
Arabian Journal for Science and Engineering (2019) 44:3669–3679
https://doi.org/10.1007/s13369-018-3617-0

RESEARCH ART ICLE - COMPUTER ENGINEER ING AND COMPUTER SC IENCE

Discrete Sine-Cosine Algorithm (DSCA) with Local Search for Solving
Traveling Salesman Problem

Mohamed A. Tawhid1 · Poonam Savsani1,2

Received: 25 February 2018 / Accepted: 28 October 2018 / Published online: 11 November 2018
© King Fahd University of Petroleum &Minerals 2018

Abstract
One of the new population-based optimization algorithms, named sine-cosine algorithm (SCA), is introduced to solve con-
tinuous optimization problems. SCA utilizes the sine and cosine functions to recast a set of potential solutions to balance
between exploration and exploitation in the search space. Many researchers have developed and introduced a modified version
of SCA to solve engineering problems, multi-objective version of SCA to solve multi-objective engineering design problems,
and a binary version of SCA to deal with datasets. Our goal from this work to propose discrete SCA (DSCA) to solve the
traveling salesman problem (TSP). The TSP is one of the typical NP-hard problems. DSCA works on the basic concepts of
exploration and exploitation. To balance the exploration and exploitation in DSCA, it uses two different mathematical expres-
sions to update the solutions in each generation. DSCA is combined with 2-opt local search method to improve exploitation.
To enhance the exploration heuristic crossover, it is united with the proposed DSCA. A benchmarks problem selected from
TSPLIB is used to test the algorithm, and the results show that the DSCA algorithm proposed in this article is comparable
with the other state-of-the-art algorithms over a wide range of TSP.

Keywords Traveling salesman problems · Discrete sine-cosine algorithm · NP-hard combinatorial optimization problem ·
Metaheuristic

1 Introduction

In 2016,Mirjalili [1] introduced a newpopulation-based opti-
mization algorithm, named sine-cosine algorithm (SCA), to
solve continuous optimization problems. SCA employs the
sine and cosine functions to adjust a set of potential solutions
in order to have a balance between exploration and exploita-
tion in the search space. Since then, many researchers have
utilized the SCA to solve various continuous optimization
problems. For example, Tawhid and Savsani [2] developed
a multi-objective sine-cosine algorithm (MO-SCA) to solve
multi-objective engineering design problems.Aswell, Elaziz
et al. [3] developed a modified SCA to solve engineering

B Poonam Savsani
poonam.savsani@gmail.com

Mohamed A. Tawhid
mtawhid@tru.ca

1 Department of Mathematics and Statistics, Faculty of
Science, Thompson Rivers University, Kamloops,
BC V2C 0C8, Canada

2 Department of Industrial Engineering, Pandit Deendayal
Petroleum University, Gandhinagar, Gujarat, India

problems. Other researchers developed a binary version for
SCA to deal with datasets [4,5], scheduling [6], and unit
commitment problem [7]. As such, there is a demand for a
discrete version of SCA in order to deal with various com-
binatorial optimization and complex discrete problems such
as TSP, vehicle routing problems, and others. Our goal from
this work is to introduce the discrete SCA (DSCA)in order
to solve TSP. TSP comprises of a set of cities and the dis-
tances between each pair of cities. The aim is to obtain the
shortest possible route that visits each city exactly once and
returns to the origin city. The tour including each city once
is labeled as the Hamiltonian circuit (HC), and the short-
est Hamiltonian circuit is the optimal Hamiltonian circuit
(OHC). This is for Euclidean TSP. Previously, TSP has been
proven to be NP-complete [8]. As such, TSP has been exten-
sively studied in the fields of combinatorial mathematics,
graph theory and computer science due to its theoretical and
practical values [9]. That being said, there are no polynomial
algorithms for the NP-complete problems unless NP = P
[10]. As such, the research on competent algorithms for
TSP is still one of the most important topics researched
today. Over the past years, TSP has become one of the best

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-018-3617-0&domain=pdf

3670 Arabian Journal for Science and Engineering (2019) 44:3669–3679

platforms to evaluate the performance of different kinds of
algorithms because of its hardness. At present, all the meth-
ods used to solve TSP can be divided into two categories,
one is the exact methods that guarantee the optimal solu-
tion, and the other is an approximation algorithm [11]. Using
the exact methods guarantees you the optimal solution, but
with the expansion of the problem’s scale, the solving time
required increases exponentially. As such, it is difficult to
apply these methods to solve large-scale problems. Some
of the common exact methods include dynamic program-
ming [12], branch and bound [13], depth-first search graph
algorithm [14], and the integer programming methods [15]
(which are feasible to tackle the TSP with less than 1000
cities [16]). Using powerful turning machines, they can find
the OHC within an acceptable computation time. When the
scale of TSP becomes larger, the approximate algorithms
demonstrate their good performance. Approximation algo-
rithms can also be divided into two categories, the local
search algorithms and heuristic optimization methods. Local
search algorithms are related to the characteristics of the
problems, such as the 2-opt [17], 3-opt [18], LK [19], the
LKH [20] and the inver over [21]. These local algorithms
can make effective use of the relevant characteristics of the
problem in order to find the local optimal solution to the prob-
lem. Like their counterparts, when the scale of the problem
increases, the computation greatly increases as well. Some of
the heuristic optimization methods that have been developed
so far, in order to search for the nearly optimal solution for
TSP include the ant colony algorithm [22] (ACO), the genetic
algorithm (GA) [23], the simulated annealing algorithm (SA)
[24], particle swarm optimization(PSO) [25,26], the artificial
neural networks (ANN) [27,28] and the artificial immune
algorithm(AIS) [29]. Since these heuristic algorithms do not
depend on the problem itself, they have a strong global search
capability, while still falling into the local optimum. In recent
years, many scholars have combined the local search with
metaheuristic algorithms to produce a new hybrid algorithm
for solving TSP. Examples of these include the mixing of the
genetic operators [30] and LK, and memetic algorithm [31];
Yang et al., 2008 [32] proposed a method that combines the
ant colony algorithm and mutation strategy; Samanlioglu et
al., 2006 [33] proposed a method of combining genetic algo-
rithm with a 2-opt; Gang et al. [34] proposed an improved
complete 2-opt (complete 2-opt, C2OPT); Marinakis et al.
[35] proposed honey bee mating algorithm for the Euclidean
traveling salesman problem optimization; Zhou et al. in [36]
proposed a discrete Glowworm swarm algorithm (DGSO);
Ouaarab et al. [37] proposed a discrete cuckoo search algo-
rithm(DCS); and the improved genetic algorithm is adopted.
Another example is the hybrid genetic algorithm with two
optimization strategies O(n) and O(n3) which is proposed in
[38]. The author reported better performance of hybrid GA
than GA with 2-opt and classical GA.

