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Abstract
Anenvironment-friendly and cost-effective green recipe is employed for the productionof green/phytogenicmagnetic nanopar-
ticle (PMNPs). Surfaces of PMNPs were functionalized by 3-mercaptopropionic acid (3-MPA) to investigate elimination
performance of toxic dye, i.e., crystal violet (CV) from wastewater. Fabrication of functionalized PMNPs by 3-MPA (3-
MPA@PMNPs) was characterized by various well-known techniques. Adsorption of CV onto 3-MPA@PMNPs has been
experimentally investigated. The developed material showed high adsorptive rate (98.57% CV removal within 120 min)
and adsorptive capacity (88.65 mg/g at 25 ◦C). Moreover, various adsorption isotherm and kinetic models were applied to
explore probable removal mechanism. Langmuir isotherm model successfully represented adsorption equilibrium of CV
onto 3-MPA@PMNPs. Further, the adsorption kinetic data harmonized reasonably with pseudo-second-order model which
revealed that the removal was mainly corroborated by the mechanisms of ion-exchange and/or chemisorption. Values of ther-
modynamic parameter (�Go) were −5123.37, −5313.46, −6216.23, −6764.21 and −8548.97KJ/mol, respectively, in the
temperature range from 298.15 to 333.15K.While the values of�Ho and�So were−47.44 and−8.67KJ/mol, respectively.
These values show that sorption was favorable, spontaneous and exothermic. The high adsorptive removal persisted at wide
pH range of 6.0–12.0. The material indicated high selectivity in the presence of co-existing ions (Pd2+ and Cd2+) and offered
fastest separation times from aqueous solutions due to their superparamagnetic nature. Recovered adsorbent was re-employed
for > 5 times with removal efficiency of > 85%. It is concluded that 3-MPA@PMNPs can be applied as alternative sorbent
for cost-effective treatment of cationic dyes from textile wastewater.
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1 Introduction

Management of water pollution is a hot issue of twenty-
first century, especially developing and underdeveloped
economies. Water contamination is growing rapidly due to
the release of synthetic dyes and hazardous wastes into natu-
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ral water environment without proper treatment [1,2], due
the rapid industrialization and urbanization [3]. Different
kinds of industries, e.g., leather, cosmetic, textile, food, and
pharmaceutical, are discharging untreated toxic and aromatic
pollutants into water bodies. Further, the textile industry is
mainly involved in the use of synthetic/toxic dyes for color-
ing purpose [4]. These toxic dyes are creating serious harmful
effects and diseases in the vicinity and damaging aquatic life,
owing to their non-biodegradable nature [5]. Hence, the treat-
ment of these toxic dyes prior to discharge is highly desirable.
However, the removal of these dyes is not so easy because
of their synthetic origin and complex molecular structure.
Moreover, the elimination of these recalcitrant dyes ismainly
depended on its physical and chemical characteristics, in
addition to the selected treatment alternatives. The effective
eradication of dyes is still an open challenge for wastew-
ater treatment experts as the most of the technologies are
costly and have deleterious effects on corresponding envi-
ronment [6].

From the above perspective, various physical, chemical
(coagulation, flocculation, electrochemical oxidation, chem-
ical precipitation, ion-exchange, electrodialysis) and bio-
logical (trickling filter, activated sludge system, membrane
bioreactors, biosorption, photo-catalytic degradation etc.)
technologies have been utilized for the elimination of toxic
dyes [1,7]. However, due to high installation and operational
costs, production of substantial amount of toxic biomass
and low treatment performance are the main impediments
to extend these technologies for low-economy countries [1].
In contrast, adsorption process is assumed relatively far
better than other in term of convenient operation, cost-
effectiveness, design simplicity, high performance and low
energy demand [8]. In recent years, different kinds of adsor-
bents have been fabricated and engaged for the treatment of
these toxic dyes, including banana pith, orange peel [9], rice
husk [10], peanut hull [11], coir pith [12], pinewood and jute
fiber [13], zeolites, ion-exchange resins, red mud, activated
carbon and composite materials [1]. Nonetheless, specific
attributes such as slow kinetics, low adsorptive capacity,
regeneration and reusability, the involvement of high costs
in the preparation and activation of adsorbents are the hur-
dles in the acceptance of the technology. Hence, adsorbents
with high adsorptive capacity, easy to separation and regen-
eration, high reusability and low cost required for fabrication
are still market demanded. Currently, metal oxide nanopar-
ticles (NPs) are getting much research attention because of
their easy manufacturing, greater magnetic permeability and
high stability [14,15]. These have also been used to remove
and degrade these dyes from wastewater owing to their sole
physical, catalytic and chemical properties. Various types
of manufacturing techniques, i.e., chemical co-precipitation,
micro-emulsion, electrochemical and sol–gel have been well
elaborative to prepare these metal oxides NPs [1]. However,

