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Abstract
The objective of this manuscript is to present some generalized weighted averaging aggregation operators for aggregating
the different complex intuitionistic fuzzy sets using t-norm operations. In the existing studies of fuzzy and its extension, the
uncertainties present in the data are handled with the help of degrees of membership which are the subset of real numbers,
which may loose some useful information and hence consequently affect on the decision results. As a modification to these,
complex intuitionistic fuzzy set handles the uncertainties with the degrees whose ranges are extended from real subset to the
complex subset with the unit disk and hence handle the two-dimensional information in a single set. Thus, motivated by this,
we developed some new averaging aggregation operators, namely complex intuitionistic fuzzy (CIF) weighted averaging,
CIF ordered weighted averaging and CIF hybrid averaging in conjunction with their desirable properties. Then, we utilized
these operators to propose a multicriteria decision-making approach and illustrated a numerical example to demonstrate the
working of the proposed approach. Finally, the proposed results are compared with existing approaches results.

Keywords Complex fuzzy set · Complex intuitionistic fuzzy set · Averaging operators · Multicriteria decision-making ·
t-norm operations

1 Introduction

Multicriteria decision-making (MCDM) is concerned with
structuring and solving decision and planning problems in
which all the criteria are considered simultaneously. This
area of decision-making has attracted the interest of many
researchers, and they have worked in this field by utilizing
various approaches [1–3]. Traditionally, MCDM problems
often require decision makers to provide evaluation infor-
mation about the criteria and the alternatives with a fuzzy
set (FS) [4], intuitionistic fuzzy (IF) set (IFS) [5], interval-
valued intuitionistic fuzzy set (IVIFS) [6] and other extended
sets [7–9]. Under these existing sets, various researchers
have proposed different types of methods in processing
the information values using different operators [10–17],
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information measures [18–20], score and accuracy functions
[21,22] under these environments. Among them, an aggre-
gation operator is an important part of the decision-making
which usually takes the form of mathematical function to
aggregate all the input individual data into a single one.
By taking the advantage of this, Yager [23] proposed the
ordered weighted aggregation (OWA) operator by giving
weights to all the inputs according to their ranking posi-
tions. Xu and Yager [24] presented geometric aggregation
operator, while Xu [2] presented weighted averaging opera-
tor for aggregating the different intuitionistic fuzzy numbers
(IFNs). Xu and Yager [25] presented intuitionistic fuzzy
Bonferroni mean aggregation operators. Wang and Liu [26]
presented some aggregation operations using Einstein norm
operations. He et al. [27] presented some interactive aver-
aging aggregation operators to solve the MCDM problems.
Garg [28,29] presented some improved interactive aggre-
gation operators for different IFNs. Wei and Wang [30]
developed ordered weighted geometric aggregation opera-
tors for interval-valued IFNs (IVIFNs). Kaur and Garg [31]
presented some aggregation operators for cubic IF set. Ye
[32] presented some hybrid averaging and geometric aggre-
gation operators under the IFS environment to solve the
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MCDM problems. Recently, Garg and Singh [33] presented
a novel triangular interval type-2 IF set and their aggregation
operators.

As for the above existing studies, it has been analyzed
that they have investigated the MCDM problems under the
FS, IFS or its generalizations, which are only able to deal
with the uncertainty and vagueness that exists in preferences
given by the decision makers. None of these models are able
to represent the partial ignorance of the data and its fluctua-
tions at a given phase of time. However, in complex data sets,
uncertainty andvagueness in the data occur concurrentlywith
changes to the phase (periodicity) of the data. In order to han-
dle these, Ramot et al. [34] proposed the concept of complex
fuzzy set (CFS) inwhich the range ofmembership function is
extended from the subset of real number to the unit disk and
the membership function is represented in the form of ζeiwζ

where ζ ∈ [0, 1] and wζ is real valued. CFS is widely used
in many of the data sets which include the large amounts of
data that are generated frommedical research, as well as gov-
ernment databases for biometric and facial recognition, audio
and images all of whichmay contain large amounts of incom-
plete, uncertain and vague information. Ramot et al. [34,35]
discussed several properties of CFSs such as complement,
union and the intersection with sufficient amount of illus-
trative examples. As the CFS model does not tell anything
about the disagreeness of any element in any set so, Alkouri
and Salleh [36] extended the concept of CFS to complex
intuitionistic fuzzy set (CIFS) by adding the degree of non-
membership and defined their basic operations such as union,
intersection, complement, etc. Alkouri and Salleh [37], fur-
ther, introduced the concepts of complex intuitionistic fuzzy
relation, composition, projections and hence proposed a dis-
tance measure between the two CIFSs. Kumar and Bajaj [38]
proposed some distance and entropy measures for complex
intuitionistic fuzzy soft sets. Rani and Garg [39] presented
some series of distance measures under CIFS environment
and their application in the decision-making process. Rani
and Garg [40] presented power aggregation operators for
CIFS and their application in decision-making problems.

CIFS is a generalization of the existing studies such as
complex fuzzy sets [34], intuitionistic fuzzy sets [5], fuzzy
set [4] by considering much more information related to an
object during the process and to handle the two-dimensional
information in a single set. In CIFS theory, membership
and non-membership degrees are complex valued and are
represented in polar coordinates. The amplitude term corre-
sponding to the membership (non-membership) degree gives
the extent of belongings (not-belongings) of an object in
a CIFS and the phase term associated with membership
(non-membership) degree gives the additional information,
generally related with periodicity. The phase terms are novel
parameters of themembership and non-membership degrees,
and these are the parameters which distinguish the traditional

IFS and CIFS theory. IFS theory deals with only one dimen-
sion at a time, which results in information loss in some
instances. However, in day-to-day life, we come across com-
plex natural phenomena where it becomes essential to add
the second dimension to the expression of membership and
non-membership grades. By introducing this second dimen-
sion, the complete information can be projected in one set,
and hence, loss of information can be avoided. To illustrate
the significance of the phase term, consider an example of a
certain company where he decides to install new data pro-
cessing and analysis software. For this, the company consults
an expert who gives the information regarding (i) different
alternatives of software (ii) corresponding software version.
The company wants to select the most optimal alternative(s)
of software with its latest version simultaneously. Here, the
problem is two-dimensional, namely to select the optimal
alternative of software and its latest version. This problem
cannot be modeled accurately using traditional IFS theory.
So, the best way to represent all of the information provided
by the expert is by using CIFS theory. The amplitude terms in
CIFS may be employed to give a company’s decision regard-
ing alternative of software, and the phase terms may be used
to represent company’s decision regarding software version.

Therefore, keeping the advantages of this set and taking
the importance of aggregation operators, this paper presents
the theory of the weighted averaging aggregation operators
among the CIFS. As per our knowledge, in the aforemen-
tioned studies, the operators cannot be utilized to handle
the CIFS information. Thus, in order to achieve it, we first
define some operational laws between the pairs of the CIFSs
and studied their properties that involve both uncertainty
and periodicity semantics. Then, based on these, we propose
somegeneralized t-norm-based aggregation operators named
as complex intuitionistic fuzzy (CIF) weighted averaging,
CIF ordered weighted geometric, CIF hybrid averaging to
aggregate the different complex intuitionistic fuzzy num-
bers (CIFNs). The various properties of these operators are
investigated in details. Furthermore, we propose an MCDM
approach based on the proposed operators for CIFSs. The
feasibility, as well as superiority of the approach, has been
demonstrated through an illustrative example.

For this, the remaining text is organized as follows. In
Sect. 2, we discuss some existing work on CFS, CIFS, t-
norms and t-conorms. In Sect. 3, some basic generalized
operational laws of CIFNs and their basic properties are
presented. Further, some weighted averaging aggregation
operators, namely CIFWA, CIFOWA and CIFHA are pre-
sented in conjunction with their desirable properties. In
Sect. 4, we present a multicriteria decision-making approach
based on the proposed operators under CIFSs environment,
where each element of the set is characterized by com-
plex intuitionistic fuzzy numbers. An illustrative example
is presented to discuss the functionality of the proposed
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approach and their results are compared with some of the
existing approaches results. Finally, a conclusion is given in
Sect. 5.

2 Preliminaries

In this section, we review some basic concepts of CIFSs,
t-norms and t-conorms over the universal set U .

Definition 1 [34] A CFS A defined on U is a set of ordered
pairs which is defined as

A = {(x, μA(x)) : x ∈ U } (1)

where μA : U → {a : a ∈ C, |a| ≤ 1} is a complex-valued
membership function. Corresponding to each element x ∈ U
the value of μA(x) is expressed as: μA(x) = ζA(x)eiwζA (x)

where i = √−1, ζA(x) ∈ [0, 1] and 0 ≤ wζA(x) ≤ 2π .

Definition 2 [36] A CIFS A defined on U is given by

A = {(x, μA(x), γA(x)) : x ∈ U } (2)

where μA : U → {a : a ∈ C, |a| ≤ 1} and γA :
U → {a : a ∈ C, |a| ≤ 1} are complex-valued mem-
bership and non-membership functions, respectively, of the
element x and are given by μA(x) = ζA(x)eiwζA (x) and
γA(x) = ϑA(x)eiwϑA (x), where ζA(x), ϑA(x) ∈ [0, 1] such
that 0 ≤ ζA(x)+ϑA(x) ≤ 1 and 0 ≤ wζA(x), wϑA (x) ≤ 2π
such that 0 ≤ wζA(x) + wϑA (x) ≤ 2π .

For convenience, we denote this pair as δ = 〈ζeiwζ ,

ϑeiwϑ 〉 and named it as complex intuitionistic fuzzy num-
ber (CIFN), where ζ, ϑ ∈ [0, 1] such that ζ + ϑ ≤ 1 and
wζ ,wϑ, [0, 2π ] with 0 ≤ wζ + wϑ ≤ 2π .

Definition 3 [36] Consider two CIFSs A = {(x, ζA(x)
eiwζA (x), ϑA(x)eiwϑA (x)) : x ∈ U } and B = {(x, ζB(x)
eiwζB (x), ϑB(x)eiwϑB (x)) : x ∈ U } defined on U . Then, we
have

(i) A ⊆ B if ζA(x) ≤ ζB(x) , ϑA(x) ≥ ϑB(x) and
wζA(x) ≤ wζB (x) , wϑA (x) ≥ wϑB (x)

(ii) A = B ⇔ ζA(x) = ζB(x) , ϑA(x) = ϑB(x) and
wζA(x) = wζB (x) , wϑA (x) = wϑB (x)

(iii) Ac = {(x, ϑA(x)eiwϑA (x), ζA(x)eiwζA (x)) : x ∈ U }

Definition 4 [41] A function T : [0, 1] × [0, 1] → [0, 1] is
called t-norm if it satisfies the boundary condition, mono-
tonicity, commutativity and associativity. On the other hand,
a function K defined by K (a, b) = 1 − T (1 − a, 1 − b) ∀
a, b ∈ [0, 1] is called t-conorm.

Definition 5 [41] An Archimedean t-norm (t-conorm) func-
tion, T (or K ), is a continuous t-norm (t-conorm) satisfying
the condition T (a, a) < a( or K (a, a) > a) for a ∈ (0, 1).
A strict Archimedean t-norm (t-conorm) is strictly increasing
t-norm (t-conorm).

Strict Archimedean t-norm T and t-conorm K can be
expressed using continuous functions t, s : [0, 1] → [0,∞),
respectively, as T (a, b) = t−1

(
t(a) + t(b)

)
and K (a, b) =

s−1
(
s(a)+ s(b)

)
where t is decreasing function with t(1) =

0; s is an increasing function with s(0) = 0 and s(a) =
t(1 − a).

3 Operational Laws and Averaging
Operators of CIFNs

In this section, some elementary operational laws of the
CIFNs and some series of the averagingoperators are defined.

3.1 Score and Accuracy Functions

Definition 6 For CIFN δ = 〈ζeiwζ , ϑeiwϑ 〉, the score func-
tion of δ is defined as

S(δ) = (
ζ − ϑ

) + 1

2π

(
wζ − wϑ

)
, (3)

and an accuracy function H of δ is stated as

H(δ) = (
ζ + ϑ

) + 1

2π

(
wζ + wϑ

)
. (4)

It is clear that S(δ) ∈ [−2, 2] and H(δ) ∈ [0, 2].
Based on these two functions, an order relation between

two CIFNs δ and β is stated as

(a) if S(δ) > S(β) then δ > β.
(b) if S(δ) = S(β)

(i) if H(δ) > H(β) then δ > β

(ii) if H(δ) = H(β) then δ and β represent the same
information, denoted by δ = β.

