δ1 f1(x) + g1(x)u(t) + ξ1(t)

ẋ3(t) = x4(t)

ẋ4(t) = δ2 f2(x) + g2(x)u(t) + ξ2(t),

(18)

where x = [x1, x2, x3, x4]T is the state vector; f1(x), g1(x),
f2(x) and g2(x) are nonlinear functions; u(t) is the control
input; δ1and δ2 are the parametric uncertainties as constants;
and ξ1(t) and ξ2(t) are the total amounts of external dis-
turbances and unmatched uncertainties. ξ1(t) and ξ2(t) are
assumed to be bounded as |ξ1(t)| ≤ ξ1max and |ξ2(t)| ≤
ξ2max.

The decoupled control idea can be used to design a con-
troller to control both the displacement and the angle in the
inverted pendulum on a cart system. The main idea behind
the decoupled sliding mode control is to decouple the whole
system into two subsystems and define a sliding surface for
each subsystem. The control objective of a slidingmode con-
troller is to drive the sliding surface to zero; hence, using an
intermediate variable to transfer value from a sliding surface
to the other can lead to control both subsystems simulta-
neously. To design a decoupled sliding mode controller for
this system, two different sliding surfaces can be defined as
follows [15,25]:

sS1(t) = k1e1(t) + ė1(t) (19)

sS2(t) = k2e2(t) + ė2(t), (20)

where k1 and k2 are real positive constants, and e1(t) and
e2(t) are tracking errors for the cart displacement and pendu-
lum angle, respectively. sS2(t) in Eq. 20 can be transformed
to a decoupled sliding surface as

sS2(t) = k2(e2(t) − zS) + ė2(t) (21)

with zS is a value transferred from sS1 and defined as

zS = sat(sS1(t)
/
ΔSz)zSu, 0 < zSu < 1, (22)

where zSu is the upper bound of zS and ΔSz is the boundary
level as constants. zSu, the upper bound of the intermediate
variable zS, guarantees that sS2(t) will be limited. After the
sliding surface sS1(t) becomes zero, sS2(t) will be driven to
zero too, thanks to zS.

According to Eq. 10, the decoupled sliding mode con-
troller tomove the cart to a desired positionwhilemaintaining
the pendulum at the upright position can be defined as fol-
lows:
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uS(t) = uSeq + uSsw

= 1

g2(x)
(−k2ė2(t) − δ2 f2(x))

− 1

g2(x)
(KSsign(sS2(t)),

(23)

where KS ≥ ξ2max.
Therewith, a decoupled sliding mode controller for the

inverted pendulum on a cart system introduced in Eq. 4 can
be defined by

sS1(t) = k1e1(t) + ė1(t)

sS2(t) = k2 (e2(t) − z) + ė2(t)

uS(t) = 1

g2(x)
(−k2ė2(t) − δ2 f2(x))

− 1

g2(x)
(KSsign(sS2(t)),

(24)

where

f2(x) = μx2 cos(x3) + ϑ sin(x3)

ψ − ρcos2(x3)

+ ρ cos(x3) sin(x3)x24 + σ x4
ψ − ρcos2(x3)

g2(x) = τ cos(x3)

ψ − ρcos2(x3)
.

(25)

The sliding mode control can handle any kind of matched
uncertainties; however, it has a deficiency to handle paramet-
ric uncertainties. In order to manage this drawback, both the
backstepping control and SMC techniques can be combined.
The steps of the backstepping sliding mode control (BSMC)
can be designed as follows.

Let the tracking error e(t) be defined as in Eq. 7. The
derivative of the error can be presented as

ė(t) = ẋ1(t) − ẏd = x2(t) − ẏd. (26)

Consider a Lyapunov function

VB1(e) = 1

2
e2(t) (27)

which is positive definite by the definition. Time derivative
of VB1(e) is obtained as follows:

V̇B1(e) = e(t)ė(t) = e(t) (x2(t) − ẏd) . (28)

Letting x2(t) = sB(t) − b1e(t) + ẏd as a virtual control and
rearranging Eq. 28 yields

V̇B1(e) = e(t)sB(t) − b1e
2(t), b1 > 0, (29)

where the sliding variable sB(t) = x2(t) + b1e(t) − ẏd.
V̇B1(e) = −b1e2 < 0 for sB = 0; therefore, V̇B1(e) is neg-
ative definite. To design a backstepping controller, the next
step is required.

Selecting the second Lyapunov function as

VB2(e) = VB1(e) + 1

2
sB

2(t) (30)

and with the help of Eq. 5 time derivative of the Lyapunov
function in Eq. 30 yields

V̇B2(e) = V̇B1(e) + sB(t)ṡB(t)

= V̇B1(e) + sB(t) [δ f (x) + g(x)uB(t)]

+ sB(t) [ξ(t) + b1ė(t) − ÿd] .