As mentioned, in this paper, a discrete sine-cosine algo-
rithm (DSCA) is proposed to solve TSP. Benchmark prob-
lems selected from TSPLIB are used to test the algorithm,
and results show that the proposed algorithm in this work can
achieve near OHC and has strong sturdiness.

The rest of the paper is structured as follows: Section 3
describes a basic TSP and its mathematical forms. Section 4
introduces the basic SCA. Section 5 proposes DSCA and
explains in detail. Section 6 presents results and discussions.
Finally, the paper is concluded.

2 The Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most
cited NP-hard combinatorial optimization problems because
it is so perceptive and easy to understand but difficult to solve.
In graph theory, it is described as the weighted graph (WG),
G = (V , E, d), where V = (v1, v2, . . . vm) is the vertex
set and E = |ei j |m×m are the edges set. vi (1 ≤ i ≤ m) is
the vertex, and ei j (1 ≤ i, j ≤ n) is the edge connecting the
two vertices vi and v j . d : E → R+ is weight function.
The weight d is often taken as distance, cost, etc., for various
kinds of TSP. If di j = d ji , then the TSP is called symmetric.
If di j �= d ji for some i �= j , TSP is an asymmetric. In this
work, we consider symmetrical TSP.

The purpose of the TSP is to find optimal Hamilton circuit
(OHC) that all the vertices are visited once and only once.
Given the HC including m vertices, it is represented as HC =
(v1, v2, . . . , vm, v1), such that minimize f(HC) the sum of
all the Euclidean distances d between each city from same
path HC and the computational model of symmetrical TSP
is given in Eq. 1.

f (HC) =
∑m−1

i=1
d(vi , vi+1) + d(vm, v1) (1)

The Euclidean distance d, between any two cities with coor-
dinate (x1, y1) and (x2, y2), is calculated by Eq. 2.

d =
√

(x1 − x2)2 + (y1 − y2)2 (2)

As symmetrical TSP is hard to solve, in the present work,
symmetrical benchmark problems are taken from TSPLIB
to check the performance of proposed DSCA.

3 Basic Sine-Cosine Algorithm

Recently, Mirjalili [1] proposed a sine-cosine algorithm
(SCA) as a population-based algorithm, which starts the
search process with a random set of solutions named pop-
ulation. All the stochastic optimization algorithm stresses

123

Arabian Journal for Science and Engineering (2019) 44:3669–3679 3671

the exploitation and exploration of the search space. SCA
balances the exploration and exploitation by utilizing two
different mathematical expressions to update the solutions in
each generation. These expressions are defined as follows:

Xg+1
j = Xg

j + r1 sin(r2)|r3(Xb)gi − Xg
j | (3)

Xg+1
j = Xg

j + r1cos(r2)|r3(Xb)gi − Xg
j | (4)

where Xg
j denotes the current solution with g-th generation

and j-th dimension. Xb describes the position solution. Nor-
mally, the position solution is the best solution from the
population. r1, r2 and r3 are the random numbers whichman-