To study the properties of score function and accuracy
function, we propose the following results.

Theorem 1 (Monotonicity of score function)Let δ = 〈ζeiwζ ,

ϑeiwϑ 〉 be aCIFN. Then, the score function S(δ) = (
ζ −ϑ

)+
1
2π

(
wζ −wϑ

)
is a monotonic increasing function with ζ ,wζ ,

and a monotone decreasing function with ϑ , wϑ .

Proof Omitted. 
�
Theorem 2 (Symmetry of score function) Let δ j = 〈

ζ j e
iwζ j ,

ϑ j e
iwϑ j

〉
, j = 1, 2 be two CIFNs, δcj = 〈

ϑ j e
iwϑ j , ζ j e

iwζ j
〉
,
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j = 1, 2 be their associated inverse (complement) function,
respectively, then we have the following conclusion S(δ1) ≤
S(δ2) ⇔ S(δc1) ≥ S(δc2).

Proof By the definition of score function for CIFNs δ j ( j =
1, 2) we obtain

S(δ1) = (
ζ1 − ϑ1

) + 1

2π

(
wζ1 − wϑ1

)
and

S(δ2) = (
ζ2 − ϑ2

) + 1

2π

(
wζ2 − wϑ2

)

Since S(δ1) ≤ S(δ2) , then

⇔ (
ζ1 − ϑ1

) + 1

2π

(
wζ1 − wϑ1

)

≤ (
ζ2 − ϑ2

) + 1

2π

(
wζ2 − wϑ2

)

⇔ ( − ζ1 + ϑ1
) + 1

2π

( − wζ1 + wϑ1

)

≥ ( − ζ2 + ϑ2
) + 1

2π

( − wζ2 + wϑ2

)

⇔ S(δc1) ≥ S(δc2)


�
Theorem 3 (Monotonicity of accuracy function) Let δ =〈
ζeiwζ , ϑeiwϑ

〉
is CIFN, the accuracy function S(δ) = (

ζ +
ϑ

) + 1
2π

(
wζ + wϑ

)
is a monotonic increasing function with

ζ , wζ , ϑ and wϑ .

Proof Omitted. 
�
Theorem 4 (Symmetry of accuracy function) Let δ =〈
ζeiwζ , ϑeiwϑ

〉
be CIFN and δc =

〈
ϑeiwϑ , ζeiwζ

〉
be their

associated complement, then we have H(δ) = H(δc).

Proof Omitted. 
�

3.2 Operational Laws of CIFNs

Next, we define the basic operational laws of CIFNs based
on the Archimedean t-norm operations as follows.

Definition 7 Let δ j = 〈
ζ j e

iwζ j , ϑ j e
iwϑ j

〉
, j = 1, 2 be any

two CIFNs and let λ > 0 be any real number. Then, we have

(i) δ1 ⊕ δ2 =
〈 (

s−1
(
s(ζ1) + s(ζ2)

))
e
i2π

(
s−1

(
s
( wζ1

2π

)
+s

( wζ2
2π

)))

,

(
t−1

(
t(ϑ1) + t(ϑ2)

))
e
i2π

(
t−1

(
t
( wϑ1

2π

)
+t

( wϑ2
2π

)))〉

(ii) δ1 ⊗ δ2 =
〈 (

t−1
(
t(ζ1) + t(ζ2)

))
e
i2π

(
t−1

(
t
( wζ1

2π

)
+t

( wζ2
2π

)))

,

(
s−1

(
s(ϑ1) + s(ϑ2)

))
e
i2π

(
s−1

(
s
( wϑ1

2π

)
+s

( wϑ2
2π

)))〉

(iii) λδ1 =
〈(

s−1
(
λs(ζ1)

))
e
i2π

(
s−1

(
λs

( wζ1
2π

)))

,

(
t−1

(
λt(ϑ1)

))
e
i2π

(
t−1

(
λt

( wϑ1
2π

)))〉

(iv)
(
δ1

)λ =
〈
(
t−1

(
λt(ζ1)

))
e
i2π

(
t−1

(
λt

( wζ1
2π

)))

,

(
s−1

(
λs(ϑ1)

))
e
i2π

(
s−1

(
λs

( wϑ1
2π

)))〉

Theorem 5 If δ1 and δ2 be any two CIFNs and λ > 0 be any
real number, then δ1⊕δ2, λδ1, δ1⊗δ2 and δλ

1 are also CIFNs.

Proof Let δ1 = 〈
ζ1e

iwζ1 , ϑ1e
iwϑ1

〉
and δ2 = 〈

ζ2e
iwζ2 ,

ϑ2e
iwϑ2

〉
are two CIFNs. So, by definition of CIFN, we

have ζ1, ζ2 ∈ [0, 1], ϑ1, ϑ2 ∈ [0, 1], wζ1, wζ2 ∈ [0, 2π ],
wϑ1 , wϑ2 ∈ [0, 2π ], ζ1 +ϑ1 ≤ 1, ζ2 +ϑ2 ≤ 1, wζ1 +wϑ1 ≤
2π and wζ2 + wϑ2 ≤ 2π . Now, by using Definition 7, we

obtain δ1 ⊕ δ2 = 〈
ζ3e

iwζ3 , ϑ3e
iwϑ3

〉
where ζ3 = s−1

(
s(ζ1)+

s(ζ2)
)
,ϑ3 = t−1

(
t(ϑ1)+t(ϑ2)

)
,wζ3 = 2π

(
s−1

(
s
(

wζ1
2π

)
+

s
(

wζ2
2π

) ))
and wϑ3 = 2π

(
t−1

(
t
(

wϑ1
2π

)
+ t

(
wϑ2
2π

) ))
. In

order to show δ1 ⊕ δ2 is CIFN, it is enough to show that
ζ3, ϑ3 ∈ [0, 1], wζ3 , wϑ3 ∈ [0, 2π ], ζ3 + ϑ3 ≤ 1 and
wζ3 + wϑ3 ≤ 2π .

Since t, s : [0, 1] → [0,∞) are the continuous function
with t(1) = 0 and s(a) = t(1 − a), so it is clearly seen
that ζ3, ϑ3 ∈ [0, 1], wζ3, wϑ3 ∈ [0, 2π ]. Further, using the
conditions ζ j + ϑ j ≤ 1 for j = 1, 2, and s is an increasing
function, we have

ζ3 + ϑ3 = s−1
(
s(ζ1) + s(ζ2)

)
+ t−1

(
t(ϑ1) + t(ϑ2)

)

≤ s−1
(
s(1 − ϑ1) + s(1 − ϑ2)

)
+ t−1

(
t(ϑ1) + t(ϑ2)

)

= 1 − t−1
(
t(ϑ1) + t(ϑ2)

)
+ t−1

(
t(ϑ1) + t(ϑ2)

)

= 1

Thus, ζ3 + ϑ3 ≤ 1. Also, ζ3 + ϑ3 ≥ 0 as ζ3, ϑ3 ≥ 0. Hence,
0 ≤ ζ3+ϑ3 ≤ 1. Similarly, 0 ≤ wζ3 +wϑ3 ≤ 2π . Therefore,
δ1 ⊕ δ2 is a CIFN. Similarly, we can prove that δ1 ⊗ δ2, δλ

1 ,
λδ1 are also CIFNs. 
�
Theorem 6 Let δ1, δ2 be two CIFNs and let λ, λ1, λ2 > 0 be
three real numbers. Then, we have

(i) δ1 ⊕ δ2 = δ2 ⊕ δ1;
(ii) δ1 ⊗ δ2 = δ2 ⊗ δ1;
(iii) λ

(
δ1 ⊕ δ2

) = λδ1 ⊕ λδ2;

(iv)
(
δ1 ⊗ δ2

)λ = δλ
1 ⊗ δλ

2 ;
(v) λ1δ1 ⊕ λ2δ1 = (

λ1 + λ2
)
δ1;

(vi) δ
λ1
1 ⊗ δ

λ2
1 = δ

λ1+λ2
1 .
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Proof Here, we have proved the parts (i), (iii) and (v),
while others can be deduced similarly for two CIFNs δ1 =〈
ζ1e

iwζ1 , ϑ1e
iwϑ1

〉
and δ2 = 〈

ζ2e
iwζ2 , ϑ2e

iwϑ2
〉
.

(i) By Definition 7, we have

δ1 ⊕ δ2

=
〈 (

s−1
(
s(ζ1)+s(ζ2)

))
e
i2π

(
s−1

(
s
( wζ1

2π

)
+s

( wζ2
2π

)))

,

(
t−1

(
t(ϑ1) + t(ϑ2)

))
e
i2π

(
t−1

(
t
( wϑ1

2π

)
+t

( wϑ2
2π

)))〉

=
〈 (

s−1
(
s(ζ2)+s(ζ1)

))
e
i2π

(
s−1

(
s
( wζ2

2π

)
+s

( wζ1
2π

)))

,

(
t−1

(
t(ϑ2) + t(ϑ1)

))
e
i2π

(
t−1

(
t
( wϑ2

2π

)
+t

( wϑ1
2π

)))〉

= δ2 ⊕ δ1

(iii) Since δ1, δ2 are CIFNs and λ > 0 is a real number. So,
by Definition 7, we have

λ
(
δ1 ⊕ δ2

)

= λ

〈 (
s−1(s(ζ1)+s(ζ2)

))
e
i2π

(
s−1

(
s
( wζ1

2π

)
+s

( wζ2
2π

)))

,

(
t−1(t(ϑ1) + t(ϑ2)

))
e
i2π

(
t−1

(
t
( wϑ1

2π

)
+t

( wϑ2
2π

)))〉

=
〈 (

s−1
(
λs

(
s−1(s(ζ1) + s(ζ2)

))))

e
i2π

(
s−1

(
λs

(
s−1

(
s
( wζ1

2π

)
+s

( wζ2
2π

)))))

,(
t−1

(
λt

(
t−1 (t(ϑ1) + t(ϑ2))

)))

e
i2π

(
t−1

(
λt

(
t−1

(
t
( wϑ1

2π

)
+t

( wϑ2
2π

)))))〉

=
〈 (

s−1(λs(ζ1) + λs(ζ2)
))

e
i2π

(
s−1

(
λs

( wζ1
2π

)
+λs

( wζ2
2π

)))

,(
t−1(λt(ϑ1) + λt(ϑ2)

))

e
i2π

(
t−1

(
λt

( wϑ1
2π

)
+λt

( wϑ2
2π

)))〉

=
〈 (

s−1
(
s
(
s−1(λs(ζ1)

)) + s
(
s−1(λs(ζ2)

))))
×

×e
i2π

(
s−1

(
s
(
s−1

(
λs

( wζ1
2π

)))
+s

(
s−1

(
λs

( wζ2
2π

)))))

,(
t−1

(
t
(
t−1(λt(ϑ1)

)) + t
(
t−1(λt(ϑ2)

))))
×

×e
i2π

(
t−1

(
t
(
t−1

(
λt

( wϑ1
2π

)))
+t

(
t−1

(
λt

( wϑ2
2π

)))))〉

=
〈(
s−1(λs(ζ1)

))
e
i2π

(
s−1

(
λs

( wζ1
2π

)))

,

(
t−1 (λt(ϑ1))

)
e
i2π

(
t−1

(
λt

( wϑ1
2π

)))〉

⊕
〈(
s−1(λs(ζ2)

))
e
i2π

(
s−1

(
λs

( wζ2
2π

)))

,

(t−1(λt(ϑ2)))e
i2π

(
t−1

(
λt

( wϑ2
2π

)))〉

= λδ1 ⊕ λδ2

Hence, λ
(
δ1 ⊕ δ2

) = λδ1 ⊕ λδ2.
(v) Since δ1 is CIFN and λ1, λ2 > 0 are real numbers.

