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Abstract
This study develops an approach that incorporates power aggregation operators with the evaluation based on distance from
average solution (EDAS) method under linguistic neutrosophic situations to solve fuzzy multi-criteria group decision-making
problems. Firstly, the existing operational laws and comparison methods of linguistic neutrosophic numbers (LNNs) are
analysed. Secondly, the distance measurement between two LNNs is defined. Thirdly, the power-weighted averaging operator
and the power-weighted geometric operator with LNNs are developed to support the decision makers’ evaluation information.
Themodels to derive the criteria weights are also constructed based on the proposed distancemeasurements. Finally, the EDAS
method is extended to resolve group decision-making problems in the linguistic neutrosophic environment. An illustrative
example of the property management company selection is given to verify the effectiveness and practicality of the proposed
approach.

Keywords Multi-criteria group decision-making · Linguistic neutrosophic numbers · Distance measurements · Power
aggregation operator · Evaluation based on distance from average solution method

1 Introduction

Decision-making is a common activity in various aspects
of our daily lives, and it is generally defined as the act
of seeking the best alternative from a set of alternatives
(options, candidates) based on the judgments of one or sev-
eral decision makers (DMs) (experts, judges). Considered as
an important branch of decision-making, the method known
as multi-criteria group decision-making (MCGDM) involves
the generation of decisions by DMs based on the information
evaluated based on a set of feasible alternatives, in which
multiple criteria are used to find a common solution [1].
In practice, the subjective evaluation information given by
DMs is usually vaguely qualitative owing to the nature of
the information and the unavailability of precise quantita-
tive information [2]. In this sense, the linguistic variables
proposed by Zadeh [3] can be used to enhance the practica-
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bility, flexibility and reliability of decision processes when
the decision problems are complex or ill-defined (i.e. an
exact description of the problem by conventional quanti-
tative expressions cannot be realised). However, the major
disadvantage of using linguistic variables is that it can only
express imprecise information but cannot present inconsis-
tent information [4,5]. The neutrosophic sets (NSs) proposed
by Smarandache [6] can be used as effective tools to address
issues on inconsistent information. The theories related to
NSs are introduced in the succeeding paragraphs.

As extension of intuitionistic fuzzy sets (IFSs) [7], NSs
simultaneously consider truth-membership, indeterminacy-
membership and falsity-membership to flexibly address
uncertain, incomplete and inconsistent information. Wang
et al. [8] proposed single-valued neutrosophic sets to over-
come the difficulty of applying NSs in actual engineering
and economic management situations. Subsequent studies
mainly focused on other extensions of NSs, such as simpli-
fied neutrosophic sets (SNSs) [9,10], interval neutrosophic
sets [11], multi-valued neutrosophic sets [12,13], and the
distance measures [14,15], similarity measures [16,17], cor-
relation coefficients [9,18] and cross-entropy [19,20] of the
sets. One of these studies discusses linguistic neutrosophic
sets (LNSs) [21] which combine the advantages of linguis-
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tic variables and NSs. Li et al. [21] proposed the concept of
LNSs and linguistic neutrosophic-prioritised operators. Fang
and Ye [22] developed the LNN-weighted arithmetic aver-
aging operator and the LNN-weighted geometric averaging
operator based on the newly proposed operations and com-
parison methods. On the one hand, LNSs can take advantage
of the linguistic approach to address imprecise information.
On the other hand, LNSs can maximise the use of NSs to
express inconsistent information, thus fully maximising the
potentials of both sets. Correlation papers [21,22] that dis-
cuss the existing operations and comparison laws are also
presented here. Given the advantages of LNNs, the present
study can be utilised in the linguistic neutrosophic context.
Consequently, a universal decision-making approach can be
developed to address MCGDM problems.

Information aggregation operators are frequently used for
decision-making models, and they play significant roles in
aggregating the information received by DMs. The most
common types of operators are the arithmetic- andgeometric-
weighted operators [23,24], order-weighted operators [25,
26], generalised operators [27,28], Bonferroni mean oper-
ators [29,30], power aggregation (PA) operators [31,32],
Heronian mean operators [33,34], prioritised aggregation
operators [35,36], and so on. Each of these operators has
its own characteristics and has been applied to different sets,
such as fuzzy sets (FSs), IFSs and NSs and their extended
forms. In this study, we adopt the PA operator proposed by
Yager [31] to adjust the linguistic neutrosophic environment.
PAoperators canmanage information about the interrelation-
ship of aggregated values, and they enable the values to be
mutually reinforced. We utilise the PA operator to aggregate
the DMs’ evaluation information, thus relieving the influ-
ences of unreasonable information received by biased DMs.

Various decision-making methods have contributed to
the development of multi-criteria decision-making (MCDM)
research. Classical methods mainly include the following:
TODIM [37,38], TOPSIS [39], PROMETHEE [40], ELEC-
TRE [41], VIKOR [42] and other correlation methods [43–
45]. Even at present, these classical methods are extensively
investigated. The evaluation based on distance from average
solution (EDAS) method proposed by Ghorabaee et al. [46],
a novel decision-making approach, has been revised in the
present work to address MCGDM problems. EDAS is a use-
ful and an easy-to-calculate method for conflicting criteria
scenarios, and it has been applied in multi-criteria inven-
tory classification [46] and supplier selection [47]. Although
EDAS has not been extensively studied in recent years, many
users have proven that its results are highly consistent with
other methods, such as TOPSIS, simple additive weighting,
VIKOR and so on [46]. Even if the research is limited, we
use the EDAS tool to manage the MCDM problems and
overcome the issues related to the originality and simplic-
ity of traditional compromise methods, such as TOPSIS and

VIKOR[48]. Then, basedonEDAS,wepropose the extended
EDAS. The evaluation information is displayed in the form
of linguistic neutrosophic numbers (LNNs), and the expected
functions are considered.

The acquisition of the criteria weights is a crucial step in
the MCGDM problem-solving process. In ideal cases, the
criteria weights are fully known. However, it is often dif-
ficult in reality to obtain the accurate values of the criteria
weights due to the constraints of the DM’s knowledge and
the complexity of the environment. Thus, the weight infor-
mation is often partially known or completely unknown. The
correct derivation of the criteria weights is therefore of great
significance. In this study, we establish a single-objective
programming model based on linguistic neutrosophic posi-
tive ideal solution to derive the objective weight information.

On the basis of the above observations, a universal and
convenient approach is proposed to find the best alternative
from the evaluation information in relation to the criteria pro-
vided by the DMs for several alternatives. In other words, the
present study aims to effectively solve MCGDM problems.
The rest of this paper proceeds as follows. Section 2 presents
a brief review of the linguistic scale functions, LNNs and
their relevant concepts. Section 3 presents the distance mea-
surement of LNNs and the two types of PA operators for
LNNs, namely the linguistic neutrosophic power-weighted
averaging (LNPWA) operator and the linguistic neutrosophic
power-weighted geometric (LNPWG) operator. Section 4
presents the models to derive the criteria weights and the
MCGDM approach based on the EDAS method. Section 5
gives an example of a property management company selec-
tion to verify the desirability of the proposed approach. The
conclusions are discussed in the last section.