Table 1 Results of the DSCA
algorithm for symmetric TSP
instances from TSPLIB

Best Worst Mean Std PDbest (%) PDavg (%) Optimal

eil51 426 427 426.4 0.54772 0 0.23474 426

berlin52 7542 7542 7542 0 0 0 7542

st70 675 675 675 0 0 0 675

pr76 108,159 108,159 108,159 0 0 0 108,159

eil76 538 539 538.2 0.44721 0 0.18587 538

kroA100 21,282 21,282 21,282 0 0 0 21,282

kroB100 22,141 22,141 22,141 0 0 0 22,141

kroC100 20,749 20,749 20,749 0 0 0 20,749

kroD100 21,294 21,309 21,300 8.21584 0 0.07044 21,294

kroE100 22,068 22,068 22,068 0 0 0 22,068

eil101 629 630 629.2 0.44,721 0 0.15898 629

lin105 14,379 14,379 14,379 0 0 0 14,379

pr107 44,303 44,303 44,303 0 0 0 44,303

pr124 59,030 59,030 59,030 0 0 0 59,030

bier127 118,282 118,282 118,282 0 0 0 118,282

ch130 6111 6140 6124 12.69 0.016364 0.47455 6111

pr136 96,928 97,378 97164.6 187.097 0.160944 0.46426 96,928

pr144 58537 58,537 58,537 0 0 0 58,537

ch150 6528 65,28 6528 0 0 0 6528

kroA150 26524 26,528 26525.4 1.51658 0 0.015081 26,524

kroB150 26130 26,154 26134.8 10.73313 0 0.091848 26,130

pr152 73682 73,682 73682 0 0 0.000000 73,682

rat195 2323 2332 2327.2 4.0249 0 0.38743 2323

d198 15788 15807 15799.8 7.0852 0.050671 0.12034 15,788

kroA200 29368 29368 29368 0 0 0 29,368

kroB200 29447 29,497 29467.4 18.2975 0.033959 0.16980 29,447

ts225 126643 126,810 126709.8 91.4697 0 0.13187 126,643

tsp225 3916 3919 3917 1.4142 0 0.07661 3916

pr226 80369 80410 80380.4 17.9388 0 0.05101 80,369

gil262 2384 2388 2386.6 1.9494 0.251678 0.16779 2384

pr264 49135 49135 49135 0 0 0 49,135

a280 2579 2588 2584.6 3.3615 0 0.34897 2579

pr299 48250 48,355 48306.8 48.1009 0.122280 0.21762 48,250

lin318 42167 42,284 42221.4 55.5905 0.327270 0.27747 42,167

rd400 15408 15,453 15422.6 18.1604 0.824247 0.29206 15,408

fl417 11920 11,943 11933.4 8.9610 0.494966 0.19295 11,920

pr439 107326 108,152 107588.2 331.3302 0.101560 0.76962 107,326

rat575 6881 6923 6898.6 18.1191 1.569539 0.61038 6881

rat783 9343 9465 9402.4 53.9194 5.747619 1.30579 9343

pr1002 272,323 273,345 272739.6 515.1304 4.875828 0.37529 272,323

nrw1379 60,247 61,230 60,653.4 501.0886 5.990340 1.63162 60,247

123

3672 Arabian Journal for Science and Engineering (2019) 44:3669–3679

age the exploitation and exploration of the search space. r1
changes linearly from a constant value a as follows:

r1 = a − a

(
g

gm

)
(5)

where g denotes the current generation, gm is the maximum
number of generations and a is a constant defined by the user.
r2 is a random number in the interval [0, 2π]. r3 is a random
number which can take a value less than or greater than 1.
So, r3 utilizes the following expression:

r3 = (b)R1 (6)

where R1 is a random number in the interval [0,1] and b > 1
is a given constant by the user.

The solution is updated by utilizing the probability Pr as
follows:

Xg+1
j = Xg

j + r1 sin(r2)|r3(Xb)gi − Xg
j | if Pr < R2 (7)

Xg+1
j = Xg

j + r1 cos(r2)|r3(Xb)gi − Xg
j | if Pr > R2 (8)

where R2 is a random number varying in the interval [0,1].
As the equations mentioned above show, there exist four

main parameters in SCA, namely, r1, r2, r3, and r4. The
parameter r1 determines the next position’s region (or move-
ment direction) which could be either outside the space,
between the destination and solution, or in it. The param-
eter r2 describes how far the movement should be outwards
or toward the destination. The parameter r3 brings a random

0
50000

100000
150000
200000
250000
300000

ei
l5

1

be
rli

n5
2

st
70

pr
76

ei
l7

6

kr
oA

10
0

kr
oB

10
0

kr
oC

10
0

kr
oD

10
0

kr
oE

10
0

ei
l1

01

lin
10

5

pr
10

7

pr
12

4

bi
er

12
7

ch
13

0

pr
13

6

pr
14

4

ch
15

0

kr
oA

15
0

kr
oB

15
0

pr
15

2

ra
t1

95

d1
98

kr
oA

20
0

kr
oB

20
0

ts
22

5

ts
p2

25

pr
22

6

gi
l2

62

pr
26

4

a2
80

pr
29

9

lin
31

8

rd
40

0

fl4
17

pr
43

9

ra
t5

75

ra
t7

83

pr
10

02

nr
w

13
79

Best
best op�mal

Fig. 1 Comparison of obtained best solutions with the known optimum solutions

0

50000

100000

150000

200000

250000

300000

Mean
mean op�mal

Fig. 2 Comparisons of mean value to the known best solutions

0

1

2

3

4

5

6

7

PDbest(%) PDavg(%)

Fig. 3 Percentage deviation for the mean and the best solutions

123

Arabian Journal for Science and Engineering (2019) 44:3669–3679 3673

weight for the destination in order to stochasticallymaximize
(r3 > 1) or minimize (r3 < 1) the effect of destination in
defining the distance. Finally, the parameter r4 equally swaps
between the cosine and sine components. This algorithm is
called the sine-cosine algorithm (SCA) because of the use
of sine and cosine in this formulation. The cyclic pattern of
sine and cosine function updates the existing solution near
to the optimal solution. This can ensure the exploitation of
the defined space between two solutions. For exploring the
search space, the solutions should be able to search outside
the space between their corresponding destinations as well.
This can be attained by changing the range of the cosine and
sine functions.

The procedure for the basic SCA is given in Algorithm 1.

Algorithm 1. Basic sine-cosine algorithm (SCA)

Initialize parameters

Generate initial Population

For

 Calculate

 Identify best solution

 If

 Else

End if

End for

4 Discrete Sine-Cosine Algorithm (DSCA)
with Heuristic Crossover and 2-opt Local
Search for TSP

This section describes the extension version of SCA for the
TSP. DSCA operates on the same principle as SCA.

