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Abstract
Liver cirrhosis, the end stage of chronic liver disease, is one of the major risk factors for the development of liver cancer,
and may result in premature death. This research proposes a fuzzy fibrosis decision support (F2DS) system. It is a fuzzy
knowledge-based expert system for liver fibrosis stage prediction. F2DS is carefully based on a set of knowledge acquisition
and machine learning techniques. In addition, the system depends on domain expert knowledge for designing the membership
functions and validating the fuzzy knowledge base. It depends on a suitable list of 17 symptoms, and laboratory test features
that can accurately and significantly describe fibrosis patients. The experimental results of the expert system were obtained
using a real dataset from the Liver Institute, Mansoura University, Egypt, of 119 patients infected by chronic viral hepatitis
C. The performance of the system was evaluated with many metrics, achieving a testing accuracy of 95.7%. The evaluation
of proposed fuzzy expert system shows its capability of diagnosing the stages of liver fibrosis with a high degree of accuracy,
and it can be embedded as a component in a healthcare system to assist physicians in their daily practice. In addition, students
training in medicine can benefit from this system.
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1 Introduction

The hepatitis C virus (HCV) is the main reason of liver dis-
eases including hepatitis C and liver cancer. HCV currently
infects approximately 2% of the world’s population [1]. In
most countries, the prevalence of HCV is between 1 and 3%.
However, the situation ismore critical inEgypt, because it has
the highest prevalence of HCV in the world. HCV reached
14.7% in 2008 [1,2] and 10.0% in 2015 [3]. In addition, in
Egypt about 80% of the infected individuals become chronic
carriers of the virus (i.e., 11 million anti-HCV-positive per-
sons). Moreover, approximately 10% to 20% of patients are
likely to develop significant liver fibrosis and cirrhosis within
20–30 years [4]. The liver biopsy remains the current stan-
dard for assessment and diagnosis of fibrosis and cirrhosis
[2]. This is a surgical procedure accompanied by sampling
errors up to 30% of all biopsies [5]. There are viral logical
features of HCV used as indicators to predict the stages of
histological liver damage such as serum alanine aminotrans-
ferase/aspartate aminotransferase (ALT/AST) levels, direct
and total serum bilirubin, albumin, platelet count, and inter-
national normalized ratio (INR) of blood clotting. On the
other hand, some noninvasive methods (AST/ALT, APRI,
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FIB-4, etc.) utilize serum markers to detect the five stages
of fibrosis: f0, negative fibrosis; f1, mild fibrosis; f2, sig-
nificant fibrosis; f3, cirrhosis; and f4, significant cirrhosis
[6].

Patient diagnosis is difficult, especially in the information-
overload environment of electronic health record systems
where the number of patients is increasing rapidly [7].
Moreover, chronic disease requires medical experts to do
continuous monitoring. In developing countries like Egypt,
full availability of medical experts to cover a large num-
ber of patients cannot be achieved. Automated systems,
such as clinical decision support systems (CDSSs), can help
to overcome this issue [6]. The intent of this assignment
is to build a CDSS to help physicians to estimate liver
fibrosis in HCV patients. The resulting system has three
advantages:

1. It could reduce costs and waiting times for healthcare
centers because physicians do not need to conduct liver
biopsy tests [5].

2. It permits early detection of the stages of liver fibrosis,
especially for patients with a high probability of devel-
oping the disease [7].

The number of healthcare applications for a CDSS has
increased in the last few years [7–15]. Accurate diagnosis
is one of the most important problems in medicine. The rela-
tionship between diagnosis and clinical treatment protocols
is evident in healthcare, as we explain in our survey [16].
Some studies tried to solve the medical diagnosis problem
by using classical methods [2,11,17,18]. Hashem et al. [2]
proposed a methodology to reduce the need for liver biop-
sies in cirrhosis patients. They used various data mining
techniques including chi-square for feature selection, deci-
sion tree for rule induction, and artificial neural network
(ANN) for final classification step. Their methodology used
advancedfibrotic biomarkers for predicting the fibrosis stage.
Orczyk and Porwik [11] developed pruned C4.5 classifiers
to diagnose the liver fibrosis and compared their perfor-
mance statistically with other different machine learning
techniques, which were tested on the same dataset. They
concluded that the C4.5 had better performance than other
techniques. Gorunescu et al. [14] proposed a new model
for the diagnosis of liver fibrosis. They developed multi-
layer perceptron network (MLP) where a combination of
medical attributes is given as input to the MLP incorpo-
rated with genetic algorithms for the optimization process.
Raoufy et al. [17] developed backpropagation ANN with
three layers to diagnose cirrhosis in HBV chronic infected
patients. Sartakhti et al. [19] employed support vector
machine (SVM) classifiers to diagnose the hepatitis disease,
and they used simulated annealing (SA) to optimize the per-
formance.

Fuzzy logic was first applied in the medical applications
[6,7,16] after Zadeh [20] introduced fuzzy logic. In reality,
most medical data are vague; both physicians and patients
describe conditions using uncertain and imprecise terms. The
application of fuzzy expert systems in the medical domain
started in 1985, and the exponential growth in published
papers asserts its effectiveness [12]. Adlassnig [21] used
fuzzy set theory in medical diagnosis. Adlassning stated that
physicians, like others, can make mistakes, and could not be
correct or certain about the diagnosis theymade [21]. For this
reason, Adlassnig extended his work by using fuzzy sets in
medical diagnosis. Fuzzy set theory has been used to diag-
nose different diseases, including diabetesmellitus [7,22,23],
kidney disease [12], and heart diseases [24]. Farokhzad and
Ebrahimi [13] have proposed a model based on the associa-
tion rule and adaptive neuro-fuzzy inference system (ANFIS)
to diagnose liver sickness. El-Sappagh et al. [25] compared
the performance of ANFIS with fuzzy analytical hierarchy
process to diagnose fibrosis. Gadaras and Mikhailov [15]
have proposed a fuzzy classification model based on auto-
matically extract weighted fuzzy rules and combinations of
membership functions for all fuzzy features. They evaluated
their method by using different datasets in different medi-
cal domains (breast cancer, diabetes, and BUPA liver) and
obtained accuracies of 96.5%, 92.9%, and 90.3%, respec-
tively. Tsipouras et al. [8] proposed a model for coronary
artery disease diagnosis by extracting a set of fuzzy rules
from an initial dataset. They used C4.5 decision tree for
rule induction, and then transformed the extracted crisp rules
into fuzzy rules. Anooj [24] developed a fuzzy classifica-
tion model for heart diseases. This model applied decision
tree to generate rules and used the Mamdani FIS to classify
patients [26]. To diagnose chronic liver disease, Kumar and
Sahoo [27] developed a novel model based on SVM, rule
induction, ANN, naïve Bayes, and decision tree techniques
to classify liver disease. They evaluated the proposed model
with K-fold cross-validation technique where decision tree
model had the best performance. Because medical data are
always uncertain and vague in nature, fuzzy rule-based sys-
tems (FRBSs) are the most intuitive technique for handling
the nature ofmedical data [7]. The following are some advan-
tages of FRBSs.

1. FRBSs use a domain knowledge representation formal-
ism that can be easily understood by physicians.

2. FRBSs handle the uncertainty and imprecision inherited
in medical data.

3. FRBSs give the degree of investigation of the classifica-
tion output. These values are of interest for physicians.

4. As asserted in many previous studies [8], FRBSs usu-
ally provide higher classification accuracies than other
techniques such as classical decision trees.
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It is familiar that a medical data have to deal with impre-
cision and uncertainty, because diagnosis is not a matter of
exact numerical values [28]. Physicians usually work with
linguistic assertions based on ranges of values. Usually, the
used indicators have some based intervals, and these inter-
vals were built in fuzzy corresponding to normal-versus-bad
states, because they depend on other features related to each
patient. As a result, our study follows the FRBS technique to
propose this CDSS system. The knowledge base consists of
a set of fuzzy rules that estimate whether a new patient has a
risk liver fibrosis or not.