2 Background

In this section, the definitions andoperations related toLNNs,
including the linguistic term sets, linguistic scale functions,
operations and expected functions of LNNs proposed by
Fang [22] and Li [21], are briefly reviewed.

The decision-making information is usually qualitative
and difficult to depict by numerical values in real life. Thus,
Zadeh [3] proposed the use of linguistic variables that can be
defined and described by linguistic term sets.

Let S = {
s j | j = 0, 1, . . . , 2l

}
be a finite and fully

ordered discrete linguistic term set, where l is a positive
integer and s j is a possible linguistic term for a linguistic
variable. Then, sμ and sν (sμ, sν ∈ S) represent an ordered
sμ < sν if and only if μ < ν. If a negation operator exists,
then Neg(s j ) = s2l− j (μ, ν = 0, 1, . . . , 2l).

Xu [49] extended S into the continuous term set S̄ ={
s j |s0 ≤ sα ≤ s2l , α ∈ [0, 2l]} to preserve all the process-
ing information. If sα ∈ S, then sα is called the original
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linguistic term; otherwise sα is called the virtual linguistic
term.

2.1 Linguistic Scale Functions

The linguistic scale function is a popular tool for enabling the
flexible use of dates and semantic expressions [38]. Different
semantic values are assigned to linguistic terms in different
situations to derive the LNNs operations.

Definition 1 [3]. Let s j ∈ S be a linguistic term. If θ j ∈ [0, 1]
is a numerical value, then the linguistic scale function f that
conducts the mapping from s j to θ j ( j = 0, 1, . . . , 2l) can
be defined as follows:

f : s j → θ j ,

where 0 ≤ θ0 < θ1 < · · · < θ2l ≤ 1.

Thus, the function f monotonically increases relative to
the subscript j . The symbol θ j ( j = 0, 1, . . . , 2l) reflects the
preference of DMs when the linguistic terms s j ∈ S ( j =
0, 1, . . . , 2l) are used. Subsequently, the function denotes
the semantics of the linguistic terms. The following three
functions can act as linguistic scale functions:

(1) f1(s j ) = θ j = j
2l ( j = 0, 1, 2, . . . , 2l),

In function (1), the evaluation scale for the linguistic
information is divided by the average.

(2) f2(s j ) = θ j =
{

al−al− j

2al−2
( j = 0, 1, 2, . . . , l)

al+al− j−2
2al−2

( j = l, l + 1, l + 2, . . . , 2l)

In function (2), the linguistic term set extends from the
middle to both ends, and the semantic deviation between
the adjacent linguistic terms increases.

(3) f3(s j ) = θ j =
{

lα−(l− j)α

2lα ( j = 0, 1, 2, . . . , l)
lβ+( j−l)β

2lβ
( j = l, l + 1, l + 2, . . . , 2l)

.

In function (3), the linguistic term set extends from themiddle
to both ends, and the semantic deviation between the adjacent
linguistic terms decreases.

To preserve all the provided information and realise easy
calculation [50], the functions given above can be expanded
to f ∗ : S → R+(R+ = {r |r ≥ 0, r ∈ R}) which satisfies
f ∗(s j ) = θ j . It is also a strictly monotonically continuous
and increasing function.An inverse function of f ∗ exists, and
it is denoted by f ∗−1. Furthermore, f ∗(s2l) = 1 can always
be satisfied by adopting the functions f ∗

1 , f ∗
2 and f ∗

3 which
are the expanded functions of f1, f2 and f3, respectively.

2.2 LNNs

Definition 2 [21]. Let X be a universe of discourse and S =
{sα |s0 ≤ sα ≤ s2l , α ∈]0, 2l[} , then the LNSs can be defined

as follows:

A = {< x, sα(x), sβ(x), sγ (x) > |x ∈ X} ,

where 0 ≤ α + β + γ ≤ 6l, whilst sα(x), sβ(x),
and sγ (x) ∈ S represent the truth-membership function,
the indeterminacy-membership function, and the falsity-
membership function of element x ∈ X to set A. Moreover,
< sα(x), sβ(x), sγ (x) > is an LNN, and thus, A can be
reviewed as a collection of LNNs.

Definition 3 [21]. Let f ∗ be the linguistic scale functions,
and let f ∗−1 be the inverse function of f ∗. If a =<

sα1 , sβ1 , sγ1 > and b =< sα2 , sβ2 , sγ2 > are two LNNs,
where ξ > 0, then the operations for the LNNs can be defined
(see below), and the calculation results are still LNNs.

(1) a ⊕ b = 〈
f ∗−1( f ∗(sα1) + f ∗(sα2) − f ∗(sα1) f ∗(sα2)),

f ∗−1( f ∗(sβ1) f ∗(sβ1)), f ∗−1( f ∗(sγ1) f ∗(sγ1))
〉
;

(2) a ⊗ b = 〈
f ∗−1( f ∗(sα1) f ∗(sα1)), f ∗−1( f ∗(sβ1) +

f ∗(sβ2) − f ∗(sβ1) f ∗(sβ2)), f ∗−1( f ∗(sγ1) + f ∗(sγ2) −
f ∗(sγ1) f ∗(sγ2))

〉
;

(3) ξa = 〈
f ∗−1(1 − (1 − f ∗(sα1))ξ ), f ∗−1(( f ∗(sβ1))ξ ),

f ∗−1(( f ∗(sγ1))ξ )
〉
;

(4) aξ = 〈
f ∗−1(( f ∗(sα1))ξ ), f ∗−1(1 − (1 − f ∗(sβ1))ξ ),

f ∗−1(1 − (1 − f ∗(sγ ))ξ )
〉
;

(5) Neg(a) = 〈
sγ1 , sβ1 , sα1

〉
.

Definition 4 [22]. Let f ∗ be the linguistic scale functions,
and let f ∗−1 be the inverse function of f ∗. If a =<

sα1 , sβ1 , sγ1 > and b =< sα2 , sβ2 , sγ2 > are two LNNs,
where ξ > 0, then the operations for LNNs can be defined
(see below), and the calculation results are still LNNs.

(1) a ⊕ b =
〈
sα1+α2− α1α2

2l
, s β1β2

2l
, s γ1γ2

2l

〉
;

(2) a ⊗ b =
〈
s α1α2

2l
, s

β1+β2− β1β2
2l

, sγ1+γ2− γ1γ2
2l

〉
;

(3) ξa =
〈
s2l−2l(1− α1

2l )ξ , s2l( β1
2l )ξ

, s2l( γ1
2l )ξ

〉
;

(4) aξ =
〈
s2l( α1

2l )ξ , s2l−2l(1− β1
2l )ξ

, s2l−2l(1− γ1
2l )ξ

〉
.