these methods are facing serious challenges because of the
application of high pressure and temperature, toxic and haz-
ardous chemicals, and abrasive reaction atmosphere in the
fabrication of these metal oxides NPs [1,2]. Thus, because of
these drawbacks, green nanotechnology has come into play
their role these days in water treatment industry. It is using
non-toxic chemicals, i.e., plant bio-molecules as reducing
and capping agent [16]. Green nanotechnology is an inex-
pensive option and requires low temperature and pressure to
prepare metal oxide NPs [17]. Furthermore, steric stabiliza-
tion of metal oxides NPs can be achieved against aggregation
whichwould eventually reduce the concerns associated to the
exploitation of noxious, corrosive and flammable chemical,
i.e., NaBH4. Presently, various kinds of plants and plant’s
parts have been used to prepare greenmagnetic NPs and their
treatment performances have also been discussed in the pre-
viously by same research group [1]. Most of them have also
been employed to eliminate heavymetals (i.e., Cr, Hg, PbAs,
Ni and Cd) from wastewaters [18–27]. However, very lim-
ited reports are available on the adsorptive removal of toxic
dyes [7,28–30], irrespective of the fact that different kinds of
green magnetic NPs were prepared by various types of plant
extract and utilized for the degradation of toxic dyes. There-
fore, presently PMNPs were synthesized by leafs extract of
F. chinensis Roxb, and further the surface of PMNPs was
functionalized by 3-mercaptopropionic acid (3-MPA) ligand
(3-MPA@PMNPs) to achieve adsorption of toxic dye, i.e.,
Crystal violet (CV).

2 Materials andMethods

2.1 Materials and Chemicals

Various different types of chemicals were used in the present
research investigation, as details are given in supplementary
information (Text-SI). Further, the information regarding
toxic CV dye used in the adsorption experiments is enlisted
in the supplementary information (Table-SI)

2.2 Preparation of 3-Marcaptopropanic Acid
Functionalized Phytogenic Magnetic
Nanoparticles (3-MPA@PMNPs)

Leafs extract of ‘F. chinensis Roxb’ was used to pre-
pare PMNPs, according to authors previously published
report [3,31]. Briefly, 50mL of leafs extract and 50mL of
metal salt solution was mixed together. The mixture was
heated and stirred at 80 ◦C and 100 rpm, respectively, for
60min, bykeepingmixture pHstable at 12untilmixture color
turned to black. After this, the black color grains were sepa-
rated and dehydrated for 20min at 80 ◦C. Thereafter, for the
functionalization, an amount of 0.50g PMNPs and 2.354g
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3-MPA was combined mutually via sonication for 12h in
50mL distilled water at temperature 25 ◦C and pH 8. After
this, the functionalized particles were picked and polished
twice using ethanol solution, and then oven-dried for 20min
at 80 ◦C. The obtained black particles 3-Marcaptopropanic
acid functionalized phytogenic magnetic nanoparticles (3-
MPA@PMNPs)were used further in adsorptive experiments.

2.3 Characterization of 3-Marcaptopropanic Acid
Functionalized Phytogenic Magnetic
Nanoparticles (3-MPA@PMNPs)

Different kinds of instrumentations were utilized to ensure
smooth functionalization and characterization of
3-MPA@PMNPs, as details are given in supplementary
information (Text-SII).

2.4 Adsorption and Desorption Experiments

For the evaluation of adsorptive performance, batch exper-
iments were conducted by stirring Erlenmeyer flasks under
room temperature 25 ◦C at constant pH 6.5 and stirred at
100 rpm. The dosages of 3-MPA@PMNPs were optimized
by varying initial dosages from 0.10 to 1.50g/L in 25mg/L
CV dye concentration (50mL). The effect of mixture pHwas
investigated in batch mode at different pH (varies from 2 to
12). A fixed quantity of 0.50g/L powdered 3-MPA@PMNPs
was inserted in an Erlenmeyer flask containing 50mL of
dye solutions (25–1000mg/L) for the estimation of sorption
isotherm, kinetic and thermodynamic parameters to assess
the possible removal of CV by 3-MPA@PMNPs (Text-SIII).
The aqueous dyes concentration was determined at the end
of 15, 30, 60, 120, 180, 240, 300 and 360min. The adsorption
performance was also calculated at a different temperature of
298.15, 303.15, 313, 323.15 and 333.15K, respectively. UV–
vis spectrophotometer was employed to estimate the final
concentration values of CV dye and their absorbance read-
ings were checked at λmax = 585 nm. Lastly, the removal
efficiency and adsorption amount was determined by Eqs. (1)
and (2).

Removal efficiency (%) = Co − Ct

Co
100 (1)

Adsorption amount, qe (mg/g) = (Co − Ce) V

M
(2)

where Co, Ct and Ce are the initial, final and equilibrium
concentration (mg/L) of dye at various time interval and satu-
ration, respectively. Further,M (g) is theweight of the sorbent
and V (L) is the amount of the dye solution.