In diagnosis problems, physicians are interested not only
in the output but also in how the system get the required
output. In addition, FRBSs have the ability to explain their
results. They are called white box systems, because a domain
expert can intuitively understand the systems’ results. In con-
trast, neural network (NN) and linear programming (LP)
models usually attain high classification accuracy, but mak-
ing the decision is a black box system process [14]. Our
methodology uses a combination of techniques, including
a set of machine learning techniques to prepare the medi-
cal dataset, a fuzzy decision tree (FDT) technique for fuzzy
rule induction that will be discussed later in the next sec-
tion, and a Mamdani fuzzy inference system (FIS) [26]. This
study is based on a complete list of medical features to accu-
rately diagnose the fibrosis stage, including demographics
(e.g., residence, occupation, gender, and age), laboratory
tests (e.g., platelet count, white blood cell, hemoglobin, PCR,
SGPT, SGOT, serum bilirubin, serum albumin, and serum
ferritin), signs (e.g., ascites, spleen, lesions, and portal vein),
and symptoms (e.g., appetite, dyspnea, vomiting, diarrhea,
indigestion, vision problem, fatigue, jaundice, and skin pig-
mentation).

In this study, we build an F2DS CDSS to predict the liver
fibrosis stages in HCV patients. The study depends on a real
dataset collected from the electronic health records of Liver
Institute, Mansoura University, Egypt. The dataset has been
utilized to generate the list of system’s fuzzy rules. The used
fuzzy linguistic variables and fuzzy sets aremodeledbasedon
domain experts’ knowledge and themost recent clinical prac-
tice guidelines. The fuzzy knowledge base is generated by
training a fuzzy decision tree algorithm on the preprocessed
and high-quality dataset. The proposed F2DS is based on the
Mamdani fuzzy inference system in order to diagnose new
cases. The remainder of this paper is organized as follows:
Sect. 2 discusses some preliminaries. Section 3 presents the
problem description. Section 4 presents the proposed frame-
work, Sect. 5 discusses the results and evaluation, and Sect. 6
provides a discussion of the system, a conclusion, and sug-
gests future work.

2 Preliminaries

To make the paper self-contained, next section discusses
some basic concepts about the topics covered.

2.1 Fuzzy System

The fuzzy set theory [20] was introduced by Zadeh in 1965
to address vague, blurred, or imprecise concepts [29]. Fuzzy
logic is a form of multi-valued logic derived from fuzzy set
theory, and is used to deal with reasoning that is approxi-
mate, nonlinear, vague, and ill-defined. While in classical set
theory, elements either belong to a set or not, in fuzzy set the-
ory, elements can belong to a certain degree. More formally,
classical sets are defined by characteristic functions.

Definition 1 Fuzzy set A over a universe of discourse X is
defined by membership function (MF) μA (or simplyA),
which maps each element x to a value between [0, 1], as
shown in Eq. 1:

μA (x) : X → [0, 1] (1)

where A is the fuzzy set, μA is the degree of membership
∈ [0, 1],x ∈ X , and μA (x) is a MF. Fuzzy set A can
be defined as a set of ordered pairs:A = {x/μA (x) |∀x ∈
X , μA (x) ∈ [0, 1]} [29]. The crisp set operations, such as
complement, intersection, and union, are extended to fuzzy
sets, and these operations are performed by negation func-
tion, t-norm function, and t-conorm function, respectively.
Fuzzy sets are used to define fuzzy linguistic variables in
fuzzy expert systems.

Definition 2 Let R be the rule base made of a set of OR-
connected multi-input single-output (MISO) rules,R1, R2,

. . . , Rn , i.e.,

R =
{
R1, R2, . . . , Rn

}
(2)

where the single fuzzy rule is denoted by Rn ∈ R. The
standard form of rule Rn is IF <Fuzzy-Antecedent> THEN
<Fuzzy-Consequent>, which is written as follows:

Rn : xn1 is An
1 ∧ · · · ∧ xnM is An

M THEN yn is Bn : βi (3)

where xnk is A
n
k , which is k′s fuzzy expression or condi-

tion, ∧ is the AND fuzzy operator, xn1 , xn2 , . . . , xnMare the
M input fuzzy variables, y is the output fuzzy variable, An

k
and Bnare the linguistic labels of xnk and y, respectively,
k = (1, 2, . . . , M), and βi is the degree of reliability of the
rule. With the selection ofM , we determine the input vari-
ables required for each rule.
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Definition 3 Rules are fired using an inference algorithm
such as Rete [29]. The computed consequences related to the
samevariable are aggregated (typically, using themaximum).
Then, the output variables can be defuzzified. A defuzzified
number is usually represented by a defuzzification function,
such as the center of gravity (COG),which can be determined
using the moment of area method, defined as:

COG =
(∫

X xμB (x) dx∫
X μB (x) dx

)
(4)

where μB (x) is the aggregated value of the fuzzy variable B
over the universe of discourse X .

2.2 Fuzzy Decision Tree

A decision tree [30] is a formalism for expressing map-
ping from attribute values to classes, and consists of tests or
attribute nodes linked to two or more sub-trees and leaves or
decision nodes labeled with a class, which indicate the deci-
sion. Themain advantage of the decision tree approach is that
it is easy to follow any path through the tree. The tree can be
expressed as a set of rules [31]. Iterative Dichotomiser (ID3)
[31] and classification and regression trees (CART) [32] are
most typical kinds of decision tree induction algorithms,
which work through recursive partitioning. Their methodol-

ogy is to partition the sample space in a data-driven manner,
and represent the partitions as trees. ID3 is designed to deal
with discrete domain, and requires prior partitioning; CART
is designed to deal with a continuous numeric domain, but
does not require prior partitioning because the conditions in
the tree depend on a threshold [33].

The fuzzy decision tree construction method is included
in fuzzy modeling. It depends on a classical decision tree in
building effective branch attributes and their splitting interval
to determine fuzzy partitions for input variables, thus allow-
ing rule extraction. There are many techniques for building
fuzzy decision trees [31–36]. One of the most suitable meth-
ods is to build a classical decision tree and then extend it to a
fuzzy one, as will be discussed in the following subsections.

2.2.1 Building a Classical Decision Tree

Decision tree development requires attribute value space par-
titioning into A classes whereA ≥ 2 in each nodeN . The
algorithm by Quinlan [30] for building the decision tree has
the ability to divide attribute value space into the required
number of nominal partitions, calculate for each partition the
information gain, and next iterate recursive partitioning with
the highest information gain. The decision tree root contains
all data samples, Di , with no restrictions. Each child node
Ni is recursively split by partitioning its samples. A node
become a leaf when its samples come from a unique class,
or after a specific condition occurs, such as the node having
a specific number of samples. Information gain is the most
popular mechanism for attribute selection [30]. Algorithm 1
illustrates the classical decision tree creation process.

2.2.2 Fuzzification of the Resulting Decision Tree

A fuzzy decision tree differs from a classical decision tree
because it uses splitting criteria based on fuzzy restrictions
for dataset Di , represented by a set of attributes, Ai , for an
object. Some attributes having discrete nominal domains are
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characterized by crisp values, and others having a continuous
numeric domain are characterized by crisp values, interval
values, and fuzzy numbers [34].

Definition 4 Let Di be a set of data samples at node N [34]:

Di = {(
x, μDi (x)

) |x ∈ U
}

(5)

where x denotes data, and μDi (x) denotes the membership
degree of x toDi .

Definition 5 Let Dv|A
i be a fuzzy subset of Di such that

Dv|A
i =

{(
x, μ

Dv|A
i

(x)
) ∣∣∣μDv|A

i
(x)

= f
(
μDi (x) , M (x, A, v)

)
, x ∈ sup (Di )

}
(6)

where A is a branching attribute, v is a trapezoidal fuzzy
number for numeric attribute A, M (x, A, v) denotes the
matching degree of the attribute A value of x to branching v,
and f

(
μDi (x) , M (x, A, v)

)
is an aggregation function by

T-norm operators [34].

