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Abstract
Determination of total organic carbon (TOC) is a key method of characterizing shale reservoirs. The conventional method
for TOC determination using cores from shale reservoirs is time-consuming and costly. TOC can be estimated by an indirect
method using petrophysical well logs. The existing models assume a linear relationship between the well logs and TOC and
have a high error and low correlation coefficients (CC) between the actual and predicted TOC. The first goal of this study is to
apply a self-adaptive differential evolution (SaDE) optimizing method to determine the best combination of artificial neural
network (ANN) parameters (number of hidden layers, number of neurons in each layer, training function, transferring function,
and the training over testing ratio). The second goal is to develop a new empirical correlation that can be used to estimate TOC
using well logs based on the optimized SaDE-ANN model. Four-hundred and sixty data points from Barnett shale were used
for training and testing the developed SaDE-ANN model. Another set of data (29 data points) of Duvernay shale was used to
compare the developed TOC correlation with the previous models. The obtained results show that the developed SaDE-ANN
model predicted the TOC using only well logs: gamma ray (GR), compressional time (DT), deep resistivity (RD), and bulk
density (RHOB) with a high accuracy (a CC of 0.99 and the average absolute percentage error (AAPE) of 6%). The developed
TOC correlation outperformed the models proposed byWang et al. (Mar Pet Geol 70:304–319, 2016. https://doi.org/10.1016/
j.marpetgeo.2015.11.023) and Abdulhamid et al. (Int J Coal Geol 179(15):72–80, 2017). The new empirical correlation for
TOC estimation reduced AAPE by 67% as compared with the ANN model developed by Abdulhamid et al. (2017) for the
Duvernay formation. The developed TOC correlation is simple and can be applied using any computer without the need for
the ANN model or special software. The developed technique will help reservoir engineers and geologists to estimate the
TOC values using only the well logs with a high accuracy.
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Abbreviations
SaDE Self-adaptive differential evolution
ANN Artificial neural network
AI Artificial intelligence
CC Correlation coefficient
AAPE Average absolute percentage error
TOC Total organic carbon, wt%
DT Compressional time, us/ft
RD Deep resistivity, ohmm
RHOB Bulk density, g/cm3

GR Gamma ray, API
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N Number of neurons
w Weight associated with a layer and a hidden layer
i The index of each neuron in a hidden layer
b Bias associated with a hidden layer

1 Introduction

The ability to recover hydrocarbons from unconventional
resources (i.e., low porosity–permeability reservoirs) such as
tight oil and shale gas was recently extended by the advances
in horizontal drilling and multistage fracturing. TOC is one
of the essential parameters that affect reserve estimation and
hydraulic fracture design [1,2]. In addition, organic matter,
similar to all other rock matrix components, has a consid-
erable effect on the geomechanical properties of a shale
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formation. These components are essential for developing
such reservoirs [3]. Moreover, the maturity and carbon con-
tent control the organic porosity of a reservoir and, hence,
affect the amount of gas adsorbed by the organicmatter [4,5].

The microstructure, texture, permeability, and reservoir
wettability are also controlled by the TOC present in shales
[2,3,6,7]. Thus, hydrocarbon exploration and production
require a reliable method for characterizing the organic mat-
ter present in a shale formation [8,9].

Currently, TOC is estimated using well log data through
the application of empirical correlations. These correlations
are developed for specific formations and conditions and are
based on certain assumptions.

Schmoker [10] developed the first empirical equation for
TOCbasedondata from theDevonian formations.Equation1
can be used to determine the vol% of TOC which can be
converted to wt% as explained by Schmoker [10].

TOC (vol%) = (ρB − ρ)

1.378
(1)

where ρB is the rock density without including the organic
matter in g/cm3 and ρ denotes the rock bulk density in g/cm3.

Schmoker [11]modified the abovemodel to be used for the
Bakken shale formationby assuming the samepyrite–organic
matter relationships used for developing the Devonian cor-
relation, Eq. 2:

TOC (wt%) = [(100 ρo) (ρ − 0.9922ρmi − 0.039)]

[(Rρ) (ρo − 1.135ρmi − 0.675)]
(2)

where ρo represents the organic matter density in g/cm3, R
is the weight percent ratio of the organic matter to organic
carbon, ρmi is the volume-weighted average density of the
pore fluid and grain in g/cm3.

Schmoker and Hester [12] developed a more generalized
model for TOC of the Bakken formation represented by a
simplified equation (Eq. 3), assuming that R is 1.3, ρo is
1.01g/cm3, and ρmi is 2.68g/cm3.

