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Abstract
Entropy-based thresholding techniques are quite popular and effective for image segmentation.Among different entropy-based
techniques, minimum cross-entropy thresholding (MCET) has received wide attention in the field of image segmentation.
Considering the high time complexity of MCET technique for multilevel thresholding, recursive approach to reducing its
computational cost is highly desired. To reduce the complexity, further optimization techniques can be applied to find optimal
multilevel threshold values. In this paper, a novel improved particle swarm optimization (IPSO)-based multilevel thresholding
algorithm is proposed to search the near-optimal MCET thresholds. The general PSO algorithm often suffers from premature
convergence problem which has been addressed in the IPSO by decomposing a high-dimensional swarm into several one-
dimensional swarms, and then premature convergence is removed from each one-dimensional swarm. The proposed technique
is applied to the set of grayscale images, and the experimental results infer that it produces better MCET optimal threshold
values at a higher and faster convergence rate. The qualitative and quantitative results are compared with existing optimization
techniques like modified artificial bee colony, Cuckoo search, Firefly, particle swarm optimization, and genetic algorithm.
It has been observed that the proposed technique performs better in terms of producing better fitness value, less CPU
time as quantitative measurements, and effective misclassification error, peak signal-to-noise ratio, feature similarity index
measurement, complex wavelet structural similarity index measurement values as qualitative measurements compared to
other considered state-of-the-art methods.
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1 Introduction

Image segmentation is a fundamental step for meaningful
analyzing and interpretation of an image. It is considered as
amandatory preprocessing step for extractingobjects from its
backgrounds in many computer vision oriented applications.
The goal of segmentation carries the concept that the image
regions should contain similar types of homogeneous pixels
with respect to some common features like color, intensity,
and texture so that it can be analyzed properly. Thresholding
is one of the popular methods to achieve this goal, which
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can easily discriminate the objects from its background pix-
els. The main aim is to find the efficient threshold value for
binary thresholding and multiple threshold values for multi-
ple thresholding so that separation is carried out properly.

In bilevel thresholding, the total image region is sub-
divided into two homogeneous regions based on the his-
togram and edge detection. This technique generates a binary
imagewhere all pixels carry higher gray values than a thresh-
old level, are put into a single class whereas pixels having
less values than a threshold level are put into another class.
Some useful histogram, edge detection, minimum variance,
interactive pixel classification, and entropy-based bilevel
thresholding techniques are surveyed in the literature [1–
5]. Further global entropy-based techniques got attention for
bilevel image segmentation in the form of Kapur et al. [6],
Tsalli [7] andWong andSahoo [8] entropywhichwas applied
for successful separation of objects from its backgrounds.
Minimum cross-entropy-based segmentation was proposed
by Li et al. [9,10] where thresholding value was obtained by
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minimizing the cross-entropy for better segmentation. Pal
[11] proposed the segmentation technique by also minimiz-
ing the cross-entropywith themixture of poisondistributions.
The effectiveness ofMCET over standard entropy can be sur-
veyed [12,13]. MCET-based threshold selection algorithm
works fast and provides more accurate segmentation results.
However, all these mentioned techniques are quite effective
for bilevel thresholding, but not effective enough for complex
segmentation problemswhich needmultiple threshold values
for better separation between objects and backgrounds.

To continue with the literature review process, Perez
and Gonzalez [14]; Tao et al. [15]; proposed multilevel
thresholding techniques which were found very useful for
dividing the images into multiple levels to produce effective
segmentation results. To remove the high-level complex-
ity of multilevel thresholding technique, Arora et al. [16]
proposed a famous mean and standard deviation-based mul-
tilevel thresholding approach for better separation of objects
and backgrounds. Multilevel thresholding techniques with
entropy maximization or minimization applied with any
metaheuristic technique holds recent research interest.

Section 2 presents a literature survey related to meta-
heuristic approaches, used to find multiple threshold values
for multilevel image segmentation. Section 3 describes
the recursive minimum cross-entropy thresholding (MCET)
approach. Section 4 presents the proposed algorithm, called
improved PSO (IPSO). The simulated results of the proposed
algorithmalongwith other considered optimizedmethods are
presented in Sect. 5. The limitations of the proposed method
with future work are discussed in Sect. 6. Finally, Sect. 7
draws a conclusion of the paper.

2 RelatedWorks with Metaheuristic
Approaches

In computer science, a metaheuristic is a high-level proce-
dure to generate a search algorithm which provides a good
solution to an optimization problem with limited computa-
tion capacity.A sample set of large solution sets are generated
by these techniques. As these approaches can provide better
and easy solutions for a wide variety of complex problems,
so it has been flourishing since almost last decade. These
techniques are helpful to find optimal solutions of NP-hard
problems because users do not need to have deep knowl-
edge regarding initial population selections of problems and
as well as derivatives. Some popular derivative-free opti-
mizing techniques like genetic algorithm (GA) [17,18] and
firefly (FF) algorithmwith fuzzy entropy [19] are surveyed in
the literature. Artificial bee colony (ABC) [20–22], cuckoo
search [23], a novel gravitational search algorithm [24] based
approaches to find optimal solutions of metaheuristic prob-
lems are found in the literature as well.

Particle swarm optimization (PSO) is another stochastic
global optimization algorithm of relatively recent category
[25–28], inspired by real-life swarm behaviors and is well
used for multilevel optimization. To choose a better opti-
mization technique for using in our research, comparative
literature survey continues between PSO with GA [29], PSO
with ABC [30], PSO with cuckoo search and DE [31], and
PSO with firefly [32], to reach to the conclusion that which
one to opt among these evolutionary algorithms. It is con-
cluded from the literature that PSO arguably works as better
metaheuristic approach compared to others to find optimal
solutions.