Definition 5 [21]. Let f ∗ be a linguistic scale function. If
a =< sα, sβ, sγ > is an LNN, then the expected function
E(a), accuracy function H(a) and certainty function C(a)

can be defined as follows:

E(a) = 1

3
(2 + f ∗(sα) − f ∗(sβ) − f ∗(sγ )), (1)

H(a) = f ∗(sα) − f ∗(sγ ), (2)

C(a) = f ∗(sα). (3)

Assume that ai and a j are two LNNs. Thus, they can be
ranked according to the following rules:
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(1) If E(ai ) > E(a j ), then ai > a j ;
(2) If E(ai ) = E(a j ) and H(ai ) > H(a j ), then ai > a j ;
(3) If E(ai ) = E(a j ), H(ai ) = H(a j ) andC(ai ) > C(a j ),

then ai > a j ;
(4) If E(ai ) = E(a j ), H(ai ) = H(a j ) andC(ai ) = C(a j ),

then ai = a j .

Definition 6 [22]. Let a =< sα, sβ, sγ > be an LNN, then
the expected function E(a) accuracy function H(a) can be
defined as follows:

E(a) = 4l + α − β − γ

6l
,

H(a) = α − γ

2l
.

Assume that ai and a j are two LNNs. Then, they can be
ranked according to the following rules:

(1) If E(ai ) > E(a j ), then ai > a j ;
(2) If E(ai ) = E(a j ) and H(ai ) > H(a j ), then ai > a j ;
(3) If E(ai ) = E(a j ) and H(ai ) = H(a j ), then ai = a j .

On the basis of the correlation research on LNNs, two
existing operational laws and comparison methods can be
linked.

The operational laws of Fang [22] are the special case ver-
sions of the operational laws of Li [21]. If f ∗(s j ) = j

2l ( j =
0, 1, 2, . . . , 2l) (i.e. from Li’s operational laws), then the dis-
tance between adjacent semantics is equal and the rules can
be simplified (i.e. similar to those by Fang). The compari-
son rules of LNNs have similar problems. The comparison
rules of Fang can be obtained by taking f ∗(s j ) = j

2l ( j =
0, 1, 2, . . . , 2l) from Li’s comparison method. However, the
comparison rules of Fang do not have a certainty function,
and thus, they may lead to improper results. For example,
when a1 =<s4, s2, s2> and a2 =<s3, s2, s1>, then we can
obtain a1 = a2 by using Fang’s rules. Subsequently, a1 	= a2.
By contrast, Li’s comparison rules will never reach the same
relationship. Thus, we use Li’s rules in the present work.

3 PA Operators with LNNs

In this section, the traditional PA operator is extended as
LNPWAandLNPWGoperators. The distancemeasurements
between two LNNs can then be developed.

Definition 7 [31]. Let ai (i = 1, 2, . . . , n) be a collection of
values and � be the set of all given values. The PA operator
is the PA : �n → � defined as follows:

PA(a1, a2, . . . , an) =
n∑

i=1

1 + T (ai )∑n
i=1 (1 + T (ai ))

ai , (4)

where T (ai ) = ∑n
j=1, j 	=i sup(ai , ai ) and sup(ai , a j )

denote the supports for ai and a j which satisfy the following
properties:

(1) sup(ai , a j ) ∈ [0, 1];
(2) sup(ai , a j ) = sup(a j , ai );
(3) If d(ai , a j ) < d(ap, aq), then sup(ai , a j ) ≥ sup(ap,

aq), where d(ai , a j ) is the distance between ai and a j .

3.1 Distance Measurement Between Two LNNs

Definition 8 Let a1 =<sα1 , sβ1 , sγ1> and a2 =<sα2 , sβ2 ,
sγ2> be any two LNNs, and let f ∗ be a linguistic scale func-
tion κ ≥ 0. The generalised distance measure between ai
and a j can be defined as

d(a1, a2) =
(
1

3

(∣∣ f ∗(sα1) − f ∗(sα2)
∣∣κ

+ ∣∣ f ∗(sβ1) − f ∗(sβ2)
∣∣κ

+ ∣∣ f ∗(sγ1) − f ∗(sγ2)
∣∣κ))

1
κ , (5)

where κ = 1 or κ = 2, andEq. (5) is reduced to theHamming
distance or the Euclidean distance, respectively.

Theorem 1 Let a1 =< sα1 , sβ1 , sγ1 >, a2 =< sα2 , sβ2 , sγ2 >,
and a3 =< sα3 , sβ3 , sγ3 > be any three LNNs, and let f ∗ be
a linguistic scale function. The distance measurement pre-
sented in Definition 8 satisfies the following three properties:

(1) d(a1, a2) ≥ 0;
(2) d(a1, a2) = d(a2, a1);
(3) If sα1 > sα2 > sα3 , sβ1 < sβ2 < sβ3 , and sγ1 <

sγ2 < sγ3 , then d(a1, a3) > d(a1, a2), and d(a1, a3) >

d(a2, a3).

Proof Properties (1) and (2) are clearly correct. The proof of
property (3) can then be obtained.

sα1 > sα2 > sα3 , sβ1 < sβ2 < sβ3 , sγ1 < sγ2 < sγ3
and f ∗ are strictly monotonically increasing and continuous
functions. Thus, f ∗(sα1) > f ∗(sα2) > f ∗(sα3), f ∗(sβ1) >

f ∗(sβ2) > f ∗(sβ3) and f ∗(sγ1) > f ∗(sγ2) > f ∗(sγ3). The
following inequalities can then be obtained:

∣∣ f ∗(sα1) − f ∗(sα3)
∣∣κ >

∣∣ f ∗(sα1) − f ∗(sα2)
∣∣κ ,

∣∣ f ∗(sβ1) − f ∗(sβ3)
∣∣κ >

∣∣ f ∗(sβ1) − f ∗(sβ2)
∣∣κ ,

∣∣ f ∗(sγ1) − f ∗(sγ3)
∣∣κ >

∣∣ f ∗(sγ1) − f ∗(sγ2)
∣∣κ .

Then,

(
1

3

(∣∣ f ∗(sα1) − f ∗(sα3)
∣∣κ + ∣∣ f ∗(sβ1) − f ∗(sβ3)

∣∣κ

+ ∣∣ f ∗(sγ1) − f ∗(sγ3)
∣∣κ))

1
κ

123



Arabian Journal for Science and Engineering (2019) 44:2737–2749 2741

>

(
1

3

(∣∣ f ∗(sα1) − f ∗(sα2)
∣∣κ + ∣∣ f ∗(sβ1) − f ∗(sβ2)

∣∣κ

+ ∣∣ f ∗(sγ1) − f ∗(sγ2)
∣∣κ))

1
κ .