In the DSCA, the various HCs, which is made up of
different cities, are updated with the help of the following
equations:

HCg+1
j = HCg

j + r1 sin(r2)|r3(HCb)gi − HCg
j |

if Pr < R2 (9)

HCg+1
j = HCg

j + r1 cos(r2)|r3(HCb)gi − HCg
j |

if Pr > R2 (10)

The parameters r1, r2, r3, and r4 are calculated in the same
manner as in the basic SCC. In DSCA, the length of HC
depicts the objective function value, and HCb represents the
best HC in the generation. Since the DSCA is ametaheuristic
approach, it is strong at exploration rather than exploitation.
As such, there is a need to make it suitable for combinato-
rial problems such as TSP. Hence, it is logical to add local
search to make it more effective. Two such local searches
are the heuristic crossover [39] and the 2-opt [17]. These
local searches are operated in a probabilistic manner. Either
of the local searches is imposed on the best solution by the
following conditions: If Rl1 < Rl2

Operate Heuristic crossover
Else
Operate 2-opt local search
Endif
where Rl1 and Rl2 are random numbers between 0 and

1. We use probability with the local search in order to give
them separate chances to update the best solution in each
generation. As such, if the best solution is not updated in a
particular generation, it still gets the chance to be updated by
another local search.

The procedure for the heuristic crossover and 2-opt is
explained in Algorithms 2 and 3, respectively.

Algorithm 2. Heuristic crossover

C=number cities

Assume heuristic factor (HF)

for k=1:C

select

for i = HF:C-1

if

end if

end for

end for

123

3674 Arabian Journal for Science and Engineering (2019) 44:3669–3679

Algorithm 3. 2-opt local search

Assume 2-opt factor(2OF)

2-opt(HC, i, j)

If

 and will be deleted

 and will be added

Reverse the part between cities

New_HC= HC[1:i-1]+reverse of HC[i:j]+HC[j:C];

end if

repeat until no improvement is made

start_again:

best_distance = calculateTotalDistance(existing_route)

for i = 0:C-2OF

for j = i + 1:C

if

new_HC = 2OF(, i, j)

new_distance = calculateTotalDistance(new_route)

else

new_HC = 2opt(, i, j)

new_distance = calculateTotalDistance(new_route)

end if

i f new_distance<best_distance

= new_HC

goto start again

end if

end for

end for

end while

The procedure for DSCA for TSP is explained in Algo-
rithm 4

Algorithm 4. DSCA with local search

Randomly initialize a population of HC

while termination criterion is not met do

for each HC do

identify

Generate new solution () using equation 9 or 10

if F() < F() then

Identify the best solution and

Else

If

Update by heuristic crossover

Else

Update by 2-opt local search

end while

5 Results and Discussion

In order to test the performance of proposedDSCA, 41 exper-
imental test cases of symmetrical TSP are taken from the
TSPLIB library http://www.iwr.uni-heidelberg.de/groups/
comopt/software/TSPLIB95. Each test case in the simula-
tion is operated independently 20 times. The DSCA is coded
in MATLAB R2014a, and the results are obtained on CORE
i3, 2.27 GHz processor. For the evaluation of DSCA on TSP,
population sizes of 15 and 200 generations are considered.
Table 1 shows the numerical results of the DSCA algorithm
for different TSP instances. The numbers shown in bold indi-
cate that DSCA reaches OHC for that particular instance.
These results are obtained by calculating the Euclidean dis-
tances between the vertices. The first column in the table
represents the name of the symmetric TSP benchmark, ended
by the number of cities. The second column depicts the best
result obtained by DSCA. As for the third column, it indi-
cates the average solution for 20 runs. The fourth column
shows the standard deviation of solutions obtained by DSCA
algorithm over 20 independent runs. The fifth and sixth col-
umn shows the percentage best solution length found over
the optimal length of 20 runs “PDbest%” and the percent-
age average solution length found over 20 runs “PDavg%,”
respectively. Finally, the last column gives best known from
TSPLIB.

As discussed above, the percentage deviation of a solu-
tion in contrast to the optimal solution is calculated by the
following formula:

123

http://www.iwr.uni-heidelberg.de/groups /comopt/software/TSPLIB95
http://www.iwr.uni-heidelberg.de/groups /comopt/software/TSPLIB95

Arabian Journal for Science and Engineering (2019) 44:3669–3679 3675

Table 2 Comparison of average tours of DSCA with other state-of-the-art algorithms for different TSP instances

Eil51 Berlin52 Eil76 St70 KroA100 Lin105 KroA200 Ch150 Eil101

Best Known Solution 426 7542 538 675 21,282 14,379 29,368 6528 629

Proposed -DSCA 426.4 7542 538.2 675 21282 14379 29368 6568 629.2

ACOMAC [40] 430.68 555.7 21457

ACOMAC + NN [40] 430.68 555.9 21433.3

RABNET-TSP [41] 438.7 8073.97 556.1 21868.47 14702.17 30257.53 6753.2 654.83

Modified RABNET-TSP [42] 437.47 7932.5 556.33 21522.73 14400.7 30190.27 6738.37 648.63

GSA ACO PSO [43] 427.27 7542 540.2 21370.3 14406.37 29738.73 6563.7 635.23

IVRS + 2-opt [44] 431.1 7547.23 21498.61 648.67

ACO + 2-opt [44] 439.25 7556.58 23441.8 672.37

HACO [45] 431.2 7560.54

CGAS [46] 7634 542 21437 29,946

WFA with 2-opt [47] 426.65 7542 541.22 21282 14379 29654.03 6572.13 639.87

WFA with 3-opt [47] 426.6 7542 539.44 21282.8 14459.4 29646.5 6700.1 633.5

ACO with Taguchi [48] 435.4 7635.4 21567.1 14475.2 655

ACO with ABC [49] 443.39 7544.37 557.98 700.58 22435.31 6677.12 683.39

HGA+2 local [38] 429.19 7544.37 546.06 677.39 21312.45 14422.89 29458.81 6557.69 644.82