λ1δ1 ⊕ λ2δ1

=
〈(

s−1
(
λ1s(ζ1)

))
e
i2π

(
s−1

(
λ1s

( wζ1
2π

)))

,

(
t−1

(
λ1t(ϑ1)

))
e
i2π

(
t−1

(
λ1t

( wϑ1
2π

)))〉

⊕
〈(

s−1
(
λ2s(ζ1)

))
e
i2π

(
s−1

(
λ2s

( wζ1
2π

)))

,

(
t−1

(
λ2t(ϑ1)

))
e
i2π

(
t−1

(
λ2t

( wϑ1
2π

)))〉

=
〈(

s−1
(
s
(
s−1(λ1s(ζ1)

)) + s
(
s−1(λ2s(ζ1)

))))

×e
i2π

⎛

⎝s−1

(
s

(
s−1

(
λ1s

( wζ1
2π

)))
+s

(
s−1

(
λ2s

( wζ1
2π

))))⎞

⎠

,
(
t−1

(
t
(
t−1(λ1t(ϑ1)

)) + t
(
t−1(λ2t(ϑ1)

))))

×e
i2π

⎛

⎝t−1

(
t

(
t−1

(
λ1t

( wϑ1
2π

)))
+t

(
t−1

(
λ2t

( wϑ1
2π

))))⎞

⎠〉

=
〈(

s−1
((

λ1 + λ2
)
s(ζ1)

))
e
i2π

(
s−1

((
λ1+λ2

)
s
( wζ1

2π

)))

,

(
t−1

((
λ1 + λ2

)
t(ϑ1)

))
e
i2π

(
t−1

((
λ1+λ2

)
t
( wϑ1

2π

)))〉

= (
λ1 + λ2

)
δ1

Hence, λ1δ1 ⊕ λ2δ1 = (
λ1 + λ2

)
δ1.


�
Theorem 7 Let δ1, δ2, δ be three CIFNs and λ > 0 be any
real number. Then, we have

(i)
(
δc

)λ = (
λδ

)c
;

(ii) λ
(
δc

) = (
δλ

)c
;

(iii) (δ1 ⊕ δ2)
c = δc1 ⊗ δc2;

(iv) (δ1 ⊗ δ2)
c = δc1 ⊕ δc2.
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Proof Let δ1 = 〈
ζ1e

iwζ1 , ϑ1e
iwϑ1

〉
, δ2 = 〈

ζ2e
iwζ2 , ϑ2e

iwϑ2
〉

and δ = 〈
ζeiwζ , ϑeiwϑ

〉
be three CIFNs. Then, δc =〈

ϑeiwϑ , ζeiwζ
〉
. Therefore, we have

(i)
(
δc

)λ =
〈(

t−1
(
λt(ϑ)

))
e
i2π

(
t−1

(
λt

( wϑ
2π

)
))

,

(
s−1

(
λs(ζ )

))
e
i2π

(
s−1

(
λs

(
wζ
2π

)))〉

= (
λδ

)c

(ii) λ
(
δc

) =
〈(

s−1
(
λs(ϑ)

))
e
i2π

(
s−1

(
λs

( wϑ
2π

)
))

,

(
t−1

(
λt(ζ )

))
e
i2π

(
t−1

(
λt

(
wζ
2π

)))〉

= (
δλ

)c

(iii) (δ1 ⊕ δ2)
c =

〈(
t−1

(
t(ϑ1) + t(ϑ2)

))
e
i2π

(
t−1

(
t
( wϑ1

2π

)
+t

( wϑ2
2π

)))

,

(
s−1

(
s(ζ1) + s(ζ2)

))
e
i2π

(
s−1

(
s
( wζ1

2π

)
+s

( wζ2
2π

)))〉
= δc1 ⊗ δc2

(iv) (δ1 ⊗ δ2)
c =

〈(
s−1

(
s(ϑ1)+ s(ϑ2)

))
e
i2π

(
s−1

(
s
( wϑ1

2π

)
+s

( wϑ2
2π

)))

,

(
t−1

(
t(ζ1) + t(ζ2)

))
e
i2π

(
t−1

(
t
( wζ1

2π

)
+t

( wζ2
2π

)))〉
= δc1 ⊕ δc2


�
Remark 1 Consider here some special cases of CIFN δ =〈
ζeiwζ , ϑeiwϑ

〉
and any positive real number λ.

(i) If δ = 〈
1ei2π , 0ei0

〉
then

λδ =
〈(

s−1
(
λs(1)

))
e
i2π

(
s−1(λs(1))

)

,

(
t−1

(
λt(0)

))
e
i2π

(
t−1(λt(0))

)〉

= 〈
1ei2π , 0ei0

〉

(ii) If δ = 〈
0ei0, 1ei2π

〉
then

λδ =
〈(

s−1
(
λs(0)

))
e
i2π

(
s−1(λs(0))

)

,

(
t−1

(
λt(1)

))
e
i2π

(
t−1(λt(1))

)〉

= 〈
0ei0, 1ei2π

〉

(iii) If δ = 〈
0ei0, 0ei0

〉
then

λδ =
〈(

s−1
(
λs(0)

))
e
i2π

(
s−1(λs(0))

)

,

(
t−1

(
λt(0)

))
e
i2π

(
t−1(λt(0))

)〉

= 〈
0ei0, 0ei0

〉

(iv) If δ = 〈
ζeiwζ , ϑeiwϑ

〉
and λ → 0 then

λδ =
〈(

s−1
(
λs(ζ )

))
e
i2π

(
s−1

(
λs

(
wζ
2π

)))

,

(
t−1

(
λt(ϑ)

))
e
i2π

(
t−1

(
λt

( wϑ
2π

)
))〉

→ 〈
0ei0, 1ei2π

〉

(v) If δ = 〈
ζeiwζ , ϑeiwϑ

〉
and λ → ∞ then

λδ =
〈(

s−1
(
λs(ζ )

))
e
i2π

(
s−1

(
λs

(
wζ
2π

)))

,

(
t−1

(
λt(ϑ)

))
e
i2π

(
t−1

(
λt

( wϑ
2π

)
))〉

→ 〈
1ei2π , 0ei0

〉

(vi) If δ = 〈
ζeiwζ , ϑeiwϑ

〉
and λ = 1 then

λδ =
〈(

s−1
(
λs(ζ )

))
e
i2π

(
s−1

(
λs

(
wζ
2π

)))

,

(
t−1

(
λt(ϑ)

))
e
i2π

(
t−1

(
λt

( wϑ
2π

)
))〉

= 〈
ζeiwζ , ϑeiwϑ

〉

Next, based on the above-defined operational laws of
CIFNs, we propose some new averaging aggregation opera-
tors named as CIFWA, CIFOWA and CIFHA under complex
intuitionistic fuzzy environment.

3.3 Weighted Averaging Operators

In this section, weighted averaging aggregation operator for
a collection of CIFNs are defined.

Definition 8 Let Ω is the collection of all CIFNs δ j ( j =
1, 2, . . . , n) with corresponding weights ξ = (ξ1, ξ2, . . . ,

ξn)
T such that ξ j > 0 and

∑n
j=1 ξ j = 1. If CIFWA: Ωn →

Ω , is a mapping defined by

CIFWA(δ1, δ2, . . . , δn) = ξ1δ1 ⊕ ξ2δ2 ⊕ . . . ⊕ ξnδn (5)

then, CIFWA is called complex intuitionistic fuzzy weighted
averaging operator.

Theorem 8 For any collection of CIFNs δ j = 〈
ζ j e

iwζ j ,

ϑ j e
iwϑ j

〉
( j = 1, 2, . . . , n), the combined value obtained

by using CIFWA operator is still CIFN and is given as

CIFWA(δ1, δ2, . . . , δn)

=
〈⎛

⎝s−1

⎛

⎝
n∑

j=1

ξ j s(ζ j )

⎞

⎠

⎞

⎠ e
i2π

(

s−1

(
n∑

j=1
ξ j s

(
wζ j
2π

)))

,

⎛

⎝t−1

⎛

⎝
n∑

j=1

ξ j t(ϑ j )

⎞

⎠

⎞

⎠ e
i2π

(

t−1

(
n∑

j=1
ξ j t

(
wϑ j
2π

)))
〉

(6)

Proof The fact that, the value obtained after applyingCIFWA
operator is still CIFN, follows from Theorem 5. Now, by
making use of mathematical induction, we will show that
Eq. (6) holds.

Since for each j , δ j is a CIFN and for real numbers ξ j > 0,
we have ξ jδ j is also CIFN by using Theorem 5. Then, by
using mathematical induction we have:

123



Arabian Journal for Science and Engineering (2019) 44:2679–2698 2685

Step 1: For n = 2, we get δ1 = 〈
ζ1e

iwζ1 , ϑ1e
iwϑ1

〉
and δ2 =〈

ζ2e
iwζ2 , ϑ2e

iwϑ2
〉
. Thus, by the operation laws of

CIFNs, we get

ξ1δ1 =
〈(
s−1 (ξ1s(ζ1))

)
e
i2π

(
s−1

(
ξ1s

( wζ1
2π

)))

,

(
t−1 (ξ1t(ϑ1))

)
e
i2π

(
t−1

(
ξ1t

( wϑ1
2π

)))〉

and ξ2δ2 =
〈(
s−1 (ξ2s(ζ2))

)
e
i2π

(
s−1

(
ξ2s

( wζ2
2π

)))

,

(
t−1 (ξ2t(ϑ2))

)
e
i2π

(
t−1

(
ξ2t

( wϑ2
2π

)))〉

Hence, by addition law of CIFNs, we get

CIFWA(δ1, δ2)

= ξ1δ1 ⊕ ξ2δ2

=
〈 (

s−1
(
s
(
s−1(ξ1s(ζ1)

)) + s
(
s−1(ξ2s(ζ2)

))))

×e
i2π

(
s−1

(
s
(
s−1

(
ξ1s

( wζ1
2π

)))
+s

(
s−1

(
ξ2s

( wζ2
2π

)))))

,(
t−1

(
t
(
t−1(ξ1t(ϑ1)

)) + t
(
t−1(ξ2t(ϑ2)

))))

×e
i2π

(
t−1

(
t
(
t−1

(
ξ1t

( wϑ1
2π

)))
+t

(
t−1

(
ξ2t

( wϑ2
2π

)))))〉

=
〈⎛

⎝s−1

⎛

⎝
2∑

j=1

ξ j s(ζ j )

⎞

⎠

⎞

⎠ e
i2π

(

s−1

(
2∑

j=1
ξ j s

(
wζ j
2π

)))

,

⎛

⎝t−1

⎛

⎝
2∑

j=1

ξ j t(ϑ j )

⎞

⎠

⎞

⎠ e
i2π

(

t−1

(
2∑

j=1
ξ j t

(
wϑ j
2π

)))
〉

Thus, results holds for n = 2.
Step 2: If Eq. (6) holds for n = m, where m is any natural

number, then

CIFWA(δ1, δ2, . . . , δm)

=
〈⎛

⎝s−1

⎛

⎝
m∑

j=1

ξ j s(ζ j )

⎞

⎠

⎞

⎠e
i2π

(

s−1

(
m∑

j=1
ξ j s

(
wζ j
2π

)))

,

⎛

⎝t−1

⎛

⎝
m∑

j=1

ξ j t(ϑ j )

⎞

⎠

⎞

⎠ e
i2π

(

t−1

(
m∑

j=1
ξ j t

(
wϑ j
2π

)))
〉

then for n = m + 1, we have

CIFWA(δ1, δ2, . . . , δm+1)

= CIFWA(δ1, δ2, . . . , δm) ⊕ ξm+1δm+1

=
〈⎛

⎝s−1

⎛

⎝
m∑

j=1

ξ j s(ζ j )

⎞

⎠

⎞

⎠ e
i2π

(

s−1

(
m∑

j=1
ξ j s

(
wζ j
2π

)))

,

⎛

⎝t−1

⎛

⎝
m∑

j=1

ξ j t(ϑ j )

⎞

⎠

⎞

⎠ e
i2π

(

t−1

(
m∑

j=1
ξ j t

(
wϑ j
2π

)))
〉

⊕
〈(
s−1

(
ξm+1s(ζm+1)

))
e
i2π

(
s−1

(
ξm+1s

( wζm+1
2π

)))

,

(
t−1 (ξm+1t(ϑm+1))

)
e
i2π

(
t−1

(
ξm+1t

( wϑm+1
2π

)))〉

=
〈⎛

⎝s−1

⎛

⎝
m+1∑

j=1

ξ j s(ζ j )

⎞

⎠

⎞

⎠ e
i2π

(

s−1

(
m+1∑

j=1
ξ j s

(
wζ j
2π

)))

,

⎛

⎝t−1

⎛

⎝
m+1∑

j=1

ξ j t(ϑ j )

⎞

⎠

⎞

⎠ e
i2π

(

t−1

(
m+1∑

j=1
ξ j t

(
wϑ j
2π

)))
〉

Thus, the result is true for n = m + 1, and hence, Eq. (6)
holds for all natural numbers n. 
�

Proposition 1 For wζ j , wϑ j = 0 for all j , CIFWA operator
reduces to IF weighted averaging (IFWA) operator in IFS
environment.

