
Arabian Journal for Science and Engineering (2019) 44:3197–3211
https://doi.org/10.1007/s13369-018-3468-8

RESEARCH ART ICLE - COMPUTER ENGINEER ING AND COMPUTER SC IENCE

Lung Cancer Classification Models Using Discriminant Information of
Mutated Genes in Protein Amino Acids Sequences

Mohsin Sattar1 · Abdul Majid1

Received: 27 March 2018 / Accepted: 12 July 2018 / Published online: 31 July 2018
© King Fahd University of Petroleum &Minerals 2018

Abstract
Lung cancer is a heterogeneous disease based on uncontrollable growth of cells. Lung cancer is major cause of cancer-related
deaths. Early diagnosis of lung cancer is important for its treatment and survival of patients. In this study, through the statistical
analysis of cancerous proteins sequences, we observed themutated genes associated with etiology of lung cancer. Our analysis
revealed most frequent mutated genes TP53, EGFR, KMT2D, PDE4DIP, ATM, ZNF521, DICER1, CTNNB1 RUNX1T1,
SMARCA4, FBXW7, NF1, PIK3CA, STK11, NTRk3, APC, PTPRB, BRCA2,MYH11 and AMER1.We observed abnormal
mutations in genes contributed toward variations in the composition of amino acid sequences. This variation was described
in various feature spaces using statistical and physicochemical properties of amino acids. These influential features have
provided sufficient discrimination power for the development of effective lung cancer classification models (LCCMs). The
main advantage of proposed novel approach is the effective utilization of the discriminant information of mutated genes.
Experimental results showed that SVM model has the best performance in split amino acid composition. In the study, we
explored a new dimension of early lung cancer classification using discriminant information ofmutated genes revealed through
the statistical analysis of the mutated genes. It is anticipated that the proposed approach would be useful for practitioners and
domain experts for early lung cancer diagnosis and prognosis.
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1 Introduction

Lung cancer is the major cause of cancer deaths in both
men and women worldwide [1,2]. Lung cancer is common
in smokers but non-smokers are also affected due to second-
hand smoke [1]. Approximately 10%of lung cancers occur in
non-smokers each year [3]. American Cancer Society (ACS)
has estimated that about 27% of all cancer deaths were due
to lung cancer. In the year 2017, it has been shown that death
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rate due to lung cancer was higher than other cancer-related
deaths. They have reported, nearly 222,500 cases of lung
cancer, out of which 155,870 people died due to lung cancer.
Due to lack of early detection and prognosis, lung cancer inci-
dence and mortality rates are increasing significantly [4,5].
There is need for developing effective classification model
for treatment of lung cancer in early stages.

Generally, lung cancer is categorized into two groups:
non-small cell lung cancer (NSCLC) and small cell lung
cancer (SCLC) [6–8]. NSCLC incidence rate is higher than
SCLC but SCLC develops rapidly. However, NSCLC is fur-
ther grouped into adenocarcinoma, squamous cell carcinoma,
and large cell carcinoma. SCLC is categorized into the lim-
ited and extensive stage. In the limited stage, part of lung
and nearby lymph nodes are affected due to lung cancer. In
the extensive stage, lung cancer is proliferated to other lymph
nodes and body parts. In early stages ofNSCLC, tumor size is
restricted to 3 cm, however in later stages, tumor is expanded
up to 5 cm [9].

The recent technological advancements have rapidly
increased the proteomic and genomic sequential data. Such
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databases contain useful information of various genes that
are responsible for healthy function of body organs [10].
The healthy lung function is highly dependent on the nor-
mal function of genes. For example, TP53, EGFR, KMT2D,
PDE4DIP, ATM, ZNF521, DICER1, CTNNB1, RUNX1T1,
SMARCA4, FBXW7, NF1, PIK3CA, STK11, NTRk3,
APC, PTPRB, BRCA2, MYH11, and AMER1 genes are
mostly responsible for normal functions of cell growth,
division, and apoptosis [10,11]. These genes play signif-
icant role in tumor suppression, transcriptional activation,
DNA protein binding, hydrolase activity, phosphodiesterase,
formation of adherens junctions, transcriptional repression,
phosphorylation-dependent ubiquitination, negative regula-
tion of the signal transduction pathway, activation of sig-
naling pathways, and regulation of cell processes [10,11].
These activities are performed for smooth functioning of
different cellular processes. However, abnormal mutations
dysregulate the normal function that indicate the uncontrol-
lable growth of lung cells.

There are many predominant factors that hinder the nor-
mal function of genes, for example, metabolic mutations,
hereditary mutations, tumor suppressor genes mutations,
malnourishment, tobacco use and other environmental fac-
tors [12,13]. Various types of mutations occur in different
genes over life span. The abnormal mutations acquired in
lung cells result from epigenetic and environmental factors
[12,13]. The single nucleotide and missense mutations in
tumor suppressor gene TP53 are universal across different
cancer types [10,14,15]. Loss of tumor suppression activity
is recognized as large deleterious events, in frame-shift muta-
tions and/or premature stop codons. Due to cancer-related
mutations in BRCA2, heterozygous features in the organism
are lost [10,15]. Themutations in EGFRgenemay cause lung
cancer [10,15,16]. Most of the EGFR mutations are somatic,
while a few germ-line mutations also exist [10,15,16]. The
KMT2D is major mutated genes in SCLC that causes the
perturbation of transcriptional enhancer control [10,15–17].
Themost commonmutations likemissense, nonsense, frame-
shift deletions and insertions cause lung cancer [10,15–17].
These cancer-driving somatic mutations change the protein
amino acids composition. Ifwe could detect such cancer/non-
cancer protein amino acid sequences in early stages, the
survival rate of patients would be increased.