Thus, d(a1, a3) > d(a1, a2). The inequality d(a1, a3) >

d(a2, a3) can also be proven in a similar manner. This part
concludes the proof of Theorem 1. 
�

Example 1 Assume that a1 =<s3, s2, s1>, a2 =<s5, s4, s2>,
and a3 =<s6, s2, s2> are three LNNs. In addition, let
κ = 2, l = 4 and f ∗ = f ∗

1 . Thus, d(a1, a2) = 0.125,
d(a1, a3) = 0.132 and d(a2, a3) = 0.093. Moreover,
d(a1, a3) > d(a1, a2) and d(a1, a3) > d(a2, a3).

3.2 Power-Weighted Averaging Operator with LNNs

Definition 9 Let ai =< sαi , sβi , sγi > (i = 1, 2, . . . , n)

be a collection of LNNs, and let 
 be the set of all LNNs
and ωi the weight of ai (i = 1, 2, . . . , n), where ωi ≥ 0
and

∑n
i=1 ωi = 1. The LNPWA operator is the mapping

LNPWA : 
n → 
 defined as follows:

LNPWA(a1, a2, . . . , an) = n⊕
i=1

(1 + T (ai ))ωi ai∑n
i=1 (1 + T (ai ))ωi

, (6)

where T (ai ) = ∑n
j=1, j 	=i ω j sup(ai , a j ) and sup(ai , a j )

denote the supports for ai and a j , which satisfy the following
properties:

(1) sup(ai , a j ) ∈ [0, 1];
(2) sup(ai , a j ) = sup(a j , ai )
(3) Ifd(ai , a j ) < d(ap, aq), then sup(ai , a j ) ≥ sup(ap, aq),

where d(ai , a j ) is the distance measurement between ai
and a j , as defined in Sect. 3.1.

Theorem 2 Let ai =<sαi , sβi , sγi > (i = 1, 2, . . . , n) be a
collection of LNNs andωi the weight of ai (i = 1, 2, . . . , n),
where ωi ≥ 0 and

∑n
i=1 ωi = 1. Then, the result aggregated

from Definition 9 is still an LNN. Moreover,

LNPWA(a1, a2, . . . , an)

=
〈

f ∗−1

(

1 −
n∏

i=1

(1 − f ∗(sαi ))(1+T (ai ))ωi /
∑n

i=1 ωi (1+T (ai ))

)

,

f ∗−1

(
n∏

i=1

( f (sβi ))
(1+T (ai ))ωi /

∑n
i=1 ωi (1+T (ai ))

)

,

f ∗−1

(
n∏

i=1

( f (sγi ))
(1+T (ai ))ωi /

∑n
i=1 ωi (1+T (ai ))

)〉

, (7)

where T (ai ) = ∑n
j=1, j 	=i ω j sup(ai , a j ), which satisfies the

conditions presented in Definition 9.

Proof For convenience, let ϕi = (1+T (ai ))ωi∑n
i=1 ωi (1+T (ai ))

for the

purpose of this proof. Then, Eq. (7) can be proven via the
mathematical induction of n.

(1) When n = 2, we have

LNPWA(a1, a2) = φ1a1 ⊕ φ2a2

=
〈
f ∗−1(1 − (1 − f ∗(sα1 ))φ1 (1 − f ∗(sα2 ))φ2 ),

f ∗−1(( f (sβ1 ))
φ1 ( f (sβ2 ))

φ2 ),

f ∗−1(( f (sγ1 ))
φ1 ( f (sγ2 ))

φ2 )
〉

=
〈

f ∗−1

(

1 −
2∏

i=1

(1 − f ∗(sαi ))(1+T (ai ))ωi /
∑n

i=1 ωi (1+T (ai ))

)

,

f ∗−1

(
2∏

i=1

( f (sβi ))
(1+T (ai ))ωi /

∑n
i=1 ωi (1+T (ai ))

)

,

f ∗−1

(
2∏

i=1

( f (sγi ))
(1+T (ai ))ωi /

∑n
i=1 ωi (1+T (ai ))

)〉

.

Therefore, when n = 2, Eq. (7) is true.
(2) Assume that when n = k, Eq. (7) is true. Thus,

LNPWA(a1, a2, . . . , ak)

=
〈

f ∗−1

(

1 −
k∏

i=1

(1 − f ∗(sαi ))φi
)

,

f ∗−1

(
k∏

i=1

( f (sβi ))
φi

)

, f ∗−1

(
k∏

i=1

( f (sγi ))
φi

)〉

.

Then, when n = k + 1, we have

LNPWA(a1, a2, . . . , ak , ak+1)

= LNPWA(a1, a2, . . . , ak) ⊕ φk+1ak+1

=
〈

f ∗−1

(

1 −
k∏

i=1

(1 − f ∗(sαi ))φi
)

,

f ∗−1

(
k∏

i=1

( f (sβi ))
φi

)

, f ∗−1

(
k∏

i=1

( f (sγi ))
φi

)〉

⊕
〈
f ∗−1(1 − (1 − f ∗(sαk+1 ))

φk+1 ),

f ∗−1(( f (sβk+1 ))
φk+1 ), f ∗−1(( f (sγk+1 ))

φk+1 )
〉

=
〈

f ∗−1

(

1 −
k∏

i=1

(1 − f ∗(sαi ))φi (1 − f ∗(sαk+1 ))
φk+1

)

,

f ∗−1

(
k∏

i=1

( f (sβi ))
φi ( f (sβk+1 ))

φk+1

)

,

f ∗−1

(
k∏

i=1

( f (sγi ))
φi ( f (sγk+1 ))

φk+1

)〉

=
〈

f ∗−1

(

1 −
k+1∏

i=1

(1 − f ∗(sαi ))(1+T (ai ))ωi /
∑n

i=1 ωi (1+T (ai ))

)

,
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f ∗−1

(
k+1∏

i=1

( f (sβi ))
(1+T (ai ))ωi /

∑n
i=1 ωi (1+T (ai ))

)

,

f ∗−1

(
k+1∏

i=1

( f (sγi ))
(1+T (ai ))ωi /

∑n
i=1 ωi (1+T (ai ))

)〉

.

Thus, when n = k + 1, Eq. (7) is true.

According to (1) and (2), we can calculate Eq. (7) for any
n. 
�
Theorem 3 (Idempotency). Let ai =< sαi , sβi , sγi > (i =
1, 2, . . . , n) be a collection of LNNs. For all ai =<

sα, sβ, sγ >= a (i = 1, 2, . . . , n), there is LNPWA(a1, a2,
. . . , an) = a.