(31)

In order to realize that V̇B2(e) is negative definite, the
backstepping controller law can be designed as follows:

uBeq(t) = 1

g(x)
[−δ f (x) − e(t)]

+ 1

g(x)
[−b1ė(t) + ÿd − b2s(t)] ,

(32)

where b1 and b2 are positive constants. Hence, V̇B2(e)
becomes

V̇B2(e) = −b1e
2(t) − b2sB

2(t) + ξ(t)sB(t). (33)

To guarantee the stability of the system, a switching con-
trol law can be defined as follows:

uBsw(t) = − 1

g(x)
Bsign(sB(t)). (34)

Putting the control laws in Eqs. 32 and 33 together gives
the robust control law known as backstepping sliding mode
control which can be defined as

uB(t) = 1

g(x)
[−δ f (x) − e(t) − b1ė(t) + ÿd]

+ 1

g(x)

[−b2s(t) − Bsign (sB(t))
]
.

(35)

With the help of Eq. 34, the time derivative of the Lya-
punov function in Eq. 30 can be rewritten as

V̇B2(e) = − b1e
2(t) − b2sB

2(t) + ξ(t)sB(t)

− B |sB(t)| < 0,
(36)

where B ≥ ξmax ≥ |ξ(t)|. Since V̇B2(e) is negative definite,
the system trajectory will be driven to sliding surface and
remain there until the origin is reached asymptotically. Con-
sequently, the stability of the overall system is guaranteed.
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The BSMC technique can be applied to systems presented
in the canonical form as in SMC. However, using the pre-
sented BSMC method, a decoupled backstepping sliding
mode controller can be designed for the inverted pendulum
on a cart system. To this end, defining the tracking errors e1
for the cart displacement and e2 for the pendulum angle as

e1(t) = x1(t) − yd1

e2(t) = x3(t) − yd2
(37)

and time-derivating them result in

ė1(t) = ẋ1(t) − ẏd1 = x2(t) − ẏd1

ė2(t) = ẋ3(t) − ẏd2 = x4(t) − ẏd2.
(38)

Considering a Lyapunov function candidate

VD1(e) = 1

2
e2

2(t) (39)

and differentiating it result in

V̇D1(e) = e2(t)ė2(t) = e2(t) (x4(t) − yd2) . (40)

In this step of the DBSMC design, two different sliding
surfaces can be chosen unlike the BSMC

sD1(t) = c1e1(t) + ė1(t)

sD2(t) = c2e2(t) + ė2(t),
(41)

where c1 and c2 are real positive constants.
Letting x4(t) = sD2(t)−c2e2(t)+ ẏd2 from sD2 in Eq. 41

and substituting it into Eq. 40, one has

V̇D1(e) = e2(t)sD2(t) − c2e2
2. (42)

V̇D1(e) = −c2e22(t) will be negative definite, if only
sD2(t) = 0. Therefore, in order to ensure the stability of
the DBSMC, the Lyapunov function for the next step can be
chosen as follows:

VD2(e) = VD1(e) + 1

2
sD

2
2(t). (43)

Using Eq. 18, the time derivative of Eq. 43 is

V̇D2(e) = V̇D1(e) + sD2(t)ṡD2(t)

= e2(t)sD2(t) − c2e2
2(t)

+ sD2(t) (δ2 f2(x) + g2(x)uD(t))

+ sD2(t) (ξ(t) + c2ė2(t) − ÿd2) .

(44)

In order to ensure V̇D2(e) is negative definite, the decou-
pled backstepping control law can be chosen as

uDeq(t) = 1

g2(x)
(−δ2 f2(x) − e2(t) − c2ė2(t))

+ 1

g2(x)
(ÿd2 − c3sD2(t)) ,

(45)

where c3 is a real positive constant. To ensure the stability of
the system, a switching control law can be defined as follows:

uDsw(t) = − 1

g2(x)
Csign(sD2(t)), (46)

where C is a real positive constant.
The control law uD(t) can be defined as putting the control

laws in Eqs. 45 and 46 together

uD(t) = uDeq(t) + uDsw(t). (47)

Substitution of (47) into (44) results in

V̇D2(e) = −c2e2
2(t) − c3sD

2
2(t) + ξ2(t)sD2(t)

− C |sD2(t)| .
(48)

The time derivative of the Lyapunov function V̇D2 will be
negative definite where C ≥ ξ2max ≥ |ξ2(t)|.

To create a decoupled controller, a virtual sliding surface
sd can be considered as

sd(t) = c2(e2(t) − zD) + ė2(t) (49)

with zD is a value transferred from sD1 and defined as

zD(t) = sat (sD1(t)/ΔDz) zDu,0 < zDu < 1, (50)

where zDu, the upper bound of the zD(t), guarantees that sd(t)
will be limited.