Reusability of the prepared sorbent was investigated up
to ten consecutive treatment cycles to assess the potential of
3-MPA@PMNPs for long-term applications. First, a fixed

quantity of 0.500g/L of sorbent was inserted into 25mg/L
dye and subsequently, 20mL of 0.1M EDTA regeneration
solution was added for CV dye desorption. In each cycle
desorbed 3-MPA@PMNPswas completely rinsed to neutral-
ity by DI and then re-employed for adsorption of CV dye.
Equation (3) was used to calculate the desorption efficiency
as given by:

Desorptionefficiency, η (%) = Mdesorbed

Msorbed
100

= (CrVr)

(Co − Ce) V
100 (3)

where Mdesorbed and Msorbed are the amount of dye (mg/g)
sorbed by and desorbed from sorbent, respectively.Cr (mg/L)
is the concentration of dye after regeneration. V (L) and Vr
(L) are the volume of feed and regeneration emulsion.

In addition, the effect of co-existing ions on adsorptive
performance was also investigated. The presence of heavy
metals cationic ions (Pb2+ and Cd2+) in dying effluents is
often documented, and these cationic ions can create selec-
tivity in the adsorptive removal of cationic CV dye. The dye
sorption onto 3-MPA@PMNPs was investigated by varying
initial co-existing cationic ions concentration of 1, 5, 25, 50,
100 and 1000mg/L, respectively. 0.300g/L of powered sor-
bent was mixed in a binary solution (50mL) containing the
heavy metals cationic ions (either Pb2+ or Cd2+) and the CV
dye (10mg/L).

3 Results and Discussion

3.1 Characterization of 3-Marcaptopropanic Acid
Functionalized Phytogenic Magnetic
Nanoparticles

The comprehensive characterization of 3-MAP@PMNPs
was formerly explained by Ali et al. [3,31]. Herein, only
the important characteristics are described. The FTIR spec-
trum was studied to explore the nature of coating on the
surface of prepared sorbent. The results revealed that the
spectrum had a broad characteristic peak at around 3357–
2962 cm−1, which can be endorsed to –OH stretching vibra-
tions. Importantly, thiol (–SH) characteristic peaks (at 2659
and 2511 cm−1) and carboxylic (COOH) characteristic peak
(at around 1633 cm−1) suggested the smooth coating of 3-
MPA ligand onto PMNPs, [23,32] as shown in Fig. 1I.

The powder XRD profiles of 3-MPA@PMNPs were
obtained. The perceived reflections in the XRD profiles were
suggested to belong to ferric oxide/hematite (Fe2O3), iron
oxide/magnetite (Fe3O4), in addition to NaCl [33]. The XRD
profile indicated peaks at 2θ = 32.5◦, 35.2◦, 45.4◦, 57.3◦
and 62.8◦, respectively (Fig. 1II). The peaks at 2θ = 35.2◦
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Fig. 1 I Fourier transforms infrared spectroscopic (FTIR) spectrum
of: (a) 3-Marcaptopropanic acid functionalized phytogenic magnetic
nanoparticles (3-MPA@PMNPs); (b) after sorption of crystal violet
(CV) onto 3-MPA@PMNPs and II the powder XRD patterns of (a)

phytogenicmagnetic nanoparticles (PMNPs); (b) 3-MPA@PMNPs and
(C) after the sorption of CV onto 3-MPA@PMNPs . (Reproduce from
Ali et al. [31]—Published by The Royal Society of Chemistry, UK)

Fig. 2 Schematic of 3-Marcaptopropanic acid functionalized phytogenic magnetic nanoparticles (3-MPA@PMNPs) formation . (Reproduce from
Ali et al. [3] with permission from Elsevier)

and 62.8◦ were principally showing the attendance of Fe3O4.
These peaks can be linked to (220), (311), (400), (511) and
(440) planes indexed of Fe3O4, as earlier registered in JCPD
reference pattern 019-0629 [32,34]. Further, it was found that
(–SH) functional group had bound with fabricated PMNPs.
The characteristic peaks at 2θ = 30◦ and 2θ = 56◦, indi-
cating the covering of (–SH) group onto PMNPs [35]. The
formation scheme of the prepared sorbent is presented in
Fig. 2.

Magnetic measurement results revealed that the values
of remnant magnetization (Mr) and coercivity (Hc) are
zero, suggesting the superparamagnetic nature of the sor-
bent (Fig. 3). The value of saturation magnetization (Ms)
was 50.95emu/g. The lower value ofMs compared toMs (for
bulkFe3O4 = 93 emu/g)maybebecause of the occurrence of
chemical reactions among capping agents and PMNPs [36–

39]. In addition, Fig. 3 illustrated that 3-MPA@PMNPs can
easily be separated from solution within 35 s by using mag-
net.