Proof Given that all ai = a, we have

LNPWA(a1, a2, . . . , an) = n⊕
i=1

(1 + T (ai ))ωi ai∑n
i=1 (1 + T (ai ))ωi

= n⊕
i=1

(1 + T (ai ))ωi a∑n
i=1 (1 + T (ai ))ωi

= a
n∑

i=1

(1 + T (ai ))ωi∑n
i=1 (1 + T (ai ))ωi

= a.


�
Theorem 4 (Boundedness) Let ai =< sαi , sβi , sγi > (i =
1, 2, . . . , n) be a collection of LNNs. Suppose that a =<

smax
i

αi , smin
i

βi , smin
i

γi > and b =< smin
i

αi , smax
i

βi , smax
i

γi >,

then b ≤ LNPWA(a1, a2, . . . , an) ≤ a.

Proof Given that smax
i

αi ≥ sαi ≥ smin
i

αi , smin
i

βi ≤ sβi ≤
smax

i
βi and smin

i
γi ≤ sγi ≤ smax

i
γi , according to Theorem 3,

we have

b = LNPWA(b, b, . . . , b) ≤ LNPWA(a1, a2, . . . , an)

≤ LNPWA(a, a, . . . , a) = a

Thus, b ≤ LNPWA(a1, a2, . . . , an) ≤ a. 
�

3.3 Power-Weighted Geometric Operator with LNNs

Definition 10 Let ai = 〈sαi , sβi , sγi 〉 (i = 1, 2, . . . , n) be a
collection of LNNs, 
 the set of all LNNs, and ωi the weight
of ai (i = 1, 2, . . . , n), where ωi ≥ 0 and

∑n
i=1 ωi = 1.

Then, the LNPWGoperator is the mapping LNPWA : 
n →

 defined as follows:

LNPWG(a1, a2, . . . , an) =
n∏

i=1

a
ωi (1+T (ai ))/

∑n
i=1 ωi (1+T (ai ))

i ,

(8)

where T (ai ) = ∑n
j=1, j 	=i ω j sup(ai , a j ) and sup(ai , a j )

denote the supports for ai and a j which satisfy the following
three properties:

(1) sup(ai , a j ) ∈ [0, 1];
(2) sup(ai , a j ) = sup(a j , ai );
(3) If d(ai , a j ) < d(ap, aq), then sup(ai , a j ) ≥ sup(ap,

aq),whered(ai , a j ) is the distancemeasurement between
ai and a j , defined in Sect. 3.1.

Theorem 5 Let ai = 〈sαi , sβi , sγi 〉 (i = 1, 2, . . . , n) be a
collection of LNNs andωi the weight of ai (i = 1, 2, . . . , n),
where ωi ≥ 0 and

∑n
i=1 ωi = 1. Then, the result aggregated

from Definition 10 is still an LNN. Moreover,

LNPWG(a1, a2, . . . , an)

=
〈
f ∗−1

(∏n
i=1 ( f ∗(sαi ))ωi (1+T (ai ))/

∑n
i=1 ωi (1+T (ai ))

)
,

f ∗−1
(
1 − (

∏n
i=1 (1 − f ∗(sβi ))(1+T (ai ))ωi /

∑n
i=1 ωi (1+T (ai ))

)
,

f ∗−1
(
1 − (

∏n
i=1 (1 − f ∗(sγi ))(1+T (ai ))ωi /

∑n
i=1 ωi (1+T (ai ))

)〉
,

,

where T (ai ) = ∑n
j=1, j 	=i ω j sup(ai , a j ) which satisfies the

conditions presented in Definition 10.

Proof Theorem 5 can be proven via mathematical induction,
but the full discussion of the process is omitted here.

Similarly, the LNPWG operator has the characteristics of
idempotency and boundedness. 
�

4 Method

In this section, novel models based on the linguistic neutro-
sophic positive ideal solution of deriving the criteria weights
are constructed. The weight information of the proposed
models is either partially known or completely unknown.
Subsequently, the LN-EDAS decision-making method is
introduced. The extended EDAS and the PA operator are also
combined to effectively manage the LNNs. Consequently, a
novel linguistic neutrosophic MCGDM approach is devel-
oped.

4.1 Models of Deriving CriteriaWeights

Assume that R = [ri j ]m×n (i = 1, 2, . . . ,m; j =
1, 2, . . . , n) is a linguistic neutrosophic decision matrix,
where ri j = 〈sαi j , sβi j , sγi j 〉 is expressed in the form of
LNNs. Then, the linguistic neutrosophic positive ideal solu-
tion can be derived as

LN − PIS = R+ = {
r+
1 , r+

2 , . . . , r+
n

}

= {
max
i
ri j | j = 1, 2, . . . , n

}
. (9)
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Assume that ω j ( j = 1, 2, . . . , n) is the weight of the j-th
criterion. Then, ω j ≥ 0 and

∑n
j=1 ω j = 1. The deviation

degree between each alternative ai (i = 1, 2, . . . ,m) and
the linguistic neutrosophic positive ideal solution R+ can be
defined as

�(ai , R+) = ∑n
j=1 ω2

j d
2(ri j , r

+
j )

= ∑n
j=1 ω2

j (
1
3 (( f

∗(sα1) − f ∗(sα2))2

+ (
f ∗(sβ1) − f ∗(sβ2)

)2

+ ( f ∗(sγ1) − f ∗(sγ2))2)
)

, (10)

where d(ri j , r
+
j ) is the distance measurement between ri j

and r+
j , as defined in Sect. 3.1.

The smaller the deviation degree between each alterna-
tive and linguistic neutrosophic positive ideal solution is, the
better the alternative will be. Therefore, we construct the fol-
lowing single-objective programming model:

.

{
min g(x) = ∑m

i=1
∑n

j=1 ω2
j d

2(ri j , r
+
j )

∑n
j=1 ω j = 1, ω j ≥ 0, j = 1, 2, . . . , n

. (11)

We also construct the Lagrange function to solve this model.

L(ω, λ) =
m∑

i=1

n∑

j=1

ω2
j d

2(ri j , r
+
j ) + 2λ

⎛

⎝
n∑

j=1

ω j − 1

⎞

⎠ ,

where λ is the Lagrange multiplier. By calculating the partial
derivatives with respect to ω j and λ, the optimal weight ω j

can be obtained as

ω j = 1
(
∑n

j=1
1∑m

i=1 d
2(ri j ,r

+
j )

)(∑m
i=1 d

2(ri j , r
+
j )
) . (12)

The above result is applied to situations where the weight
information is completely unknown. For the situation where
the information is partly known, the criteria weights can be
obtained by using the following model, in which the set of
known information for the criteria weights is ψ :

{
min g(x) = ∑m

i=1
∑n

j=1 ω2
j d

2(ri j , r
+
j )

ω j ∈ ψ,
∑n

j=1 ω j = 1, ω j ≥ 0, j = 1, 2, . . . , n
. (13)

4.2 LN-EDAS Decision-MakingMethod

EDAS is a useful method for multi-criteria inventory clas-
sification [46] and supplier selection [47], and it can be
effectively utilised for some conflicting criteria. In this
method, two necessary measures are considered, namely the
positive distance from average (PDA) and the negative dis-
tance from average (NDA). These measures can express the
difference between each alternative and average solution.