In standard PSO algorithm, several particles (candidate
solutions) fly in a multidimensional search space, and fit-
ness of each of them is evaluated in each iteration. Here
the new velocity at the start of a new iteration of a parti-
cle is calculated based on its previous velocity, that is the
distance between its present position and the best position
found so far known as Pbest. Similarly, the distance between
particle’s present position and its best distance found for
the entire swarm is known as Gbest. However, the main
drawback of this basic PSO is that it may get stuck in sub-
optimal solution regions and the problem may increase in
high-dimensional problems, as its success depends on the
combination of global exploration and local exploitation
features during the optimization process. So this stochastic
approach was also needed improvement. Literature reveals
that multi-swarm-based PSO was proposed by Mukhopad-
hyay andBanerjee [33] andZheng et al. [34] for finding better
optimized values. So considering the improvement of stan-
dard PSO, our research is focused to propose an improved
particle swarm optimization technique. Now to finalize min-
imum cross-entropy (MCET) as objective function in our
research, our survey continued and found that Sarkar et al.
[35]; Yin [36]; Olivia et al. [37]; Pare et al. [38]; Horng and
Liou [39] proposed recursive minimum cross-entropy-based
multilevel segmentation with differential evolution (DE),
PSO, and cuckoo search (CS), and firefly (FF) algorithm,
respectively. Encouraged by the effective results from above
literatures, MCET has been chosen as objective function
among different entropies. Next subsection gists proposed
innovative improvedPSO(IPSO)-based approachwith recur-
sive minimum image cross-entropy.

2.1 Author’s Contribution

The proposed improved particle swarm optimization (IPSO)
approach will be applied to remove the “curse of dimen-
sionality,” and to overcome the problem of “premature
convergence,” for finding the best solution from the popu-
lations.
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– Composite high-dimensional swarm is broken into sev-
eral one-dimensional swarms in search space.

– Each swarm communicates with each other by exchang-
ing information to find composite fitness of an entire
system.

– Next, each particle’s new velocity is updated based on the
Pbest information of any particle within a swarm to avoid
premature convergence by the logic discussed later.

– Recursive MCET is applied as the objective function to
find multiple thresholds.

– The outcomes of the proposed algorithm (IPSO) are then
comparedwith existing PSO,GA [18], modified artificial
bee colony (MABC) [40], cuckoo search (CS) [38], firefly
(FF) [39] algorithms.

– Quantitative and qualitative comparisons are carried out
with above-mentioned optimization techniques in terms
of misclassification error (ME), peak signal-to-noise
ratio (PSNR) [19], feature similarity index measurement
(FSIM) [41], and complex wavelet structural similarity
index measurement (CW-SSIM) [42] to show the better
working of our algorithm.

3 Minimum Cross-Entropy Thresholding

3.1 Minimum Cross-Entropy

Let F = f1, f2, . . . , fn and G = g1, g2, . . . , gn are two
probability distributions on the same set where n represents
the size of test set. The cross-entropy C between F and G is
then calculated by Kullback [43] like this

C(F,G) =
n∑

i=1

fi log
fi
gi

(1)

The minimum cross-entropy thresholding (MCET) algo-
rithm is used to select the threshold by minimizing the
cross-entropy between original and thresholded images. Let
I is the original image and h(i), where i = 1, 2, . . . , L be the
corresponding histogram and L is the number of gray levels.
Then thresholded image, It where t specifies threshold value,
can be constructed by

It (x, y) =
{

μ(1, t), I (x, y) < t

μ(t, L + 1), I (x, y) ≥ t
(2)

where μ(x, y) = ∑y−1
i=x ih(i)/

∑y−1
i=x h(i). The cross-

entropy is then calculated by according to Li and Lee [9]
in the following manner:

C(t) = −
t−1∑

i=1

ih(i) log

(
i

μ(1, t)

)

+
L∑

i=t

ih(i) log

(
i

μ(t, L + 1)

)
(3)

Then above calculated cross-entropy isminimized for finding
the optimal threshold value t∗ like that

t∗ = arg min
t

C(t) (4)

The computational complexity for finding t∗ is O(nL2).
However, for finding multilevel n thresholding values, the
computational complexity may jump to O(nLn+1) which
will be very high [44].

3.2 Recursive MCET

According to [36,45], theMCETobjective function of Eq. (3)
can be redefined as:

C(t) = −
L∑

i=1

ih(i) log(i) −
t−1∑

i=1

ih(i) log(μ(1, t))

−
L∑

i=t

ih(i) log(μ(t, L + 1)) (5)

As the first term is constant for a given image, so the objective
function can be redefined as:

σ(t) = −
t−1∑

i=1

ih(i) log(μ(1, t))

−
L∑

i=t

ih(i) log(μ(t, L + 1))

= −
t−1∑

i=1

ih(i) log

(∑t−1
i=1 ih(i)

∑t−1
i=1 h(i)

)

−
L∑

i=t

ih(i) log

(∑L
i=t ih(i)

∑L
i=t h(i)

)

= −p1(1, t) log

(
p1(1, t)

p0(1, t)

)

−p1(t, L + 1) log

(
p1(t, L + 1)

p0(t, L + 1)

)
(6)

where p0(x, y) = ∑y−1
i=x h(i) and p1(x, y) = ∑y−1

i=x ih(i)
are zero and first moment on partial range of the image
histogram, respectively. This recursive technique can eas-
ily be applied to find multilevel threshold values. Let n is
the number of selected thresholds denoted by t1, t2, . . . , tn .
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Fig. 1 Basic PSO algorithm

Two dummy thresholds t0 ≡ 0, tn+1 ≡ L + 1 along with
t0 < t1 < · · · < tn < tn+1 can be added for the conve-
nience of illustration of the problem. The modified objective
function for multilevel thresholding will look like now:

σ(t1, t2, . . . , tn) = −
n+1∑

i=1

p1(ti−1, ti ) log

(
p1(ti−1, ti )

p0(ti−1), ti

)

(7)

From Eq. (7), it is found that complexity is O(nLn), which
is slightly lesser than the previously calculated complexity
O(nLn+1), but still, it is computationally expensive if n ≥ 3.
So to reduce the complexity further, we have proposed a
novel improved particle swarm optimization (IPSO)-based
approach for minimizing σ(t). Here user input of n will be
chosen in that manner so that undersegmentation or over-
segmentation problem can be avoided to produce effective
results.