Based on the results obtained by TEM analysis, the man-
ufactured particles were compact, fine, irregular in shape
and monodisperse (Fig. 4a, b). Most of them are display-
ing cube shape structure and rests were indicating spherical
in shape. On average, the diameter of the fabricated sorbents
was 35–55nm (Fig. 4). The surface of the 3-MPA@PMNPs
was coated by organicmatters fromplant leafs extracts and 3-
MPA ligands,whichwere acting influential role in restraining
their aggregation and enhancing their dispersion and col-
loidal stability (Fig. 4a, b).

Similarly, as shown in Fig. 4c, spherical-shaped morphol-
ogy was also noticed in SEM analysis with a size ranging
from 30 to 50nm [32,35].
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Fig. 3 M–H hysteresis loop/VSM measurement of 3-Marcapto-
propanic acid functionalized phytogenic magnetic nanoparticles (3-
MPA@PMNPs) at temperature 300K, and inset photograph ofmagnetic
separation study of 3-MPA@PMNPs using simple hand-held magnet
(distance between the magnet and sample was 5cm). (Reproduce from
Ali et al. [3] with permission from Elsevier)

Moreover, the XPS profile depicted three (03) main peaks
at around 710.58/724.6, 529.95, and 284.79eV, correspond-
ing toFe 2p, O1s andC1s, respectively (Fig. 5). Importantly,
a minor peak developed at around 163.5eV for S 2p, hinting

Fig. 5 X-ray photoelectron spectrum (XPS) of 3-Marcaptopropanic
acid functionalized phytogenic magnetic nanoparticles (3-
MPA@PMNPs) (inset table is the atomic percentages of the elements).
(Reproduce from Ali et al. [31]—Published by The Royal Society of
Chemistry, UK)

the topping of 3-MPA ligand on PMNPs (Fig. 6d). Fur-
ther, the high-resolution XPS spectra were also obtained to
check the structure of iron oxide (Fig. 6a–d). As shown in
Fig. 6a, two main peaks were developed (at around 710.58
and 724.6ev) from 700 to 740eV, which were associated to
Fe 2p3/2 and Fe 2p1/2, respectively, evidencing the occur-
rence of Fe3O4. The binding energy resembling to Fe 2p3/2

Fig. 4 Transmission electron microscopic (TEM) images of 3-
Marcaptopropanic acid functionalized phytogenic magnetic nanopar-
ticles (3-MPA@PMNPs). a 200nm scale bar; b 100nm scale bar, and

SEM images of 3-MPA@PMNPs c before and d after sorption of crys-
tal violet (CV) dye . (Reproduce fromAli et al. [31]—Published by The
Royal Society of Chemistry, UK)
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Fig. 6 a High-resolution X-rays photoelectron spectra (XPS) of Fe 2p; b high-resolution XPS spectra of O 1s; c high-resolution XPS spectra of
C 1s; d high-resolution XPS spectra of S 1s . (Reproduce from Ali et al. [31]—Published by The Royal Society of Chemistry, UK)

is typical for Fe in iron oxide/ Fe3O4.Amajor peak developed
at around 529.95eV, which might be ascribed to the bonding
of O atoms with iron (Fe–O). In contrast, a minor peak at
around 532.8eV might be assigned to the oxygen atom in
the hydroxyl/–OH functional groups (Fig. 6b). Moreover, C
1s spectra showed two peaks at 285.7 and 287.6eV in the
range of 275–305eV (Fig. 6c). These features indicated the
presence of two C atom with different chemical nature. The
peak at 285.7eV can be linked to alcoholic (C–O) and/or
polyphenolic (O–H) groups.

Furthermore, N2 adsorption–desorption results depicted
that the hysteresis loop of the prepared material was associ-
ated to type IV isotherm model and its hysteresis loop was
very close with H4-type, as categorized by IUPC. The spe-
cific surface area was found to be 115.42m2/g, as estimated
by BET method (Fig. 7). Interestingly, the obtained specific
surface area was higher than most of the documented green
magnetic NPs [6–8,20–24,40,41]. Barrett–Joyner–Halenda
(BJH) model was used to calculate average pore size and
total pores volume. The average pore radius of the mate-
rial was acquired to be 17.052nm (Fig. 7), while the total
pores volume was 0.238 cm3/g, suggesting the existence of
a mesoporous structure of the material. Hence, the fabricated
material shows the availability of mesoporosity, which may
help diffusion of contaminants via pores.