Researchers have proposed different lung cancer clas-
sification models employing different data modalities, and
feature selection/extraction techniques. Proteins structural
and physicochemical properties were employed to develop
different learning algorithms for the classification of lung
cancer [18]. They have reported the best accuracy with
Bayesian Network using hybrid feature selection. In another
work [19], features based on the structural andphysicochemi-
cal properties of protein sequenceswere employed to classify
lung tumor. Gene expressions data was employed to classify

lung cancer in [20]. Decision tree (DT)model was developed
using DNA methylation markers to predict lung cancer [21].
In another study, Micro-RNA expression profiling was used
to classify lung cancer [22]. In [23], authors classified can-
cer and non-cancer genes using radiographic signatures with
clinical model. The structural and physiochemical properties
of protein amino acid sequences were employed for the clas-
sification of lung cancer [18], colon cancer, ovarian cancer
[24], and breast cancer [25–27]. The clinical features using
bronchoscopy, lung needle biopsy are also common for lung
cancer detection [28]. In these invasive techniques, a sample
of lung cells is extracted for microscope analysis.

Mostly, the previous cancer detection models have used
the physical features like geometry/size of tumor that appear
in the later stages. In the later stages, the detrimental effects
occur to lung cells, lymph nodes, and other body organs.
These techniques are prone to increase the risk of lung can-
cer. In this scenario, for early lung cancer classification, there
is need to extract discriminant features of mutated genes
present in protein amino acids. But the problem is how to
extract useful information in a meaningful way. For this
purpose, we have carried out statistical analysis of mutated
genes in protein amino acid sequences. This analysis revealed
the most frequent mutated genes TP53, EGFR, KMT2D,
PDE4DIP, ATM, ZNF521, DICER1, CTNNB1 RUNX1T1,
and SMARCA4, etc. The mutation in these genes is the
major cause of lung cancer. The discriminant information
of mutated genes is important in understanding the can-
cer driven biological processes. In this study, we have used
this discriminant information in order to model the risk of
lung cancer in early stages. This information is described
usingvariousmathematical formulation-based feature spaces
of amino acid composition (AAC), dipeptide composition
(DC), split amino acid composition (SAAC), pseudo-amino-
acid-composition-series (PseAAC-S), and pseudo-amino-
acid-composition-parallel (PseAAC-P). These feature spaces
were used to develop various classification models support
vector machines (SVM), random forest (RF), Naïve Bayes
(NB), and K-nearest neighbor (KNN). Our results demon-
strated that SVM model outperformed other classification
models. In this study, themain contribution is the exploration
of a new dimension for early cancer classification using dis-
criminant information of the mutated genes in protein amino
acid sequences. The proposed novel approach would be use-
ful to increase the survival rate of lung cancer patients.

This paper is organized in different sections such that
Sect. 2 provides the description of materials and methods,
Sect. 3 gives the overview of feature spaces, Sect. 4 explains
the development of models, Sect. 5 discusses various per-
formance measures, Sect. 6 observes results and discussion.
Finally, Sect. 7 concludes the study.
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Fig. 1 Different phases of lung cancer development in proposed approach

2 Materials andMethods

Figure 1 depicts different phases of lung carcinogenesis.
Lung carcinogenesis is the formation of lung cancer in which
lung normal cells are converted to cancer cells as a result
of mutagenesis. This causes the transcription of DNA to
damaged RNA and replication of abnormal functions. The
cancerous protein sequences are formed as a result of trans-
lation of this damaged RNA to specific amino acid chain,
or polypeptide. In the final stage, LCCMs are developed to
classify protein sequences as cancer or non-cancer.

The block diagram of proposed approach is shown in
Fig. 2. The primary sequences of amino acids are given to the
data formulation/preprocessing module. The preprocessed
sequences are split into training data (70%) and testing data
(30%). In the next step, various features are computed in
different feature spaces. These features are used to develop
various lung cancer classification algorithms. These models
are evaluated using different performance measures on test-
ing data.

2.1 Description of Dataset Formation

In order to develop lung cancer classification models, a valid
updated dataset of somatic mutations in protein amino acids
sequence is essential. For this purpose, we explored various
proteomic and genomic data sources [10,15,16,29–31] and
retrieved protein amino acids sequences related to lung can-
cer. In the first step, the mutations data were retrieved from
COSMIC [15] and TCGA [16] databases. We processed to
retain those samples that were confirmed-somatic-variant.
The dataset was then filtered using primary site: “lung”,
primary histology: “carcinoma” terms. The neutral sam-
ples were excluded from the dataset. The protein sequences
related to lung cancer genes were retrieved from UniProt
[10]. The individual protein sequences were validated using

Fig. 2 Proposed lung cancer classification models (LCCMs)

Ensembl [31]. The preprocessed 865 sequences were labeled
as cancer samples.

Similarly, normal genes were identified from COSMIC
[15] and TCGA [16] databases. The 1800 protein sequences
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Table 1 Variation of the most
frequent mutated genes using
COSMIC [15] and TCGA [16]

Gene name Variants f -mutation (%) Gene name Variants f -mutation (%)

TP53 942 26.0006 FBXW7 116 7.4121

EGFR 346 12.5499 NF1 105 6.9814

KMT2D 288 11.6176 PIK3CA 104 7.1576

PDE4DIP 210 09.2962 STK11 99 7.0563

ATM 192 09.0737 NTRK3 96 7.0796

ZNF521 168 08.4379 APC 88 6.7073

DICER1 150 07.9660 PTPRB 83 6.5149

CTNNB1 148 08.2682 BRCA2 82 6.6075

RUNX1T1 126 07.4161 MYH11 82 6.7881

SMARCA4 120 07.3665 AMER1 78 6.6496

related to normal genes were retrieved from UniProt [10].
These sequences were labeled as non-caner samples. The
phenotype-gene relationship of the mutated and normal sam-
ples was confirmed from OMIM database [29]. The BioMart
was used for high-throughput analysis [30]. We selected 865
examples from the set of negative examples to form a bal-
anced dataset. An exemplary cancer and non-cancer protein
amino acid sequences in FASTA format are given in the “Sup-
plementary File S1”.