The higher values of PDA and the lower values of NDA
are, the best alternative selected will be. Subsequently, based
on EDAS, we propose the extended EDAS whose evalua-
tion information is displayed in the form of LNNs and the
expected functions are considered.

Firstly, the average solution is calculated according to all
presented criteria.

AV = [AV j ]1×n =
[∑m

i=1 ri j
m

]

1×n
, (14)

where ri j (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) is the linguistic
neutrosophic evaluation information of the i-th alternative on
j-th provided by the DMs. Then, the PDA andNDAmatrices
are calculated as

PDA = [Pi j ]m×n =
[
max(0, E(ri j ) − E(AV j ))

E(AV j )

]

m×n

,

NDA = [Ni j ]m×n =
[
max(0, E(AV j ) − E(ri j ))

E(AV j )

]

m×n

,(15)

where E(ri j ) and E(AV j ) represent the expected values of
ri j and AV j which can be obtained by Definition 5. Then, the
weighted sums of PDA and NDA of all property companies
are obtained by

SPi =
n∑

j=1

w j Pi j ,

SNi =
n∑

j=1

w j Ni j , (16)

and normalised as

NSPi = SPi
max
i

SPi
,

NSNi = 1 − SNi

max
i

SNi
. (17)

Finally, the appraisal score (AS) of all property companies
is calculated by

ASi = 1

2
(NSPi + NSNi ). (18)

The higher the value of ASi is, the better the property com-
pany will be.

4.3 MCGDMApproach Based on LN-EDAS and PA
Operators

From the preparatory phase, an MCGDM approach based on
EDAS and PA operators with LNNs is proposed. Let A =
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{a1, a2, . . . , am}be a set of alternatives,C = {c1, c2, . . . , cn}
the criteria set and E = {e1, e2, . . . , ep} the DM set. Assume
that the weight of the criteria is w j ( j = 1, 2, . . . , n), where
w j ≥ 0 and

∑n
j=1 w j = 1, and the weight of the DMs is

ωk (k = 1, 2, . . . , p), where ωk ≥ 0 and
∑p

k=1 ωk = 1. Let
Hk = [hki j ]m×n be the decision matrices, where hki j =<

sαi jk , sβi jk , sγi jk > (i = 1, 2, . . . ,m; j = 1, 2, . . . , n; k =
1, 2, . . . , p) is the linguistic neutrosophic evaluation infor-
mation of i-th alternative on j-th provided by DMs ek .

The process of the proposed approach includes the fol-
lowing steps:

Step 1 Normalise the decision matrix.
Two criteria types, namely benefit criteria and cost crite-

ria, are included in the decision matrices. Thus, the negation
operator in Definition 3 is used to unify both criteria and
transform the cost-type criteria values into benefit-type crite-
ria values. Assume that the transformed standardised matrix
is Rk = [ri jk]m×n (k = 1, 2, . . . , p). Then, the original
matrix Hk can be transformed into Rk as follows:

ri jk =
{
hi jk, for benifit criterion c j
Neg(hi jk), for cost criterion c j

. (19)

Step 2 Calculate the supports.
Obtain the supports with the formula

sup(ri jk1 , ri jk2) = 1 − d(ri jk1 , ri jk2)

(i = 1, 2, . . . ,m; j = 1, 2, . . . , n; k1, k2 = 1, 2, . . . , p),

(20)

where d(ri jk1 , ri jk2) is the distance measurement between
ri jk1 and ri jk2 , as defined in Sect. 3.1.

Step 3Calculate theweightsϕi jk associatedwith ri jk (k =
1, 2, . . . , p).

ϕi jk = (1 + T (ri jk))ωk∑p
k=1 ωk(1 + T (ri jk))

, (21)

where T (ri jk) = ∑p
k̃=1,̃k 	=k

ωk̃ sup(ri jk, ri j k̃) and ωk̃ is the
weight of DM ẽk .

Step 4 Obtain the comprehensive evaluation matrix.
Utilise either the LNPWA operator or the LNPWG oper-

ator to aggregate the evaluation information provided by
the DMs to determine the comprehensive evaluation matrix
R = [ri j ]m×n .

Step 5 Obtain the criteria weights.
Utilise Eq. (12) to derive the weight information if the

criteria weights are completely unknown or utilise model Eq.
(13) to derive the weight information if the criteria weights
are partly known.

Step 6 Obtain the average solution according to Eq. (14).
Step 7 Obtain the PDA and NDA matrices according to

Eq. (15).

Step 8 Obtain the weighted sum of the PDA SPi and the
NDA SNi according to Eq. (16).

Step 9 Normalise the values of SP and SN according to
Eq. (17).

Step 10 Obtain the AS according to Eq. (18).
Step 11 Rank the alternatives.
The alternatives are ranked according to the decreasing

values of AS. The alternative with the highest AS is the best
choice.

5 Illustrative Example of Property
Management Company Selection

In this section, we used the proposed MCGDM approach to
help a developer select a suitable property management com-
pany in Zhengzhou in the Province of Henan. The developer
invited three experts, who are denoted here as e1, e2 and e3.
Two of the experts are members of the Zhengzhou Property
Management Association. Furthermore, all of the experts
play important roles in the real estate sector in Henan. The
main purpose of the developer was to construct residences,
and thus, five satisfactory property management compa-
nies that perform well in residential property construction
were selected. The companieswere Jianye Property, Xinyuan
Property, Lvdu Property, Vanke Property and Zhengshang
Property. For convenience, the names of these candidate
property management companies were replaced by a1, a2,
a3, a4 and a5. After a discussion between the developer
and the experts, five vital criteria were selected: staff quality
c1, service level c2, customer rights protection c3, customer
satisfaction level c4 and emergency capability c5. The spe-
cific condition of the criteria weights was w4 > w5. The
evaluation provided by the experts was all equal, and the
weight of the experts was ωk = 1

3 (k = 1, 2, 3). In addi-
tion, the linguistic term set S = {s0 = extremely low,
s1 = very low, s2 = low, s3 = slightly low, s4 = medium,
s5 = slightly high, s6 = high, s7 = very high, s8 =
extremely high} was employed here. After interviewing the
experts, the sets of linguistic neutrosophic evaluation infor-
mation were transformed into LNNs. The results are shown
in Tables 1, 2 and 3.

5.1 Illustration of the ProposedModel

The procedure of the case study can be summarised by the
following steps:

Step 1 Normalise the decision matrix.
Considering that all of the criteria are benefit-type criteria,

a normalisation is not needed. Therefore, Rk = Hk (k =
1, 2, 3).