TOC (wt%) = 77.44

ρ
− 28.7 (3)

Passey et al. [13] developed a simplified method for the
estimation of TOC (Eqs. 4 and 5), which found wide appli-
cation in the field of unconventional resource evaluation.

� log R = log10
(
R/Rbaseline

) + 0.02 × (
�t − �tbaseline

)
(4)

TOC = � log R × 10(2.297−0.1688×LOM) (5)

where � log R is the logs separation, R is the resistivity in
ohmm, �t is the sonic transient time in µs/ft, Rbaseline is the
resistivity of the base formation in ohmm, �tbaseline is the
base sonic transient time in µs/ft, and LOM is the level of
maturity.

In many cases, these empirical equations failed in the
evaluation of the TOC content in formations other than the
formations they were developed for [8,14]. Abdulhamid et
al. [14] developed an empirical correlation to estimate the
TOC content usingwell log data. The optimizedmodel based
on artificial neural networks (ANN) they developed contains
only 1 hidden layer with 5 neurons, and they tested it using
data from the Duvernay formation. The correlation coeffi-
cient (CC) is 0.90, and average absolute percentage error
(AAPE) is high (19%)when the predicted TOCdata are com-
pared to the actual data.

In this study, the self-adaptive differential evolution
(SaDE) techniquewill be applied to optimize the ANN archi-
tecture to reduce the AAPE and increase the CC between the
predicted and actual TOC data. The overall objective of the
study is to develop a new empirical correlation to determine
TOC with a high accuracy based on the optimized SaDE-
ANN model.

1.1 Artificial Neural Networks

ANN is a computational method derived from the biological
neural networks construction features [15]. A neural network
is first trained on training data containing input–output map-
ping. After training the network using the training dataset,
the testing data output could be predicted using the weighted
average of the outputs of the training dataset. Theweights are
calculated using the Euclidean distance between the train-
ing and testing data [16,17]. Based on the interconnection
between the different layers and neurons, the ANN could
be classified into several types [18]. ANN has the ability to
detect all possible integrations between predicted parame-
ters, and it requires only nominal statistical training [19,20]

Artificial intelligence (AI) techniques have been exten-
sively applied recently in the petroleum industry, especially
for predicting thewell or field performance. Alajmi et al. [21]
predicted the choke performance using an ANN. Elkatatny et
al. [22,23] applied ANN to comprehensively determine the
permeability of heterogeneous reservoirs and to estimate the
rheological properties of drilling fluids based on real-time
measurements. They developed robust models that would
help petroleum engineers make predictions with a high accu-
racy in a short time. Van and Chon [24,25] evaluated the
performance of CO2 flooding using ANN techniques. They
developed ANN models for determining the oil production
rate, CO2 production, and the gas–oil ratio (GOR).
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2 Methodology

This study is aimed to use a SaDE optimizing technique to
accurately optimize the ANN-related parameters to precisely
identify the TOC using well logs: DT, RD, RHOB, and GR.
The ANN-related parameters to be optimized are the number
of hidden layers, the number of neurons in each layer, train-
ing function, and transferring function. The advantage of the
proposed model is its ability to automatically determine the
training over testing ratio, which requires a very long time if
determined using ANN without SaDE.

The optimization processwas continued until the outcome
of the proposed SaDE-ANNmodel is acceptable. (The values
of estimated parameters from the model are very close to
the corresponding experimental data.) The accuracy of the
proposed model is determined using AAPE and CC.

After training theSaDE-ANNmodel on randomly selected
training data, the model is validated on unseen testing data
followed by extracting a new empirical correlation to esti-
mate TOC using GR, RHOB, DT, and RD logs.

3 Data Description

Barnett shale is the major source rock in the Mississippian
age, and it is considered the second source of productive
unconventional shale gas in the USAwith proven reserves up
to43.4 trillion cubic feet of natural gas [4,26–28].Abouelresh
and Slatt [29,30] found that Barnett shale is mainly organic-
rich shale with variable ratios of siliceous, calcareous, and
phosphatic content. Sedimentologically, Barnett shale is pri-
marily a result of suspension settling and density currents
as well as hyperpycnal flows from the adjacent shelf [29,30].
Loucks and Ruppel [31] states that Barnett shale is deposited
in deep, long, and narrow sub-basins shielded from the open
ocean. The resulting anoxic condition is the key factor which
preserves the organic content of shale. The thickness of the
Barnett shale reservoir ranges between 300 and 700 ft [32].