Fig. 7 N2 adsorption–desorption isotherm at (77K). Pore size distri-
bution (inset) of 3-Marcaptopropanic acid functionalized phytogenic
magnetic nanoparticles (3-MPA@PMNPs) . (Reproduce from Ali et
al. [3] with permission from Elsevier)

3.2 Adsorption Properties of 3-Marcaptopropanic
Acid Functionalized Phytogenic Magnetic
Nanoparticles (3-MPA@PMNPs) for the Removal
of the Crystal Violet (CV) Dye

3.3 Influence of Adsorbent Dose

To investigate the optimal quantity of adsorbent for enhanc-
ing the interfaces between CV ions with the adsorption sites
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Co = 25 mg/L; contact time = 24 h)

of adsorbent, different amount of 3-MPA@PMNPs dosages
(0.1–1.5g/L) were mixed in dye solution (25mg/L) for 24h.
The findings indicated that a maximum of 87.5% removal
efficiency was achieved at the lowest adsorbent dosage; sub-
sequently, the removal efficiency was increased from 87.5 to
98.57% by increasing dosages from 0.1 to 0.5g/L and later it
was almost stable (Fig. 8). This might be due to the increase
in the presence of higher amount of free/active sites on the
adsorbents with the increase in adsorbent dosages, whereas
after the dose of 0.50g/L, the removal performance was con-
stant, suggesting the equilibrium among CV molecules and
adsorbents. Hence, 0.5g/L of adsorbent dosage was selected
for further studies.

3.3.1 Effect of Solution pH on Sorption

The effect of solution pH on sorption of CVwas investigated
by varying pH from 2 to 12. Initially, the removal efficiency
was slowly increased from 65 to 93.57% in the range of
pH 2–6 and then increased from 93.57 to 98.75% in the pH
range of 6–10. Thereafter it was reached up to 100% in the
range of pH 11–12 (Fig. 9). The sorption of cationic CV was
mainly associated with the surface charge on the adsorbent,
which could influence by the variation of solution pH. This
might be because the pHPZC of the preparedmaterialwas 5.19
(Fig. SI), thus, the surface of the adsorbent was negatively
charged at pH >. pHPZC, which endorsed the sorption of CV
cationic ions onto adsorbent surface,while at lesser pH,when
pH < .pHPZC the adsorbent surface was positively charged,
thereby boosting electrostatic repulsion among cationic of
CV molecules and the co-existed surplus protons/H+ ions.
Meanwhile, the positively charged adsorbent surface inhib-
ited the sorption of CV ions. Hence, above pH 5.19, the CV
removal efficiency was increased from 59 to 98.57% because
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pH > .pHPZC, while below pH 5.19, CV removal efficiency
was low due to the repulsion among cations.

3.3.2 Kinetics of Dye (CV) Sorption onto
3-Marcaptopropanic Acid Functionalized Phytogenic
Magnetic Nanoparticles (3-MPA@PMNPs)

The effect of contact time on the removal of CV dye by
3-MPA@MPA was noticed using a fixed amount of adsor-
bents (0.500g/L) at different initial concentrations of CV
dye (25–1000mg/L). As it can be noticed in Fig. 10, that
firstly the adsorption capacity of CV was sharply increased
and then reached plateau. The rapid adsorption of CV dye
at different concentration might be associated to the acces-
sibility of a substantial amount of free/active sites for fresh
3-MPA@PMNPs and then slowly decreases. This decrease
of CV dye sorption might be due to the sluggish pore dif-
fusion of CV ions into the bulk of 3-MPA@PMNPs. On
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Fig. 11 The linear plot of pseudo-second-order model of crystal violet
(CV) dye sorption onto 3-Marcaptopropanic acid functionalized phy-
togenic magnetic nanoparticles (3-MPA@PMNPs) (dosage = 0.5 g/L)

average, 88.65mg/g of adsorptive capacity was achieved
at equilibrium (120min), while rapid adsorption rate was
noticed within 60min along-with 98.57% of dye removal
efficiency. Moreover, sorption mechanism was also explored
via estimating kinetic parameters. Various types of kinetics
models (as details given in Text-SIII) were utilized to fix the
experimental data. The findings of these models are enlisted
in Table 1

As shown in Fig. 11 and Table 1, it can be suggested
that sorption of CV dye onto/by the sorbent can effectively
be expressed by pseudo-second-order kinetic model because
its regression coefficient (R2 = 0.99) values were higher
than other models, hinting the presence of ion-exchange
and/or chemisorption mechanism [6]. Moreover, as shown
in Fig. 12, Weber and Morris kinetic model was employed
to assess the diffusion mechanism, and it can be noticed that
the curves can be subdivided into multi-linear plots which
indicated that more than one process (like boundary layer
adsorption)might be convoluted in the adsorption of CV ions
by the prepared sorbent (Fig. 12). Despite the R2 values indi-
cated non-applicability of this model (Table 1). For instance,
initially, fast adsorption of cationic CV ions is indicating
the existence of large amount of fresh/free sites onto adsor-
bent surface. Similarly, kipd values are also growing with the
enhancement of CV dye concentration in the solution which
indicating that firstly CV ions occupied exterior vacant sites
and then these ions pursue to enter into the pores of the adsor-
bents. That’s why initially sorption capacity was high then
subsequently slowed down gradually to reach equilibrium.
On the other hand, the values of intercept were also increased
and indicated the boundary layer diffusion effect because of
the CVmolecules entered into the pores of 3-MPA@PMNPs.
Consequently, it might be stated that CV ions sorption onto
3-MPA@PMNPs was convoluted because of the presence
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Fig. 13 The linear plot of Langmuir isotherm model for crystal violet
(CV) dye sorption onto 3-Marcaptopropanic acid functionalized phy-
togenic magnetic nanoparticles (3-MPA@PMNPs) (dosage = 0.5 g/L)

of both the surface adsorption (chemisorption/ion-exchange
mechanism) and boundary layer adsorption.