These peptide sequences are represented in the text-based
FASTA format in which amino acid sequences start with a
single line description followed by lines of sequence data.
The description line is separated from sequence data using
symbol “>” at the beginning. Each protein sequence is com-
posed of twenty protein amino acids. These twenty amino
acids are represented by single letter code as: Alanine (A),
Cysteine (C), Aspartic Acid (D), Glutamic Acid (E), Pheny-
lalanine (F),Glycine (G),Histidine (H), Isoleucine (I), Lysine
(K), Leucine (L), Methionine (M), Asparagine (N), Proline
(P), Glutamine (Q), Arginine (R), Serine (S), Threonine (T),
Valine (V), Tryptophan (W), and Tyrosine (Y). For example,
TP53 protein sequence in FASTA format is represented as
follows:
> sp|P04637-M8|P53_HUMAN mutated protein
MFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQH
MTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVE
YLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNS
SCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACP
GRDRRTEEENLLKKGEPHHELPPGSTKRALPNNTSSS
PQPKKK RLDGEYFTLQDQTSFQKENC

2.2 Statistical Analysis of Mutated Genes

In order to detect the most frequent mutated genes, we have
carried out the statistical analysis of the genes. The mutated
genes related to the lung tissues were found from COSMIC
[15] and TCGA [16]. The functional information of the most
frequentmutated genes is available fromUniProtConsortium

[10]. In the next step, the mutation frequency of the mutated
genes was calculated and ranked according to their mutation
frequency. The top most 20 mutated genes of TP53, EGFR,
KMT2D, PDE4DIP, ATM, ZNF521, DICER1, CTNNB1,
RUNX1T1, SMARCA4, FBXW7, NF1, PIK3CA, STK11,
NTRk3, APC, PTPRB, BRCA2,MYH11, and AMER1were
selected. Table 1 indicates the most frequent mutated genes
with their mutation frequency.

These genes play important roles tomaintain normal func-
tions of cell growth and division [10,15,16]. For example,
both TP53 and BRCA2 are identified as tumor suppres-
sion genes that encode tumor suppressor proteins to regulate
various cell functions [10,15,16]. BRCA2 protein repairs
the damaged DNA and maintains the genomic stability
through homologous recombination, transcription-coupling,
and double-stranded-break repairing [10,15,16]. The EGFR
gene makes receptor that binds ligand [10,15,16]. This
mechanism allows the cell to receive signals and pro-
motes cell growth, division, and survival [10,15,16]. The
protein encoded by KMT2D is responsible for cell dif-
ferentiation and embryonic development [10,15,16]. It is
important in regulating transition metabolism, and tumor
suppression. The PDE4DIP gene forms a protein to anchor
specific regions in the cell [10,15,16]. The ATM gene pro-
duces a protein to regulate protein functions [10,15,16].
The ZNF521 gene is responsible for repression of gene
expression [10,15,16]. The DICER1 protein is involved
in the cell growth, division (proliferation) and differenti-
ation [10,15,16]. The CTNNB1 protein is responsible to
regulate cell growth [10,15,16]. RUNX1T1 gene performs
transcriptional repression via its association with DNA-
binding transcription factors [10,15,16]. It also functions to
recruit other co-repressors and histone-modifying enzymes
[10,15,16]. The SMARCA4 protein involves in regulat-
ing the genes transcription [10,15,16]. Similarly, FBXW7,
NF1, PIK3CA, STK11, NTRk3, APC, PTPRB, MYH11
and AMER1 involve in important functions of ubiquiti-
nation, negative regulation of signal transduction pathway,
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Fig. 3 Variation in lung cancer
versus non-cancer sequences

phosphorylation, tumor suppression, cell differentiation,
tumor suppression including cellmigration, adhesion,mitotic
cycle and oncogenic transformation, energy conversion,
and un-regulation of transcriptional activation, respectively
[10,15,16]. The somatic mutation in these genes causes
variation in amino acid composition. These mutated genes
mutated genes are shown in Table 1. It is observed that
TP53, EGFR, and KMT2D genes have the highest muta-
tion frequencies 26, 13, and 11%, respectively. Their variants
are obtained 942, 346, and 288 respectively. The PDE4DIP
and ATM genes have their mutation frequencies to 9% with
variants 210 and 192, respectively. ZNF521, DICER1, and
CTNNB1 genes gave their mutation frequencies 8%. These
genes show variants 168, 150, and 148, respectively. Other
genes have given relatively lower mutation frequency 7%
and their variants are in the range of 78–126. The muta-
tion frequencies information was exploited to compute the
discriminant molecular descriptors using various physio-
chemical properties of amino acids.