PSO–ACO–3-opt [50] 426.45 7543.2 538.3 678.2 21445.1 14379.15 29646.05 6563.95 632.7

ACE [51] 426.818 7543 538.31 676.41 21298.6 14385.5 6550 633.619

Table 3 Comparison of DSCA with neuro-immune network [41], GCGA with local search [52], Massutti and Castro’s method [42], GSA ant
colony system with PSO [43], HGA [38], ACE [51] and improved BA [53]

optimum DSCA neuro-immune-
network [41]

GCGA with local
search [52]

Massutti and
Castro’s
method [42]

GSA ant colony
system with
PSO [43]

HGA [38] ACE [51] Improved
BA [53]

eil51 426 426.4 438.7 430 437.47 427.27 429.19 426.818 428.1

berlin52 7542 7542 8073.97 7932.5 7542 7544.37 7543.04 7542

st70 675 675 678 677.39 676.418 679.1

pr76 108159 108159 108942 108255.9 108251

eil76 538 538.2 556.1 551 556.33 540.2 546.06 538.311 548.1

kroA100 21282 21282 21868.47 21543 21522.73 21370.47 21312.45 21298.6 21445.3

kroB100 22141 22141 22853.6 22542 22661.47 22282.87 22506.4

kroC100 20749 20749 21231.6 21025 20971.23 20878.97 20812.22 21050

kroD100 21294 21300 22027.87 21809 21697.37 21620.47 21344.67 21593.4

kroE100 22068 22068 22815.5 22379 22715.63 22183.47 22349.6

eil101 629 629.2 654.83 646 648.63 635.23 644.82 633.619 646.4

lin105 14379 14379 14702.23 14544 14400.17 14406.37 14422.89 14385.5

pr107 44303 44303 44909 44341.67 44793.8

pr124 59030 59030 59141 59094.13 59412.1

bier127 118282 118282 121780.3 120412 120886.3 119421.8

ch130 6110 6124 6231.77 6282.4 6205.63 6130.277 6153.96

pr136 96772 97164.6 99505 97019.29 99351.2

pr144 58537 58537 58564 58537.22 58876.2

ch150 6528 6528 6753.2 6738.37 6557.69 6550

kroA150 26524 26525.4 27346.43 27298 27355.97 26899.2 26597.78

kroB150 26130 26134.8 26752.13 26682 26631.87 26448.33 26335.85

pr152 73682 73682 74582 73765.7 73766.8 74676.9

123

3676 Arabian Journal for Science and Engineering (2019) 44:3669–3679

Table 3 continued

optimum DSCA neuro-immune-
network [41]

GCGA with local
search [52]

Massutti and
Castro’s
method [42]

GSA ant colony
system with
PSO [43]

HGA [38] ACE [51] Improved
BA [53]

rat195 2323 2327.2 2420 2356.02

d198 15780 15799.8 16084 15963 15813.3

kroA200 29368 29368 30257.53 29910 30190.27 29738.73 29458.81

kroB200 29437 29467.4 30415.6 30627 30135 30035.23 29583.38

ts225 126643 126709.8 128016 128295.7

tsp225 3916 3917 3892.88

pr226 80369 80380.4 80969 80534.39

gil262 2378 2386.6 2515

pr264 49135 49135 50344 49163.26 50908.3

pr299 48191 48306.8 50812 49757.66 49674.1

lin318 42029 42221.4 43704.97 44191 43696.87 43002.9 42877.24

rd400 15281 15422.6 16420 16143.96

fl417 11861 11933.4 12243

pr439 107217 107588.2 113787 111210

rat575 6773 6898.6 7125 7115.67 6933.87

rat783 8806 9402.4 9326 9343.77 9079.23

PD solution% = solution length − optimal solution length

optimal solution length
×100

According to the values displayed in Table 1, DSCA gives
OHC for 27 TSP instances, and for the remaining, it gives
near OHC. From the table, it is observed that DSCA gives
zero standard deviation in 16 TSP. As well, results in Table 1
indicate that theDSCA is very efficient in solving both small-
scale and large-scale TSP. Also, the variation of the obtained
best solution is compared with the known optimum solutions
graphically. This is shown in the form of bar charts in Fig. 1.
From the results, one can state that for small-scale problems
less than 300 cities, DSCA is capable of finding the opti-
mum solutions efficiently, and after 300 cities, DSCA can
still find the near OHC. As DSCA is a heuristic approach to
TSP instances, the effects of the algorithms can be precisely
judged from the mean value of the best solutions obtained in
separate runs. Such variation is presented in Fig. 2, and it can
be noted that as the number of cities increases, the effective-
ness of DSCA decreases. The percentage deviation for the
best and the mean solutions is presented in Fig. 3. It can be
noted from results that as the number of cities increases, the
performance of the DSCA decreases; however, DSCA is still
capable of attaining close to the global solution for the TSP
instances.