Boundary points Pi and trapezoidal fuzzy sets Trap
(a, b, c, d) are responsible to locate fuzzy partitioning inter-
vals between two boundary points belonging to different
classes to achieve overlapping [34]. Algorithm 2 shows par-
titioning for a numeric attribute.

Algorithm 2: Numerical attribute partitioning
Require: Input attribute partition = { | = 1,… . , }

1: Sort boundary point = { | = 1,… . , }

2: = 1; ∀ =1           // = dimension of fuzzy set, = {1,… , }//
3: if   ≤ then // , initial size of fuzzy set //

generate | fuzzy partitions of size // remove inner boundary points in the same fuzzy set//
4: end if

5: for | do calculate |
|

6:               if |
|

< | then remove |

7:                        else store fuzzy sets as a base system
8:              end if
9: end for
10: while ≤ do
11:       = +1
12:               for 1 ≤ ≤ do
13:                          = +1
14:                  repeat 3 to 9 
15:              end for
16:      keep 
17: end while

2.2.3 Rule Extraction

Each rule is extracted from the decision tree as a path from
the root node traversing down to the leaf node. Assume the
rules r1, r2, . . . , ri are extracted from a decision tree; the
antecedent part of rule ri is a list of fuzzy conditions of the
form cond1 AND cond2 AND . . .AND condn for n condi-
tions. Each fuzzy condition, cond j , has the form(att I Sval),
where att is a fuzzy attribute, and val is a fuzzy set for
attribute att . The consequent part is the target classification
output [35]. The logic operation

∨
used to sum all fuzzy

concepts representing the antecedents of the rules with the
consequent, as illustrated in Definition 2.

The proposed framework constructs a classical decision
tree with an ID3 algorithm; then, it extends it to a fuzzy
decision tree after defining fuzzy sets for each attribute. We
implement the FDT in our system because it is capable to
adapt to different kinds of output (continuous numerical out-
put or discrete output), and it represents classes by using
suitable splitting criteria based on fuzzy restrictions.

3 Problem Statement

This section provides the descriptions of the problem from
the medical expert’s point of view and of the medical dataset
used.
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3.1 The Problem Description

Fibrosis is the scarring of connective tissue, changes the
architecture of certain organs, and disrupts normal function.
In the liver, it results from chronic liver diseases, such as
viral hepatitis [36]. The degree of fibrosis is divided into five
stages: f0, negative fibrosis; f1, mild fibrosis; f2, signifi-
cant fibrosis; f3, cirrhosis; and f4, significant cirrhosis [6].
Liver fibrosis is positively related to clinical implications in
the management of chronic liver disease. As a result, it is
critical to analyze all demographic, laboratory, and clinical
data to make the diagnosis, save money and lives, and make
decisions on treatment. The liver biopsy is a procedure where
pieces of liver tissue are taken to be sent for examination, con-
sidering that adult biopsy sample just 1/50,000 of the liver
tissues [5]. This procedure costs from US$1000 to US$2200
[5]. In addition, complications include internal bleeding and
pain, and delayed results are often expected. Noninvasive
serum biomarkers are patient friendly due to their immediate
results, but its limitation is lower performance in diagnoses
of significant fibrosis [4]. A poor diagnosis leads to signif-
icant liver fibrosis, cirrhosis, and end-stage liver failure. In
this study, we develop a knowledge-based fuzzy expert sys-
tem to assist physicians in liver fibrosis stage prediction.
The outcomes of this study help intervene in the progress
of HCV infections and help prevent complications, which
may impose financial and health burdens on patients. More
complicated and costly options, like liver transplantation or
chemotherapy, will be the only solutions in the absence of
such an informative study. Moreover, early and right deci-
sions save money and shed more light on conditions for a
better understanding of the infection’s progress. The CDSS
helps prevent aggravation of a viral infection into liver can-
cer, which subsequently leads to premature death.

3.2 The Dataset Description

The study datasetwas obtained from theLiver Institute,Man-
soura University, Egypt. Data were extracted from electronic
health records of 119 patients, all infected with chronic HCV.
Data concerned the analysis of patient demographics, labo-
ratory tests, and symptoms. The studied dataset comprises
27 features that are relevant to HCV disease. They were
selected according to domain expert knowledge and the most
recent standard clinical practice guidelines [37]. Almost all
participating patients were in the age range of 16–65 years,
distributed into 80 males (67.5%) and 39 females (32.5%).
The used dataset includes the most related clinical features
to the clinical decision process and when predicting the sta-
tus for each patient case. A detailed description of the used
dataset with its features is presented in Table 1.

It has nine quantitative variables and 18 qualitative vari-
ables. Broadly, the missing data represent 13% of the whole

dataset, and only nine patients had 100% complete informa-
tion in all of the fields (7%). This is normal in the medical
field. To enhance its quality, the dataset was preprocessed
using machine learning techniques before being used.

4 The Proposed F2DS Framework

This section discusses the proposed F2DS system in detail.
It generates its knowledge base using an FDT technique, and
it uses the Mamdani fuzzy inference mechanism to predict
patient states. In Fig. 1, the components of the proposed sys-
temwith their relationships were illustrated. It presents input
and output of the F2DS as the raw patient description data
and the fibrosis stage prediction, respectively.

4.1 Data Preprocessing

The dataset is represented as data matrix, the rows of the
matrix correspond to patient cases, and the columns to pre-
dictor features. Data quality has significant implications for
the quality of diagnosis results. Preprocessing of the dataset is
necessary to remove problems associated with medical data,
like redundancy, noise, and missing data.

4.1.1 Anonymization, UoM, and Normalization

Anonymization is the process of removing any data that can
identify the patient. All personal data, such as name, address,
and ID numbers, are removed for privacy. As detailed in
Table 1, we selected a unified unit of measurement (UoM)
for each laboratory test.All feature values are converted to the
selected UoM. We handle that difference with union units of
measurement for each laboratory test. Data integration helps
reduce and avoid redundancies and inconsistencies in the
resulting dataset. We followed a manual process for schema
integration, i.e., an attribute ID for each patient.

4.1.2 Handling Missing Data

In the developed systems, missing or unknown values are
unavoidable in the real-life medical data. For example, the
results of some laboratory tests may not be available because
a healthcare institution cannot conduct the test, or the physi-
cian may have decided it was useless, or the test might have
been skipped due to high cost [38]. The model learning pro-
cess must deal with these missing data. In our study, there
is no patient case with more than 50% of the values miss-
ing. Furthermore, features in the dataset with 25% or more
of the values missing were dropped. As detailed in Table 1,
from a set of 27 features, we dropped five: residence, occu-
pation, indigestion, vision problems, and skin pigmentation.
This reduced the overall missing data from 13 to 3.6% of the
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Table 1 Patient feature descriptions, (data type: N = Numerical, C = Categorical, O = Ordinal)

Feature type Feature name Data type UoM Normal range Min-Mean-Max F. No.