4 Overview of Particle SwarmOptimization
(PSO) Algorithm

In PSO algorithm, particles (multiple solutions) are put into
a multidimensional spaces, and the fitness of each particle
is evaluated in each iteration. Here the new velocity (sub-
sequently new position of a particle), at the start of a new
iteration, is calculated on the basis of its present velocity.
The distance between particle’s present position and its best
position found so far called as Pbest, whereas the distance
between particle’s present position and the position of the
best particle among the entire swarm is called the Gbest. Say,
it is required to solve a D-dimensional optimization problem
by minimizing the objective function f (x) given as

min f (x), x = [x1, x2, . . . , xD] (8)

where D specifies the number of parameters to be optimized.
Here in basic PSO algorithm, a swarm of N “particles”
is flown in a D-dimensional search space randomly in the
quest for the optimum solution of a fitness function. Fig-
ure 1 shows the working mechanism of PSO for optimum
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fitness. Let Xi = (X1
i , X

2
i , . . . , X

D
i ) represents the posi-

tion, Vi = (V 1
i , V 2

i , . . . , V D
i ) the velocity and Pbesti =

(Pbest1i , Pbest2i , . . . , Pbest Di ) the best previous position
with the lowest fitness value found so far, for each i th particle.
So far the best position foundby the swarm in the search space
is denoted by Gbest = (Gbest1,Gbest2, . . . ,Gbest D).
The velocity V d

i of each particle in dth dimension for each
iteration is determined by the additive influence of V d

i found
in the previous iteration (called “momentum” component),
and individual weighting of its distance from Pbestdi (known
as a cognitive component) and its distance from Gbestd

(known as social component). c f and cg are used as the accel-
eration coefficients to the extent of the stochastic weighting
for the cognitive and social components individually. The
“momentum” component carries the inertia weight (w) for
global exploitation during initial stages and local exploita-
tion during later stages of the optimization process. Initially,
w contains high value and gradually decreases according to
the following equation:

w = winitial − θIW × i t (9)

where w is the inertia weight in the current iteration, winitial

is the inertia weight at the starting condition, i t is the present
iteration count, θIW is the slope of inertia weight variation.

4.1 Drawback of PSO

However, this basic PSO suffers from two basic problems
like “curse of dimensionality” and a tendency of premature
convergence which is quite apparent in several optimiza-
tion algorithms. In this problem, particle’s motion may get
stuck because of the limited computing resources which may
lead to PSO to get prone to local optima convergence. As
a result of that, some particles will gain low fitness values
although their dimension values lie very close to the global
optimal solution. Cooperation operation can remove this
problem by acquiring information from “best” dimensions
and preventing useful information from being unnecessar-
ily discarded. In the proposed improved technique, “curse
of dimensionality” problem is resolved by dividing a com-
posite high-dimensional swarm into several one-dimensional
swarms, which cooperate with each other dynamically by
exchanging the information to form composite fitness of an
entire system. As high-dimensional space is divided into sev-
eral one-dimensional spaces, so cooperation between each
one dimension helps to save the most useful information
to accelerate convergence. Further to overcome the prob-
lem of premature convergence, caused by traditional PSO
algorithm, the new velocity of each particle can be modi-
fied based on the Pbest information of any particle within
the swarm, chosen according to a specific algorithm. In our

next subsection, we propose our improved particle swarm
optimization algorithm (called IPSO) to overcome both the
problems, “curse of dimensionality” and the tendency of
premature convergence at a time. Figure 2 describes the pro-
posed algorithm.

4.2 Proposed Improved Particle Swarm
Optimization (IPSO)

In this proposed approach, a D-dimensional problem is
decomposed into D-one-dimensional swarms where each
swarm consists of N particles. A final global solution is eval-
uated by aggregating all the Gbest solutions achieved from
each individual swarm. The fitness evaluation of particles is
done based on the introduction of a new parameter called
context vector (denoted by CV) (defined in Fig. 2) that will
be used to exchange information among all the individual
swarms. The size of context vector (CV) for a D-dimensional
problem should be equal to D-dimensional itself. Here, when
a j th swarm is active, then the “context vector” is formed by
remaining (D − 1) swarm’s Gbest particles whose values
were constant during the working of the j th swarm. Then
the j th row of the “context vector” is filled by each parti-
cle of j th swarm one by one. Each such “context vector”
is calculated for finding its composite fitness. So the Pbest
value (Pj .Pbesti ) for the i th particle and the Gbest solution
(Pj .Gbest) for j th swarm are determined in that manner
so that they not only depend on the performance of the j th
swarm alone. Now the velocity and position of each particle
in the j th swarm (denoted by Pj .Xi and Pj .Vi ) are updated
based on these Pbest and Gbest solutions. Lastly the j th
entry of the “context vector” is filled by the newly calculated
Pj .Gbest and this process is continued for each j th swarm,
till all the relevant context vectors are filled one by one. So, in
brief, it can be concluded that the total search space is divided
into D subspaces for D individual swarms and these swarms
communicate with each other through their corresponding
“context vectors” to determine their individual Pj .Pbesti
and Pj .Gbest . The final context vector is calculated by con-
catenating all the evaluated Pj .Gbest determined across all
the swarms.