3.3.3 Sorption Isotherm Study

Adsorption isotherm results revealed that Langmuir model
presented the excellent fit. As shown in Fig. 13 and Table 2,
the value of R2 (for Langmuir model) was greater than other
isotherm models. On the other hand, the value of KL for CV
was in the range of 0.28–0.99, suggesting that adsorptionwas
favorable. The results hinted the monolayer sorption of dye
onto homogenous sites of the prepared sorbent. The calcu-
lated maximum sorptive capacity was 88.65mg/g (Table 2).

3.3.4 Thermodynamic Studies

The values of �Go were negative at all reaction temper-
atures, suggesting the thermodynamically feasible sponta-
neousnature ofCVadsorptionby3-MPA@PMNPs (Table 3).
The negative value of enthalpy of sorption (�Ho) hinted
the exothermic nature of adsorption in the temperature of
298.15–333.15K. This value was greater 20.9KJ/mole, sug-
gested the chemisorption and/or ion-exchange mechanism,

as previously ensured by isotherm and kinetic studies. In
addition, the negative value of entropy (�So) hinted a
decrease in uncertainty/adsorbed species degree of freedom
at the solid-solution boundary during adsorption process.
A slight increase in adsorptive capacity (from 2.46 to
2.48mg/g) was also detected with the increase in reaction
temperature from 298.15 to 333.15K, though CV removal
efficiency was constant (Fig. 14). This can be assigned due
to the formation of fresh/or free spots onto sorbent or the
increased rate of pore diffusion.

3.3.5 Proposed Removal Mechanism

For exploring removal mechanism, the FTIR, XRD and
SEM analyses were also carried out after the sorption of
CV by the prepared sorbent, in addition to isotherm, kinet-
ics and thermodynamic studies. The FTIR results showed
that two important peaks at around 2659 and 2511 cm−1

shifted to 2632 and 2501 cm−1, hinting the attachment
of cations onto sorbent. Further, the characteristic peak at
around 435 cm−1 was arose, suggesting the bonding between
S–H and cationic ions of CV (e.g., [Dye]-2RN+ · · · · · · ·S−).
The stretching vibrations of C–H (related to methyl groups)
were also reduced, indicating the sorption of CV molecules
onto sorbent (Fig. 1b). This might be due to the presence
of hydrophobic interaction between CH3 and CH3. Simi-
larly, the stretching vibration of (–OH) functional groups
were also altered and reduced, indicating the sorption of
CV molecules with O–H via electrostatic interactions (e.g.,
[Dye]-2RN+ · · · · · · ·O−). Thus, FTIR results confirmed the
sorption of CV ions onto sorbent via connection between S–
H and O–H functional groups (Fig. 1b). On the other hand,
the intensity of characteristic peaks at 2θ = 30◦, 2θ = 35.2◦,
2θ = 56◦ and 2θ = 62◦ was also slightly affected, indicat-
ing the sorption of CV molecules onto sorbent. Moreover,
a new peak also appeared at 2θ = 44◦; it may due to
the sorption of CV molecules (Fig. 1II). The granular size
was improved after the sorption of CV molecules (Fig. 44).
This increase in size might be due to the attachment of CV
molecules, while the morphology of 3-MPA@PMNPs was
almost stable after the sorption of CV molecules indicated
the high stability of 3-MPA@PMNPs. Moreover, the evi-
dence attained from the isotherm, kinetic and thermodynamic
investigations along with the verity that CV dye and func-
tional groups onto sorbent are oppositely charged, directing
the ion exchange might be the principal sorptive mechanism.
In solution, the cationic ions of CV dye mainly attached with
(–OH) groups due to electrostatic interaction. However, the
development of chelate can also be occurred due to the attach-
ment of cations with (–SH) functional groups. In addition to
electrostatic interaction, hydrophobic interaction might be
happened owing to the presence of hydrophobic functional
groups (R = CH3) in CV dye molecules.
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Table 2 Isotherm constants for adsorption of crystal violet (CV) onto 3-Marcaptopropanic acid functionalized phytogenic magnetic nanoparticles
(3-MPA@PMNPs)

Isotherm models Equations Parameters Values

Langmuir isotherm model 1
qe

= 1
KLqmaxCe

+ 1
qmax

qmax(mg/L) 88.65

KL = 1
1+bCe

b (L/mg) 0.022

KL 0.28–0.99

R2 0.981

Freundlich Isotherm model log qe = ( 1
n

)
logCe + log kF 1/n 0.6357

Kf (mg/L) 0.5584

R2 0.893

Temkin isotherm model qe =
(
RT
BT

)
logCe +

(
RT
BT

)
log KT KT (L/g) 2.0394

BT (KJ/mol) 29.623

R2 0.780

Dubinin–Radushkevich isotherm model ln qe = ln qm − βε2 qmax(mg/L) 88.65979381

E (KJ/mol) 0.383488134

β (mol2/J2) 3.3999

R2 0.273

Given in supplementary information (Text-SV)