Proof Since wζ j , wϑ j = 0. Therefore, Eq. (6) reduces to:

CIFWA(δ1, δ2, . . . , δn)

=
〈

s−1

⎛

⎝
n∑

j=1

ξ j s(ζ j )

⎞

⎠ , t−1

⎛

⎝
n∑

j=1

ξ j t(ϑ j )

⎞

⎠
〉

which is the weighted averaging operator in IFS environ-
ment. Hence, the proposed CIFWA operator is an extension
of existing IFWA operator. 
�

Proposition 2 If for all j , wζ j , wϑ j = 0 and ζ j + ϑ j = 1
then, the CIFWA operator reduces to weighted operator in
fuzzy environment.

Proof Similar to the above Proposition. 
�

Theworking of the proposedCIFWAaggregation operator
is explained with a numerical example as follows:

Example 1 Let δ1 = 〈
0.6ei2π(0.8), 0.2ei2π(0.1)

〉
, δ2 =〈

0.8ei2π(0.7), 0.2ei2π(0.1)
〉
, δ3 = 〈

0.5ei2π(0.6) , 0.3ei2π(0.4)
〉
,

δ4 = 〈
0.6ei2π(0.7), 0.3ei2π(0.2)

〉
be four CIFNs and ξ =

(0.35, 0.3, 0.1, 0.25)T be the corresponding weight vector
of δ j ( j = 1, 2, 3, 4). Without loss of generality, we consider
the additive generators t(a) = − log a if 0 < a ≤ 1 with
t(0) = ∞ and s(a) = − log(1 − a) if 0 ≤ a < 1 with
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s(1) = ∞ corresponding to t-norm and t-conorm, respec-
tively. Then, Eq. (6) becomes

CIFWA(δ1, δ2, . . . , δn)

=
〈⎛

⎝1 −
n∏

j=1

(
1 − ζ j

)ξ j

⎞

⎠ e
i2π

(

1−
n∏

j=1

(
1−

wζ j
2π

)ξ j
)

,

n∏

j=1

(
ϑ

ξ j
j

)
e
i2π

n∏

j=1

(
wϑ j
2π

)ξ j 〉

(7)

Now, based on the given information, we have

4∏

j=1

(
1 − ζ j

)ξ j = (1 − 0.6)0.35 × (1 − 0.8)0.3

×(1 − 0.5)0.1 × (1 − 0.6)0.25 = 0.3322
4∏

j=1

ϑ
ξ j
j = (0.2)0.35 × (0.2)0.3 × (0.3)0.1

×(0.3)0.25 = 0.2305
4∏

j=1

(
1 − wζ j

2π

)ξ j = (1 − 0.8)0.35 × (1 − 0.7)0.3

×(1 − 0.6)0.1 × (1 − 0.7)0.25 = 0.2679
4∏

j=1

(wϑ j

2π

)ξ j = (0.1)0.35 × (0.1)0.3

×(0.4)0.1 × (0.2)0.25 = 0.1366

Thus, by using Eq. (7), we get

CIFWA(δ1, δ2, δ3, δ4)

=
〈
(1 − 0.3322) ei2π(1−0.2679), 0.2305ei2π(0.1366)

〉

=
〈
0.6678ei2π(0.7321), 0.2305ei2π(0.1366)

〉

Based on Theorem 8, it is observed that the CIFWA oper-
ator satisfies some properties which are stated as below.

Property 1 Let δ0 be CIFN and if δ j = δ0 for all j =
1, 2, . . . , n, then, we have

CIFWA(δ1, δ2 . . . δn) = δ0

This property is called Idempotency.

Proof Let δ0 = 〈
ζ0e

iwζ0 , ϑ0e
iwϑ0

〉
and δ j = 〈

ζ j e
iwζ j ,

ϑ j e
iwϑ j

〉
( j = 1, 2, . . . , n)beCIFNs such that δ j = δ0 which

implies that ζ j = ζ0, ϑ j = ϑ0, wζ j = wζ0 and wϑ j = wϑ0

for all j . Also, we have ξ j > 0 such that
∑n

j=1 ξ j = 1. Then,
by using Theorem 8, we get

CIFWA(δ1, δ2 . . . δn)

=
〈⎛

⎝s−1

⎛

⎝
n∑

j=1

ξ j s(ζ0)

⎞

⎠

⎞

⎠ e
i2π

(

s−1

(
n∑

j=1
ξ j s

( wζ0
2π

)
))

,

⎛

⎝t−1

⎛

⎝
n∑

j=1

ξ j t(ϑ0)

⎞

⎠

⎞

⎠ e
i2π

(

t−1

(
n∑

j=1
ξ j t

( wϑ0
2π

)
))

〉

=
〈(
s−1(s(ζ0)

))
e
i2π

(
s−1

(
s
( wζ0

2π

)))

,

(
t−1(t(ϑ0)

))
e
i2π

(
t−1

(
t
( wϑ0

2π

)))〉

=
〈
ζ0e

iwζ0 , ϑ0e
iwϑ0

〉

= δ0

Hence, CIFWA(δ1, δ2 . . . δn) = δ0. 
�

Property 2 Consider twocollections ofCIFN δ j = 〈
ζδ j e

iwζδ j ,

ϑδ j e
iwϑδ j

〉
and β j = 〈

ζβ j e
iwζβ j , ϑβ j e

iwϑβ j
〉
satisfying ζδ j ≤

ζβ j , ϑδ j ≥ ϑβ j , wζδ j
≤ wζβ j

and wϑδ j
≥ wϑβ j

for all j .
Then, we have

CIFWA(δ1, δ2, . . . , δn) ≤ CIFWA(β1, β2, . . . , βn).

This property is called monotonicity.

Proof For two CIFNs δ j = 〈
ζδ j e

iwζδ j , ϑδ j e
iwϑδ j

〉
and β j =

〈
ζβ j e

iwζβ j , ϑβ j e
iwϑβ j

〉
such that ζδ j ≤ ζβ j , ϑδ j ≥ ϑβ j ,

wζδ j
≤ wζβ j

, wϑδ j
≥ wϑβ j

for all j which implies that
δ j ≤ β j . Further, t and s are decreasing and increasing func-
tions, respectively, then we have

s−1

⎛

⎝
n∑

j=1

ξ j s(ζδ j )

⎞

⎠ ≤ s−1

⎛

⎝
n∑

j=1

ξ j s(ζβ j )

⎞

⎠

t−1

⎛

⎝
n∑

j=1

ξ j t(ϑδ j )

⎞

⎠ ≥ t−1

⎛

⎝
n∑

j=1

ξ j t(ϑβ j )

⎞

⎠

s−1

⎛

⎝
n∑

j=1

ξ j s

(wζδ j

2π

)⎞

⎠ ≤ s−1

⎛

⎝
n∑

j=1

ξ j s

(wζβ j

2π

)⎞

⎠ and

t−1

⎛

⎝
n∑

j=1

ξ j t

(wϑδ j

2π

)⎞

⎠ ≥ t−1

⎛

⎝
n∑

j=1

ξ j t

(wϑβ j

2π

)⎞

⎠

Now, by using the score function as defined in Eq. (3), we
get
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S
(
CIFWA(δ1, δ2, . . . , δn)

)

= s−1

⎛

⎝
n∑

j=1

ξ j s(ζδ j )

⎞

⎠ − t−1

⎛

⎝
n∑

j=1

ξ j t(ϑδ j )

⎞

⎠

+ 1

2π

⎛

⎝2πs−1

⎛

⎝
n∑

j=1

ξ j s

(wζδ j

2π

)
⎞

⎠

− 2π t−1

⎛

⎝
n∑

j=1

ξ j t

(wϑδ j

2π

)⎞

⎠

⎞

⎠

≤ s−1

⎛

⎝
n∑

j=1

ξ j s(ζβ j )

⎞

⎠ − t−1

⎛

⎝
n∑

j=1

ξ j t(ϑβ j )

⎞

⎠

+ 1

2π

⎛

⎝2πs−1

⎛

⎝
n∑

j=1

ξ j s

(wζβ j

2π

)⎞

⎠

− 2π t−1

⎛

⎝
n∑

j=1

ξ j t

(wϑβ j

2π

)⎞

⎠

⎞

⎠

= S
(
CIFWA(β1, β2, . . . , βn)

)

Hence, based on the order relation defined inDefinition 6, we
can obtain that CIFWA(δ1, δ2, . . . , δn) ≤ CIFWA(β1, β2,

. . . , βn). 
�

Property 3 For a collection ofCIFNs δ j = 〈
ζ j e

iwζ j , ϑ j e
iwϑ j

〉

( j = 1, 2, . . . n), let δ− = 〈ζ−eiw
−
ζ , ϑ+eiw

+
ϑ 〉 and δ+ =

〈ζ+eiw
+
ζ , ϑ−eiw

−
ϑ 〉 where ζ− = min

j
{ζ j }, w−

ζ = min
j

{wζ j },
ζ+ = max

j
{ζ j }, w+

ζ = max
j

{wζ j }, ϑ− = min
j

{ϑ j }, w−
ϑ =

min
j

{wϑ j }, ϑ+ = max
j

{ϑ j },w+
ϑ = max

j
{wϑ j }. Then, we have

δ− ≤ CIFWA(δ1, δ2 . . . δn) ≤ δ+

This property is called boundedness.

Proof Let CIFWA(δ1, δ2 . . . δn) = 〈
ζSe

iwζS , ϑSe
iwϑS

〉
. For a

CIFN δ j , we have min
j

{ζ j } ≤ ζ j ≤ max
j

{ζ j } and min
j

{ϑ j } ≤
ϑ j ≤ max

j
{ϑ j }. Since t , s are decreasing and increasing

functions, respectively, therefore,

s−1
( n∑

j=1

ξ j s
(
min
j

{ζ j }
))

≤ s−1
( n∑

j=1

ξ j s(ζ j )

)

≤ s−1
( n∑

j=1

ξ j s
(
max

j
{ζ j }

))
and

t−1
( n∑

j=1

ξ j t
(
min
j

{ϑ j }
))

≤ t−1
( n∑

j=1

ξ j t(ϑ j )

)
≤ t−1

( n∑

j=1

ξ j t
(
max

j
{ϑ j }

))

which implies that min
j

{ζ j } ≤ ζS ≤ max
j

{ζ j } and min
j

{ϑ j } ≤
ϑS ≤ max

j
{ϑ j }, i.e., ζ− ≤ ζS ≤ ζ+ and ϑ− ≤ ϑS ≤ ϑ+.

Similarly, we can obtainw−
ζ ≤ wζS ≤ w+

ζ andw−
ϑ ≤ wϑS ≤

w+
ϑ . Hence, we get

S(δ−) = ζ− − ϑ+ + 1

2π

(
w−

ζ − w+
ϑ

)

≤ ζS − ϑS + 1

2π

(
wζS − wϑS

)

= S(CIFWA(δ1, δ2, . . . , δn))

and

S(δ+) = ζ+ − ϑ− + 1

2π

(
w+

ζ − w−
ϑ

)

≥ ζS − ϑS + 1

2π

(
wζS − wϑS

)

= S(CIFWA(δ1, δ2, . . . , δn))

Therefore, by using Definition 6, we get

δ− ≤ CIFWA(δ1, δ2, . . . , δn) ≤ δ+


�

Property 4 For a collection of CIFNs δ j ( j = 1, 2, . . . , n)

and CIFN β, we have

CIFWA(δ1 ⊕ β, δ2 ⊕ β, . . . , δn ⊕ β)

= CIFWA(δ1, δ2, . . . , δn) ⊕ β

This property is called Shift Invariance.