However, this above-mentioned technique may still be get
trapped in suboptimal locations within search space, where
all individual solutions may fail to produce a better solu-
tion every time. To overcome this problem, we propose some
modifications to the above-mentioned approach to determine
new velocities and positions of each particle in each individ-
ual swarm in subspaces. So, the created problemof stagnation
because of premature convergence is seriously taken care
off, by permitting each particle to adjust its velocity (so, the
position also), based on the Pbest information of any par-
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Fig. 2 Proposed improved particle swarm optimization (IPSO) algorithm

ticle within the swarm. This helps to discourage premature
convergence within the swarm strongly.

Now to select the particle, whose Pbest can be used to
find the new velocity of any given particle within a given
one-dimensional swarm is shown in Fig. 3. Hence, the new
velocity update relation for each particle in a given swarm is
demonstrated as

Pj .Vi ← w∗Pj .Vi +c
′
i ∗randi ∗(Pj .Pbest fi −Pj .Xi ) (10)

where fi decides which particle’s Pbest should be followed
by this i th particle. It is defined in Steps 1–4 in Fig. 3.

4.3 “Best” Particles Cloning and“Worst” Particle
Destruction

This module is employed to each one-dimensional local
swarm for further improvement of this optimization strategy.
As the local swarmsmay get be stagnated for the last few iter-
ations because of almost insignificant improvements in the
fitness values of the Gbest particle for the given swarm, then
particles are needed to sort according to their Pbest values.
Assume Nreplace are the number of particles identified based
on their lowest fitness values, corresponding to their Pbest
positions (called “Worst” particles), to be replaced. Simi-
larly, Nreplace number of particles are also being identified in
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Fig. 3 Algorithm for “Best” particle selection

Fig. 4 IPSO-based algorithm for MCET problem

this swarm, based on their highest fitness values, correspond-
ing to their Pbest positions (called as “Best” particles). These
particles will be used to replace the worst particles identified
so far. Now a superior swarm will be formed to obtain bet-
ter optimization performance in the search space. At the end
of this approach, it can be found that each swarm contains
Nreplace number of positions where two particles are present
simultaneously. So these particles are “cloned” to each other
and this process is repeated for each one-dimensional swarm.
We have considered 50% of the particles (Nreplace = N/2)
are declared as “Worst” whereas remaining 50% are desig-
nated as “Best” particles.

4.4 MCET-Based IPSOWorking

It is formulated that each particle can work as a candidate
solution to themultilevelMCET problem. For an n-threshold
MCET problem, particle formulation can be like that

P = (t1, t2, . . . , tn),

subject to 1 < t1 < t2 < · · · < tn < L (11)

Here, n parameters in the particle representation can work as
a candidate solution corresponding to themultiple thresholds
for the MCET problem. N-particles are generated randomly
according to Eq. 11 are considered as an initial swarm. The
values of zero and first moments (p0(x, y) and p1(x, y))
for 1 < x < y < L are precomputed using the recursive

programming technique for n thresholds by the objective
function as described in Sect. 3.2. In the MCET approach
with IPSO, the particle deriving the minimal value is con-
sidered to be the best, so the objective function in Eq. 7 is
minimized. The IPSO-based algorithm for MCET problem
is further illustrated in Fig. 4.

5 Result Analysis

Simulations of the proposed scheme is evaluated in MAT-
LAB R2015a in a workstation with Intel coreT M i3 3.2 GHz
processor. The results are statistically compared with some

Table 1 Original grayscale images

Bridge Dog Dyno

F lower Tajmahal Building
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popular recently developed techniques like modified artifi-
cial bee colony algorithm proposed by Bhandari et al. [40];
an efficient cuckoo search algorithm proposed by Pare et
al. [38]; MCET-based firefly algorithm proposed by Horng
and Liou [39]; genetic algorithm proposed by Pare et al.
[18]; and basic PSO algorithm surveyed in the literature as
well. Our approach strictly follows the steps mentioned in
the Fig. 4. All the tested algorithms run for 100 indepen-
dent times where each run was carried out for the D × 1000
(D denoted the dimension of search space) number of fit-
ness evaluations. Segmentation levels are set from 4 to 6 to
avoid undersegmentation problem. As quantitative measure-
ment, fitness evaluations (FEs) and computation time (t) are
comparedwith the above-mentioned stochasticmetaheuristic
approaches and peak signal-to-noise ratio (PSNR), unifor-
mity measure (ME), feature similarity index measurement
(FSIM), and complex wavelet structural similarity index
measurement (CW-SSIM) are evaluated as qualitative com-
parison.