Table 3 Thermodynamic parameters values for the adsorption of crystal violet (CV) onto 3-Marcaptopropanic acid functionalized phytogenic
magnetic nanoparticles (3-MPA@PMNPs) at various reaction temperatures (K)

Thermodynamic equations Temperature (K) �Go (KJ/mol) �Ho (KJ/mol) �So (KJ/molK)

�G
◦ = −RT ln KD 298.15 −5123.378885 −47.44 −8.67

303.15 −5313.461504

ln KD = �S
◦

R − �H
◦

RT 313 −6216.234409

323.15 −6764.217316

333.15 −8548.978774

Given in supplementary information (Text-SVI)

Fig. 14 Thermodynamic plot
for the sorption of crystal violet
(CV) dye sorption onto
3-Marcaptopropanic acid
functionalized phytogenic
magnetic nanoparticles
(3-MPA@PMNPs)
(dosage = 0.5 g/L,
Co = 25 mg/L); inset graph is
the effect of temperature on the
adsorptive removal and capacity
of CV dye
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Moreover, before treatment,UV–vis spectra showedmajor
peaks at 240, 292, and 577nm (Fig. 15). Then, initially major
peaks were reduced rapidly within the contact time 15min.
While subsequently decreased approximately in proportion
to each other within the contact time of 120min and then
almost disappeared at the stage of equilibrium (Fig. 15).
This indicates that initially sorption rate was high due the
availability of a large amount of vacant/free sites onto sor-
bent [8]. This change in peaks indicated that CV molecules
were significantly adsorbed onto sorbent. Similar findings
were reported by various researchers [42,43].

3.3.6 Stability and Reusability of 3-Marcaptopropanic Acid
Functionalized Phytogenic Magnetic Nanoparticles

The prepared sorbent sustained its working up to five (05)
cycles then steadily reduced (Fig. 16). Importantly, the etch-
ing/ dissolution of iron or disintegration of adsorbent were

Fig. 15 Study of adsorptive removal of crystal violet (CV) via
UV–vis spectra; [inset figures shows chemical structure of CV dye]
(adsorbents dosage = 0.5 g/L)

not notice during the first five (05) treatment cycles. This
hints that there was no disrobing of 3-MPA coated PMNPs
happened. However, after five (05) treatment cycles, the
reusability was significantly declined owing to the destruc-
tion of adsorbent caused by the leakage/etching of Feo.
Overall, the coating of 3-MPA was stable and material per-
sisted > 85% sorption–desorption efficiency up to five
treatment cycles.

3.3.7 Influence of co-present constituents

For investigating the sorption selectivity, a binary system
(cationic metals ions+cationic CV dye) was prepared and
used. The co-presence of cationic ions did not influence on
the sorptive removal of cationic CV using 3-MPA@PMNPs
under all the experimented concentrations (Fig. 17). How-
ever, the presence of higher concentration of cadmium
(Cd2+) in solutions inhibited the CV sorption using 3-
MPA@PMNPs. A higher selectivity was noticed in the
presence of lead (Pb2+) than Cd2+ within the contact time of
24 h, while initially (within the contact time of 1 h), both
metals ions inhibited adsorptive removal of CV using 3-
MPA@PMNPs (Fig. SII). This suggests that a competition
was developed among the excess cationicCV ions and theCV
ions adsorbed onto 3-MPA@PMNPs. Cd2+ions restrained
the adsorption to a larger extent than Pb2+. It might be due
to the formation of inner-sphere complex by the reaction
between metal ions and adsorbent. In addition, the hydrated
radii of Pb2+ (4.01Å) are lower thanCd2+ (4.26Å), and it can
also influence on the adsorptive removal of other cations onto
3-MPA@PMNPs. It can also be addressed in this way that
Pb2+ and Cd2+ selectivity might be owing to attendance of
mercapto/(–SH) group onto sorbent and the (–SH) groupwas
playing governing job in the choosiness of Pb2+ and Cd2+
owing to softness of the base because the interaction between

Fig. 16 Stability and reusability
of 3-Marcaptopropanic acid
functionalized phytogenic
magnetic nanoparticles
(3-MPA@PMNPs) for
consecutive sorption–desorption
cycles (20mL of 0.1MEDTA
regeneration solution;
adsorbents dosage = 0.5 g/L,
CV initial concentration
(Co) = 25 mg/L)
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Fig. 17 Influence of co-present
cationic ions on crystal violet
(CV) removal by
3-Marcaptopropanic acid
functionalized phytogenic
magnetic nanoparticles
(3-MPA@PMNPs)
(adsorbents dosage = 0.3 g/L;
CV initial concentration
(Co) = 10 mg/L; contact time:
24h)
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Table 4 Comparison of
3-Marcaptopropanic acid
functionalized phytogenic
magnetic nanoparticles
(3-MPA@PMNPs) with other
sorbents for the sorption of
cationic crystal violet (CV) dyes