Demographics Residence Qualitative/C – {Rural, urban} – 1

Occupation Qualitative/C – {doctor, officer} – 2

Gender Qualitative/C Male, female 1, 2 – 3

Age Qualitative/N – 19–82 19, 49.2, 82 4

Laboratory tests Platelet count Quantitative/N 103/cm 150–450 14, 184.2, 416 5

White blood cell Quantitative/N U/L 4–11 1.1, 5.9, 10.3 6

Hemoglobin Quantitative/N g/dL 12–16 9.6, 13.72, 18.1 7

PCR Quantitative/N IU/mL 100,000–1000.000 50, 1.074.487, 20.040.062 8

SGPT (ALT) Quantitative/N U/L 0–49 10, 63.27, 226 9

SGOT (AST) Quantitative/N U/L 0–34 5, 58.182, 211 10

Serum bilirubin (SB) Quantitative/N mg/dL 0.0–1.2 0.3, 1.009, 2.2 11

Serum albumin (SA) Quantitative/N g/dL 3.2–4.8 0.7, 3.729, 5 12

Serum ferritin Quantitative/N ng/mL 22–300 19.2, 221.95, 670 13

Signs Ascites Qualitative/C No, Mild 1, 2 – 14

Spleen Qualitative/C Normal, Enlarge 1, 2 – 15

Lesions Qualitative/O Yes, No 1, 2 – 16

Portal vein Qualitative/C Yes, No 1, 2 – 17

Symptoms Appetite Qualitative/O Absent, rare, bad 1, 2, 3 – 18

Dyspnea Qualitative/O Absent, rare, bad 1, 2, 3 – 19

Vomiting Qualitative/O Absent, rare, bad 1, 2, 3 – 20

Diarrhea Qualitative/O Absent, rare, bad 1, 2, 3 – 21

Indigestion Qualitative/O Absent, rare, bad 1, 2, 3 – 22

Vision problems Qualitative/C Yes, No 1, 2 – 23

Fatigue Qualitative/C Absent, rare, bad 1, 2, 3 – 24

Jaundice Qualitative/O Absent, rare, bad 1, 2, 3 – 25

Skin pigmentation Qualitative/O Absent, rare, bad 1, 2, 3 – 26

Diagnosis Fibrosis stage Qualitative/O F0, F1, F2, F3 0, 1, 2, 3 – 27

Fig. 1 The proposed F2DS
framework

123



3788 Arabian Journal for Science and Engineering (2019) 44:3781–3800

Table 2 Matching patient cases
example

C# F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21

x77 5.3 14.5 110 85 120 1.5 3 260 1 1 1 1 3 1 1 1

x103 5.3 14 250 – 46 2.4 3.7 297 1 1 1 – 3 1 – 1

x116 – 13.6 59 120 92 0.9 4.8 – 2 1 3 2 2 2 3 1

whole dataset. Complete cases rose from nine to 58 complete
cases, or 48% of the dataset.

Hot deck imputation is a method for solving the problem
of missing data (recipients) by replacing each missing value
with an observed value from a similar unit (donor) in the
same dataset [39]. This method of imputed values uses actu-
ally occurring values, not constructed values. The imputation
method depends on collecting complete cases in a pool; then,
we vote for a case with a high similarity in order to provide
the missing data. Consider a patient case, Pxi , represented
by an m-dimensional input vector,xi = [x1, x2, . . . , xm]p,
given the patient cases represented by Px116, Px103, and
Px77, as shown in Table 2. Patient case Px103 has missing
data in three features ( f9, f17, and f20) and is more similar
to Px77 than Px116.

The used similarity criterion is the heterogeneous
Euclidean-overlap metric (HEOM) [40]. The HEOM dis-
tance between them is calculated by:

d (xa, xb) =
√√√√

n∑
j=1

d j (xaj , xbj )2 (7)

where d j
(
xaj , xbj

)
is the distance between xa and xb on the

j th attribute. For a discrete attribute, the distance function d j

assigns a value of 0 for same values; otherwise, the value is 1,
(d j {0, 1}). For a quantitative attribute, we use max

(
x j

)
and

min
(
x j

)
as themaximumandminimumvalues, respectively.

The differences are almost between 0 and 1 (d j [0, 1]). Now,
so we have a dataset with 119 complete patient cases.

4.1.3 Feature Selection

Feature selection is frequently used as a data preprocessing
step. Its goal is to improve prediction accuracy with selection
of a subset of attributes from data that are most relevant for
construction of themodel systemwithout decreasing the final
result and without creating a new combination of attributes
[41]. There are two general approaches for selection algo-
rithms: the filter approach and the wrapper approach. The
filter approach is independent of learning algorithms, and
it uses general characteristics of the dataset to evaluate and
rank features. The wrapper approach evaluates the goodness
of features using the predictive accuracy of a predetermined
learning algorithm [42]. In our study, the first phase is fea-
ture clustering to divide the original set into clusters (i.e.,

demographic data, laboratory test data, sign data, and symp-
tom data) to make inner clusters correlate with each other.
The target output is liver fibrosis diagnosis stage, Y f , divided
into four categories: Y f = { f0, f1, f2, f3}. We need to select
the relevant features significant to the target class from each
cluster, and mute out features that are not useful in order to
construct the final feature subset. Filter approach methods
are implemented in our study. These methods can be classi-
fied into three groups: instance-based (e.g., relief and relief
F), statistically based (e.g., chi-square), and entropy-based
(e.g., information gain and gain ratio) [42]. Among the cho-
sen techniques from each group, the relief gain algorithm
[43] assess the quality of features due to how their value
distinguishes between instances that are near each other; the
chi-square [41] statistics method measures the lack of inde-
pendence between term t and category Y ; and gain ratio [44]
is an enhancement of information gain (its function is to
simultaneously maximize the feature’s information gain and
minimize its entropy)—then, it ranks the most relevant fea-
tures repeated in the feature selection algorithms. Table 3
shows description data and statistical values of all observed
attributes in our dataset.

As shown in Table 3, we use different feature selection
algorithms to compare j clusters by separately ranking each
algorithm on the whole dataset. Waikato Environment for
Knowledge Analysis (Weka) software [45] is used in the
implementation of various F techniques over N datasets to
compare the results of them and optimize the accuracy of
prediction. As described in Table 3, we used the Friedman
test to compare the selected techniques separately [42,46].
The best performance technique got the first rank. Then, for
each technique, average rank Ri was calculated across all
datasets, with test statistics of the Friedman test computed
as:

γ 2
F = 12N

k (k + 1)

[
k∑

i=1

R2
i − k (k + 1)2

4

]
(8)

where Ri = 1
N

∑
i r

j
i , with r j

i as the rank of the i th algo-
rithm on dataset x j . According to Eq. 8, the best performing
algorithm is the chi-square. So, we dropped some features
from one cluster (polymerase chain reaction (PCR), serum
albumin (SA), serum ferritin, hemoglobin) resulting from
the feature selection technique with a 20% selected features
ratio.
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Table 3 Description data and statistical values

Feature type Feature name Instance-based group
Relief FN = 119

Statistical theory group
χ2 (x2) N = 119

Entropy-based group
gain ratio
N = 119

Demographic Gender − 0.00244 7.0342 0.074

Age 0.00875 23.404 0.21

Laboratory tests Platelet count 0.05788 55.208 0.433

White blood cell 0.00008 13.602 0.323

Hemoglobin − 0.00656 0 0

PCR 0.00374 0 0

SGPT (ALT) 0.01964 25.526 0.206

SGOT (AST) 0.0470 61.162 0.429

Serum bilirubin (SB) 0.19818 73.345 0.33

Serum albumin (SA) 0.02490 0 0

Serum ferritin − 0.00637 0 0

Sign Ascites − 0.0113 0.9914 0.008

Spleen − 0.0047 3.8895 0.033

Lesions 0.02345 12.176 0.182

Portal vein 0.02841 20.846 0.287

Symptom Appetite − 0.0277 1.98 0.009

Dyspnea − 0.0196 3.946 0.027

Vomiting 0.0289 16.335 0.108

Diarrhea 0.00002 13.691 0.095

Fatigue 0.0028 5.155 0.034

Jaundice 0.2770 60.341 0.257

4.2 Fuzzy Rules Induction

Fuzzy knowledge is defined in fuzzy rules form
(IF condition THEN conclusion) to express the relationships
between fuzzy parameters. There are many fuzzy rule-
learning methods [47]. The most natural method is to extract
rules from a domain expert [13]. However, domain experts
are often not available. In addition, it is difficult to collect a
complete andnon-contradicting set of rules fromexperts. The
alternative method is to utilize a machine learning algorithm
to induce a rule set based on data. We have 119 cases in a
dataset with improved and high-quality data. After finishing
the feature selection process, we preprocessed the dataset
with a subset of 17 features. In addition, the dataset was
divided randomly into two subsets of training (60% of the
samples) and testing (40% of the samples) sets.