Proof Let δ j = 〈
ζ j e

iwζ j , ϑ j e
iwϑ j

〉
and β = 〈

ζβe
iwζβ ,

ϑβe
iwϑβ

〉
be CIFNs. Then, by using addition law for CIFNs

for all j , we get

δ j ⊕ β =
〈 (
s−1 (

s(ζ j ) + s(ζβ)
))
e
i2π

(
s−1

(
s

(
wζ j
2π

)
+s

(
wζβ
2π

)))

,

(
t−1 (

t(ϑ j ) + t(ϑβ)
))
e
i2π

(
t−1

(
t

(
wϑ j
2π

)
+t

(
wϑβ
2π

)))〉

Now, using Eq. (6), we get
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CIFWA(δ1 ⊕ β, δ2 ⊕ β, . . . , δn ⊕ β)

=
〈
⎛

⎝s−1

⎛

⎝
n∑

j=1

ξ j s
(
s−1 (

s(ζ j ) + s(ζβ)
))

⎞

⎠

⎞

⎠

e
i2π

(

s−1

(
n∑

j=1
ξ j s

(
s−1

(
s

(
wζ j
2π

)
+s

(
wζβ
2π

)))))

,⎛

⎝t−1

⎛

⎝
n∑

j=1

ξ j t
(
t−1 (

t(ϑ j ) + t(ϑβ)
))

⎞

⎠

⎞

⎠

e
i2π

(

t−1

(
n∑

j=1
ξ j t

(
t−1

(
t

(
wϑ j
2π

)
+t

(
wϑβ
2π

)))))
〉

=
〈⎛

⎝s−1

⎛

⎝
n∑

j=1

ξ j
(
s(ζ j ) + s(ζβ)

)
⎞

⎠

⎞

⎠

e
i2π

(

s−1

(
n∑

j=1
ξ j

(
s

(
wζ j
2π

)
+s

(
wζβ
2π

))))

,⎛

⎝t−1

⎛

⎝
n∑

j=1

ξ j
(
t(ϑ j ) + t(ϑβ)

)
⎞

⎠

⎞

⎠

e
i2π

(

t−1

(
n∑

j=1
ξ j

(
t

(
wϑ j
2π

)
+t

(
wϑβ
2π

))))
〉

=
〈⎛

⎝s−1

⎛

⎝

⎛

⎝
n∑

j=1

ξ j s(ζ j )

⎞

⎠ + s(ζβ)

⎞

⎠

⎞

⎠

e
i2π

(

s−1

((
n∑

j=1
ξ j s

(
wζ j
2π

))

+s

(
wζβ
2π

)))

,⎛

⎝t−1

⎛

⎝

⎛

⎝
n∑

j=1

ξ j t(ϑ j )

⎞

⎠ + t(ϑβ)

⎞

⎠

⎞

⎠

e
i2π

(

t−1

((
n∑

j=1
ξ j t

(
wϑ j
2π

))

+t

(
wϑβ
2π

)))
〉

=
〈⎛

⎝s−1

⎛

⎝s

⎛

⎝s−1

⎛

⎝
n∑

j=1

ξ j s(ζ j )

⎞

⎠

⎞

⎠ + s(ζβ)

⎞

⎠

⎞

⎠

e
i2π

(

s−1

(

s

(

s−1

(
n∑

j=1
ξ j s

(
wζ j
2π

)))

+s

(
wζβ
2π

)))

,⎛

⎝t−1

⎛

⎝t

⎛

⎝t−1

⎛

⎝
n∑

j=1

ξ j t(ϑ j )

⎞

⎠

⎞

⎠ + t(ϑβ)

⎞

⎠

⎞

⎠

e
i2π

(

t−1

(

t

(

t−1

(
n∑

j=1
ξ j t

(
wϑ j
2π

)))

+t

(
wϑβ
2π

)))
〉

= CIFWA(δ1, δ2, . . . , δn) ⊕ β

which completes the proof of the theorem. 
�

Property 5 For a collection of CIFNs δ j and any real number
λ > 0, we have

CIFWA(λδ1, λδ2, . . . , λδn) = λCIFWA(δ1, δ2, . . . , δn)

This property is called Homogeneity.

Proof For a collectionofCIFNs δ j = 〈
ζ j e

iwζ j , ϑ j e
iwϑ j

〉
( j =

1, 2, . . . , n) and real number λ > 0, we have

λδ j =
〈(

s−1 (
λs(ζ j )

))
e
i2π

(
s−1

(
λs

(
wζ j
2π

)))

,

(
t−1 (

λt(ϑ j )
))

e
i2π

(
t−1

(
λt

(
wϑ j
2π

)))〉

Now, using Eq. (6), we get

CIFWA(λδ1, λδ2, . . . , λδn)

=
〈⎛

⎝s−1

⎛

⎝
n∑

j=1

ξ j s
(
s−1 (

λs(ζ j )
))

⎞

⎠

⎞

⎠

e
i2π

(

s−1

(
n∑

j=1
ξ j s

(
s−1

(
λs

(
wζ j
2π

)))))

,⎛

⎝t−1

⎛

⎝
n∑

j=1

ξ j t
(
t−1 (

λt(ϑ j )
))

⎞

⎠

⎞

⎠

e
i2π

(

t−1

(
n∑

j=1
ξ j t

(
t−1

(
λt

(
wϑ j
2π

)))))
〉

=
〈⎛

⎝s−1

⎛

⎝
n∑

j=1

ξ jλs(ζ j )

⎞

⎠

⎞

⎠ e
i2π

(

s−1

(
n∑

j=1
ξ jλs

(
wζ j
2π

)))

,

⎛

⎝t−1

⎛

⎝
n∑

j=1

ξ jλt(ϑ j )

⎞

⎠

⎞

⎠ e
i2π

(

t−1

(
n∑

j=1
ξ jλt

(
wϑ j
2π

)))
〉

=
〈⎛

⎝s−1

⎛

⎝λs

⎛

⎝s−1

⎛

⎝
n∑

j=1

ξ j s(ζ j )

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

e
i2π

(

s−1

(

λs

(

s−1

(
n∑

j=1
ξ j s

(
wζ j
2π

)))))

,⎛

⎝t−1

⎛

⎝λt

⎛

⎝t−1

⎛

⎝
n∑

j=1

ξ j t(ϑ j )

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

e
i2π

(

t−1

(

λt

(

t−1

(
n∑

j=1
ξ j t

(
wϑ j
2π

)))))
〉

= λCIFWA(δ1, δ2, . . . , δn)

which completes the proof. 
�
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Furthermore, some of the special cases of the aggregation
operators are obtained from the proposedCIFWAoperator by
assigning the different form of the generator t with t(0) = ∞
as follows:

(i) If t(a) = − log a, 0 < a ≤ 1 then Eq. (6) becomes

CIFWA(δ1, δ2, . . . , δn)

=
〈⎛

⎝1 −
n∏

j=1

(
1 − ζ j

)ξ j

⎞

⎠ e
i2π

(

1−
n∏

j=1

(
1−

wζ j
2π

)ξ j
)

,

n∏

j=1

(
ϑ

ξ j
j

)
e
i2π

n∏

j=1

(
wϑ j
2π

)ξ j 〉

and is called as CIF Archimedean weighted averaging
operator.

(ii) If t(a) = log
( 2−a

a

)
, then Eq. (6) becomes

CIFWA(δ1, δ2, . . . , δn)

=
〈(∏n

j=1

(
1 + ζ j

)ξ j − ∏n
j=1

(
1 − ζ j

)ξ j

∏n
j=1

(
1 + ζ j

)ξ j + ∏n
j=1

(
1 − ζ j

)ξ j

)

e

i2π

⎛

⎜
⎝

∏n
j=1

(
1+

wζ j
2π

)ξ j −∏n
j=1

(
1−

wζ j
2π

)ξ j

∏n
j=1

(
1+

wζ j
2π

)ξ j +∏n
j=1

(
1−

wζ j
2π

)ξ j

⎞

⎟
⎠

,⎛

⎝
2

∏n
j=1 ϑ

ξ j
j

∏n
j=1

(
2 − ϑ j

)ξ j + ∏n
j=1 ϑ

ξ j
j

⎞

⎠

e

i2π

⎛

⎜
⎝

2
∏n

j=1

( wϑ j
2π

)ξ j

∏n
j=1

(
2−

wϑ j
2π

)ξ j +∏n
j=1

( wϑ j
2π

)ξ j

⎞

⎟
⎠〉

and is called as CIF Einstein weighted averaging
(CIFEWA) operator.

(iii) If t(a) = log
(

γ+(1−γ )a
a

)
, γ ∈ (0,∞) then Eq. (6)

becomes

CIFWA(δ1, δ2, . . . , δn)

=
〈
⎛

⎜⎜⎜
⎝

∏n
j=1

(
1 + (γ − 1)ζ j

)ξ j − ∏n
j=1

(
1 − ζ j

)ξ j

n∏

j=1

(
1 + (γ − 1)ζ j

)ξ j + ∏n
j=1

(
1 − ζ j

)ξ j

⎞

⎟⎟⎟
⎠

e

i2π

⎛

⎜
⎝

∏n
j=1

(
1+(γ−1)

wζ j
2π

)ξ j −∏n
j=1

(
1−

wζ j
2π

)ξ j

∏n
j=1

(
1+(γ−1)

wζ j
2π

)ξ j +∏n
j=1

(
1−

wζ j
2π

)ξ j

⎞

⎟
⎠

,

⎛

⎝
γ

∏n
j=1 ϑ

ξ j
j

∏n
j=1

(
1 + (γ − 1)(1 − ϑ j )

)ξ j + (γ − 1)
∏n

j=1 ϑ
ξ j
j

⎞

⎠

e

i2π

⎛

⎜
⎝

γ
∏n

j=1

( wϑ j
2π

)ξ j

∏n
j=1

(
1+(γ−1)

(
1−

wϑ j
2π

))ξ j +(γ−1)
∏n

j=1

( wϑ j
2π

)ξ j

⎞

⎟
⎠〉

and is called as CIF Hamacher weighted averaging
(CIFHWA) operator.

3.4 OrderedWeighted Averaging Operator

In this section, we propose a new operator named as complex
intuitionistic fuzzy ordered weighted averaging (CIFOWA)
operator.

Definition 9 Let Ω be a collection of CIFNs. We define a
map CIFOWA : Ωn → Ω by

CIFOWA(δ1, δ2, . . . , δn) = ξ1δσ(1) ⊕ ξ2δσ(2) ⊕ . . . ⊕ ξnδσ(n)

for all δ j ∈ Ω where
(
σ(1), σ (2), . . . , σ (n)

)
is a per-

mutation of (1, 2, . . . , n) such that δσ( j−1) ≥ δσ( j) for
j = 2, 3, . . . , n and ξ = (ξ1, ξ2, . . . , ξn)

T is the weight

vector of δ j with ξ j > 0 and
n∑

j=1
ξ j = 1. Then, CIFOWA

is called complex intuitionistic fuzzy ordered weighted aver-
aging operator.

Theorem 9 The aggregated value by using CIFOWA oper-
ator for a collection of CIFNs δ j = 〈

ζ j e
iwζ j , ϑ j e

iwϑ j
〉

( j = 1, 2, . . . n) is still a CIFN and is given by

CIFOWA(δ1, δ2, . . . , δn)

=
〈⎛

⎝s−1

⎛

⎝
n∑

j=1

ξ j s(ζσ( j))

⎞

⎠

⎞

⎠ e
i2π

(

s−1

(
n∑

j=1
ξ j s

(
wζσ( j)

2π

)))

,

⎛

⎝t−1

⎛

⎝
n∑

j=1

ξ j t(ϑσ( j))

⎞

⎠

⎞

⎠ e
i2π

(

t−1

(
n∑

j=1
ξ j t

(
wϑσ( j)

2π

)))
〉

(8)

In particular, if wζ j , wϑ j = 0 ∀ j then, Eq. (8) reduces to

CIFOWA(δ1, δ2, . . . , δn) =
〈⎛

⎝s−1
( n∑

j=1

ξ j s(ζσ( j))

)⎞

⎠ ,

⎛

⎝t−1
( n∑

j=1

ξ j t(ϑσ( j))

)⎞

⎠
〉

which is an intuitionistic fuzzy OWA operator.
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Proof Proof is similar to Theorem 8. 
�
Example 2 Let δ1 = 〈

0.6ei2π(0.8), 0.2ei2π(0.1)
〉
, δ2 =〈

0.8ei2π(0.7), 0.2ei2π(0.1)
〉
, δ3 = 〈

0.5ei2π(0.6), 0.3ei2π(0.4)
〉
,

δ4 = 〈
0.6ei2π(0.7), 0.3ei2π(0.2)

〉
be four CIFNs and ξ =

(0.35, 0.3, 0.1, 0.25)T be the associatedweight vector. Then,
score function of each CIFN is calculated as S(δ1) = 1.1,
S(δ2) = 1.2, S(δ3) = 0.4 and S(δ4) = 0.8. Since
S(δ2) > S(δ1) > S(δ4) > S(δ3) and hence by permu-
tation, we have δσ(1) = 〈

0.8ei2π(0.7), 0.2ei2π(0.1)
〉
, δσ(2) =

〈
0.6ei2π(0.8), 0.2ei2π(0.1)

〉
, δσ(3) = 〈

0.6ei2π(0.7), 0.3ei2π(0.2)
〉

and δσ(4) = 〈
0.5ei2π(0.6), 0.3ei2π(0.4)

〉
. Without loss of gen-

erality, we consider the additive generator t(a) = − log a if
0 < a ≤ 1 with t(0) = ∞ corresponding to t-norm. Then,
Eq. (8) becomes

CIFOWA(δ1, δ2, . . . , δn)

=
〈⎛

⎝1 −
n∏

j=1

(
1 − ζσ( j)

)ξ j

⎞

⎠ e
i2π

(

1−
n∏

j=1

(
1−

wζσ( j)
2π

)ξ j
)

,

n∏

j=1

(
ϑ

ξ j
σ( j)

)
e
i2π

n∏

j=1

(
wϑσ( j)

2π

)ξ j 〉

(9)

Therefore,

4∏

j=1

(
1 − ζσ( j)

)ξ j = (1 − 0.8)0.35 × (1 − 0.6)0.3

×(1 − 0.6)0.1 × (1 − 0.5)0.25 = 0.3318
4∏

j=1

ϑ
ξ j
σ( j) = (0.2)0.35 × (0.2)0.3

×(0.3)0.1 × (0.3)0.25 = 0.2305
4∏

j=1

(
1 − wζσ( j)

2π

)ξ j

= (1 − 0.7)0.35 × (1 − 0.8)0.3

×(1 − 0.7)0.1 × (1.0.6)0.25 = 0.2854
4∏

j=1

(
wϑσ( j)

2π

)ξ j

= (0.1)0.35 × (0.1)0.3

×(0.2)0.1 × (0.4)0.25 = 0.1516

Thus, by using Eq. (9), we obtain

CIFOWA(δ1, δ2, δ3, δ4)

=
〈
(1 − 0.3318) ei2π(1−0.2854), 0.2305ei2π(0.1516)

〉

=
〈
0.6682ei2π(0.7146), 0.2305ei2π(0.1516)

〉

Also, it is analyzed that CIFOWA operator satisfies the prop-
erties as CIFWA operator satisfies. Besides these properties,

CIFOWA operator satisfies the additional property which are
stated as below.