Cationic dye Sorbents qe (mg/g) Reusability References

CV Bottomash 12.66 – [44]

CV Bottomash 13.06 – [45]

CV Orange peel 14.30 – [46]

CV Jute fiber carbon 27.99 – [47]

CV Coniferous pinus bark powder (CPBP) 32.78 – [48]

CV Acacia niloticaleaves 33.00 – [49]

CV Artocarpus heterophyllus (jackfruit) leaf
powder (JLP)

43.39 – [50]

CV NaOH-modified rice husk (NMRH) 44.87 – [51]

CV Spherical mesoporous silica (meso-silica
MCM-41)

46.20 – [52]

CV Punica granatum shell 50.21 – [53]

CV AC (Waste apricot) 52.86 – [54]

CV Nano composite CuO/MCM-41 52.90 – [52]

CV Yarrowiali polytica ISF7 59.40 – [55]

CV Rice husk 64.87 – [56]

CV Treated ginger waste (TGW) 64.93 – [57]

CV Peanute shells 76.40 – [58]

CV Palmkernelfiber 78.90 – [59]

CV Ag nanoparticles (AgNPLs) chemically
immobilized onto activated carbon
(ACAgNPLs)

87.20 – [60]

CV 3-MPA@PMNPs 88.65 Yes P.S

CV Opal 101.13 Yes [61]

qe, sorption capacity (mg/g); P.S, present study; –, not reported

soft acid and soft base is predominate [3], while mercapto (–
SH) group is a soft base and preferably desire to interact with
soft acid (i.e., metal ions) then subsequently the formation
of chelate could happen via chelation mechanism due to the
presence of S atom ligand onto sorbent [20–24]. In addi-

tion, CV is a basic cationic dye and it selectivity may inhibit
in the presence of soft acid (metal ions) and (–SH) group
onto 3-MPA@PMNPs. However, the conclusions illustrated
that CV adsorption was inhibited initially but later with the
increase of contact time, adsorptive removal was acceler-
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ated. This indicates that 3-MPA@PMNPs had enough active/
vacant sites for the sorption of a greater amount of cationic
ions. Therefore, the pre-knowledge of the co-presence of
different cationic ions is mandatory to compatibly optimize
the operational prerequisites for smooth application of 3-
MPA@PMNPs because the influence of co-existing ions
could be varied for different cationic days.

3.4 Comparison of 3-Marcaptopropanic Acid
Functionalized Phytogenic Magnetic
Nanoparticles (3-MPA@PMNPs) with Other
Sorbents

Lastly, the prepared material had superior characteristics
than other reported sorbents in term of sorption capacity,
kinetics, reusability, magnetic separation and green fabri-
cation (Table 4). These features make 3MPA@PMNPs a
prerequisite/ desirable alternative green material/adsorbent
to eliminate cations from many fields.

4 Conclusions

An environment-friendly, non-toxic, cost-effective, biocom-
patible green recipe was utilized to manufacture phytogenic
magnetic nanoparticle (PMNPs), and their surfaces were
successfully functionalized by 3-mercaptopropionic acid (3-
MPA), as ensured through various instrumentations includ-
ing FTIR, SEM, BET, powder XRD, TEM and VSM tech-
niques. Further, the adsorptive performance of functionalized
3-MPA@PMNPswas also investigated using a toxic cationic
CV dye. The 3-MPA@PMNPs presented a high sorption
rate (98.57% CV dye removal within 120min). The experi-
mental data matched appropriately with Langmuir isotherm
model and pseudo-second-order kinetics model, hinted that
monolayer sorption of CV dye by 3-MPA@PMNPs via
ion-exchange and/or chemisorption mechanism. The fab-
ricated adsorbent depicted comparable sorption capacity
of 88.65mg/g at 25 ◦C. Similarly, thermodynamic study
demonstrated that adsorption was favorable, exothermic and
spontaneous. Moreover, the findings obtained by FTIR and
XRD analysis indicated that cationic CV dye adsorbed
owing to the manifestation of electrostatic interaction and
the development of chelate or chelation with (–OH) func-
tional groups and (–SH) thiol ligand affixed on the surface
of 3-MPA@PMNPs. in addition, the prepared sorbent can
quickly be separated from solution within 35s using mag-
net owing to their superparamagnetic nature. The recovered
material reused for at-least five (05) times and maintained
removal efficiency above 85%. Overall, the prepared sorbent
is depicting a comparable high adsorptive efficiency, and its
kinetics shows a good future for its applications in water/
wastewater treatment process ([62,63].
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