Bowker [33] has stated that the measured TOC in the Bar-
nett shale ranges from less than 0.5 to more than 6wt%, with
an average of about 4.5wt%. Type II oil-prone marine kero-
gens are themain hydrocarbon type inBarnett shale [26]. The
gas is thermogenic, most probably generated from kerogen
cracking and secondary cracking of previously formed non-
migrated hydrocarbons. The maturity level of Barnett shale
lies within the thermal gas generation window, with around
greater than 140BCFG/mi2 (54.05BCFG/km2) gas in place
[27]. Bowker [33] found that the average porosity of Barnett
shale is 5.5% and the average water saturation is 25%. Fu et
al. [34] found that the unconventional Barnett shale reservoir
has elevated levels of gamma rays (generally greater than 90
API units).

Fig. 1 Correlation coefficient of TOC with the formation resistivity

Fig. 2 Correlation coefficient of TOC with different logs

Actual TOC measurements (377 data points) and log
data were collected to train and optimize the SaDE-ANN
model. Figure 1 shows the relative importance between TOC
and the resistivity logs. The correlation coefficient between
TOC and the resistivity increases when the depth of inva-
sion is increased. The relative importance increases from
0.02 to 0.35 when the depth of the resistivity log increases
from 10′′ to 60′′ and remains constant when the resistivity
depth increases to 90′′. Based on this result, deep resistivity
(AHT90) was used as an input for training the SaDE-ANN
model.

Figure 2 shows that TOC has a strong function with the
density, where the relative importance is −0.8, and a mod-
erate function with GR and the compressional time. The
relative importance of the TOC with GR and DT is 0.63
and 0.57, respectively.

Many researchers have reiterated the importance of
including the aforementioned four parameters in predict-
ing and modeling TOC. Passey et al. [13] and Heslop [35]
stated that kerogen presence in the formation altered the deep
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Table 1 Statistical parameters for the input data (377 training data points from Barnett shale)

Gamma ray (API) Resistivity (Ohmm) Compressional time (us/ft) Density (g/cm3) TOC (%)

Minimum 26 4 52 2.40 0.76

Maximum 180 172 97 2.77 5.55

Mean 92.74 47.46 76.22 2.57 2.60

Range 153.57 168.25 44.81 0.37 4.79

Standard deviation 32.04 43.34 10.98 0.08 1.18

Kurtosis −0.31 −0.05 −0.56 − 0.80 − 0.99

Skewness −0.35 1.06 −0.51 0.34 0.23

Fig. 3 Log data for Barnett shale formation (377 training data points)

resistivity measurement, since the increase in the kerogen
aromaticity with the increase in the thermal maturity leads
to the kerogen conductive behavior. Liu et al. [36] concluded
that compressional time decreased with increasing the TOC
in the formation; this is attributed to the presence of the
kerogen which is characterized by the low transit velocity.
Schmoker [10] stated that as the concentration of the kerogen
which has considerably low density increased in a formation,
the formation bulk density will be decreased. Fu et al. [34]
mentioned that shale gas formation can be identified using
gamma ray because of the high radioactivity of the organic
content. The relationship between TOC and GR is not well
understood [37–39]. Including GR in TOC models enhances
the prediction performance of these models [8,35,40].

Table 1 lists the statistical parameters of the training data
(377 data points) for Barnett shale. TOC ranges from 0.76 to

5.55wt%; formation density ranges from 2.40 to 2.77g/cm3;
compressional time ranges from 52 to 97us/ft; deep resistiv-
ity ranges from 4 to 172 ohmm; and GR ranges from 26 to
180 API degrees.

4 Building the SaDE-ANNModel

Thefirst step in building the SaDE-ANNmodel is the training
process, where the log data such as GR, RT, DT, and RHOB
and the TOC data are used to train the model. Figure 3 shows
the plots of the aforementioned logs. The input data should
be normalized to be used for training the SaDE-ANNmodel.
The following equationswere extracted from theSaDE-ANN
model:

GRn = 0.01218 (GR − 15.66) − 1 (6)
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RDn = 0.0119 (RD − 3.653) − 1 (7)

DTn = 0.0446 (DT − 52.288) − 1 (8)

RHOBn = 5.1546 (RHOB − 2.402) − 1 (9)

TOCn = 0.4127 (TOC − 0.7) − 1 (10)

where RDn, GRn, RHOBn, DTn, and TOCn are the logs
of normalized deep induction resistivity, gamma rays, bulk
formation density, compressional transient time, and total
organic carbon, respectively.