Step 2 Calculate the supports.
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Table 1 Evaluation information
of e1

c1 c2 c3 c4 c5

a1 <s7, s2, s2> <s7, s1, s1> <s5, s3, s3> <s6, s2, s3> <s5, s1, s4>

a2 <s5, s3, s1> <s5, s1, s4> <s5, s1, s1> <s5, s1, s2> <s4, s0, s2>

a3 <s6, s3, s2> <s4, s2, s3> <s6, s0, s2> <s4, s4, s1> <s4, s2, s4>

a4 <s7, s3, s3> <s6, s3, s1> <s7, s3, s2> <s6, s1, s2> <s4, s1, s1>

a5 <s5, s1, s1> <s5, s1, s3> <s6, s1, s2> <s6, s2, s1> <s5, s2, s4>

Table 2 Evaluation information
of e2

c1 c2 c3 c4 c5

a1 <s5, s3, s2> <s6, s2, s1> <s5, s0, s1> <s6, s1, s1> <s4, s4, s2>

a2 <s6, s2, s3> <s5, s3, s2> <s4, s3, s0> <s5, s4, s2> <s4, s0, s3>

a3 <s4, s5, s2> <s5, s1, s0> <s6, s1, s2> <s6, s2, s3> <s5, s1, s2>

a4 <s6, s2, s1> <s5, s4, s0> <s6, s2, s1> <s6, s1, s2> <s6, s1, s2>

a5 <s5, s1, s2> <s4, s2, s1> <s5, s3, s1> <s5, s3, s2> <s4, s4, s4>

Table 3 Evaluation information
of e3

c1 c2 c3 c4 c5

a1 <s6, s1, s3> <s6, s3, s1> <s7, s1, s1> <s6, s2, s2> <s6, s2, s2>

a2 <s7, s3, s3> <s5, s2, s2> <s5, s2, s2> <s5, s1, s3> <s4, s3, s2>

a3 <s7, s2, s3> <s6, s1, s4> <s6, s1, s2> <s7, s1, s0> <s6, s1, s5>

a4 <s7, s3, s2> <s6, s2, s2> <s5, s4, s1> <s7, s2, s2> <s6, s0, s2>

a5 <s6, s2, s1> <s5, s3, s3> <s5, s2, s0> <s6, s1, s1> <s6, s1, s2>

Assume that f ∗ = f ∗
1 (sδ) = δ

8 and κ = 2. The supports
are as follows:

sup(ri j1, ri j2) = sup(ri j2, ri j1)

=

⎡

⎢⎢⎢⎢
⎣

0.907 0.941 0.850 0.907 0.844
0.898 0.882 0.898 0.875 0.958
0.882 0.862 0.958 0.856 0.898
0.898 0.928 0.928 1.000 0.907
0.958 0.898 0.898 0.928 0.907

⎤

⎥⎥⎥⎥
⎦

,

sup(ri j1, ri j3) = sup(ri j3, ri j1)

=

⎡

⎢⎢⎢⎢
⎣

0.928 0.907 0.856 0.958 0.898
0.882 0.907 0.941 0.958 0.875
0.928 0.898 0.958 0.818 0.898
0.958 0.941 0.898 0.941 0.898
0.941 0.917 0.898 0.958 0.898

⎤

⎥⎥⎥⎥
⎦

,

sup(ri j2, ri j3) = sup(ri j3, ri j2)

=

⎡

⎢⎢⎢⎢
⎣

0.898 0.958 0.907 0.941 0.882
0.941 0.958 0.898 0.868 0.868
0.818 0.828 1.000 0.862 0.868
0.928 0.875 0.907 0.941 0.958
0.928 0.898 0.941 0.898 0.828

⎤

⎥⎥⎥⎥
⎦

.

Step 3 Calculate the weights φi jk associated with ri jk (k =
1, 2, 3).

According to Eq. (21), the values of φi jk (k = 1, 2, 3) are
as follows:

ϕi j1 =

⎡

⎢⎢⎢⎢
⎣

0.334 0.332 0.331 0.333 0.333
0.331 0.330 0.334 0.336 0.336
0.337 0.336 0.331 0.332 0.335
0.333 0.336 0.334 0.335 0.331
0.334 0.334 0.331 0.335 0.337

⎤

⎥⎥⎥⎥
⎦

,

ϕi j2 =

⎡

⎢⎢⎢⎢
⎣

0.332 0.335 0.334 0.332 0.332
0.335 0.334 0.331 0.329 0.335
0.330 0.331 0.334 0.335 0.333
0.331 0.332 0.334 0.335 0.335
0.333 0.332 0.334 0.331 0.332

⎤

⎥⎥⎥⎥
⎦

,

ϕi j3 =

⎡

⎢⎢⎢⎢
⎣

0.334 0.333 0.335 0.335 0.335
0.334 0.336 0.334 0.335 0.329
0.333 0.333 0.334 0.333 0.333
0.335 0.332 0.332 0.331 0.334
0.332 0.334 0.334 0.333 0.331

⎤

⎥⎥⎥⎥
⎦

.

Step 4 Obtain the comprehensive evaluation matrix.
The linguistic neutrosophic evaluation information is

aggregated by utilising the LNPWA operator. The compre-
hensive evaluation matrix R is
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R =

⎡

⎢⎢⎢⎢
⎣

<s6.185, s1.816, s2.290> <s6.411, s1.819, s1.000> <s5.923, s0.000, s1.438> <s6.000, s1.589, s1.819> <s5.119, s1.998, s2.519>
<s6.185, s2.619, s2.085> <s5.000, s1.821, s2.515> <s4.700, s1.814, s0.000> <s5.000, s1.579, s2.291> <s4.000, s0.000, s2.291>
<s6.004, s3.102, s2.289> <s5.114, s1.262, s0.000> <s6.000, s0.000, s2.000> <s6.001, s1.999, s0.000> <s4.697, s1.261, s3.421>
<s6.742, s2.623, s1.820> <s5.712, s2.884, s0.000> <s6.184, s1.819, s1.997> <s6.410, s1.258, s2.000> <s5.485, s0.000, s1.590>
<s5.378, s1.259, s1.260> <s4.699, s1.817, s2.082> <s5.377, s1.820, s0.000> <s5.713, s1.816, s1.258> <s5.114, s2.001, s3.179>

⎤

⎥⎥⎥⎥
⎦

Step 5 Obtain the criteria weights.
The criteria weights w j ( j = 1, 2, . . . , 5) can be calcu-

lated by Eq. (13) as

w = (0.236, 0.191, 0.201, 0.204, 0.167).

Step 6 Obtain the average solution according to Eq. (14).
The average solution on the basis of all the criteria can be

calculated by Eq. (14) as

AV = [
<s6.150, s2.175, s1.905> <s5.469, s1.854, s0.000> <s5.693, s0.000, s0.000> <s5.872, s1.629, s0.000> <s4.922, s0.000, s2.511>

]

Step 7 Obtain the PDA and NDA matrices according to Eq.
(15).