5.1 Quantitative Measurement

The proposed technique is tested on a set of grayscale and
medical images. Images are resized to 225 × 225 for effec-
tive segmentation. Original grayscale images are shown in
Table 1. It is observed from Table 2 that the proposed algo-
rithm produces better values in terms of computation time
(t), objective fitness values ( fobj), and standard deviation
( fstd) for levels 4 and 6. As cross-entropy is minimized in
our approach, so the value of the objective function with the
proposed optimizer produces fewer values compared to other
stochastic optimization algorithms for all the levels of seg-
mented images. Further to check the stability of the proposed
algorithm, standard deviation values are calculated for 100
iterations. As less standard ( fstd) deviation values imply the
more stability of the algorithm, so it is calculated for different
algorithms and results infer that the proposed approach over-
comes challenges of others. As high-level computation time
of recursive algorithm throws a challenge to the researchers,
so attention is given to reduce time complexities. Further, it
can be noted in Table 2, that computation time (t) which is

Table 2 Comparison of computational time (t), objective value ( fobj) and standard deviation ( fstd) between IPSO, MABC, CS, FF, GA, and PSO
using MCET

Im 4-level 6-level

IPSO MABC CS FF GA PSO IPSO MABC CS FF GA PSO

1

t 3.391 3.498 3.647 3.782 3.891 3.992 5.063 5.128 5.198 5.222 5.275 5.315

fobj 0.168 0.177 0.183 0.189 0.198 0.201 0.066 0.073 0.076 0.078 0.080 0.082

fstd 0.021 0.027 0.037 0.042 0.051 0.064 0.062 0.068 0.082 0.088 0.095 0.101

2

t 3.271 3.397 3.542 3.682 3.857 3.971 5.271 5.332 5.402 5.452 5.534 5.624

fobj 0.156 0.168 0.176 0.185 0.192 0.198 0.065 0.072 0.075 0.079 0.089 0.097

fstd 0.055 0.067 0.072 0.081 0.087 0.093 0.072 0.078 0.087 0.096 0.104 0.109

3

t 3.412 3.557 3.689 3.831 3.923 3.998 5.372 5.457 5.479 5.531 5.612 5.708

fobj 0.162 0.169 0.176 0.186 0.192 0.199 0.068 0.082 0.085 0.091 0.096 0.099

fstd 0.043 0.049 0.066 0.077 0.086 0.092 0.071 0.084 0.093 0.097 0.104 0.107

4

t 3.181 3.321 3.478 3.588 3.699 3.802 5.141 5.203 5.288 5.358 5.447 5.534

fobj 0.169 0.178 0.185 0.191 0.196 0.202 0.060 0.072 0.075 0.083 0.089 0.093

fstd 0.044 0.051 0.061 0.070 0.075 0.082 0.072 0.080 0.087 0.091 0.098 0.107

5

t 3.211 3.326 3.482 3.567 3.702 3.810 5.411 5.476 5.512 5.547 5.601 5.678

fobj 0.172 0.189 0.194 0.199 0.206 0.213 0.064 0.078 0.085 0.089 0.095 0.099

fstd 0.045 0.058 0.065 0.074 0.081 0.088 0.074 0.085 0.091 0.096 0.105 0.110

6

t 3.331 3.451 3.556 3.678 3.811 3.926 5.411 5.476 5.512 5.547 5.617 5.721

fobj 0.170 0.179 0.186 0.191 0.196 0.199 0.065 0.073 0.078 0.086 0.089 0.095

fstd 0.055 0.063 0.072 0.084 0.089 0.097 0.094 0.099 0.105 0.110 0.116 0.120
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Fig. 5 Comparison of computation time of 4th level segmented images
using different evolutionary algorithms

Fig. 6 Comparison of computation time of 6th level segmented images
using different evolutionary algorithms

obtained for our algorithm sweeps other techniques compre-
hensively. The results of our technique are followed by the
MABC, CS, FF, GA, and PSO in terms of objective value,
computation time and standard deviation in the mentioned
order. Further Figs. 5 and 6 clearly suggest the fastness of
our approach for fourth and sixth levels of above-mentioned
six experimental images. The value of modified artificial bee
colony (MABC) approach almost touches our curve, whereas
CS, FF, GA, and PSO maintain this order.

Table 3 represents the sixth-level segmented images and
their corresponding convergence plots. It is quite clearly vis-
ible that the convergence values are almost touching to 0 in
our proposed scheme for 100 iterations for all the considered
images where values of other techniques struggling to reach
zero value. The stability of the convergence values is also
considered when it is found that, for last 50 iterations gener-
ated convergence curves are almost straight for our technique
and remaining are taking more time than this. Some medical
images (shown in Table 4) are also tested for better visualiza-
tion and effectiveness of the algorithm. Table 5 generates the
sixth-level comparative segmented images of evolutionary

algorithms. The results of our technique are quite better and
effective in terms of visual quality as well as convergence
values. Colors are applied to these images for better visual
comparison of segmented images. Figures 7 and 8 draw the
comparison of convergence curves for fourth and sixth levels
of segmentedmedical images respectively. It can be observed
that the starting value of the fourth level plot of the proposed
approach has been started from 0.511 and ended with 0.13,
whereas for the sixth level, it is 0.921 and 0.052 which sug-
gest the better working of the technique for the increment of
levels.

5.2 Qualitative Results

In this subsection, researchers have shown the segmented
results of level 6 by applying the proposed IPSO technique
with other techniques and segmented images generated by
the proposed algorithm are found visually more clear and
effective. Tables 3 and 5 display the 6th level segmented
results of gray and medical images for all the stochastic
approaches namely IPSO, MABC, CS, FF, GA, and PSO.
Table 6 lists threshold values for level 4 and 6 of grayscale
images for all the algorithms. Results suggest that the thresh-
old values obtained by the proposed technique are quite better
compared to others for Bridge, Dog, Dyno, Flower, Taj and
Building images. Further parametric measurements of seg-
mented images obtained by different algorithms are given
in next subsection in the form of ME for medical images,
PSNR, FSIM, and CW-SSIM for grayscale images to show
the better and effective segmentation results of the proposed
algorithm.