The main reason for using the SaDE technique is to opti-
mize the variable parameters for the ANNmodel. The results
of the optimization process in terms of the lowest AAPE and
the highest CC show that the optimum ANN design param-
eters which will generate the best results are the following:

– The ANN structure of 4–16–16–1 which indicates 4 neu-
rons, representing the input parameters, in the input, 16
neurons in the first hidden layer, 16 neurons in the second
hidden layer, and only one neuron, representing TOC, in
the output layer.

– Training was conducted using 82% of the data points,
while testingwas performed using 18%of the data points.

– Levenberg–Marquardt back propagation (trainlm) as a
function for training.

– Logarithmic sigmoid (logsig) as a function of transfer.

Figure 4 shows that the developed SaDE-ANNmodel pre-
dicted the TOCcontent with a high accuracy and aCCof 0.98
and an AAPE of 6.0%. Figure 5 shows that R2 between the
predicted and actual TOC using the optimized SaDE-ANN
model is 0.97.

Another set of data from the same field (83 data points)
was used for testing the developed SaDE-ANN model using
unseen data. Table 2 lists the statistical parameters of the
testing data; these data represents Barnet shale formation.
The TOC ranges from 0.8 to 5.5wt%; RHOB ranges from
2.4 to 2.7g/cm3; DT ranges from 52 to 94us/ft; RD ranges
from 4 to 163 ohmm; and GR ranges from 27 to 166 API
degrees. The range of the testing data lies within the same
range as the training data.

Figure 6 confirms the high accuracy of the developed
SaDE-ANN model in predicting TOC, where the CC is 0.98
and the AAPE is 7.0%. Based on these results, it can be con-
cluded that the SaDE-ANN model can be used to predict
TOC as a function of well logs GR, DT, RHOB, and RD.

To avoid overfitting, 15% of the data points are randomly
used to assess the generalization of the developed network.
Figure 7 shows that the optimum number of iterations, which
yields the lowest mean square error (MSE), is 24. The net-
work performance on the testing dataset is also considered
(where the MSE is calculated for each evaluation). The per-
formance of both training and testing of the network must

Fig. 4 Prediction of TOC using the SaDE-ANNmodel for training data
(377 data points)

Fig. 5 Coefficient of determination for TOCprediction for training data
(377 data points) using the SaDE-ANN model

be good. If training alone is good, it will be considered as
overfitting, and the network is not selected.

5 A New Correlation for TOC Estimation

To change the developed SaDE-ANN model to a white box,
a new empirical equation for estimating the TOC using only
well log data was developed based on the optimized parame-
ters (weights andbiases) of theSaDE-ANNmodel as follows:
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Table 2 Statistical parameters for the unseen data (83 testing data points from Barnett shale)

Gamma ray (API) Resistivity (Ohmm) Compressional time (us/ft) Density (g/cm3) TOC (%)

Minimum 27 4 52 2.4 0.8

Maximum 166 163 94 2.7 5.5

Mean 91.92 53.66 74.92 2.58 2.51

Range 139.05 158.70 41.85 0.31 4.78

Standard deviation 33.41 43.65 10.40 0.08 1.22

Kurtosis −0.70 −0.41 −0.47 − 0.84 −0.83

Skewness −0.30 0.79 −0.55 0.02 0.40

Fig. 6 Prediction of TOC using the SaDE-ANN model for unseen data
(83 data points)

Xi = 1

1 + e
−

(
w1i,1GRn+w1i,2RDn+w1i,3DTn+w1i,4RHOBn+b1i

)

(11)

Table 3 lists the different values of the weight (w1i ) and the
biases (b1i ) for each input parameter in the first hidden layer.
The optimization process shows that the optimum number
of neurons in the first hidden layer (N1) is 16, and that in
the second layer (N2) is also 16. Table 4 lists the weights
(W2 j i ) and biases (b2 j ) associated with the hidden layers
N1 and N2. Table 4 also lists the weights (w3 j ) and the bias
(b3 = −2.0042) associated with the hidden layer N2 and the
output layer.

Fig. 7 Training and validation errors

Table 3 Weight and biases for the first hidden layer of the ANN-based
TOC model

i w1i,1 w1i,2 w1i,3 w1i,4 b1i

1 − 4.29 3.57 − 0.06 − 0.40 6.33

2 − 6.50 2.74 − 0.13 1.93 6.18

3 − 3.41 0.86 1.92 4.72 5.18

4 − 4.30 4.26 − 0.13 − 5.47 1.57

5 − 2.25 1.19 − 4.83 − 5.18 − 3.94

6 0.74 2.59 4.82 − 8.09 − 2.27

7 − 2.52 − 7.56 3.51 − 0.65 − 5.39

8 6.50 0.24 3.70 1.35 − 1.31

9 − 4.31 1.46 − 6.65 3.37 − 1.82

10 − 2.26 − 2.27 5.21 3.40 − 0.86

11 − 5.55 1.94 − 1.15 1.71 − 3.63

12 − 8.31 − 1.76 − 1.08 1.14 − 2.70

13 − 3.30 5.80 − 2.15 − 3.49 − 2.64

14 3.11 − 4.31 2.77 0.96 0.98

15 6.08 1.81 − 2.77 3.44 4.64

16 4.58 3.67 − 5.73 2.00 7.25
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Fig. 8 Actual and predicted TOC for unseen data from Barnett shale
using the developed correlation