Property 6 Let δ j ( j = 1, 2, . . . , n) be the collection of
CIFNs. Then,

(i) If ξ = (1, 0, . . . , 0)T then, CIFOWA(δ1, δ2, . . . , δn) =
max

{
δ1, δ2, . . . , δn

}

(ii) If ξ = (0, 0, . . . , 1)T then, CIFOWA(δ1, δ2, . . . , δn) =
min

{
δ1, δ2, . . . , δn

}

(iii) If ξ j = 1 and ξt = 0 for t �= j then, CIFOWA(δ1, δ2,

. . . , δn) = δσ( j) where δσ( j) is the j th largest of δ j .

3.5 Hybrid Averaging Operator

In this section, by taking the advantages of bothweighted and
ordered weighted averaging operators, we propose a hybrid
averaging aggregation operator for a collection of CIFNs.

Definition 10 Let Ω be a collection of CIFNs. A map
CIFHA : Ωn → Ω , having associated weight vector

ψ = (
ψ1, ψ2, . . . , ψn

)T with ψ j > 0 and
n∑

j=1
ψ j = 1,

defined by

CIFHA(δ1, δ2, . . . , δn)

= ψ1δ̇σ (1) ⊕ ψ2δ̇σ (2) ⊕ . . . ⊕ ψn δ̇σ (n)

where δ̇ j = nξ jδ j , j = 1, 2, . . . , n and ξ = (ξ1, ξ2, . . . ,

ξn)
T is the weight vector of δ j with ξ j > 0 and

n∑

j=1
ξ j = 1,

is called complex intuitionistic fuzzy hybrid averaging oper-
ator(CIFHA).

Theorem 10 The combined value obtained after apply-
ing CIFHA operator for a collection of CIFNs δ j =
〈
ζ j e

iwζ j , ϑ j e
iwϑ j

〉
( j = 1, 2, . . . n) is still a CIFN and is

given by

CIFHA(δ1, δ2, . . . , δn)

=
〈⎛

⎝s−1

⎛

⎝
n∑

j=1

ψ j s(ζ̇σ ( j))

⎞

⎠

⎞

⎠ e
i2π

(

s−1

(
n∑

j=1
ψ j s

(
ẇζσ ( j)

2π

)))

,

⎛

⎝t−1

⎛

⎝
n∑

j=1

ψ j t(ϑ̇σ ( j))

⎞

⎠

⎞

⎠ e
i2π

(

t−1

(
n∑

j=1
ψ j t

(
ẇϑσ( j)

2π

)))
〉

(10)

Proof Similar to Theorem 8. 
�
Example 3 Let δ1 = 〈

0.6ei2π(0.8), 0.2ei2π(0.1)
〉
, δ2 =〈

0.8ei2π(0.7), 0.2ei2π(0.1)
〉
, δ3 = 〈

0.5ei2π(0.6),

0.3ei2π(0.4)
〉
, δ4 = 〈

0.6ei2π(0.7), 0.3ei2π(0.2)
〉
be four CIFNs
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and ψ = (0.4, 0.2, 0.1, 0.3)T be the weight vector asso-
ciated with CIFHA and ξ = (0.35, 0.3, 0.1, 0.25)T be the
corresponding weight vector of δ j for all j = 1, 2, 3, 4.
Consider the additive generator t(a) = − log a if 0 < a ≤ 1
with t(0) = ∞ corresponding to t-norm. Then, using Defini-

tion 7, we have λδ1 =
〈 (
1 − (1 − ζ1)

λ
)
e
i2π

(
1−

(
1− wζ1

2π

)λ
)

,

ϑλ
1 e

i2π
( wϑ1

2π

)λ〉
and Eq. (10) becomes

CIFHA(δ1, δ2, . . . , δn)

=
〈⎛

⎝1 −
n∏

j=1

(
1 − ζ̇σ ( j)

)ψ j

⎞

⎠ e
i2π

(

1−
n∏

j=1

(
1−

ẇζσ ( j)
2π

)ψ j
)

,

n∏

j=1

(
ϑ̇

ψ j

σ( j)

)
e
i2π

n∏

j=1

(
ẇϑσ( j)

2π

)ψ j 〉
(11)

Now, by utilizing ξ = (0.35, 0.3, 0.1, 0.25)T and CIFNs
δ j ( j = 1, 2, 3, 4), we have

δ̇1 = nξ1δ1 = 1.4
〈
0.6ei2π(0.8), 0.2ei2π(0.1)〉

=
〈 (
1 − (1 − 0.6)1.4

)
ei2π

(
1−(1−0.8)1.4

)
, (0.2)1.4ei2π(0.1)1.4

〉

=
〈 (
1 − 0.41.4

)
ei2π

(
1−(0.2)1.4

)
, (0.2)1.4ei2π(0.1)1.4

〉

=
〈
0.7227ei2π(0.8949), 0.1051ei2π(0.0398)

〉

Similarly, δ̇2 = 〈
0.8550ei2π(0.7642), 0.1450ei2π(0.0631)

〉
,

δ̇3 = 〈
0.2421ei2π(0.3069), 0.6178ei2π(0.6931)

〉
and δ̇4 =〈

0.6000ei2π(0.7000), 0.3000ei2π(0.2000)
〉
. Thus, score values of

these numbers are S(δ̇1) = 1.4728, S(δ̇2) = 1.4112, S(δ̇3) =
−0.7619 and S(δ̇4) = 0.8000 and hence S(δ̇1) > S(δ̇2) >

S(δ̇4) > S(δ̇3). Therefore, δ̇σ (1) = 〈
0.7227ei2π(0.8949),

0.1051ei2π(0.0398)
〉
, δ̇σ (2) = 〈

0.8550ei2π(0.7642),

0.1450ei2π(0.0631)
〉
, δ̇σ (3) = 〈

0.6000ei2π(0.7000),
0.3000ei2π(0.2000)

〉
and δ̇σ (4) = 〈

0.2421ei2π(0.3069),

0.6178ei2π(0.6931)
〉
. Hence, based on these information and

by using Eq. (11) we get CIFHA(δ1, δ2, δ3, δ4) =
〈0.6584ei2π

(
0.7584

)
, 0.2118ei2π

(
0.1209

)
〉.

As similar to CIFWA and CIFOWA operators, the pro-
posed CIFHA operator also satisfies the above stated prop-
erties.

Theorem 11 If ψ = ( 1
n , 1

n , . . . , 1
n

)T
then, CIFHA operator

becomes CIFWA operator.

Proof Since, δ̇σ ( j) = nξ jδ j and ψ = ( 1
n , 1

n , . . . , 1
n

)T
which

implies that ψ j δ̇σ ( j) = ξ jδ j . Therefore,

CIFHA(δ1, δ2, . . . , δn) = ψ1δ̇σ (1) ⊕ ψ2δ̇σ (2) ⊕ . . . ⊕ ψn δ̇σ (n)

= ξ1δ1 ⊕ ξ2δ2 ⊕ . . . ⊕ ξnδn

= CIFWA(δ1, δ2, . . . , δn)

Hence, CIFHA(δ1, δ2, . . . , δn) = CIFWA(δ1, δ2, . . . , δn). 
�

Theorem 12 If ξ = ( 1
n , 1

n , . . . , 1
n

)T
then, CIFHA operator

becomes CIFOWA operator.

Proof Similar to the proof of the above theorem. 
�

4 Multicriteria Decision-Making Approach
Using Proposed Operators

In this section, a multicriteria decision-making (MCDM)
approach is presented for designating the available choices
in order to select the most suitable one, under CIFS environ-
ment, followed by an illustrative example.

4.1 Approach Based on Proposed Operators

Consider a decision-making problem which consists of ‘m’
alternatives A1, A2, . . . , Am which are evaluated under the
‘n’ different criteria C1,C2, . . . ,Cn . For it, consider an
expert who evaluates the each alternative under the CIFS
environment and gives their rating values in terms of CIFNs
δpq = 〈

ζpqe
iwζpq , ϑpqe

iwϑpq
〉
where p = 1, 2, . . . ,m

and q = 1, 2, . . . n, with 0 ≤ ζpq , ϑpq ≤ 1 such that
0 ≤ ζpq + ϑpq ≤ 1 and 0 ≤ wζpq , wϑpq ≤ 2π such
that 0 ≤ wζpq + wϑpq ≤ 2π . Further, assume that ξ =
(ξ1, ξ2, . . . , ξn)

T be the weight of the different criteria such

that ξq > 0 and
n∑

q=1
ξq = 1. Then, to determine the most

desirable alternative(s), the proposed operators are utilized
to develop amulticriteria decision-makingmethodwith com-
plex intuitionistic fuzzy information, which involves the
following steps:

Step 1: Collect the CIF decisionmatrixM = (
δpq

)
m×n cor-

responding to the rating values of each alternative
as

M =

C1 C2 . . . Cn
⎛

⎜⎜
⎝

⎞

⎟⎟
⎠

A1 δ11 δ12 . . . δ1n
A2 δ21 δ22 . . . δ2n
...

...
...

. . .
...

Am δm1 δm2 . . . δmn
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Step 2: Aggregate the collective rating valuesM = (δpq) of
the alternative Ap(p = 1, 2, . . . ,m) into the overall
assessment value δp = 〈rpeiwr p , kpe

iwkp 〉 based on
the either CIFWA, CIFOWA or CIFHA operators as
defined in Eqs. (6), (8) and (10), respectively. For
instance, if we utilize CIFWA operator to aggregate
each rating value of the alternative Ap, then we get
the overall assessment value δp(p = 1, 2, . . . ,m)

as

δp = CIFWA(δp1, δp2, . . . , δpn)

=
〈⎛

⎝s−1

⎛

⎝
n∑

q=1

ξqs(ζpq)

⎞

⎠

⎞

⎠ e
i2π

(

s−1

(
n∑

q=1
ξq s

( wζpq
2π

)))

,

⎛

⎝t−1

⎛

⎝
n∑

q=1

ξq t(ϑpq)

⎞

⎠

⎞

⎠ e
i2π

(

t−1

(
n∑

q=1
ξq t

( wϑpq
2π

)))
〉

(12)

or by using CIFOWA operator as follows

δp = CIFOWA(δp1, δp2, . . . , δpn)

=
〈⎛

⎝s−1

⎛

⎝
n∑

q=1

ξqs(ζpσ(q))

⎞

⎠

⎞

⎠

e
i2π

(

s−1

(
n∑

q=1
ξq s

(
wζpσ(q)

2π

)))

,⎛

⎝t−1

⎛

⎝
n∑

q=1

ξq t(ϑpσ(q))

⎞

⎠

⎞

⎠

e
i2π

(

t−1

(
n∑

q=1
ξq t

(
wϑpσ(q)

2π

)))
〉

(13)

or by using CIFHA operator as follows

δp = CIFHA(δp1, δp2, . . . , δpn)

=
〈⎛

⎝s−1

⎛

⎝
n∑

q=1

ψqs(ζ̇pσ(q))

⎞

⎠

⎞

⎠

e
i2π

(

s−1

(
n∑

q=1
ψq s

( w
ζ̇pσ(q)
2π

)))

,⎛

⎝t−1

⎛

⎝
n∑

q=1

ψq t(ϑ̇pσ(q))

⎞

⎠

⎞

⎠

e
i2π

(

t−1

(
n∑

q=1
ψq t

( w
ϑ̇pσ(q)
2π

)))
〉

(14)

where σ is the permutation map of {1, 2, . . . , n}
such that δpσ(q−1) ≥ δpσ(q) for q = 2, 3, . . . , n

and t, s, respectively, be the decreasing and increas-
ing t-norm function such that s(a) = t(1 − a) for
a ∈ [0, 1], ψq be the standardized weighted vector
associated with CIFHA operator and δ̇pq = nξqδpq .