The results of the proposed method are compared with the
other well-known state-of-the-art algorithms available in the
literature. This includes different variants of ACO including
ACO with multiple ant clans (ACOMAC), ACOMAC with

Table 4 DSCA comparison with DIWO [54]

PD % average

DIWO [54] proposed DSCA

eil51 0.6999 0.23474

berlin52 0.0313 0

st70 0.3125 0

kroA100 0.0375 0

kroB100 0.8816 0

pr107 0.4837 0

pr136 0.94 0.46426

kroA150 0.778 0.015081

kroB150 0.3229 0.091848

d198 0.6691 0.12034

tsp225 2.3949 0.07661

pr226 0.2238 0.036084

rd400 2.4229 0.29206

pr1002 3.1873 0.37529

the nearest neighborhood, ACO with simulated annealing,
ACOwith 2-opt, hybridACO,ACOwithTaguchi, andfinally,
ACOwithABC.The algorithms are also comparedwith other
methods such as the hybrid GA, GA with ACO, the water
flow algorithm, the hybrid PSO, the RABNET, and IVRS.
The results are given in Table 2, which presents the average
value of the solutions. It is observed from the results that
DSCA is superior when compared with the other algorithms
for all the tested problems.

123

Arabian Journal for Science and Engineering (2019) 44:3669–3679 3677

Fig. 4 Graphical representation
of comparisons of proposed
DSCA and DIWO [54]

0

0.5

1

1.5

2

2.5

3

3.5

PD
 %

 a
ve

ra
ge

DIWO [55] proposed DSCA

Furthermore, to enhance the comparison of the proposed
algorithm, we compare it with a wide range of problems,
such as other researcher’s work. Comparison is made for
38 TSP instances ranging from 51 cities to 783 cities with
neuro-immune network [41], GCGA with local search [52],
Massutti and Castro’s method [42], GSA ant colony system
with PSO [43], HGA [38], ACE [51] and improved BA [53].
Table 3 depicts the outperformance of DSCA over all other
algorithms. The results indicate that HGA [38] performs bet-
ter in the performance of pr136 and rat783, while DSCA is
better in the remaining 36 TSP instances.

DIWO[54] has presented results for variousTSP instances
in terms of %PD average, for TSP instances ranging from 51
cities to 1002 cities. Comparison of DSCA with DIWO [54]
is depicted in Table 4, which shows the superior performance
of DSCA for all the considered TSP instances over DIWO
[54]. Figure 4 shows the graphical comparison of DSCA and
DIWO [54].

6 Conclusions and FutureWork

In this work, we propose a discrete sine-cosine algorithm
(DSCA) that can be used to solve traveling salesman prob-
lems. We test the performance of the DSCA by applying it
to 41 different benchmark problems obtained from the TSP
library. Results indicate that our proposed algorithm gives
the optimal HCs for 27 instances of TSP and near OHCs for
the remaining instances. Furthermore, we also compare the
DSCAwith other state-of-the-art algorithms derived from the
genetic algorithm, ant colony optimization, particle swarm
optimization, artificial bee colony optimization, and other
methods in the same category. Our comparison demonstrates
the competitive performance of DSCA over the other state-
of-the-art methods. As such, this work provides us with areas
to investigate and new directions to pursue as future works.

For example, we intend to apply our proposed algorithm
to solve other combinatorial optimization problems such as
mixed-integer programming problems, vehicle routing [55],
and scheduling [56]. Finally, we would like to generalize this
work to solve other types of TSP instances such as general-
ized TSP [57], spherical [58] and asymmetric [59,60].

Acknowledgements We would like to thank the reviewers for their
thoughtful comments and efforts toward improving our manuscript.
Also, we are grateful to Marium Tawhid for editing this paper. The
research of the Mohamed A. Tawhid is supported in part by the Natu-
ral Sciences and Engineering Research Council of Canada (NSERC).
NSERC also supports the postdoctoral fellowship of the Poonam
Savsani by NSERC.

References

1. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization
problems. Knowl.-Based Syst. 96, 120–133 (2016)

2. Tawhid, M.A.; Savsani, V.: Multi-objective sine-cosine algorithm
(MO-SCA) for multi-objective engineering design problems. Neu-
ral Comput. Appl. (2017). https://doi.org/10.1007/s00521-017-
3049-x

3. Elaziz, M.A.; Oliva, D.; Xiong, S.: An improved opposition-based
sine cosine algorithm for global optimization. Expert Syst. Appl.
90, 484–500 (2017)

4. Li, S.; Fang, H.; Liu, X.: Parameter optimization of support vector
regression based on sine cosine algorithm. Expert Syst. Appl. 91,
63–77 (2018)

5. Kumar, V.; Kumar, D.: Data clustering using sine cosine algo-
rithm: Data clustering using SCA. In: Hassanien, E., Gaber, T.
(eds.) Handbook of Research on Machine Learning Innovations
and Trends, pp. 715–726. IGI Global (2017)

6. Das, S.; Bhattacharya, A.; Chakraborty, A.K.: Solution of short-
term hydrothermal scheduling using sine cosine algorithm. Soft
Comput. 22(19), 6409–6427 (2018)

7. Reddy, K.S.; Panwar, L.K.; Panigrahi, B.K.; Kumar, R.: A new
binary variant of sine-cosine algorithm: development and applica-
tion to solve profit-based unit commitment problem. Arab. J. Sci.
Eng. 43(8), 4041–4056 (2018)

123

https://doi.org/10.1007/s00521-017-3049-x
https://doi.org/10.1007/s00521-017-3049-x

3678 Arabian Journal for Science and Engineering (2019) 44:3669–3679

8. Zhang, W.; Korf, R.E.: A study of complexity transitions on the
asymmetric traveling salesman problem. Artif. Intell. 81(1–2),
223–239 (1996)

9. Rodríguez, A.; Ruiz, R.: The effect of the asymmetry of road trans-
portation networks on the traveling salesman problem. Comput.
Oper. Res. 39(7), 1566–1576 (2012)

10. Berman, P.; Karpinski, M.: 8/7-approximation algorithm for (1,
2)-TSP. In: Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithm, pp. 641–648. Society for
Industrial and Applied Mathematics (2006)