5.3 Misclassification Error

Misclassification error is used to measure the uniformity in
segmented images to compare the performances of optimiza-
tion techniques [19]. It is measured by using the following
formula:

ME = 1 − 2 ∗ T ∗
∑T

i=0
∑

j∈Ri (In j − μi )
2

n ∗ (Inmax − Inmin)2
(12)

where T is the number of thresholds which are used to
segment the image, Ri is the i th segmented region, In j is
the intensity level of pixels in that particular segmented area,
μi is the mean of an i th thresholded region of an image, n
denotes the total number of pixels in the image and Inmin

and Inmax are minimum and maximum intensities of image
respectively. Misclassification error values lie between 0 to
1 and fewer values indicate better performance in terms of
visibility factor. It is found from Table 7 that the proposed
approach generates fewer values for all the levels (4 to 6) of
medical images compared to other optimization techniques.
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Table 3 Comparative results of segmented images and convergence plot between different algorithms of sixth level

IPSO MABC CS FF GA PSO
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Table 4 Original Medical Images

Endometrium Heart

Liver Leg

Values are inversely proportional to the increment of thresh-
old levels which suggest better working of the algorithm.

5.4 Peak Signal-to-Noise Ratio (PSNR)

To measure the dissimilarity or visual difference between
original and segmented images, PSNR values are calculated
in decibel (dB) unit. Images with high PSNR values suggest
the better quality of segmentation. It can be calculated by the
following equation:

PSNR = 10 × log10

(
2552

RMSE

)
(dB) (13)

where 255 is the maximum gray value and RMSE stands for
root-mean-square error, defined in the below equation:

RMSE = 1

R × C

R∑

i

C∑

j

{I (i, j) − I ′(i, j)}2 (14)

where I and I ′ are the original and thresholded image, respec-
tively. R and C are the rows and column size whereas i, j
represent the pixel values with size 225 × 225 of original
and segmented images, respectively. It is observed from the
Table 8 that PSNRvalues of the proposed IPSO-MCET-based
approach are quite high compared to other optimization tech-
niques for level 4 to 6. Further, it is noticed that MABC, CS,
FF, GA, and PSO closely follow our technique.

5.5 Feature Similarity IndexMeasurement (FSIM)

It is used to evaluate the visual similarity between original
and segmented images [41]. Higher FSIM values indicate
the better quality of segmented images. Say, f1 and f2 are
original and segmented images, then phase congruency PC1

and PC2 as the PC map values and G1 and G2 as gradient
magnitude (GM) values can be extracted from f1 and f2.
Further FSIMmeasurement can be done based on these PC1,
PC2,G1,G2 values. Firstly, local similaritymap is computed,
next similarity map is pooled into a single similarity score.
The similarity measure is calculated as follows:

SPC(x) = 2PC1(x) · PC2(x) + M1

PC2
1(x) + PC2

2(x) + M1
(15)

Table 5 Comparison of
six-level segmented different
medical images by different
optimizers

IPSO MABC CS FF GA PSO
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Fig. 7 Comparison of convergence plot of IPSO, MABC, CS, FF, GA,
and PSO for Lv = 4 of medical image data set

Fig. 8 Comparison of convergence plot of IPSO, MABC, CS, FF, GA,
and PSO for Lv = 6 of medical image data set

where M1 is a positive constant used to increase the stability
of SPC. Then GM values G1(x) andG2(x) are compared and
similarity measure is defined as follows:

SG(x) = 2G1(x) · G2(x) + M2

G2
1(x) + G2

2(x) + M2
(16)

whereM2 value depends on the dynamic range ofGMvalues.
Now SPC(x) and SG(x) are combined to find the similarity
SL(x) for f1(x) and f2(x).

SL(x) = [SPC(x)]α · [SG(x)]β (17)

where α, β are used for adjusting the relative importance of
PC, GM features. Then the maximum of PC(x) (denoted by
PCmax(x)) is found which gives the weighted importance of
SL(x) in the overall similarity between f1 and f2. Finally,
FSIMbetween f1 and f2 is defined in the following equation:

Table 6 Optimal threshold values obtained by different evolutionary
algorithms with MCET approach