We implemented a fuzzy decision tree as a rule-induction
algorithm to extract the most suitable rule base from training
dataset.We implemented the FDTwith a gain ratio technique
to split nodes in order to generate the prediction rules. The
algorithm itself extracts a group of fuzzy rules on the base
linguistic variable, a j

i ?A, which leads to classifying patients
P into four output subsets, ci . A fuzzy rule can be defined
as:

if A1 is a1i and A2 is a2i and . . . and An is ani thenC is ci (9)

The system generated a set of 74 fuzzy rules from the training
dataset. These rules were stored in the F2DS knowledge base
(KB). Table 4 presents a small sample of this KB. Each fuzzy
set is presented with appropriate notations, as we discuss
later.

Starting from root node (i.e., splitting-point) N , fibro-
sis stage includes all training dataset items, Sk . The FDT
uses a recursive procedure to split each node into Ci child
nodes. Sv|A

k represents fuzzy subsets in Sk , which were
selected for the split according to the information gain (IG)
algorithm. Equation 10 calculates the IG of each attribute.
The entropy [35] has been used to select an attribute as
branching attribute. A large entropy value means a more
impure dataset. The best chosen attribute generates less
impurity in a child node. Finally, the attribute can be
qualified by IG measure, which is derived from impurity
measure:

Gain (Sk, A) = Entropy (Sk)

−
∑

v∈itemA

∣∣∣Cv|A
Sk

∣∣∣
∣∣∣CA

Sk

∣∣∣
Entropy

(
Sv|A
k

)
(10)
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Table 4 Sample of generated fuzzy rules
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IF ( age is A and gender is M and SB is H and ………….and vomiting is A then fibro stage is 
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O M VL L VH VH H NO N - - - - - - - -
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where

Entropy (Sk) = −
∑
i

psi . log2 p
Sk
i

pSki = Ci
Sk

CSk
, and CSk =

∑
i

Ci
Sk

where A is the branching attribute, and v denotes the branch-
ing level for numeric attribute A. The entropy for Sv|A

k is

calculated as Entropy
(
Sv|A
k

)
= −∑

i p
Sv|A
k

i . log2 p
Sv|A
k

i . As

information gain increases, the impurity of the child node
decreases. The results after the training dataset help select
the SB attribute to be the root node with the highest gain
ratio; thus, its fuzzy attributes are selected as branching level
attribute v = (lowSb, normalSb, highSb). For illustration,
we use only trapezoidal fuzzy sets: trap (a, b, c, d). currently,
the implemented tree is not pruned. Each internal node has a
branching level, v, excluding nodes that its data samples not
satisfying the fuzzy restrictions.

Fuzzy membership function is generated by decision tree
induction method, so there is no need to specify it before
construction the decision tree. After finishing fuzzy decision
tree construction, the predictive score can be calculatedwhen
each atom ends with a decision node. The predictive score is
the probability of the target indicator in the decision node of
the trained model. We used a method to measure the degree
of confidence with which data x belong to target class Ci as
follows: c f (x, c) = k(x,c)

maxi k(x,i) [34].

The value of credibility (confidence) of the fuzzy rule
represents how often it is likely to be true. Only the fuzzy
rules whose credibility is more than or equal to the threshold
ε ≥ 0.6 are likely to be true. Figure 2 represents a part of the
proposed FDT; leaf nodes contain more than one class label
and are not always 1. Data may reach multiple leaf nodes
from the root. For instance, the leftmost leaf suggests that
the patient has a probability equals to 0.2 for fibrosis being
absent, and 1.0 for mild fibrosis.

4.3 Fuzzy Inference Engine

In the fuzzy inference process, parallel if then rules are fired
concurrently according to the input values to induce the diag-
nosed variable. The new input case is classified by Mamdani
inference procedure into one of four output classes: f0 (fibro-
sis absent), f1 (mild fibrosis), f2 (significant fibrosis), and
f3 (cirrhosis). The inference process is achieved by using
fuzzy linguistic variables and the generated fuzzy rules, as
explained in the following section. The inference process is
illustrated in Fig. 3. The physician uses a graphical user inter-
face (GUI)-based medical application to collect the patient’s
current state and collect the patient history from the medical
record. These crisp data are entered into the Mamdani fuzzy
inference mechanism, which has three main phases: fuzzi-
fication, inference engine, and defuzzification. The purpose
of fuzzification phase is the transforming of crisp input into
fuzzy. Inference engine phase performs approximate reason-
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Fig. 2 Part of the induction FDT
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Fig. 3 Mamdani fuzzy inference process

ing in order to achieve a desired diagnosis for a human. It
uses the defined membership function for all parameters to
interprets the rule base with the implication operators, and
realizes mapping from input fuzzy sets to output fuzzy sets.
Defuzzification phase consists of getting non-fuzzy output
from fuzzy output, also using membership functions. The
output of the system is again crisp output. The KBwas previ-
ously created. Next, we discuss the formulation of linguistic
variables and values.

4.3.1 Fuzzy Variables

Our system is built on a complete set of 17 medical features
that completely and accurately describe a fibrosis patient.
Each of these medical features represents a fuzzy vari-
able. They are age, ALT, AST, platelet count (PLT), white
blood cells (WBC), serum bilirubin (SB), gender, portal vein,
ascites, liver lesions, spleen, appetite, jaundice, fatigue, dys-
pnea, vomiting, and diarrhea. Each variable has a universe

of discourse, and a type of either numerical, categorical,
or ordinal. Tables 5 and 6 illustrate each fuzzy input vari-
able with its data interval range and the associated fuzzy
terms.

4.3.2 Fuzzy Sets

This step is responsible for determining the degree to which
the input/output variables belong to each of the appropriate
fuzzy sets. Each input variable, A j

i εA
nεA, has member-

ship interval degrees Ci

(
A j
i

)
, and for output variable ci?C

according to the medical domain knowledge expert. In the
present work, all laboratory tests have been divided into five
categories (namely very low, low, normal, high, and very
high) as detailed in Table 5. Symptoms are divided into
three categories (absent, rare, and bad); signs are divided
into two categories (yes and no), as detailed in Table 6.
Output variables are divided into four categories (absent,
mild, significant, and cirrhosis), as detailed in Table 7. For
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Table 5 Sample of fuzzy sets description for quantitative input variables

Variable Fuzzy set Notation Fit vector μ (x)

PLT range:
(50–500) ID:
x4

V-low VL (50, 128, 175)
Low L (140, 190, 240)

Normal N (190, 240, 340, 390)

High H (340, 390, 440)

WBC range:
(0–20) ID: x5

V-low VL (0, 2, 4)
Low L (2,4, 6, 8)

Normal N (6, 8, 10, 12)

High H (10, 12, 14, 16)

ALT range:
(0–150) ID:
x1

Low L (0, 11, 20)
Normal N (11, 20, 36, 45)

High H (34, 40, 50, 56)

V-high VH (50, 60, 140, 150)

AST range:
(0–150) ID:
x2

Low L (0, 10, 18)
Normal N (10, 20, 30)

High H (23, 33, 43)

V-high VH (35, 45, 140, 150)

SB range: (0–4)
ID: x3

Low L (0, 0.5, 0.8)
Normal N (0.6, 0.8, 1.5, 1.8)

High H (1.5, 1.8, 3.5, 3.9)

every fuzzy variable, a collection of fuzzy sets represent the
terms of the associated linguistic variables. Therefore, the
universe of discourse, UODi , of each selected variable Xi

is divided into a certain number of si fuzzy sets described
by membership functionsμi

si . The partition of an input vari-
able domain into sharp intervals can be defined by many
methods, including using intervals obtained from an expert’s
knowledge [12], the domain partition into a number of equal
intervals, by decision tree algorithms, or by supervised or
unsupervised clusteringmethods [48]. In our study, the fuzzy
terms of linguistic variables are defined according to medical
domain expert knowledge. Then, the partitions are optimized

by k-means [49] and decision tree [34], with the k-means
clustering method being the simplest, using a centroid-based
approach to minimize intra-cluster variation [49]. It classi-
fies total objects x into k clusters, with similarity based on
Euclidean distance. We applied k-means and decision tree
methods to generate the fuzzy partitions, and then compared
them with the expert-based designed membership functions.
In our study, we developed different membership function
shapesMFs, according to the data type of each variable. The
variables with discrete or categorical values were modeled
using singletonmembership functions with the same number
of values, including gender, sign, and symptom. Numerical
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Table 6 Fuzzy set description for discrete input variables