We computed the individual variation between cancer and
non-cancer with respect to 20 amino acids. To minimize the
effect of length variation, we divided the computed variation
with the corresponding length of sequence. For each cancer
and non-cancer protein sequence, the variation of individual
amino acid is computed as follows:

AACi, j = counts(AA j )

LSi
∗ 100,

AAC′
i, j = counts(AA′

j )

LS′
i

∗ 100 (1)

In Eq. 1, AACi, j is the amino acid composition (in percent) of
ith non-cancer sequence related to jth amino acid and LSi is
the length of that sequence. Similarly, AAC′

i, j is the amino
acid composition (in percent) of ith cancer sequence related
to jth amino acid and LS′

i is the length of that sequence.
AA j and AA′

j are the amino acid in the non-cancer and can-

cer sequence, respectively. The overall composition of each
amino acid in cancer and non-cancer sequence is computed
as follows:

AAC j =
∑865

i=1 AACi, j

Ns
, AAC′

j =
∑865

i=1 AAC
′
i, j

N ′
s

(2)

In Eq. 2, Ns = 865 and N ′
s = 865 are the total number of

sequences in non-cancer and cancer, respectively. The over-
all variation between cancer and non-cancer sequences is
computed as follows:

Total variation =
20∑

j=1

∣
∣
∣AAC j − AAC ′

j

∣
∣
∣ (3)

In Eq. 3 AAC j and AAC ′
j are the amino acid composition

of jth amino acid in non-cancer and cancer protein sequence,
respectively. Using Eq. 3, the value of total variation of
twenty amino acids was obtained 479. Figure 3 demonstrates
the variation of twenty amino acids between cancer and
non-cancer sequences. These abnormal mutations hinder the
normal function of genes. We have exploited these somatic
mutations to form discriminant molecular descriptors using
various feature spaces.

3 Formation of Feature Spaces

Table 2 demonstrates five feature spaces of different dimen-
sions. Primary sequences of amino acids determine the
structure and functions in the cell. Various amino acids have
diverse physical and chemical properties due to variation
in the side chains [32]. The physiochemical properties are
expressed using different statistical and mathematical for-
mulations. The numerical values of these descriptors give the
discrimination power between cancer and non-caner amino
acid molecules. These properties are more discriminant as
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Table 2 Dimension of different feature spaces

Feature spaces Dimension (D)

Dipeptide composition (DC) 400

Split amino acid composition (SAAC) 60

Pseudo-amino-acid-composition-series
(PseAAC-S)

60

Pseudo-amino-acid-composition-parallel
(PseAAC-P)

40

Amino acid composition (AAC) 20

Primary Sequence
MPGSVGPVGPR…...

Middle SegmentFirst Seqment End Segment

Total Feature 
Dimension=60

Dimension=20

Dimension=20

Dimension=20

Fig. 4 Split amino acid composition

compared to other physiochemical properties of polarity,
solubility, melting point and chemical reactions etc. These
properties are expressed in different feature spaces of AAC,
DC, SAAC, PseAAC-P, and PseAAC-S. The brief descrip-
tion about various feature spaces is given below.

3.1 Dipeptide Composition (DC)

The dipeptide composition is in the form of fractions of 400
dipeptides and these components are calculated in Eq. 4 as:

DCi = DCtotal(i)

400
(4)

DCi is the ith dipeptide of 400 dipeptides, i = 1, 2, 3, . . .,
400. This feature space in vector form is represented in Eq. 5
as:

XDC = [DC1,DC2,DC3, . . . ,DC400]
T (5)

3.2 Split Amino Acid Composition (SAAC)

In SAAC features the primary protein sequence is split into
three parts, namely N-terminus, internal terminus and C-
terminus [33]. Figure 4 depicts the formation of split amino
acid composition by splitting the original primary protein
sequence into three mentioned parts. The amino acid compo-
sition of each part is calculated separately and concatenated
to form the feature vector of 60-dimensional (60D).

3.3 Pseudo-Amino-Acid Composition in Series
(PseAAC-S)

PseAAC-S features represent both the compositional and
positional effects of primary protein sequences [34]. The
composition is calculated by pairwise relationships of chemi-
cal properties of hydrophobicity and hydrophilicity to unfold
the various characteristics of protein amino acid sequences
[35]. In this composition, a protein sequence is transformed
into feature vector of 20 + i ∗ t dimensions. The protein
feature vector in series composition is represented in Eq. 6
as:

Xs = [
SC1 . . .SC20 SC21 . . . SC20+t SC20+t+1 . . . SC20+2t

]T (6)

SCr =
⎧
⎨

⎩

fr∑20
i=1 ai+.05

∑2t
j=1 Tj

for 1 < r < 20

.05Tr∑20
i=1 ai+.05

∑2t
j=1 Tj

for 21 < r < 20 + 2t
(7)

where ai is the normalized proportion of amino acids in a
protein sequence and Tj is the ordered correlation factor [27],
that is based on numerical values of the hydrophilicity and
hydrophobicity properties. The value of Tj is computed using
Eqs. 8 and 9 as follows:

T2t−1 = 1

L − t

L−t∑

i=1

Hd i,i+t (8)

T2t = 1

L − t

L−t∑

i=1

Hb i,i+t (9)

3.4 Pseudo-Amino-Acid Composition in Parallel
(PseAAC-P)

For a given sequence, PseAAC-P features are computed
using pairwise relationships related to chemical properties of
hydrophobicity and hydrophilicity. In PseAAC-P, a protein
sequence is expressed into feature vectors each of 40 dimen-
sions. The individual components �t is calculated using the
sequence order correlation as follows

�t = 1

L − t

L−t∑

i=1

φ (Ai , Ai+t ) (10)

The value of φ (Ai , Ai+t ) is calculated as follows:

φ (Ai , Ai+t )

= 1

3

{[
Hd

(
A j

) − Hd (Ai )
]2 + [

Hb
(
A j

) − Hb (Ai )
]2

}

(11)

In Eq. 11, Hd and Hb represents the numerical values of the
hydrophilicity and hydrophobicity properties.
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Table 3 Optimal parameter values of learning algorithms

Sr. no. Learning models Optimal parameter values

1 SVM with Poly and RBF kernels C = 2048 and degree = 2 for Poly, C = 256 and gamma = 16 for RBF

2 RF Num-trees = 200, criteria = GINI

3 KNN Nearest neighbor = 7

4 NB Gaussian function with prior probability P(cancer) = 0.5, P(non-cancer) = 0.5

3.5 Amino Acid Composition (AAC)

AAC features are computed using protein sequence of lung
cancer or non-cancer. The dimension of each sequence shows
the occurrence frequency of individual amino acids. The per-
centage occurrence of AACi, j of the amino acid i in the jth
protein is computed for amino acids in protein sequence using
Eq. 12.