11. He, J.; Yan, H.; Qiang, L.; Hong, Y.: Fat computational complexity
and heuristic design for the TSP. J. Softw. 20(9), 2344–2351 (2009)

12. Bellman, R.; Dreyfus, S.E.: Applied Dynamic Programming,
vol. 2050. Princeton University Press, Princeton (2015). ISBN
1400874653, 9781400874651

13. Lawler, E.L.; Wood, D.E.: Branch-and-bound methods: a survey.
Oper. Res. 14(4), 699–719 (1966)

14. Gregor, D.; Lumsdaine, A.: The parallel BGL: a generic library
for distributed graph computations. Parallel Object-Oriented Sci.
Comput. 2, 1–18 (2005)

15. Climer, S.; Zhang, W.X.: Cut-and-solve: An iterative search strat-
egy for combinatorial optimization problems. Artif. Intell. 170(8–
9), 714–738 (2006)

16. Johnson,D.S.;McGeoch, L.A.: Experimental analysis of heuristics
for the STSP. In: Gutin, G., Punnen, A.P. (eds.) The Traveling
Salesman Problem and Its Variations. Combinatorial Optimization,
vol. 12, pp. 369–443. Springer, Boston, MA (2007)

17. Croes, G.A.: A method for solving traveling-salesman problems.
Oper. Res. 6(6), 791–812 (1958)

18. Lin, S.: Computer solutions of the traveling salesman problem.Bell
Syst. Techn. J. 44(10), 2245–2269 (1965)

19. Lin, S.; Kernighan, B.W.: An effective heuristic algorithm for the
traveling- salesman problem. Oper. Res. 21(2), 498–516 (1973)

20. Helsgaun, K.: An effective implementation of the Lin–Kernighan
traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130
(2000)

21. Guo, T.; Michalewicz, Z.: Invor-Over Operator for the TSP-
Proceedings of the 5th Parallel Problem Solving from Nature
Conference (1998)

22. Junzhong, J.; Huang, Z.; Chunnian, L.: An ant colony algorithm
based on multiple-grain representation for the traveling salesman
problems. J. Comput. Res. Dev. 47(3), 434–444 (2010)

23. Shu, J.L.; Zhao, Z.; Dai, Q.Y.: Genetic algorithm for TSP. Oper.
Res. Manag. Sci. 13(1), 17–22 (2004)

24. Kirkpatrick, S.; Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220(4598), 671–680 (1983)

25. Kennedy, J.; Eberhart,R.C.:Adiscrete binary versionof the particle
swarm algorithm. In: Systems, Man, and Cybernetics, 1997. 1997
IEEE International Conference on, Computational Cybernetics and
Simulation, vol. 5, pp. 4104–4108. IEEE (1997)

26. Chen, W.N.; Zhang, J.; Chung, H.S.; Zhong, W.L.; Wu, W.G.;
Shi, Y.H.: A novel set-based particle swarm optimization method
for discrete optimization problems. IEEE Trans. Evolut. Comput.
14(2), 278–300 (2010)

27. Liu, X.; Xiu, C.: A novel hysteretic chaotic neural network and its
applications. Neurocomputing 70(13), 2561–2565 (2007)

28. Han, F.; Ling, Q.H.; Huang, D.S.: An improved approximation
approach incorporating particle swarm optimization and a priori
information into neural networks. Neural Comput. Appl. 19(2),
255–261 (2010)

29. Hunt, J.E.; Cooke, D.E.: Learning using an artificial immune sys-
tem. J. Netw. Comput. Appl. 19(2), 189–212 (1996)

30. Merz, P.; Freisleben, B.: Genetic local search for the TSP: new
results. In: IEEE International Conference on Evolutionary Com-
putation, 1997, pp. 159–164. IEEE (1997)

31. Bontoux, B.; Artigues, C.; Feillet, D.: A memetic algorithm with a
large neighborhood crossover operator for the generalized traveling
salesman problem. Comput. Oper. Res. 37(11), 1844–1852 (2010)

32. Yang, J.; Shi, X.;Marchese,M.; Liang, Y.: An ant colony optimiza-
tion method for generalized TSP problem. Prog. Nat. Sci. 18(11),
1417–1422 (2008)

33. Samanlioglu, F.; Ferrell, W.G.; Kurz, M.E.: A memetic random-
key genetic Algorithm for a symmetric multi-objective traveling
salesman problem. Comput. Ind. Eng. 55(2), 439–449 (2008)

34. Gang, P.; Iimura, I.; Nakayama, S.: An evolutionary multiple
heuristic with genetic local search for solving TSP. Int. J. Inf. Tech-
nol. 14(2), 1–11 (2008)

35. Marinakis, Y.;Marinaki,M.; Dounias, G.: Honey beesmating opti-
mization algorithm for the Euclidean traveling salesman problem.
Inf. Sci. 181(20), 4684–4698 (2011)

36. Zhou, Y.Q.; Huang, Z.X.; Liu, H.X.: Discrete glowworm swarm
optimization algorithm for TSP problem. DianziXuebao(Acta
Electronica Sinica) 40(6), 1164–1170 (2012)

37. Ouaarab, A.; Ahiod, B.; Yang, X.S.: Discrete cuckoo search algo-
rithm for the traveling salesman problem. Neural Comput. Appl.
24(7–8), 1659–1669 (2014)

38. Wang,Y.: The hybrid genetic algorithmwith two local optimization
strategies for traveling salesman problem. Comput. Ind. Eng. 70,
124–133 (2014)