Step 3: Compute the score values of the overall aggregated
values δp = 〈rpeiwr p , kpe

iwkp 〉(p = 1, 2, . . . ,m)

by using equation

S(δp) = (rp − kp) + 1

2π

(
wrp − wkp

)
.

If there is no difference between two score values
S(δp1) and S(δp2) for any two positive p1, p2, then
we need to calculate the accuracy values of the alter-
natives as

H(δp) = (rp + kp) + 1

2π

(
wrp + wkp

)
.

Step 4: Rank all the feasible alternatives Ap(p = 1, 2, . . . ,
m) according to Definition 6 and hence select the
most desirable alternative(s).

4.2 Illustrative Example

In order to demonstrate the above-mentioned approach, we
illustrate it with a numerical example which is stated as
below:

Suppose an entrepreneur decides to purchase a new
machine for his company from a machine maker X. The
machine maker provides information on five models of
machine (A1, A2, A3, A4, A5) with different production
dates for each model. The entrepreneur decides to consider
four criteria namely C1: Reliability, C2: Safety, C3: Flexibil-
ity and C4: Productivity for selecting machine. According
to the changes in production date for the same model of
machines, these criteria will also affect and change. The
purpose of the entrepreneur is to select the best model of
machine among the available alternatives. For it, the consid-
eredweight vectors corresponding to four preferences factors
are ξ = (0.4, 0.25, 0.15, 0.2)T , while the positional weight
vectors of the factors are ψ = (0.35, 0.3, 0.1, 0.25)T . To
fulfill this purpose, he consults an expert who evaluates avail-
able models of machine and gives their preferences under
CIF environment. In what follows, we utilize the multicri-
teria decision-making method proposed in above section to
determine the most desirable alternative(s) under complex
intuitionistic fuzzy environment.

Step 1: The given expert evaluates each model of the
machine taken as an alternative with respect to
the four criteria under the CIFS environment, and
their corresponding rating values are summarized
in the decision matrix represented in Table 1. In this
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Table 1 Input information in the form of the complex intuitionistic fuzzy decision matrix

C1 C2 C3 C4

A1
〈
0.7ei2π(0.9), 0.1ei2π(0.1)

〉 〈
0.8ei2π(0.5), 0.1ei2π(0.4)

〉 〈
0.6ei2π(0.6), 0.3ei2π(0.2)

〉 〈
0.7ei2π(0.7), 0.3ei2π(0.2)

〉

A2
〈
0.7ei2π(0.6), 0.3ei2π(0.3)

〉 〈
0.4ei2π(0.9), 0.2ei2π(0.1)

〉 〈
0.7ei2π(0.7), 0.2ei2π(0.3)

〉 〈
0.4ei2π(0.6), 0.3ei2π(0.1)

〉

A3
〈
0.3ei2π(0.4), 0.6ei2π(0.4)

〉 〈
0.6ei2π(0.6), 0.3ei2π(0.4)

〉 〈
0.3ei2π(0.4), 0.5ei2π(0.6)

〉 〈
0.7ei2π(0.7), 0.1ei2π(0.1)

〉

A4
〈
0.4ei2π(0.8), 0.5ei2π(0.1)

〉 〈
0.7ei2π(0.3), 0.3ei2π(0.3)

〉 〈
0.6ei2π(0.5), 0.1ei2π(0.3)

〉 〈
0.5ei2π(0.5), 0.3ei2π(0.4)

〉

A5
〈
0.9ei2π(0.7), 0.1ei2π(0.2)

〉 〈
0.7ei2π(0.7), 0.2ei2π(0.1)

〉 〈
0.7ei2π(0.6), 0.2ei2π(0.2)

〉 〈
0.8ei2π(0.8), 0.1ei2π(0.1)

〉

Table 2 Ordering position data

C1 C2 C3 C4

A1 〈0.7ei2π(0.9), 0.1ei2π(0.1)〉 (0.7ei2π(0.7), 0.3ei2π(0.2)〉 〈0.8ei2π(0.5), 0.1ei2π(0.4)〉 〈0.6ei2π(0.6), 0.3ei2π(0.2)〉
A2 〈0.4ei2π(0.9), 0.2ei2π(0.1)〉 〈0.7ei2π(0.7), 0.2ei2π(0.3)〉 〈0.7ei2π(0.6), 0.3ei2π(0.3)〉 〈0.4ei2π(0.6), 0.3ei2π(0.1)〉
A3 〈0.7ei2π(0.7), 0.1ei2π(0.1)〉 〈0.6ei2π(0.6), 0.3ei2π(0.4)〉 〈0.3ei2π(0.4), 0.6ei2π(0.4)〉 〈0.3ei2π(0.4), 0.5ei2π(0.6)〉)
A4 〈0.6ei2π(0.5), 0.1ei2π(0.3)〉 〈0.4ei2π(0.8), 0.5ei2π(0.1)〉 〈0.7ei2π(0.3), 0.3ei2π(0.3)〉 〈0.5ei2π(0.5), 0.3ei2π(0.4)〉
A5 〈0.8ei2π(0.8), 0.1ei2π(0.1)〉 〈0.9ei2π(0.7), 0.1ei2π(0.2)〉 〈0.7ei2π(0.7), 0.2ei2π(0.1)〉 〈0.7ei2π(0.6), 0.2ei2π(0.2)〉

table, for instance, the rating value for a model of
machine A1 under “reliability” (C1) criteria is given
as 〈0.7ei2π(0.9), 0.1ei2π(0.1)〉 by an expert which
describes that the expert agreed 70% with the suit-
ability of the model A1 at C1 while disagree with
10%. On the other hand, the same expert satisfied
90% with the suitability of production date of the
model at C1 and not satisfied with the 10%. In a
similar manner, the other data values can be inter-
preted.

Step 2: Without loss of generality, we take a generator
t(a) = − log(a). Now, by utilizing CIFWA oper-
ator defined in Eq. (12) corresponding to the weight
vectors ξ = (0.4, 0.25, 0.15, 0.2)T , we get the
aggregated values δp(p = 1, 2, 3, 4, 5) correspond-
ing to each alternative Ap(p = 1, 2, 3, 4, 5) as

δ1 =
〈
0.7170ei2π(0.7707), 0.1469ei2π(0.1803)

〉
,

δ2 =
〈
0.5902ei2π(0.7291), 0.2551ei2π(0.1830)

〉
,

δ3 =
〈
0.4863ei2π(0.5280), 0.3431ei2π(0.3222)

〉
,

δ4 =
〈
0.5422ei2π(0.6230), 0.3121ei2π(0.2048)

〉

δ5 =
〈
0.8217ei2π(0.7112), 0.1320ei2π(0.1464)

〉
.

Step 3: The score values of the alternative Ap(p = 1, 2, 3,
4, 5) are obtained based on the overall assessment
values δp(p = 1, 2, 3, 4, 5) as follows:

S(δ1) = 1.1605, S(δ2) = 0.8812, S(δ3) = 0.3491,

S(δ4) = 0.6484, S(δ5) = 1.2545.

Step 4: Since S(δ5) > S(δ1) > S(δ2) > S(δ4) > S(δ3)

and hence based on it, the ranking of all the feasible
alternatives Ap(p = 1, 2, 3, 4, 5) is given as

A5 � A1 � A2 � A4 � A3,

where the symbol “�” means “preferred to.” Thus,
we conclude that the best alternative is A5, i.e., A5

is the most optimal model.

On the other hand, if we utilize CIFOWA operator instead
of CIFWA operator to aggregate the given preferences, then
the following steps of the proposed approach are executed to
find the best alternative(s) as below

Step 1: The information is summarized in Table 1.
Step 2: Compute the score values of each CIFN and based

on the ordering relation between them as defined in
Definition 6, we get the permutation rating values
of each alternative under different criteria. These
values corresponding to each alternative are sum-
marized in Table 2.
Now, take a generator t(a) = − log(a) and weight
vector ξ = (0.4, 0.25, 0.15, 0.2)T ,we aggregate the
preferences of the alternatives by using CIFOWA
operator as defined in Eq. (13). The collective val-
ues corresponding to each alternative Ap(p =
1, 2, 3, 4, 5) are obtained as

δ1 =
〈
0.7010ei2π(0.7789), 0.1639ei2π(0.1682)

〉
,

δ2 =
〈
0.5453ei2π(0.7862), 0.2305ei2π(0.1552)

〉
,
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Table 3 Ranking of the alternatives based on the proposed operators

Additive generators Proposed Operators Score values of the alternatives Ranking

A1 A2 A3 A4 A5

t(a) = − log(a) CIFWA 1.1605 0.8812 0.3491 0.6484 1.2545 A5 � A1 � A2 � A4 � A3

CIFOWA 1.1478 0.9458 0.6687 0.6774 1.2719 A5 � A1 � A2 � A4 � A3

CIFHA 1.3249 1.0153 0.4290 0.7917 1.3421 A5 � A1 � A2 � A4 � A3

t(a) = log
( 2−a

a

)
CIFEWA 1.1468 0.8650 0.3096 0.6193 1.2501 A5 � A1 � A2 � A4 � A3

CIFEOWA 1.1359 0.9306 0.6339 0.6539 1.2675 A5 � A1 � A2 � A4 � A3

CIFEHA 1.3352 1.0264 0.3598 0.8005 1.3611 A5 � A1 � A2 � A4 � A3

δ3 =
〈
0.5663ei2π(0.5891), 0.2376ei2π(0.2491)

〉
,

δ4 =
〈
0.5567ei2π(0.5818), 0.2197ei2π(0.2415)

〉
,

δ5 =
〈
0.8062ei2π(0.7298), 0.1275ei2π(0.1366)

〉
.

Step 3: The score values of these aggregated numbers are
computed by using Eq. (3) as

S(δ1) = 1.1478, S(δ2) = 0.9458, S(δ3) = 0.6687,

S(δ4) = 0.6774, S(δ5) = 1.2719.

Step 4: The ranking order of these alternatives, based on
optimal values of the score values given as

A5 � A1 � A2 � A4 � A3,

and hence, we obtain A5 is the best alternative for
the required machine.

From these computed results, we conclude that the best
alternative by both the operator remains same, but the compu-
tational procedure is entirely different. In CIFWA operator,
the weight vector is assigned directly to the CIFNs and then
collect the aggregated values. On the other hand, in CIFOWA
operator, firstly the importance of the numbers is arranged
sequentially based on the importance of the numbers and then
aggregate the different values in the collective one. Apart
from the above analysis, if we utilize the different t-norm
generators such as t(a) = − log(a) or t(a) = log

( 2−a
a

)

for a ∈ (0, 1]; t(0) = ∞ and by using CIFWA, CIFOWA
and CIFHA operator to the considered data then we get the
overall score values of the alternatives Ap(p = 1, 2, 3, 4, 5).
These values alongwith the final ranking order of the alterna-
tives are summarized in Table 3. From this table, it is clearly
seen that the ranking order is preserved by all the opera-
tor, and hence, it shows the stability of the result. Further,
by taking the importance of the corresponding aggregation
operator, the decision maker can choose the appropriate one
and hence select the best alternative for the required task.

4.3 Validity Test

Since the different MCDMmethods may give different eval-
uations (ranking) when applied to same decision-making
problem, which leads to uncertain results. Therefore, there is
a need to validate the results obtained from their correspond-
ing approach to explain the reliability of the approach. For it,
Wang and Triantaphyllou [8] presented the following three
test criteria to validate the MCDM approach.

Test criterion 1: “An MCDM method is effective if on
replacing a non-optimal alternative by another worse alter-
native without changing the relative importance of each
decision criteria, the indication of the best alternative remains
same.”