AACi, j = ni, j
naa j

∗ 100 (12)

where ni, j is the number of amino acids of type i observed to
be present in protein j and naa j is the total number of amino
acids in protein j. In AAC features dataset, the jth protein
sequence is expressed as 20-dimensional (20D) feature vec-
tor, in Eq. 13.

X j = [
AAC1, j ,AAC2, j , . . . ,AAC20, j

]T (13)

In Eq. 13, AAC1, j ,AAC2, j , . . . ,AAC20, j , represent the per-
cent composition of amino acids.

4 Development of ClassificationModels

Lung cancer classification models are developed using
diverse learning algorithms SVM, RF, KNN, and NB. The
theoretical background of these learners is available in the lit-
erature of machine learning [36–39]. Here, we have mainly
focused on implementation details. These algorithms were
implemented using Python 3.5 software (Python Software
Foundation, https://www.python.org/) [40]. The optimal
parameters values of these learners were computed using
Grid Search. The optimal tuned parameters of five learning
algorithms are given in Table 3.

4.1 SVM Algorithm

SVM performs classification by constructing a hyperplane
that has maximum margin between two closest points [39].
The block diagram of SVMmodel is shown in Fig. 5. A set of
1210 training examples, S = {(Xi , ti )}1210i=1 is given to SVM
algorithm that finds optimal hyperplane according to input

data distribution between two classes. Here, ti ∈ {0, 1} and
Xi ∈ {�400,�60,�60,�40,�20

}
for DC, SAAC, PseAAC-

S, PseAAC-P and AAC feature spaces, respectively. The
decision surface for SVM was defined as follows:

Y (X) =
n∑

i=1

αi ti X
T
i .X + bias (14)

Here αi is the Lagrange multiplier. The data samples Xi

correspond to αi > 0 are called support vectors. For the clas-
sification of non-separable data, the solution to the objective
function is defined as:

�(W , ζ ) = 0.5WTW + C
n∑

i=1

ζi (15)

Subject to condition ti (WTψ(Xi ) + bias) ≥ 1 − ζi , where
C is penalty factor for the error term

∑n
i=1 ζi and ψ(X) is

nonlinear mapping. The nonlinear decision boundary is now
defined by:

Y (X) =
sv∑

i=1

αi ti K (Xi,X) + bias

where K (Xi , X) = �(Xi )
T.�(X) (16)

The parameter C defines the trades off between the misclas-
sification of input training instances and complexity of the
decision surface. A low value of this parameter makes the
decision boundary smooth. On the other hand, a high value
tailors the boundary of decision surface across the input
training data by selecting more training examples as sup-
port vectors. As a result, the trained model may not perform
well on unseen data. However, the lower value of RBF ker-
nel parameter gamma (σ) parameter indicates the higher
influence of the neighbor training examples. For Polyno-
mial kernel, K (Xi , X) = (Xi .X + 1)d , the optimal values
of C = 2048 and degree = 2 were found using grid search.
For RBF kernel, K (Xi , X) = exp(−‖Xi − X‖2 /(2σ 2)),
σ = 16 and C = 256 are the best parameters.

4.2 Random Forest (RF)

This algorithm generates different decision trees and then
combines outputs for final decision. Due to good
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Fig. 5 Support vector machine (SVM) model

performance and good generalization on high-dimension
input dataset, we have employed this algorithm for lung
cancer classification. These trees are constructed using train-
ing dataset Str = {(Xi , ti )}1210i=1 . The remaining testing
dataset, Sts = {(Xi , ti )}1730i=1211 is kept for model evalua-
tion. For best node split, we choose m f = √

D features
randomly from the D-dimensional input feature vector, D ∈{√�400,

√�60,
√�60,

√�40,
√�20

}
. The Gini-fitness cri-

teria, G(d, ui ) =
c∑

i=1

ai
n f v

IG(dui ), has computed the best

node split to evaluate the importance of each feature. Here,
c represents the number of children at node d and n f v

shows the number of feature vectors selected for training.
The Gini impurity IG(dui ) gives class label distribution.
For a feature variable ui ∈ U with c values at node d,
ui = {v1, v2, . . . vp}, the value of IG(dvi )is computed as:

IG(dvi ) = 1 − ∑ci
i=0

(
nci
ai

)2
, where nci is the number of

samples with values, vi belong to class ci and ai indicates the
number of samples with the value vi at node d. The testing
data, Sts = {(Xi , ti )}1730i=1211, were used to evaluate the RF
model classification performance. During implementation,
we found the optimal number of random trees nt = 200.

4.3 K-Nearest Neighbor (KNN) Algorithm

This is instance-based learning algorithm. It does not explic-
itly model the complexity of the input data. It tries to
memorize the input training examples, Str = {(Xi , ti )}1210i=1 to
extract knowledge for classification. In KNN classification,
an input instance is classified according to distance function
and the majority of k-nearest neighbors [39]. We have used
Euclidean distance to measure distance between examples.
The Euclidean distance d(Xi , X j ) between two vectors Xi

and X j each of m-dimension is calculated as follows:

d(Xi , X j )

=
√

(xi,1 − x j,1)2(xi,2 − x j,2)2 + (xi,3 − x j,3)2 + · · · (xi,m − x j,m)2

(17)

The input example is assigned to the class which has more
class neighbors. During implementation, we found the opti-
mal value of K = 7.