The PDA and NDAmatrices can be calculated by Eq. (15)
as follows:

PDA = [Pi j ]5×5 =

⎡

⎢⎢⎢⎢
⎣

0.001 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000 0.012 0.000 0.000 0.000
0.013 0.000 0.000 0.000 0.081
0.044 0.000 0.000 0.000 0.000

⎤

⎥⎥⎥⎥
⎦

,

NDA = [Ni j ]5×5 =

⎡

⎢⎢⎢⎢
⎣

0.000 0.001 0.056 0.082 0.098
0.033 0.150 0.129 0.154 0.038
0.081 0.000 0.078 0.012 0.130
0.000 0.040 0.153 0.054 0.000
0.000 0.144 0.098 0.079 0.135

⎤

⎥⎥⎥⎥
⎦

.

Step 8 Obtain the weighted sums of PDA SPi and NDA SNi

according to Eq. (16).
The weighted sums of PDA and NDA for all the alterna-

tives are calculated byEq. (16) as follows: SP1 = 0, SP2 = 0,
SP3 = 0.002, SP4 = 0.017, SP5 = 0.010, SN1 = 0.045,
SN2 = 0.1, SN3 = 0.059, SN4 = 0.05 and SN5 = 0.086.

Step 9 Normalise the values of SP and SN according to
Eq. (17).

The normalised values of SP and SN are calculated by Eq.
(17) as follows: NSP1 = 0.008, NSP2 = 0, NSP3 = 0.140,
NSP4 = 1, NSP5 = 0.627, NSN1 = 0.556, NSN2 = 0,
NSN3 = 0.412, NSN4 = 0.506 and NSN5 = 0.143.

Step 10 Obtain the AS according to Eq. (18).
TheAS is calculated by Eq. (18) as follows: AS1 = 0.282,

AS2 = 0, AS3 = 0.276, AS4 = 0.753 and AS5 = 0.385.
Step 11 Rank the alternatives.

The results are obtained and ranked according to the
decreasing values of AS as follows: a4 � a5 � a1 � a3 �
a2. Consequently, Vanke Property a4 is the best choice for
the developer.

5.2 Sensitivity Analysis and Comparative Analysis

To investigate the effects of the distance parameters and the
operators on the final results, we take different values of κ

and different operators defined in Sect. 3. The final ranking
results are shown in Table 4.

The ranking results vary with the different parameters of
distance measurement. Although slight differences across
the final results are observed, the best alternatives are all
the same. The variations are clearly caused by the different
parameters of the distance measurement and the different
operators, which suggests that distance measurements and
the operators collectively influence the decision-making pro-
cess. Beyond of that, the backgrounds of the DMs chosen by
the developer should also be considered.

Then, the effectiveness of the proposed method is demon-
strated and the proposed method is compared with relevant
studies. The decision information used by Ghorabaee [47]
involves triangular fuzzy numbers (TFNs) that are trans-
formed by linguistic terms, whereas the decision information
used in the proposed method include LNNs. The LNNs
comprise three parts (i.e. truth-membership, indeterminacy-
membership and falsity-membership) that are all expressed
by linguistic variables. Therefore, the representationofLNNs
is more suitable and feasible than those of real numbers or
TFNs transformed by linguistic variables. Consequently, the
approach based on LNNs can effectively solve complicated
decision-making problems.

The methods based on LNNs proposed by Li [21] only
consider a single DM, and it is difficult and unrealistic to
make decisions by referring to only one DM in cases of com-
plex decision-making problems. By contrast, the proposed
approach can be used for group decision-making environ-
ments, in which each evaluation information is represented
as a matrix in LNNs.
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Table 4 Ranking results of
different values of κ

Ranking results κ = 1 κ = 2 κ = 3

LNPWA a4 � a5 � a3 � a1 � a2 a4 � a5 � a1 � a3 � a2 a4 � a5 � a1 � a3 � a2

LNPWG a4 � a1 � a5 � a3 � a2 a4 � a1 � a5 � a3 � a2 a4 � a5 � a1 � a2 � a3

EDAS is considered an appropriate method for some con-
flicting criteria. Traditional compromise MCDM methods,
such as VIKOR and TOPSIS, to obtain the best alternatives
by calculating the distance from the ideal and nadir solution.
By contrast, EDASonly needs to calculate the expected func-
tion from the average solution. A calculation of the ideal and
nadir solution is not needed, and hence, EDAS is a relatively
easier approach.

6 Discussions

In this study, we develop two linguistic neutrosophic PA
operators to deal with the linguistic neutrosophic evaluation
informationprovidedbyDMs.TheMCGDMapproachbased
on EDAS is also developed to obtain the best alternatives.
In addition, the models commonly used to derive criteria
weights are constructed to render these items more objec-
tive. In the present work, the proposed approach is applied to
the selection of an appropriate company given that property
management activities are necessary and urgent endeavours.
LNNs, which combine the advantages of linguistic term sets
and SNSs, are applied, and the distance measurement and
semantic situations are also considered.

The case study shows that the proposedMCGDMmethod
is practical and effective. The advantages of the proposed
approach are as follows:

(a) The proposed approach is based on LNN which is suit-
able in real life situations. LNNshave the capacity to deal
with imprecise and vague information. Each of the ele-
ment’s truth-membership, indeterminacy-membership
and falsity-membership degree is expressed as set of
linguistic variables rather than a set of crisp numbers.
Thus, the DMs may find it more flexible and convenient
to express their opinions as linguistic information. The
existing operation rules and comparison rules are con-
trasted and discussed.

(b) The distance measurements of LNNs, including the
Hamming distance and Euclidean distance, are deter-
mined. The properties of the distance measurement are
also given.

(c) Models are established to obtain the criteria weights,
and the evaluation results have becomemore reasonable.

Consequently, the subjectivity of the traditionalmethods
for determining weights is resolved.

(d) EDAS is a novel decision-making method, and it is
applied to property management selection in this study.
Furthermore, EDAS is not only easy to calculate, but
it can also realise the reasonable and stable ranking of
alternatives.

The proposed MCGDM method is applicable to many
other decision-making or strategy-selection problems. In the
future, a few more MCGDM methods based on LNNs may
be developed, given that LNNs are widely applied to many
domains in the real world. Moreover, the present study has
some disadvantages and limitations. For instance, the deci-
sion matrices are obtained subjectively by DMs and the
consistency of the evaluation information is not considered.
Then, the proposed approach is based on linguistic neutro-
sophic situations, but they may not be properly expressed
in complicated conditions. Expanded situations, such as
hesitant linguistic neutrosophic and interval linguistic neu-
trosophic environments, should be considered. A detailed
and comprehensive MCDM study will be conducted in the
future.
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