Images Optimal threshold values

Algo Th = 4 Th = 6

Bridge IPSO 44, 82, 187, 220 2, 11, 68, 159, 191, 233

MABC 43, 91, 184, 237 5, 18, 77, 173, 191, 239

CS 47, 97, 195, 251 10, 29, 82, 172, 195, 240

FF 52, 96, 197, 250 20, 28, 92, 170, 199, 242

GA 55, 99, 190, 251 28, 32, 96, 167, 197, 247

PSO 50, 99, 203, 252 21, 38, 97, 172, 201, 248

Dog IPSO 35, 71, 146, 245 4, 41, 78, 123, 148, 223

MABC 35, 77, 155, 252 5, 48, 89, 130, 153, 231

CS 40, 82, 162, 253 8, 58, 97, 132, 154, 233

FF 36, 91, 170, 251 7, 65, 95, 133, 155, 236

GA 42, 97, 185, 250 10, 68, 98, 140, 159, 243

PSO 43, 99, 187, 248 21, 65, 99, 150, 171, 245

Dyno IPSO 41, 71, 84, 181 11, 46, 124, 137, 174, 242

MABC 49, 72, 84, 191 15, 47, 129, 146, 176, 244

CS 54, 80, 96, 205 17, 59, 135, 155, 177, 247

FF 51, 86, 105, 207 20, 67, 133, 164, 178, 249

GA 53, 88, 107, 209 24, 69, 136, 166, 179, 250

PSO 52, 80, 109, 208 19, 72, 138, 169, 175, 253

Flower IPSO 11, 45, 81, 137 21, 56, 114, 161, 209, 227

MABC 17, 47, 81, 139 22, 59, 118, 160, 215, 231

CS 20, 48, 84, 149 29, 62, 125, 164, 216, 232

FF 21, 51, 90, 155 32, 63, 126, 165, 217, 233

GA 23, 54, 92, 156 33, 65, 128, 167, 219, 232

PSO 25, 57, 95, 157 30, 67, 132, 169, 221, 235

Taj IPSO 47, 85, 111, 158 15, 34, 57, 83, 118, 181

MABC 40, 94, 119, 170 15, 37, 58, 94, 125, 181

CS 42, 102, 123, 171 17, 47, 59, 95, 124, 184

FF 38, 107, 131, 180 19, 48, 61, 95, 125, 185

GA 42, 109, 135, 182 20, 52, 63, 98, 127, 188

PSO 43, 110, 137, 184 23, 54, 65, 99, 129, 190

Building IPSO 45, 83, 110, 157 12, 32, 55, 81, 116, 183

MABC 41, 93, 118, 172 15, 36, 56, 93, 123, 180

CS 47, 105, 127, 170 19, 45, 55, 92, 122, 182

FF 35, 106, 130, 183 29, 49, 63, 85, 124, 187

GA 37, 108, 132, 184 32, 51, 66, 88, 127, 189

PSO 39, 105, 137, 187 41, 53, 67, 89, 121, 196

FSIM =
∑

x∈σ SL(x) · PCmax(x)∑
x∈σ PCmax(x)

(18)

where σ represents the whole image spatial domain. Our
proposed technique produces better FSIM values for all
the levels of segmented images tested noted in Table 9.
It is observed that sixth-level values of our technique are
almost closer to 1, whereas values generated by remaining
approaches are quite behind from 1.
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Table 7 Comparison ofME values of segmented medical images using
different optimization algorithms with MCET

Images Algorithms ME

Th = 4 Th = 5 Th = 6

Med-1 IPSO 0.815 0.726 0.641

MABC 0.832 0.744 0.655

CS 0.871 0.765 0.669

FF 0.899 0.771 0.682

GA 0.907 0.786 0.689

PSO 0.923 0.797 0.694

Med-2 IPSO 0.818 0.726 0.635

MABC 0.832 0.734 0.653

CS 0.841 0.748 0.671

FF 0.859 0.757 0.682

GA 0.867 0.765 0.693

PSO 0.879 0.777 0.699

Med-3 IPSO 0.828 0.735 0.626

MABC 0.842 0.754 0.643

CS 0.851 0.768 0.655

FF 0.859 0.776 0.662

GA 0.869 0.783 0.672

PSO 0.877 0.791 0.682

Med-4 IPSO 0.824 0.753 0.625

MABC 0.832 0.764 0.633

CS 0.841 0.779 0.649

FF 0.859 0.785 0.661

GA 0.869 0.792 0.668

PSO 0.878 0.799 0.682

5.6 ComplexWavelet Structural Similarity Index
Measurement (CW-SSIM)

Structural similarity index measurement (SSIM) is extended
toCW-SSIM to the complexwavelet domain [42]. CW-SSIM
is preferred for its insensitivity to “non-structured” geometric
image distortions. In the complex wavelet transform domain,
let us assume that cx = {cx,i | i = 1, . . . , N } cy = {cy,i |
i = 1, . . . , N } are two sets of coefficients extracted from the
same spatial location in the same wavelet subbands of two
images I, I’. Then the CW-SSIM can be defined as

S(cx , cy) = 2 | ∑N
i=1 cx,i c

∗
y,i | +K

∑N
i=1 | cx,i |2 +∑N

i=1 | cy,i |2 +K
(19)

where c∗ andK are complex conjugates of c and positive con-
stant, respectively. Higher CW-SSIM values indicate better
segmentation results. Table 10 displays the high values of the
proposed approach which outperform other techniques.

Table 8 Comparison of PSNR values of different optimization algo-
rithms with MCET

Images Algorithms PSNR

Th = 4 Th = 5 Th = 6

1 IPSO 35.908 36.876 37.765

MABC 34.312 34.814 35.203

CS 33.071 33.908 34.439

FF 32.809 33.556 34.012

GA 32.527 33.126 33.716

PSO 32.118 32.607 33.014

2 IPSO 35.918 35.876 36.965

MABC 34.342 34.914 35.433

CS 33.431 33.908 34.481

FF 33.109 33.877 34.162

GA 32.921 33.527 33.983

PSO 32.809 33.267 33.772

3 IPSO 34.718 34.876 35.721

MABC 33.942 34.614 34.743

CS 33.031 33.308 33.985

FF 32.709 32.976 33.512

GA 32.429 32.683 32.832

PSO 32.209 32.517 32.792

4 IPSO 35.824 36.673 37.305

MABC 34.442 34.614 34.943

CS 33.731 33.909 34.389

FF 33.139 33.675 34.001

GA 32.809 33.136 33.768

PSO 32.729 33.015 33.242

5 IPSO 33.913 34.356 34.985

MABC 33.040 33.424 33.947

CS 32.531 32.808 33.008

FF 32.158 32.775 32.912

GA 32.007 32.635 32.813

PSO 31.918 32.325 32.704

6 IPSO 36.118 36.746 37.504

MABC 35.342 35.614 35.843

CS 34.731 34.978 35.289

FF 33.889 34.276 34.912

GA 33.639 33.906 34.305

PSO 33.405 33.778 34.112

6 FutureWork and Discussion

To search the limitation of the proposed work, it is further
compared with two different latest image segmentation tech-
niques [46,47]. Gao et al. [46] considered ground truth image
sets in their approach first. They claimed their segmented
results as best, based on the F-score values which were the
combination of the true-positive rate (TPR) and false-positive
rate (FPR) to identify defect areas in segmented images. One
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Table 9 Comparison of FSIM values of different optimization algo-
rithms with MCET