4.4 Naïve Bayes (NB) Algorithm

This learning algorithm is modeled by applying Bayes rules
with the assumption of independent attributes/features. The
features were denoted by X f i ∈ {�400,�60,�60,�40,�20

}

for five feature spaces. An instance is assigned to the class of
highest posterior probability. We used the Gaussian function
with equal prior probability P(X f ) = 0.5 to train the model
as follows:

P(X f 1, X f 2, . . . , X f n|c) =
n∏

i=1

P(X f i |c) (18)

P(X f |ci ) = P(ci |X f )P(X f )

P(ci )
c ∈ {cancer, non-caner}

(19)

The testing data is classified according to probability of asso-
ciation as follows:

cnb = argmax P(ck)
n∏

i=1

P(X f i |ck), for k = 1, 2 (20)

In Eq. 20, ci ∈ {cancer, non-caner}.
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5 PerformanceMeasures

The performance of the classification models is evaluated
using various measures of accuracy (Acc), sensitivity (Sn),
specificity (Sp),G-mean,F-measure,MCC, ROC, and AUC.
These measures are commonly used for reporting the per-
formance of machine learning algorithms. These measures
evaluate classification performance in different aspects [41].

Acc =
(
TP + TN

n

)

Sn =
(

TP

TP + FN

)

Sp =
(

TN

TN + FP

)

,

Pre =
(

TP

TP + FP

)

Gmean = √
Sn ∗ Pre,

Fmeasure = 2
Pre ∗ Sn

(Pre + Sn)
, FPR = 1 − Sp

MCC = TP × TN − FP × FN√[TP + FP][TP + FN][TN + FP][TN + FN]

The values of Sn, Sp, Pre, G-mean, F-measure, and MCC
measures are based on the computed values of true posi-
tive (TP), true negative (TN), false positive (FP) and false
negative (FN). Further, the classification performance was
also analyzed using measures of ROC curve [42]. The ROC
curve shows the association between sensitivity and false
positive rate (FPR). For each threshold value, a point in the
form of (FPR, Sn) is plotted and corresponding ROC curve is
obtained by connecting all such points. ROC curve close to
the top-left corner indicates that classifier has a good perfor-
mance. To measure the performance of the model as a single
value of area under the curve (AUC) is computed.

6 Results and Discussion

This section describes the performance of various models in
terms of accuracy, sensitivity, specificity, G-mean, F-score,
AUC, and MCC. The comparative performance of the pro-
posed models was carried out with previous approaches.

6.1 Performance of ProposedModels

Table 4 depicts the performance of classification models in
different feature spaces. It is observed that, in SAAC feature
space, SVM-Poly, SVM-RBF, RF, KNN, and NB models
have yielded accuracy values of 0.9938, 0.9943, 0.9850,
0.9871, and 0.9684 respectively. Overall, classification mod-
els have obtained higher performance values in SAAC
feature space. However, SVM models have given compar-
atively better performance. This is because, in SACC feature
space, margin-based SVM model has higher generalization

capability than RF, KNN and NB models to classify cancer
protein sequences from non-cancer. Further, SVM-RBF and
SVM-Poly have shown higher accuracy values than other
models. This is because, in SAAC feature space, both SVM-
RBF and SVM-Poly models have generated better decision
surface than that of other classification models. Probabilis-
tic NB model has obtained relatively lower accuracy for this
feature space. This is because, on the complex binary class
problem, NBmodel has generated less discriminant data dis-
tribution boundary than other models. On the same feature
space, we observed improved sensitivity values of 0.9922,
0.9932, 0.9792, 0.9822, and 0.9756 for SVM-Poly, SVM-
RBF, RF, KNN, and NB, respectively. Here, SVM-RBF and
SVM-Poly models have retained the highest sensitivity val-
ues of 0.9932 and 0.9922, respectively. Therefore, SVM
has developed more discriminant and generalized model in
SAAC feature space. It differentiated the complexity of lung
cancer dataset effectively. In this case, SVM-RBF has per-
formed better than SVM-Poly. This is because proximity
(distance)-based SVM-RBF has developed better discrim-
inant boundary than SVM-Poly. In SAAC feature space
SVM-Poly, SVM-RBF, RF, KNN, and NB models provided
improved Sp values of 0.9954, 0.9954, 0.9905, 0.9919, and
0.9613, respectively. SVM-RBF and SVM-Polymodels have
better Sp value (0.9954) than other models. Further, we
observed that in SAAC feature space, SVM-RBF model also
outperformed other models using G-mean, F-score, AUC,
and MCC quality measures.

In DC feature space, we observed that SVM-Poly, SVM-
RBF, RF, KNN, and NBmodels have given higher sensitivity
values of 0.9759, 0.9834, 0.9894, 0.9909, and 0.9766 respec-
tively. KNN model has obtained the highest sensitivity
values. On the other hand, SVM-Poly model has relatively
lower sensitivity value. Therefore, to classify cancer patients
with high sensitivity, instance-based KNN model is a better
choice in DC feature space. Further, in PseAAC-S feature
space, KNN model has values of 0.9616, 0.9588, 0.9644,
0.9610, 0.9608, 0.9827, and 0.9239, for Acc, Sn, Sp, G-
mean, F-score, AUC, and MCC measures, respectively. In
PseAAC-S feature space, KNN model again outperformed
other models for these performance measures. In PseAAC-
P feature space, we found SVM-RBF outperformed other
models in terms of these measures. Overall, it was observed
that SVMmodel has effectively exploited the genesmutation
information in different feature spaces of protein amino acid
sequences. The overall performance comparison of classifi-
cation models is visually demonstrated in Fig. 6.