Variable Fuzzy set Notation Fit vector μ (x)

Symptom range: (0–4) ID:
x8, x9, x10 x12, x13, x16

Absent A (1, 1, 1)
Rare R (2, 2, 2)

Bad B (3, 3, 3)

Gender range: (0–3) ID: x15 Male M (1, 1, 1)
Female F (2, 2, 2)

Sign range: (0–3) ID:
x6, x7, x11, x17

No No (1, 1, 1)
Yes Yes (2, 2, 2)

Table 7 Fuzzy set description for the target variable

Variable Fuzzy set Notation Fit vector μ (x)

Fibrosis stage
range:(0–5)
code:x18

Absent F0 (0, 0.23, 0.64)
Mild F1 (0.62, 1, 1.5)

Significant F2 (1.5, 2.1, 2.7)

Cirrhosis F3 (2, 2.75, 5)

features with a continuous data domain, including SB, AST,
ALT, PLT, WBC, and age, are represented by trapezoidal
MFs and triangularMFs. TriangularMFs use three param-
eters, which reflect the difference between a number and an
interval as x 〈xa, x〉 xb, as illustrated in Eq. 11. Left-shoulder
MFs only decrease MFs like x > xa ; right-shoulder ones
are increasing MFs like x < xa [50].

Trapezoidal MFs are provided in order to overcome the
limitation of linear models between input and output vari-
ables, and obtainMFs with increasing/decreasing segments.
Trapezoidal MFs can be represented by four parameters, as
seen in Eq. 12 [50], where a ≤ b ≤ c ≤ d are real num-
ber parameters of fuzzy set A, and the parameters b and c
of each membership function are obtained from the mini-
mum and maximum values of each fuzzy set. Parameter a

of the first fuzzy set is the same value asb. Parameter d of
the last fuzzy set in some features has the same value as
parameter c.

μ (x; a, b, c)

⎧
⎪⎪⎨
⎪⎪⎩

0 x < a,
x−a
b−a a ≤ x < b,
c−x
c−b b ≤ x < c,
0 x ≥ c.

(11)

μ (x; a, b, c, d)

⎧⎪⎪⎨
⎪⎪⎩

0 x 〈a, x〉 d,
x−a
b−a a ≤ x < b,
1 b ≤ x < c,
d−x
d−c c ≤ x ≤ d.

(12)
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Tables 5, 6 and 7 present the input and output variables
with their shapes. Table 5 presents a sample of quantitative
input Xn variables, where each attribute xi εXn is fuzzified
into linguistic terms, Ak = {

ak,1, . . . , ak,i , . . . , aK ,I k
}
, and

μa (xi ) indicates the degree of compatibility for value xi with
the concept modeled by fuzzy setA.

The qualitative input variables, Xv , can be represented
using binaryMFs. The fuzzy set with a continuous mem-
bership function is discretized. The idea of discretizing the
continuous MFsof fuzzy sets and the use of a discrete
representation of fuzzy sets is presented in Table 6. We
chose triangular MFs to represent fuzzy sets where all the
parameters are equal. The categorical attributeXv is cat-
egorized into a set of linguistic (i.e., categorical) values,
xi = {b1, . . . , bi , . . . ., bk}, for kfuzzy sets. For example,
the range of symptom fuzzy sets (absent, rare, and bad) is
shown in Table 6 as singleton functions, μAbsent (x) = 1,
μrare (x) = 2, μbad (x) = 3, where k = 3, and xi =
{absent, rare, bad}.

Output attribute XO is fuzzified into linguistic variables
Ck = {

ck,1, . . . , ck,i , . . . , cK ,I k
}
. As shown in Table 7, the

target output fuzzy sets with parameters are identified by
medical domain expert according to the AST to Platelet
Ratio Index (APRI) scale [6]. An example of fuzzification
for attribute SB(x3) is shown in Table 5, where member-
ship function is represented by trapezoidal shape of Eq. 12.
Consider the fuzzy sets SBlow(p), SBnormal(p), SBhigh(p):
R → [0, 1] , membership degree a3,1 (p) = lowSB (p)

equals 1 for SB(p) < 0.6, 0.8−SB(p)
0.8−0.6 for 0.6≤ SB (p) ≤ 0.8,

and equals 0 for SB(p) >0.8.Membership degreea3,2 (p) =
normalSB (p) equals 0 for SB(p) < 0.6 or SB(p) > 1.8,

equals SB(p)−0.6
0.8−0.6 for 0.6 ≤ SB (p) < 0.8, equals 1 for 0.8

≤ SB (p) < 1.5, and equals 1.8−SB(p)
1.8−1.5 for 1.5 ≤ SB (p) ≤

1.8. Membership degree a3,3 (p) = highSB (p) equals 0 for

SB(p) < 1.5 or SB(p) > 3.97, equals SB(p)−1.5
1.8−1.5 for 1.5

≤ SB (p) < 1.8, and equals 1 for 1.8 ≤ SB (p) < 3.97.
Finally, we have a knowledge base composed of fuzzy

rules and linguistic variables. In FIS, the fuzzy rule is inferred
by input vector x using a fuzzy inference engine.

5 Results and Evaluation

The aim of this study is to solve the prediction problem with
liver fibrosis stages for HCV patients using a set of input
parameters from an HCV patient dataset. To achieve this tar-
get, we implemented an F2DS. This is a new medical fuzzy
inference system for liver fibrosis diagnosis. We constructed
a prediction model by discovering the fuzzy rules using a
fuzzy rule reasoning method from experimental datasets,
and generalized the relationship functions for both input and
output parameters. The study was applied to a real dataset

to show how it can be utilized for real medical diagnosis.
Input parameters are x : {ALT, AST, SB, PLT, WBC, ascites,
spleen, portal vein, lesions, appetite, dyspnea, fatigue, jaun-
dice, diarrhea, vomiting, age, gender}, and output parameter
y is the class of target disease, as shown in Table 7. This paper
develops the F2DS using a set of steps as follows: input fuzzi-
fication, generating membership function MFs, extracting
fuzzy rules, and output defuzzification. In the fuzzification
step, trapezoidal triangular MFs are used to determine the
degree that input/output variables belong to eachof the appro-
priate fuzzy sets. In the defuzzification step, we used the
center of gravity Eq. 4, which calculates the center of the
area under the curve. In order to evaluate the proposed expert
system, we firstly studied the impact of the input variables
on the output decisions. Secondly, we used the test dataset to
check each case’s diagnosis against the diagnosis of expert
physician and APRI test’s diagnosis. The results were calcu-
lated by comparisonwith the expert diagnoses to estimate the
simulation between system’s decision and pathology exami-
nations. Thirdly, the proposed systemwas evaluated by using
the tenfold cross-validation technique. Finally, we compared
the proposed system’s results with the results of previous
studies. The results of the evaluation process for a patient
infected by chronic HCV who has cirrhosis are shown in
Fig. 4. The chart of rules for the Mamdani FIS is shown
with the parameters used. We implement theMamdani fuzzy
inference method through a fuzzy logic toolbox provided in
Matlab R2012a software, based on fuzzy rules generated by
theFDT . The Mamdani FIS is usually used in particular for
decision support applications because of its expressiveness
and interpretability of the output [51].