Consequently, substituting sd(t) in Eq. 49 into Eq. 47 for
sD2(t) gives the DBSMC control law

uD(t) = 1

g2(x)
(−δ2 f2(x) − e2(t) − c2ė2(t))

+ 1

g2(x)
(ÿd2 − c3sd(t))

− 1

g2(x)
Csign(sd(t)), (51)

where

f2(x) = μx2 cos(x3) + ϑ sin(x3)

ψ − ρcos2(x3)

+ ρ cos(x3) sin(x3)x24 + σ x4
ψ − ρcos2(x3)

g2(x) = τ cos(x3)

ψ − ρcos2(x3)
.
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4 Experimental Results

In order to evaluate the performance of the proposed
DBSMC, it is applied to the inverted pendulum on a cart sys-
tem in Eq. 4 having the parameters given in Tables 1 and 2.
The block diagram of the DBSMC is presented in Fig. 3.

The goals of these experimental tests are to show the
changes on the position of the cart x(t), the pendulum angle
θ(t) and the control signal u(t) based on initial conditions

of
[
x0 ẋ0 θ0 θ̇0

]T
and reference signal yd, using the DSMC

presented in Eq. 24 and the DBSMC introduced in Eq. 51 on
the experimental setup. The sat function in Eq. 17 instead of
sign function is employed in the switching controls uSsw(t)
and uDsw(t) due to decrease the chattering. Parametric uncer-
tainties which can result from errors in the measurement
of parameters are defined as δ2. No external perturbation
is injected to the system during the experiments, and own
external disturbances of the inverted pendulum on a cart sys-
tem can be compensated by the DSMC and the DBSMC. The
experimental setup has two physical constraints. The first one
is the cart position which is physically bounded by the rail
length which is 0.8 m. Since it is assumed that the initial
cart position is in the middle of the rail, position of the cart
should be limited to |x | ≤ 0.4 m. Therefore, the controllers
are designed to limit the maximum displacement of the cart
to ± 0.35 m. The second constraint is the bound of the con-
trol signal which must be in the range of −2.5 V and +2.5
V [26]. The DSMC and the DBSMC parameters which are
chosen by trial and error method with considering these con-
straints are given in Table 3. The control problem is chosen
as moving the cart to the desired position while stabilizing
the pendulum at the upright position. For all experiments,
a step reference of 0.3 m is applied to the control system
and also the initial conditions of the system are chosen as[
x0 ẋ0 θ0 θ̇0

]T = [
0 0 0.1 0

]T
.

In the first experiment, both the DSMC and the DBSMC
are applied to the inverted pendulum on a cart system with
the parametric uncertainty δ2 = 1. Thus, the control meth-
ods are tested on own parametric uncertainties of the system
without any additional parametric uncertainty. For compar-
ison purpose, the test results of the cart position, pendulum

Fig. 3 Block diagram of the DBSMC

Table 3 Parameters of
controllers

Parameter Value

k1, c1 1

k2, c2 40

c3 10

KS, B 30

zSu, zDu 0.97

ΔSz, ΔDz 6

Δ 5

(a)

(b)

(c)

Fig. 4 Experimental results with the matched uncertainty for δ2 = 1:
a displacement of the cart, b angular displacement of the pendulum, c
control input

angle and control signal are plotted and shown in Fig. 4a–
c, respectively. The settling time and steady-state errors are
about 4 s and 0.012 m for the DSMC and 4.1 s and 0 m for
the DBSMC, respectively. Both the DSMC and the DBSMC
manage to bring the cart from the initial position to the desired
position as shown in Fig. 4a. However, theDBMShas amuch
better performance to stabilize the position. Figure 4b clearly
shows that the both controllers are able to keep the pendulum
on the upright position. The chattering in the control signal
is slightly lower in the DSMC as compared the DBSMC as
shown in Fig. 4c.

In the second experiment, the parametric uncertainty δ2 =
0.8 is applied to the inverted pendulum on a cart system.
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(a)

(b)

(c)

Fig. 5 Experimental results with the matched uncertainty for δ2 = 0.8:
a displacement of the cart, b angular displacement of the pendulum, c
control input

Although the DSMC is able to bring and keep the pendu-
lum at the upright position, it fails to stabilize the cart at the
desired position as shown in Fig. 5a, b. On the other hand, the
DBSMC manages to handle the parametric uncertainty and
control the cart position successfully with 4.4 s settling time
and 0.005 m steady-state error. Besides, the DBSMC yields
slightly lower chattering in the control signal compared to
the DSMC as shown in Fig. 5c.

5 Conclusion

In this paper, a decoupled backstepping sliding mode con-
trol (DBSMC) method is proposed to control underactuated
systems. The proposed DBSMC keeps the advantages of the
sliding mode control and overcomes the difficulties caused
by the parametric uncertainties. In order to confirm the
effectiveness of the proposed DBSMC, it is applied to an
inverted pendulum on a cart system as a benchmark example
for underactuated systems. The experimental results show
that the DBSMC is more effective compared to the decou-
pled sliding mode control (DSMC). Also, the experimental
results prove that the DBSMC provides a robust control on

the systems with parametric uncertainties where the DSMC
fails. This study provides a basis for the application of
the DBSMC to the underactuated systems. Future research
should consider the potential of the DBSMC method on
different underactuated systems. Also, adding an adaptive
scheme to the DBSMC might prove an important area for
future research.
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