Figure 7 demonstrates ROC performance curves of SVM-
RBF and SVM-Poly models in AAC, SAAC, PseAAC-P,
and PseAAC-S feature spaces. Figure 7a–d shows the per-
formance curves for SVM-Poly model using AAC, SAAC,
PseAAC-P, and PseAAC-S feature spaces, respectively. Fig-
ure 7e–h shows the ROC curves for SVM-RBF using AAC,
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Table 4 Performance
comparison of proposed models
using different measures

Input dataset Proposed models Acc Sn Sp G-mean F-Score AUC MCC

SVM-Poly SVMAAC 0.8187 0.8261 0.8115 0.8191 0.8188 0.8935 0.6385

SVMSAAC 0.9938 0.9922 0.9954 0.9938 0.9938 0.9997 0.9877

SVMDC 0.9707 0.9759 0.9656 0.9707 0.9706 0.9928 0.9418

SVMPseAAC-P 0.9201 0.9244 0.9160 0.9204 0.9200 0.9640 0.8417

SVMPseAAC-S 0.9301 0.9290 0.9312 0.9295 0.9290 0.9695 0.8616

SVM-RBF SVMAAC 0.8789 0.8835 0.8744 0.8791 0.8789 0.9290 0.7585

SVMSAAC 0.9943 0.9932 0.9954 0.9943 0.9943 0.9997 0.9888

SVMDC 0.9794 0.9834 0.9756 0.9794 0.9794 0.9952 0.9592

SVMPseAAC-P 0.9411 0.9444 0.9379 0.9413 0.9410 0.9755 0.8833

SVMPseAAC-S 0.9534 0.9527 0.9541 0.9530 0.9527 0.9797 0.9077

AdBPseAAC-S 0.9463 0.9423 0.9502 0.9454 0.9451 0.9757 0.8762

RF RFAAC 0.9092 0.9080 0.9105 0.9086 0.9084 0.9476 0.8190

RFSAAC 0.9850 0.9792 0.9905 0.9845 0.9844 0.9962 0.9704

RFDC 0.9810 0.9894 0.9728 0.9814 0.9812 0.9966 0.9627

RFPseAAC-P 0.9155 0.8632 0.9667 0.9001 0.8885 0.9732 0.8475

RFPseAAC-S 0.9552 0.9519 0.9585 0.9545 0.9542 0.9798 0.9112

KNN KNNAAC 0.9222 0.9211 0.9233 0.9217 0.9215 0.9551 0.8449

KNNSAAC 0.9871 0.9822 0.9919 0.9867 0.9866 0.9967 0.9746

KNNDC 0.9837 0.9909 0.9767 0.9840 0.9839 0.9971 0.9680

KNNPseAAC-P 0.9276 0.8828 0.9714 0.9144 0.9044 0.9770 0.8693

KNNPseAAC-S 0.9616 0.9588 0.9644 0.9610 0.9608 0.9827 0.9239

ETPseAAC-S 0.9664 0.9639 0.9689 0.9659 0.9657 0.9848 0.9334

NB NBAAC 0.9200 0.9218 0.9183 0.9199 0.9198 0.9456 0.8406

NBSAAC 0.9684 0.9756 0.9613 0.9704 0.9698 0.9759 0.9387

NBDC 0.9699 0.9766 0.9634 0.9702 0.9701 0.9804 0.9405

NBPseAAC-P 0.9238 0.8943 0.9527 0.9144 0.9065 0.9623 0.8591

NBPseAAC-S 0.9557 0.9537 0.9576 0.9551 0.9549 0.9720 0.9120

Fig. 6 Performance comparison
of proposed models in SAAC
feature space
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Fig. 7 ROC performance curves of the best performing SVM models
in different feature spaces. a ROC curve with SVM-Poly using AAC,
b ROC curve with SVM-Poly using SAAC, c ROC curve with SVM-
Poly using PseAAC-P, d ROC curve with SVM-Poly using PseAAC-S,

eROC curve with SVM-RBF using AAC, f ROC curve with SVM-RBF
using SAAC, g ROC curve with SVM-RBF using PseAAC-P, h ROC
curve with SVM-RBF using PseAAC-S
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SAAC, PseAAC-P, and PseAAC-S feature spaces, respec-
tively. Due to more generalized data modeling capability of
RBF kernel than polynomial kernel, SVM-RBF has better
AUC of ROC curve.

6.2 Temporal Cost Comparison

The time complexity (cost) of learning algorithms is com-
puted empirically. The execution time of learning algorithms
depends on the software environment and the computing
machine.We reported the results using DELLOptiplex-7040
computing machine with Processor: Intel(R) Core(TM),
i7-6700 CPU @3.40GHz (4 CPUs), 3.4GHz, Memory:
32,768MB RAM machine in Windows 10 operating sys-
tem. Table 5 depicts the training and testing time of various
learners in different feature spaces. The table shows that NB
algorithm consumed the least training time. However, RF
algorithm taken maximum training time. This is because RF
learner is based on the construction of a large number of
random trees. The final decision is combined using the indi-
vidual decisions of various constructed trees. After model
development, the temporal cost of the models is evaluated
for testing examples. NB algorithm consumed the lowest
average execution time 0.158s on testing examples. KNN
obtained the highest average time 1.2131s. However, RF
and NB algorithms have consumed approximately the same
average execution times 0.164 and 0.158s, respectively. On
the other hand, in testing phase, SVM-Poly and SVM-RBF
algorithms consumed average time 0.596 and 0.713s, respec-
tively. AlthoughRF obtained themaximum training time, but
once model is trained it took least time as compared to other
learners. In general, learning algorithms consumed relatively
large training time. However, after successful model devel-
opment, they consumed less time during testing phase for
lung cancer classification.