We developed the fuzzy rule-based system for predicting
the diagnosis class, and considered the appropriate MFs for
input fuzzification and output defuzzification in the F I S. We
have four output classes, and 74 fuzzy rules are used for the
prediction model. As shown in Fig. 1, we used 40% of the
dataset in the evaluation process. The test dataset was made
up of 47 data samples, demonstrating that patients had all
stages of fibrosis. Each test case is described by 17 patient
features. Each feature is considered a dimensional system
with its membership functions. The manner of data selection
was random. The rule base was inferred from crisp input to
get the final crisp diagnosis.

5.1 Performance

Figure 5 illustrates the relationships between some of the
most important input variables and the output decision vari-
able according to the constructed knowledge base. The
choice of only two variables derives from the need to show
the behavior of 3D surfaces representing the functions of
the posterior probabilities of the output class. The surface
emphasizes the separation of the variable space into regions
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Fig. 4 The inference process in the Matlab toolbox

Fig. 5 Response surface plots by using different variables a PLT, SB, b AST, PLT, cWBC, AST, and d AST, SB

associated with different output classes, fi : i.e., f0 is red, f1
is orange, f2 is gold, and f3 is yellow. Figure 5 is a 3D graph
showing how the variations in variables affect the liver fibro-
sis stages.

Figure 5a represents the effect of serum bilirubin and
platelet count in the diagnosis process due to their importance
in the medical diagnosis. The intersection point x between
the normal SB value and any PLT values belongs to fibrosis
absent, even with a low PLT; the region of the intersection
between normal PLT values and any SB belongs to mild
fibrosis, even with a high SB. The region of the intersection
between a high SB and a low PLT is for a cirrhosis diagnosis.
In Fig. 5b, we study the relationship between platelet count

(PLT) and aspartate aminotransferase (AST). The system
represents the importance of PLT in the diagnosis process; the
top view of the surface emphasizes each output class’s prob-
abilities, and the cirrhosis diagnosis is when PLT is low and
AST is high, butmild fibrosis, f1, is represented in the normal
AST range. In Fig. 5c, we studied the relationship between
white blood cells (WBC) and AST. The surface shows that
when WBC decreases and AST increases, the probability of
cirrhosis increases. This is medically intuitive, which asserts
the accuracy of our system. In Fig. 5d, the variables AST
and SB emphasized the separation regions between different
output classes. The intersection regions between high SB and
high AST increase the probability of cirrhosis. The intersec-
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Table 8 Evaluation of the
proposed F2DS

Term Cirrhosis ( f3) Absent ( f0) Mild ( f1) Significant ( f2)

F2DS APRI F2DS APRI F2DS APRI F2DS APRI

TP 10 6 15 13 9 10 9 5

TN 35 36 32 30 36 25 34 36

FP 2 0 0 2 0 11 2 0

FN 0 4 0 2 2 1 2 6

CE 0.04 0.166 0 0.08 0.04 0.25 0.08 0.12

tion between normal SBand normalAST is a high probability
of fibrosis absent and mild fibrosis. These variables are con-
sidered standard measures, and were met in the process of
diagnosing liver fibrosis stages.

After a global analysis of all the possible scenarios for test
response surface plots, and with the combination of 17 vari-
ables, it was determined that the variables with the highest
impact in liver fibrosis diagnosis are PLT, SB, and AST. If
these variables are compared with the rest of the input vari-
ables, probabilities can be up to 2.5, which is the highest
degree of fibrosis, as can be observed. This is a key indicator
that allows us to assume that these variables have a greater
impact on the output.

In addition, the system performance was measured with
two of the most widely used metrics: squared classification
error index (SCE) in Eq. 13, and classification error index
(CE) in Eq. 14 [48]:

SCE = 1

N
∗ 1

K
∗

N∑
i=1

K∑
k=1

(
αk
i − δki

)2
(13)

CE = 1

N
∗

N∑
i=1

yi (14)

where N is the number of data samples, yi is 1 if the i th
case is correctly classified (0, otherwise), K is the number of
output classes, αk

i is the activation of the kth class for the i th
sample, and δki is 1 for the correct class (0, otherwise). Our
domain expert guided the evaluation process and interpreta-
tion of the results. The system’s SCE value is measured with
Eq. 13. The system has an SCE of 0.125, while CE is sim-
ply the percentage of wrongly classified data samples. The
system has an error ratio of 0.025. The system’s classifica-
tion accuracy is calculated with acc = 1 − CE. The system
achieved accuracy of 95.7%.

5.2 Evaluation byMeasured Terms

Next, the experimental results of the F2DS for risk prediction
were evaluated using measured terms [24], and these terms
have the following semantics.

– True Positive (TP) is the number of cases correctly iden-
tified as cirrhosis.

– True Negative (TN) is the number of cases correctly iden-
tified as non-cirrhosis.

– False Negative (FN) is the number of cases incorrectly
identified as non-cirrhosis.

– False Positive (FP) is the number of cases incorrectly
identified as cirrhosis.

These measured terms were used in measuring performance
according to all four output diagnosis classes. The APRI is a
simple medical test to predict liver fibrosis with acceptable
diagnosis accuracy. It employs two laboratory tests in one
formula, Eq. 15 [6]. Nevertheless, it has limitations, such as
its inability to identify high levels of fibrosis, and because
laboratories establish different values for the upper limit of
normal (ULN) [52]:

APRI =
⎛
⎝AST ∗

(
1

ULN

)

PLT

⎞
⎠ ∗ 100 (15)

where ULN = 35 U/L is the upper normal range. Table 8
presents an evaluation comparison between F2DS and APRI
using measured terms and mean square error for each output
class.

These results were used tomeasure the performance of the
proposed system compared with the APRI results. The com-
parison is presented in Fig. 6. The results are reported in dif-
ferent terms considering accuracyACC = TP+TN

TP+TN+FN+FP,
sensitivity TPR = TP

TP+FN, and specificity SPC = TN
TN+FP,

false positive rate FPR = FP
FP+TN, and false negative rate

FNR = FN
TP+FN, F1Score = 2TP

2TP+FP+FN, and Matthews
correlation coefficient

MCC = TP ∗ TN-FP ∗ FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

[24]. The used test dataset has nomissing values, andwithout
10-fold cross-validation [53].

Figure 6 presents the comparison results between F2DS
and the APRI medical test, showing accuracies of 95.7%
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Fig. 6 Comparison results between F2DS and APRI

and 86%, respectively. The sensitivities are 31% and 26.4%,
respectively. The specificities are 97.2% and 90.7%, respec-
tively. False positive rates are 2.7% and 9.2%, false negative
rates are 68% and 73%, f1 scores are 90% and 71%, and
Matthews correlation coefficients are 88% and 66%, respec-
tively. As shown in Fig. 6, these results emphasize the
medical significance of our proposed system. It achieves
more accurate results than APRI.

5.3 Evaluation by Tenfold Cross-Validation

In this section, we evaluate the systemwith the whole dataset
against the clinical diagnosis by physicians. The 10-fold
cross-validation technique was employed to examine the
model’s performance due to its advantage of random dataset
division. Tenfold cross-validation is a statistical technique
useful in determining the robustness of a model [54]. The
dataset was divided into 10 subsets, and the holdout method
is repeated 10 times. Each time, one of the 10 subsets is
used as the test set, and other nine subsets are combined
together to form the training subset. First, we trained the
algorithm using the training set in each fold and measured
TPR, SPC,FNR, and FPR using the test dataset. Then, we
calculated the average performance of the 10 measured val-
ues. The disadvantages with this method are that it takes a
lot of time and requires a lot of computation to make the
evaluation.

We aim to predict fibrosis with high levels {significant,
cirrhosis}. To measure the performance in a more accurate
manner, we minimized the number of classes in the decision
variables by dividing the values into two groups for positive
class ( f2 + f3) and negative class ( f0 + f1). The dataset was
divided into nk = n/K cases, where n number of all data
samples, and K = 10 is the number of folds; nk=12 is the
size of the kth data sample. Equation 16 is used to get cvk
cross-validation:

cvk = 1

K
∗

K∑
k=1

MSEk (16)

where mean square error MSEk is the error rate for each test
fold.We then added them together to get the final results. The
system achieved an average accuracy of 93% when predict-
ing the four output classes without integration. The accuracy
result after integration was 94.1%.