Images Algorithms FSIM

Th = 4 Th = 5 Th = 6

1 IPSO 0.728 0.876 0.965

MABC 0.689 0.714 0.883

CS 0.631 0.708 0.839

FF 0.609 0.696 0.812

GA 0.588 0.633 0.792

PSO 0.574 0.601 0.756

2 IPSO 0.698 0.746 0.835

MABC 0.589 0.624 0.783

CS 0.531 0.609 0.719

FF 0.509 0.596 0.711

GA 0.482 0.537 0.688

PSO 0.467 0.521 0.654

3 IPSO 0.718 0.838 0.911

MABC 0.677 0.710 0.866

CS 0.631 0.708 0.839

FF 0.599 0.677 0.792

GA 0.577 0.640 0.752

PSO 0.546 0.621 0.735

4 IPSO 0.804 0.903 0.999

MABC 0.688 0.774 0.903

CS 0.671 0.768 0.889

FF 0.659 0.766 0.822

GA 0.634 0.736 0.801

PSO 0.612 0.724 0.798

5 IPSO 0.737 0.856 0.985

MABC 0.625 0.684 0.783

CS 0.611 0.678 0.779

FF 0.609 0.666 0.762

GA 0.577 0.646 0.752

PSO 0.545 0.635 0.740

6 IPSO 0.778 0.846 0.904

MABC 0.699 0.772 0.893

CS 0.653 0.770 0.879

FF 0.650 0.696 0.812

GA 0.632 0.677 0.801

PSO 0.613 0.656 0.787

major drawback of the proposed algorithm is that it does not
consider defective areas in ground truth images for segmen-
tation which can be given attention later. In terms of quality
measurement of segmented images, standard metrics like
PSNR, FSIM are used in the proposed method rather using
F-measure values which may be taken care of in the future.
But the proposed approach outperformed this algorithm in
terms of computational cost as improved PSO (IPSO) works

Table 10 Comparison of CW-SSIM values of different optimization
algorithms with MCET

Images Algorithms CW-SSIM

Th = 4 Th = 5 Th = 6

1 IPSO 0.838 0.977 1.205

MABC 0.779 0.884 1.083

CS 0.731 0.808 0.939

FF 0.708 0.796 0.915

GA 0.678 0.774 0.890

PSO 0.654 0.765 0.870

2 IPSO 0.797 0.848 0.955

MABC 0.699 0.724 0.883

CS 0.641 0.709 0.839

FF 0.609 0.696 0.819

GA 0.587 0.667 0.796

PSO 0.576 0.654 0.785

3 IPSO 0.908 0.998 1.211

MABC 0.787 0.810 0.967

CS 0.731 0.800 0.929

FF 0.699 0.777 0.882

GA 0.678 0.744 0.866

PSO 0.656 0.724 0.852

4 IPSO 0.907 0.993 1.199

MABC 0.778 0.874 0.993

CS 0.771 0.868 0.988

FF 0.759 0.856 0.912

GA 0.735 0.847 0.888

PSO 0.712 0.829 0.867

5 IPSO 0.887 0.926 0.995

MABC 0.715 0.784 0.893

CS 0.711 0.768 0.879

FF 0.709 0.766 0.867

GA 0.672 0.702 0.839

PSO 0.667 0.689 0.801

6 IPSO 0.878 0.946 1.004

MABC 0.799 0.871 0.983

CS 0.753 0.875 0.949

FF 0.755 0.796 0.917

GA 0.732 0.784 0.887

PSO 0.725 0.776 0.870

faster than GA, and MCET produces outcome quickly as
compared to traditional entropy-based approach. Rafiee et al.
[47] focused to segment the low depth-of-field images (DOF)
based on the k-cluster blocks to extract region of interest
(ROI) from the segmented blocks of images. The calculated
F-measure values achieved by this algorithm for camera cap-
tured low depth images suggested the best extraction of ROI.
But applied optimizer to this approach increased the com-
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putational complexities a lot. So IPSO-based optimization
approach may further be applied for ROI extraction from
DOF images as the future extension of our work. Sulistyo
et al. [48,49] proposed feature extraction based image seg-
mentation technique to analyze nitrogen status from colored
plant images. Genetic algorithm (GA) has been applied there
as global optimization technique to normalize plant images.
The proposed IPSO can be tested instead of GA there to
compare the convergence rate of the algorithm. Alkassar et
al. [50] proposed an enhanced feature extraction approach for
eye images obtainable from UBIRIS and UTIRIS databases.
Proposed skin-based sclera segmentation algorithm reduces
computational complexities for low-resolution images. Like
this, we can also apply the proposed optimization algorithm
to extract features from RGB, HSV, CIE color spaces, and
further segment the images from known datasets as a future
work.

7 Conclusion

A minimum cross-entropy-based approach with improved
particle swarm optimization (IPSO-MCET) is proposed here
for multilevel thresholding of grayscale images with the
desired output. To find the effective multiple thresholds,
cross-entropy is minimized with this improved technique.
In that improved PSO, high-dimensional swarms are decom-
posed into several one-dimensional swarms which exchange
information among themselves to generate the overall fitness
value. This technique is well organized to remove “curse
of dimensionality” problem as well as to discourage pre-
mature convergence. This optimization strategy is further
enhanced by replacing the worst particles with the best par-
ticles. Outcomes are compared in terms of objective values,
computation time, and standard deviation with other recent
popular stochastic approaches like MABC, CS, FF, GA, and
PSO. It is found that segmented images generate better para-
metric measurements as well as effective threshold values.
In short, it can be concluded that the proposed approach
outperformed other optimization algorithms for multilevel
segmentation with respect to all the quantitative and qualita-
tive fields.
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