6.3 Performance Comparison with Previous
Approaches

Researchers have employed different data modalities and
feature selection approaches for lung cancer classification
[18–23,43,44]. Each approach has its own merits and de-
merits depending upon complexity of data modalities and
feature selection.We compared the performance of proposed
models with previous conventional approaches for lung can-
cer classification. This comparison would be informative to
analyze the useful information related to lung cancer classi-
fication problem.

Table 6 depicts the performance of proposed classification
models with previous models. Different classification mod-
els of Bayesian Network, random forest, nearest neighbor,
SVM, and random committee have reported different accu-
racy values of 0.85, 0.79, 0.70, 0.76, and 0.77 respectively

Table 5 Execution time of proposed classification models

Proposed models Training time/s Testing time/s

SVM-Poly

SVMAAC 10.608 0.1950

SVMSAAC 4.1307 0.1206

SVMDC 43.465 2.3967

SVMPseAAC-P 14.308 0.1103

SVMPseAAC-S 6.4872 0.1604

SVM-RBF

SVMAAC 6.5374 0.2004

SVMSAAC 6.3268 0.2907

SVMDC 57.332 2.4264

SVMPseAAC-P 8.3020 0.2606

SVMPseAAC-S 11.794 0.3910

RF

RFAAC 67.980 0.1504

RFSAAC 82.218 0.1503

RFDC 99.556 0.1602

RFPseAAC-P 80.213 0.1905

RFPseAAC-S 96.847 0.1503

KNN

KNNAAC 2.6871 0.1804

KNNSAAC 4.3014 0.5715

KNNDC 14.987 4.4217

KNNPseAAC-P 3.2587 0.3509

KNNPseAAC-S 3.7900 0.5414

NB

NBAAC 1.5942 0.1807

NBSAAC 1.0731 0.1701

NBDC 1.9752 0.1804

NBPseAAC-P 1.7296 0.2104

NBPseAAC-S 1.1129 0.05013

[18]. In another study [19], SVM algorithm-based models
of SVM-Linear, SVM-Evolutionary, SVM-Lib, SVM-POS,
SVM-Fast Large Margin, and SVM-Hyper have been devel-
oped. These models obtained values of accuracy in range
of 0.51–0.82, 0.51–0.82, 0.47–0.65, 0.52–0.67, 0.43–0.56,
0.34–0.78, and 0.28–0.42, respectively. Further, in another
study [20],Gaussian SVM,Linear SVM,Logistic regression,
Naïve Bayes, and RF models have achieved accuracy val-
ues in range of 0.83–0.85, 0.80–0.82, 0.80–0.82, 0.75–0.77,
and 0.86 respectively. In [23], reported model has yielded
AUC (0.8600) for the classification of cancer and non-
cancer. On the other hand, our proposed classificationmodels
SVM-Poly, SVM-RBF, RF, KNN, and NB have obtained the
highest accuracy values of 0.9938, 0.9943, 0.9850, 0.9871,
and 0.9684 respectively. From this analysis, we summarized
that proposed models have outperformed previous models
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Table 6 Performance
comparison of proposed models
with previous approaches

Feature extraction strategy Methods Accuracy

Structural and physicochemical properties [18] Bayesian Network 0.8500

Random forest 0.72–0.79

Nearest neighbor 0.69–0.70

SVM 0.7600

Random committee 0.69–0.77

Structural and physicochemical attributes with
attribute weighting models [19]

SVM 0.51–0.82

SVM-Linear 0.51–0.82

SVM-Evolutionary 0.47–0.65

SVM-Lib 0.52–0.67

SVM-POS 0.43–0.56

SVM-Fast Large Margin 0.34–0.78

SVM-Hyper 0.28–0.42

CpGmethylation, histone H3 methylation modifi-
cation, nucleotide composition, and conservation
[20]

Gaussian SVM 0.83–0.85

Linear SVM 0.80–0.82

Logistic regression 0.80–0.82

Naïve Bayes 0.75–0.77

Random forest 0.8600

Radiographic signatures with clini-
cal data [23]

Radiographic and clinical model 0.8600

Composition and physiochemical
properties

(Proposed models) SVM-Poly, SVM-RBF 0.9938, 0.9943

Random forest 0.9850

K-nearest neighbor 0.9871

Naïve Bayes 0.9684

for lung cancer classification. This is because our models
have exploited effectively discriminant molecular descrip-
tors using physiochemical properties of protein amino acids.
In future, we intend to classify other types of cancers using
influential features of differentially expressed genes. This
information related to differentially expressed genes can be
retrieved from the literature [45,46].

7 Conclusion

In this study, for early lung cancer classification, we explored
a new dimension of using discriminant information of
mutated genes revealed through the statistical analysis of
protein amino acid sequences. From this analysis, we found
twenty most frequent mutated genes TP53, EGFR, KMT2D,
PDE4DIP, ATM, ZNF521, DICER1, CTNNB1 RUNX1T1,
SMARCA4, FBXW7,NF1, PIK3CA, STK11,NTRk3,APC,
PTPRB,BRCA2,MYH11andAMER1.The abnormalmuta-
tion in these genes is major cause of lung cancer. We have
developed several lung cancer classification models using
discriminant information of mutated genes expressed in
different feature spaces. Our results highlight that SVM and
RBF models have the best performance in SAAC feature
space. The proposed models have demonstrated improved

performance as compared to other approaches. This is
because the proposed models have effectively exploited the
discriminant information related to cancer and non-cancer
protein amino acid sequences. The proposed approachwould
be effective to increase the survival rate of lung cancer
patients. It is anticipated that proposed model would be use-
ful for academia, researchers, and practitioners in decision
making for cancer diagnosis, prognosis, precision medicine,
and drug discovery.
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