39. Liu, W.; Zheng, J.; Wu, M.; Zou, J.: Hybrid crossover operator
based on pattern, Seventh International Conference on Natural
Computation (ICNC) 2011, vol. 2, pp. 1097–1100 (2011)

40. Tsai, C.F.; Tsai, C.W.; Tseng, C.C.: A new hybrid heuristic
approach for solving large traveling salesman problem. Inf. Sci.
166(1), 67–81 (2004)

41. Pasti, R.; De Castro, L.N.: A neuro-immune network for solv-
ing the traveling salesman problem. In: IJCNN’06. International
Joint Conference on Neural Networks, 2006. pp. 3760–3766. IEEE
(2006)

42. Masutti, T.A.; de Castro, L.N.: A self-organizing neural network
using ideas from the immune system to solve the traveling salesman
problem. Inf. Sci. 179(10), 1454–1468 (2009)

43. Chen, S.M.; Chien, C.Y.: Solving the traveling salesman problem
based on the genetic simulated annealing ant colony system with
particle swarm optimization techniques. Expert Syst. Appl. 38(12),
14439–14450 (2011)

44. Jun-man, K.; Yi, Z.: Application of an improved ant colony
optimization on generalized traveling salesman problem. Energy
Procedia 17, 319–325 (2012)

45. Junqiang, W.; Aijia, O.: A hybrid algorithm of ACO and delete-
cross method for TSP. In: 2012 International Conference on
Industrial Control and Electronics Engineering (ICICEE), pp.
1694–1696. IEEE (2012)

46. Dong, G.; Guo, W.W.; Tickle, K.: Solving the traveling salesman
problem using cooperative genetic ant systems. Expert Syst. Appl.
39(5), 5006–5011 (2012)

47. Othman, Z.A.; Srour, A.I.; Hamdan, A.R.; Ling, P.Y.: Performance
water flow-like algorithm for TSP by improving its local search.
Int. J. Adv. Comput. Technol. 5(14), 126 (2013)

48. Peker, M.; ŞEN, B.; Kumru, P.Y.: An efficient solving of the trav-
eling salesman problem: the ant colony system having parameters
optimized by the Taguchi method. Turk. J. Electr. Eng. Comput.
Sci. 21(Sup. 1), 2015–2036 (2013)

49. Gunduz, M.; Kiran, M.S.; Ozceylan, E.: A hierarchic approach
based on swarm intelligence to solve the traveling salesman prob-
lem. Turk. J. Electr. Eng. Comput. Sci. 23(1), 103–117 (2015)

50. Mahi, M.; Baykan, Ö.K.; Kodaz, H.: A new hybrid method based
on particle swarm optimization, ant colony optimization and 3-opt
algorithms for traveling salesman problem. Appl. Soft Comput. 30,
484–490 (2015)

123

Arabian Journal for Science and Engineering (2019) 44:3669–3679 3679

51. Escario, J.B.; Jimenez, J.F.; Giron-Sierra, J.M.: Ant colony
extended: experiments on the traveling salesman problem. Expert
Syst. Appl. 42(1), 390–410 (2015)

52. Yang, J.; Wu, C.; Lee, H.P.; Liang, Y.: Solving traveling salesman
problem using generalized chromosome genetic algorithm. Prog.
Nat. Sci. 18, 887–892 (2008)

53. Osaba, E.; Yang, X.S.; Diaz, F.; Lopez-Garcia, P.; Carballedo, R.:
An improved discrete bat algorithm for symmetric and asymmetric
traveling salesman problems. Eng. Appl. Artif. Intell. 48(1), 59–71
(2016)

54. Zhou, Y.; Luo, Q.; Chen, H.; He, A.; Wu, J.: A discrete invasive
weed optimization algorithm for solving traveling salesman prob-
lem. Neurocomputing 151, 1227–1236 (2015)

55. Toth, P.; Vigo, D. (eds.): Vehicle Routing: Problems, Methods,
and Applications. Society for Industrial and Applied Mathemat-
ics. SIAM, Philadelphia (2014)

56. Chen,H.; Zhou,Y.;He, S.;Ouyang,X.;Guo, P.: Invasiveweed opti-
mization algorithm for solving permutation flow-shop scheduling
problem. J. Comput. Theor. Nanosci. 10(3), 708–713 (2013)

57. Snyder, L.V.;Daskin,M.S.:A random-keygenetic algorithm for the
generalized traveling salesman problem. Eur. J. Oper. Res. 174(1),
38–53 (2006)

58. Ouyang, X.; Zhou, Y.; Luo, Q.; Chen, H.: A novel discrete cuckoo
search algorithm for spherical traveling salesman problem. Appl.
Math. Inf. Sci. 7(2), 777 (2013)

59. Choi, I.C.; Kim, S.I.; Kim, H.S.: A genetic algorithm with a mixed
region search for the asymmetric traveling salesman problem.
Comput. Oper. Res. 30(5), 773–786 (2003)

60. Cirasella, J.; Johnson, D.S.; McGeoch, L.A.; Zhang, W.: The
Asymmetric Traveling Salesman Problem: Algorithms, Instance
Generators, and Tests. AlgorithmEngineering an Experimentation,
pp. 32–59. Springer, Berlin (2001)

123

	Discrete Sine-Cosine Algorithm (DSCA) with Local Search for Solving Traveling Salesman Problem
	Abstract
	1 Introduction
	2 The Traveling Salesman Problem
	3 Basic Sine-Cosine Algorithm
	4 Discrete Sine-Cosine Algorithm (DSCA) with Heuristic Crossover and 2-opt Local Search for TSP
	5 Results and Discussion
	6 Conclusions and Future Work
	Acknowledgements
	References