Y j =
N1∑

i=1

w2 j,i

1

1 + e−Xi
+ b2 j (12)

TOCn =
N2∑

j=1

w3 j

1

1 + e−Y j
+ b3 (13)

The de-normalized value of TOC can be calculated by
rewriting Eq. 10 as follows:

TOC = TOCn + 1

0.41217
+ 0.7 (14)

The developed correlation was tested using unseen data from
Barnett shale. Figure 8 shows that the developed correlation
(Eqs. 13 and 14) is able to predict TOC with a high accu-

Fig. 9 Log data of Duvernay shale (29 data points)

Table 5 Statistical parameters for the validation data (29 data points from Duvernay shale)

Gamma ray (API) Resistivity (Ohmm) Compressional time (us/ft) Density (g/cm3) TOC (%)

Minimum 16 5 53 2.41 0.7

Maximum 169 47 93 2.77 5

Mean 81.02 14.22 78.24 2.56 2.77

Range 153.56 41.99 39.71 0.38 4.3

Standard deviation 38.46 9.55 11.45 0.09 1.36

Kurtosis −0.45 4.30 −0.40 1.40 −1.07

Skewness 0.67 1.95 −0.74 0.76 0.24
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Fig. 10 Comparison of the developed SaDE-ANN model with other methods

racy. The coefficient of determination is 0.97 between the
predicted and actual TOC data.

Another set of data from Duvernay formation was used
for the comparison of the developed correlation for TOC
with previous methods. The input log data used for the
comparison are shown in Fig. 9. Table 5 lists the statisti-
cal parameters for the Duvernay shale data (29 data points).
The TOC ranges from 0.7 to 5.0wt%; RHOB ranges from
2.41 to 2.77g/cm3; DT ranges from 53 to 93us/ft; RD ranges
from 5 to 47 ohmm, and GR ranges from 16 to 169 API
degrees. The range of the Duvernay formation data is within
the range of the training data for the developed SaDE-ANN
model.

Figure 10 shows that the Wang sonic model [8] overes-
timated TOC in the lower part of the data points (from 20
to 29) and the AAPE is very high (68%), in addition to
the low CC (0.65). The density model proposed by Wang
et al. [8] for TOC prediction yielded the worst results when
compared with the sonic model, with a CC of 0.22 and an
AAPE of 90%. The correlation developed based on the opti-
mized ANN model [14] yielded better results as compared
with the models proposed by Wang et al. [8], with a CC of
0.90 and an AAPE of 19%. The ANN-TOC correlation also
overestimated TOC in the data from 20 to 29 as shown in
Fig. 10.

The correlation developed based on the SaDE-ANN opti-
mized model provides an accurate match between the actual

Fig. 11 Coefficient of determination of the actual and predicted TOC
using the ANN and SaDE-ANN models for the validation data

and predicted TOC data. The AAPE is 6.3, and the CC is
0.97. Thus, using the SaDE-ANN model reduces the AAPE
by 67% as compared with the ANN model. Figure 11 shows
a comparison between the coefficient of the determination
of the ANN model and the SaDE-ANN model. Applying
the SaDE for ANN optimization yields a higher coefficient
of determination of 0.98 as compared with 0.88 for ANN
alone. The results of this study confirm the importance of
applying the SaDE technique to optimize the ANN architec-
ture in order to obtain the best results.
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6 Conclusions

A robust ANN model was built to accurately estimate the
TOC. The following conclusions could be drawn out of the
results obtained in this study:

1. The developed SaDE-ANN model predicted the TOC
based on well logs: GR, DT, RD, and RHOB with a high
accuracy (a CC of 0.99 and an AAPE of 6%).

2. The developed correlation for TOC estimation based on
the SaDE-ANN model outperformed models proposed
by Wang et al. [8] and Abdulhamid et al. [14].

3. The developedTOCcorrelation based on the SaDE-ANN
model reduces the AAPE by 67% as compared to the
ANN model proposed by Abdulhamid et al. [14] for the
Duvernay formation.
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