6 Discussion

This study described the applicability of a fuzzy expert sys-
tem in diagnosing liver fibrosis with its different stages, even
at the first level of cirrhosis. The model can handle uncer-
tainty at both input and output. The evaluation process was
based on a dataset of 119 real HCV patients. The patients
were clinically and pathologically diagnosed by medical
experts. We used a fuzzy decision tree algorithm to construct
the fuzzy rule knowledge base. This knowledge base has been
refined by removing the conflicting rules. Conflicting rules
had the same IF parts but different THEN parts. Rules having
the higherweightswere appended to the knowledge base, and
the other rules were excluded. The final rule set had a com-
plete coverage to our diagnosis domain, and theywere highly
interoperable by domain experts. In addition, the generated
rules presented a good match between the decision from the
system and the pathology examinations. Prediction results
of our F2DS system were compared to other classifiers,
which are mentioned in the literature. Generally, classical
classification algorithms often require large datasets in the
training phase. Researchers in [17] stated that backpropa-
gation ANN with three layers achieved accuracy of 91.3%.
However, ANN has many limitations in medical domain. It
works as a black box and cannot provide a clear and direct
interpretation of its decisions. Researchers in [14] proposed
an evolutionary system for the classification of chronically
infected HCV patients. When their system adjusted weights
of input patterns before network training, the problem of per-
mutation phenomenon appeared [18]. They mentioned that
their model achieved 46% accuracy, and 49% after apply-
ing the feature selection techniques. The framework of [11]
combined a filter feature selection method with decision tree
algorithm for classification. A dataset with 290 features has
been used; as a result, the pruned decision tree did not work
as required. Kumar and Sahoo [27] presented a classification
model based on SVM, rule induction, decision tree, naïve
Bayes, and ANN techniques. Their average accuracies were
71.36%, 82.68%,71.12%, 55.29%, and 70.67%, respectively.
These systems had accuracies of 82.33%, 94.34%, 98.46%,
82.16%, and 79.07%, respectively, after applying rule-based
system. In addition, Hashem et al. [2] used dataset of 335
infected patients to build their classification system based on
six crisp rules generated using classical decision tree. The
resulting system is error prone if we change the weights of
input features, and the generated crisp rules are not applicable
for the nature of medical data.
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Table 9 An empirical analysis of the literature review in liver fibrosis diagnosis

References Dataset/feature No. of rules Technique Year Accuracy (%)

Gadaras and Mikhailov [15] 345/8 8 FIS 2009 89.4

Hashem et al. [2] 355/9 6 DT + ANN 2010 91.7

Raoufy et al. [17] 144/12 N/A DT 2011 91.3

Gorunescu et al. [14] 722/25 N/A GA + DT 2012 49

Kumar and Sahoo [27] 583/12 20 DT 2013 98.4

Farokhzad and Ebrahimi [13] 583/6 243 ANFIS 2016 70

Orczyk and Porwik [11] 290/7 N/A DT 2016 71

Proposed F2DS 119/17 74 FDT + FIS 2018 94.1

On the other hand, fuzzy expert systems achieved high
accuracy, even when the machine learning techniques used
to generate fuzzy rules are based on small datasets [25],
see Table 9. Models of [2,22] applied crisp rules to gen-
erate the decision support systems. In references [13,15], the
fuzzy rules were collected only from medical experts. The
accuracy and completeness of the rules depend only on the
experience of physician, and these experiences are different
from one expert to another. The completeness and accuracy
of the resulting knowledge bases affect the decision support
system accuracy. Since fuzzy mapping rule provides a func-
tional mapping between fuzzy input and fuzzy output, the
crisp relationship between input and output is very com-
plicated when they are developed in fuzzy system. Fuzzy
mapping rules work similar to human initiatives in map-
ping each relation. Fuzzy rules can be generated from their
equivalent crisp rules [8]. However, the generated rules are
non-overlapping. Tsipouras et al., [8] have transformed the
crisp rules into fuzzy rules. They have achieved 80% accu-
racy using crisp rules and 85% accuracy using fuzzy rules
implementation.

Anooj [24] followed another idea to generate the fuzzy
system knowledge base. Their decision tree algorithm was
applied on the input data, where were in a fuzzy numbers
format. In this research, fuzzy number is generated by deci-
sion tree inductionmethod.Malmir et al. [12] have developed
fuzzy rule-based system based on Mamdani FIS for kidney
diseases. The system achieved 87.5% performance accuracy
for 40 samples and 22 input features; the implemented rule
base was defined by only medical experts.

Having said that, our proposed system is based on a set of
features related significantly to the liver fibrosis disease, i.e.,
non-expensive routine blood laboratory tests, patient physi-
cal examination, and demographic data. The ALT, AST, and
PLT are themost usedmetrics in themedical literatures, espe-
cially for liver diseases [2,11,13–15,18,22], where they have
been used to measure the damages in liver. Age is a critical
feature in the proposed system because it has also a critical
medical weight. For example, old males are 30% of infected

patients diagnosed with high levels of fibrosis. The SB is a
critical feature in the rule set; it participated in all induced
rules. White blood cells feature is not participated in most
generated rules, but it is also proven to be an important indi-
cator for cirrhosis prediction, as illustrated in Sect. 5.1. The
liver fibrosis symptom features are related to the diagnosis
process especially jaundice and appetite. After the experi-
ment, the jaundice level is linked with SB laboratory test.
Jaundice bad level appeared when patient had a high SB
degree. Signs had vital roles in the cirrhosis diagnosis pro-
cess, where the patient has at least one of them especially
portal vein. The proposed F2DS system achieved an overall
accuracy of 94.1% for liver fibrosis stages domain.

The experimental results of the system assert the appli-
cability of the approach to diagnoses of other diseases.
Furthermore, due to the simplicity of the system, it can be
implemented in amobile application for remote patient mon-
itoring.Having said that, our systemhas somedrawbacks that
will be handled in our advanced work. First, there are some
other medical factors that were not used in the proposed sys-
tem, including the alkaline phosphatase level test (ALP). In
addition, some diseases that have direct or indirect effects
on liver status, such as thyroid disease, obesity, and diabetes,
were not considered. Second, for integration and interoper-
ability between the CDSS and electronic health records [28],
a semantic ontology will be considered in future improve-
ments to the system.

7 Conclusion

In this paper, we proposed and implement a framework for
fuzzy rule-based system in the medical domain. The frame-
work is based on an interpretable knowledge base, which
considers both expert knowledge and knowledge extracted
from data. We proposed a new knowledge-based system
for prediction of liver fibrosis stages using a fuzzy rea-
soning technique. Euclidean-overlap metric and chi-square,
respectively, were used for handling missing data and fea-
ture selection in the dataset. We used entropy measure for
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fuzzy rules induction. The developed diagnosis module con-
sists of an expert system and a fuzzy inference system to
perform the diagnostic task. A set of 74 rules was defined
using the patients’ dataset, as well as expert knowledge in
the disease domain. We evaluated the knowledge-based sys-
tem on a real dataset of 119 cases; the dataset was taken from
HCV patients’ clinical records at the Liver Institute of Man-
soura University. The developed expert system uses rules to
diagnose stages of liver fibrosis in patients based on their lab-
oratory tests, symptoms, signs, and demographic data. The
combination of an expert system and fuzzy logic forms an
expert fuzzy system, and achieved good prediction accuracy
of 95.7% for liver fibrosis stages. The developed method in
this study can be developed for other pathologies as a deci-
sion support system. There is still plenty of work to do to
enhance liver fibrosis diagnosis. In future studies, we will
solve problems by adding a semantic dimension based on
Web Ontology Language (OWL). This will be achieved by
using a fuzzy ontology technique.
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