Test criterion 2: “An effective MCDM method should
follow transitive property.”

Test criterion 3: “An MCDM method is effective if on
decomposing theMCDMproblem into smaller problems and
by applying the same MCDM method to these subproblems
for ranking the alternatives, the combined rankingof the alter-
natives remains same to the ranking of the original problem.”

Now, we validate these criteria on our proposed MCDM
approach as follows:

4.3.1 Validity Test by Applying Criterion 1

For testing the validity of proposed approach under the cri-
terion 1, we replace the non-optimal alternative A3 with the
worse alternative A′

3 in original decision matrix of the expert
with their rating values are summarized in Table 4.

Now by utilizing the CIFWA operator in Step 2 of the pro-
posed approach corresponding to generator t(a) = − log(a)

to this modified data, we get the collective values of each
alternative are

δ1 =
〈
0.7170ei2π(0.7707), 0.1469ei2π(0.1803)

〉
,

δ2 =
〈
0.5902ei2π(0.7291), 0.2551ei2π(0.1830)

〉
,

δ3 =
〈
0.2617ei2π(0.3075), 0.4895ei2π(0.5370)

〉
,
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Table 4 Transformed input information

C1 C2 C3 C4

A1
〈
0.7ei2π(0.9), 0.1ei2π(0.1)

〉 〈
0.8ei2π(0.5), 0.1ei2π(0.4)

〉 〈
0.6ei2π(0.6), 0.3ei2π(0.2)

〉 〈
0.7ei2π(0.7), 0.3ei2π(0.2)

〉

A2
〈
0.7ei2π(0.6), 0.3ei2π(0.3)

〉 〈
0.4ei2π(0.9), 0.2ei2π(0.1)

〉 〈
0.7ei2π(0.7), 0.2ei2π(0.3)

〉 〈
0.4ei2π(0.6), 0.3ei2π(0.1)

〉

A′
3

〈
0.1ei2π(0.3), 0.7ei2π(0.5)

〉 〈
0.3ei2π(0.3), 0.5ei2π(0.6)

〉 〈
0.2ei2π(0.2), 0.6ei2π(0.8)

〉 〈
0.5ei2π(0.4), 0.2ei2π(0.4)

〉

A4
〈
0.4ei2π(0.8), 0.5ei2π(0.1)

〉 〈
0.7ei2π(0.3), 0.3ei2π(0.3)

〉 〈
0.6ei2π(0.5), 0.1ei2π(0.3)

〉 〈
0.5ei2π(0.5), 0.3ei2π(0.4)

〉

A5
〈
0.9ei2π(0.7), 0.1ei2π(0.2)

〉 〈
0.7ei2π(0.7), 0.2ei2π(0.1)

〉 〈
0.7ei2π(0.6), 0.2ei2π(0.2)

〉 〈
0.8ei2π(0.8), 0.1ei2π(0.1)

〉

δ4 =
〈
0.5422ei2π(0.6230), 0.3121ei2π(0.2048)

〉

δ5 =
〈
0.8217ei2π(0.7112), 0.1320ei2π(0.1464)

〉

The score values of the alternatives corresponding to these
values are computed by using Eq. (3) and get

S(δ1) = 1.1605, S(δ2) = 0.8812, S(δ3) = −0.4573,

S(δ4) = 0.6484, S(δ5) = 1.2545.

Therefore, the final ranking order of the alternatives is A5 �
A1 � A2 � A4 � A′

3 which indicates that A5 is still the best
alternative. Thus, the proposed MCDMmethod satisfies test
criterion 1.

4.3.2 Validity Test by Using Criteria 2 and 3

Under these test, if we decompose original problem in
four subpartswhich are: {A1, A2, A3, A4}, {A2, A3, A4, A5},
{A3, A4, A5, A1} and {A4, A5, A1, A2} and then applying
the proposed approach individually to these subproblems,
we get the final ranking order of the alternatives correspond-
ing to each subproblem is A1 � A2 � A4 � A3, A5 � A2 �
A4 � A3, A5 � A1 � A4 � A3 and A5 � A1 � A2 � A4,
respectively. Thus, the overall combined ranking order of
the alternative is A5 � A1 � A2 � A4 � A3 which is
same as un-decomposed problem and show transitive prop-
erty. Hence, the proposed MCDM approach is valid under
the criteria 2 and 3.

4.4 Comparative Study

In order to validate the performance of the proposed MCDM
approach with some of the existing approaches, an investiga-
tion has been done where we compare the results obtained by
the proposed approach with existing approaches under CIFS
as well as IFS environment.

4.4.1 Comparative Studies Under CIFS Environment

Firstly, an analysis has been conducted under the CIFS
environment by applying the existing approaches [37,39]

to the considered data. The results corresponding to these
approaches from its ideal alternative A∗ = 〈rqeiwrq , kqe

iwkq 〉;
q = 1, 2, . . . , n where rq = max1≤p≤m{rpq}; kq =
min1≤p≤m{kpq} and wrp = max1≤p≤m{wrpq }; wkq =
min1≤p≤m{wkpq } are computed and summarized as below:

(i) By applying the approach of Alkouri and Salleh [37]
using distance measures, denoted by d1 to the con-
sidered data, we get the measurement values of each
alternative from its ideal values are d1(A1, A∗) =
0.1110, d1(A2, A∗) = 0.1758, d1(A3, A∗) = 0.3245,
d1(A4, A∗) = 0.2503 and d1(A5, A∗) = 0.0700.
From these values, we observed that d1(A5, A∗) <

d1(A1, A∗) < d1(A2, A∗) < d1(A4, A∗) < d1(A3, A∗)
and hence conclude that the best alternative is A5.

(ii) By utilizing the distance measure (d2) as proposed by
Rani and Garg [39] to the considered problem, then
the measurement values for each alternative are com-
puted as d2(A1, A∗) = 0.1593, d2(A2, A∗) = 0.2107,
d2(A3, A∗) = 0.3655, d2(A4, A∗) = 0.2964 and
d2(A5, A∗) = 0.0975. Since measurement value of A5

is minimum among all these, we conclude that the most
optimal alternative is A5 which again coincides with the
proposed results.

4.4.2 Comparative Studies Under IFS Environment

In this section, we compare the performance of the pro-
posedMCDMapproachwith someof the existing approaches
[2,10–12,24–29,32,42] under an intuitionistic fuzzy set the-
ory. For it, firstly the considered preferences of the expert
are converted into the intuitionistic fuzzy numbers by taking
the phase terms corresponding to each CIFN is zero. Then,
based on this information, we applied the existing aggrega-
tion operators-based approaches to the considered data, and
hence, their results are summarized in Table 5. From this
table, it is concluded that the best alternative obtained from
the final ranking of the alternative remains same, but the pref-
erences of the other alternatives are different. This is mainly
due to the changeable decision environment. For instance, in
[2,10–12,24–29,32,42] approaches, weighted averaging and
geometric aggregation operators were introduced by taking
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Table 5 Comparative study with some existing approaches

Existing methods Score values Ranking

A1 A2 A3 A4 A5

Xu and Yager [24] − 0.1459 −0.2007 − 0.2343 −0.1767 − 0.0731 A5 � A1 � A4 � A2 � A3

Xu [2] − 0.1073 −0.1482 − 0.0732 −0.0931 − 0.0368 A5 � A3 � A4 � A1 � A2

Wang and Liu [26] 0.5670 0.3276 0.1183 0.2181 0.6871 A5 � A1 � A2 � A4 � A3

Garg [28] 0.6563 0.4787 0.0142 0.2849 0.7193 A5 � A1 � A2 � A4 � A3

Xu and Yager [25] − 0.3968 −0.5370 − 0.6319 −0.5754 − 0.3136 A5 � A1 � A2 � A4 � A3

He et al. [27] 0.6484 0.4768 − 0.0085 0.2707 0.7172 A5 � A1 � A2 � A4 � A3

Huang [10] 0.5658 0.3241 0.1064 0.2127 0.6860 A5 � A1 � A2 � A4 � A3

Chen and Chang [11] 0.4339 0.1804 0.1000 0.0845 0.6435 A5 � A1 � A2 � A3 � A4

Goyal et al. [12] 0.7982 0.6623 0.3109 0.4510 0.8604 A5 � A1 � A2 � A4 � A3

Ye [32] 0.5506 0.3084 0.0596 0.1876 0.6715 A5 � A1 � A2 � A4 � A3

Zhou and Xu [42] 0.5868 0.3824 0.3288 0.3776 0.6979 A5 � A1 � A2 � A4 � A3

Garg [29] 0.4316 0.1669 0.0809 0.0743 0.6392 A5 � A1 � A2 � A3 � A4

into account only one-dimensional grades of membership
and non-membership.

It is noted from the study that the computational procedure
of the proposed approach is entirely different from the exist-
ing approaches under CIFS as well as IFS environment, but
the proposed result in this paper is more rational to reality in
decision-making process due to the consideration of the two-
dimensional information simultaneously into a single set. In
addition, the advantages of the proposed operators are that
it is based on the generalized t-norm operations, and hence
by assigning a different function “t” and their equivalent “s,”
we can get the more generalized aggregation operations for
different CIFNs.

Also, it is revealed that in IFS, the information contains
a real-valued membership and non-membership degrees and
only considered amplitude term which causes loss of infor-
mation during the execution. On the other hand, a complex
intuitionistic fuzzy set is a generalization of the existing stud-
ies such as complex fuzzy sets [34], intuitionistic fuzzy sets
[5], fuzzy set [4] by considering much more information
related to an object during the process and to handle the
two-dimensional information in a single set.

4.5 Advantages of the Proposed Approach

From the existing studies and the proposed operators, we
address the following merits of the proposed method to solve
the decision-making problem under the CIFS environment.

(i) A complex intuitionistic fuzzy set is a generalization
of the existing studies such as complex fuzzy sets [34],
intuitionistic fuzzy sets [5], fuzzy set [4] by considering
much more information related to an object during the
process and to handle the two-dimensional information

in a single set. For instance, CIFS contains information
(both themembership and non-membership degrees are
complex valued) with amplitude and phase terms than
the CFS (contains only complex-valued membership
degree), IFS (with a real-valued membership and non-
membership degrees and only considered amplitude
term), FS (with only crisp membership degrees with
amplitude term only). Thus, the proposed aggregation
operators under CIFSs environment are more general-
izations than the existing operators.

(ii) It is revealed from the present study that the aggrega-
tion operators under IFSs, FSs [2,10–12,24–29,32,42]
are the special cases of the proposed measures. Thus,
the proposed operators can be equivalently utilized to
solve the MCDM problem under these existing envi-
ronment by setting phase term to be zero while the
existing operators [2,10–12,24–29,32,42] are unable to
solve the problems under the environment considered
in the present paper.

(iii) Themajor advantages of the proposed decision-making
approach are to consider the much more information to
access the alternative to reduce the information loss.
Further, by utilizing the various expressions to the t-
norm and its equivalent s -norm will help the decision
maker to select the best alternative(s) more accurately.
In other words, we can say that the proposed general-
ized aggregation operators will give the various choices
to the decision makers toward the decision-making pro-
cess.

5 Conclusion

In this work, an attempt has been made to present differ-
ent kinds of the weighted averaging aggregation operators
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based on the generalized t-norm operations in the decision-
making process under the complex intuitionistic fuzzy set
environment. Earlier, it has been observed that the various
aggregation operators are defined under the IFSs environ-
mentwhere the range of their correspondingmembership and
non-membership degrees is the subset of the real numbers.
But this condition has been relaxed in the present work by
considering the ranges of the membership degrees are a sub-
set of the complex numbers with the unit disk. Hence, IFSs
can be considered as a special case of the CIFSs. Therefore,
considering the importance of the phase angle, for repre-
senting the periodicity of the information, some weighted
averaging aggregation operators, namely CIFWA, CIFOWA
and CIFHA, are developed under the CIFS environment and
studied their properties in detail. Further, depending on the
standardize decision matrix and the proposed aggregation
operators, a decision-making approach is presented to find
the best alternative to the CIFSs environment. An illustra-
tive example is taken for illustrating the developed approach,
and their results are compared with some of the existing
approaches under the CIFS and IFS environment to show
the validity of it. A validity test has been conducted to show
the stability of the proposed approach. From the studies, we
conclude that the proposed approach is more generic and
suitable for solving the stated problem, whereas the existing
method under IFS environment fails to deal it. In the future,
the result of this paper can be extended to some other uncer-
tain and fuzzy environment [43–50].
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