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Abstract
Adaptive equalization mitigates the distortions caused by radio channels. The least mean square (LMS) and the recursive
least squares (RLS) algorithms are used for such purpose. Recently, particle swarm optimization (PSO) algorithms such
as PSO using a linear time decreasing inertia weight (PSO-W) and the PSO using constant constriction factor (PSO-CCF)
were shown to be very effective in handling systems having nonlinear behavior. However, these algorithms can be trapped
in local minima. This paper presents a new PSO-based algorithm called the hybrid PSO (HPSO) that is capable to handle
such problems. The HPSO includes the randomization of particles to improve the search capacity of the swarm, which in turn
reduces the probability of being trapped in some local minima. It also adapts the inertia weight assignment to the particles.
Extensive simulation results are conducted to confirm the consistency in the performance of the HPSO algorithm in different
scenarios. The proposed HPSO secures the minimum steady-state error as compared to LMS and other PSO-based algorithms
in both nonlinear and linear channels. Finally, the proposed HPSO algorithm shows a great improvements in Bit Error Rate
and convergence rate.

Keywords Particle swarm optimization (PSO) ·Adaptive channel equalization ·Hybrid PSO · LMSAlgorithm · Evolutionary
algorithms (EAs)

1 Introduction

Adaptive equalization can be used to improve digital data
transmission over unknown channels; it is used mainly to
mitigate the effect of intersymbol interference (ISI) [1]. The
main use of adaptive equalization is in systems with high
speed of communications and especially when such systems
do not use frequency division multiplexing or differential
modulation schemes. An equalizer is the most important
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and expensive part of the demodulator for any communi-
cation system as it usually consumes more than 80% of
the whole computation required to demodulate any signal
[2]. There are many algorithms currently used for adaptive
channel equalization, to name a few, the least mean square
(LMS), the recursive least squares (RLS), their variants [3],
and recently algorithms based on the particle swarm opti-
mization (PSO) technique [4–7]. The LMS is considered as
the most commonly used algorithm for channel equalization,
this is due mainly to its low computational cost. However,
particle swarm optimization is nowadays applied in many
optimization research problems. This heuristic approach of
finding the optimum value for any cost function lies under
the category of swarm intelligence. Kennedy and Eberhart
first proposed this algorithm [8], in which it is applied to a
simplified social model. They took the mental state of every
individual as the position of the particle, where each individ-
ual will possess its own mental state and attitude [9].

The PSO technique is better than other evolutionary algo-
rithms (EAs) in the sense that the system is initialized by
random solutions for the optima by updating the generations
without mutation or crossover. The potential solutions here,
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which are the particles, fly through the problem by follow-
ing the current optimum particle. An important advantage
of PSO over EAs is that it has memory, meaning that each
and every particle will remember the best position, or best
solution, it has achieved so far and also it will remember the
best position (solution) of the group, known as the global
best. PSO is also more suitable to handle time-varying prob-
lems. Another advantage of PSO over EAs is that the number
of members of the population will remain fixed through the
whole process. Therefore, it can be stated that PSO uses pro-
ductive collaboration among particles, which is not the case
in other different artificial algorithms where the main idea is
that only the fittest members will survive [9].

Different variations of the PSO techniquewere introduced
in order to improve the performance of different applica-
tions/scenarios. For example, many researches discussed the
effect of inertia weights on the performance of PSO, as the
velocity is multiplied by this inertia weight factor before
the velocity updating process begins; therefore, the inertia
weight actually controls the velocity of the particles [10].
Another version was introduced in [11], where a constric-
tion factor was used instead of the inertia weight factor, and
this constriction factor is used to ensure that the particles
should be limited to their present velocity before updating.
The advantage of this algorithm is the enhanced convergence
rate, but formulti-modal problems; however, there is a chance
that due to its swift convergence rate, it might get trapped in
some local minima.

Many researches have discussed this critical issue, while
showing all the analysis regarding the tuning of the PSO
parameters. Among them are the ones proposed by Shi and
Eberhart [10,12,13], Carlisle and Dozier [14], Angeline [15],
and El Gallad [16]. Another development was proposed to
reduce the training time for the PSO. This is known as coop-
erative particle swarm optimizer (CPSO) [17,18]. In this
technique, the whole swarm will be divided into two dif-
ferent small-size swarms where each one will be driven by
a separate PSO. The effect of the size chosen of the two
swarms is discussed in [19]. Parsopoulos and Vrahatis [20]
used the PSO algorithm for the first time to solve prob-
lems of multi-objective function. Another version of the PSO
algorithm, proposed by Xu [21], named the extended PSO
(EPSO). In this method, at each iteration while updating the
velocity of each particle, the algorithm used both global and
local best positions, whereas previously only global positions
were used for velocity updating process. This methodology
combines simultaneously the best effects of both local and
global best positions. A very useful work, which enlists the
developments and all the applications and resources of PSO
algorithm, is presented in [22]. It also presents all the arrays
of functions and different types of it where PSO can be a bet-
ter choice. Another very important modification, proposed in
[23], is made by considering the inertia weight as a function

of improvement where improvement is defined here as any
achievement produced by any particle in the present iteration
compared to its previous one. There are some other tech-
niques proposed to overcome some critical issues related to
the PSO algorithm, such as enhancing the convergence speed
byusingGaussiandistribution insteadof uniformdistribution
when selecting the random directions of particles or vectors.

Every one of the above-listed algorithms addressed a
deficiency to improve their performance. In this work, we
propose a new hybrid PSO algorithm, the HPSO algorithm
which includes the randomization of particles to improve
the search capacity of the swarm. This will introduce more
socialized behavior among particles to reduce the probability
of being trapped in some localminima. Furthermore, it adapts
the inertia weight assignment to the particles. Extensive sim-
ulation results are conducted to confirm the consistency in the
performance of the HPSO algorithm in different scenarios.

The paper is organized as follows. Following the Intro-
duction, Sect. 2 highlights some of the most popular particle
swarm optimization algorithms, while the proposed hybrid
PSO algorithm is presented in Sect. 3. The simulation results
are presented in Sect. 4. Finally, some conclusions are given
in Sect. 5.

2 Particle SwarmOptimization Algorithms

The PSO algorithm works on the basis of its population
members (particles), which are collectively known as swarm.
These particles work collectively to optimize a certain cost
function, which should be real valued and have a specific
number of dimensions. Each particle in the swarmwill have a
specific position which is known as a potential solution to the
targeted optimization problem in the solution space. ThePSO
algorithm will approach the most optimal solution by apply-
ing specific changes to the existing set of solution, and these
changes will be applied through probabilistic and iterative
modifications. Every particle will have two basic parameters,
position and velocity, where position represents the current
solution and velocity is used to speed-up/slowdown the parti-
cle to approach the optimum value. Both of these parameters
have immense importance in finding the optimum solution
because large values of these parameters will cause the par-
ticles to fly away from the solution space, and small values
slow the convergence rate. In the PSO algorithm, the particles
are first generated randomly, and like any other optimization
algorithm, they will have an objective or cost function. For
channel equalization, which is considered in this work, the
PSO algorithm uses the following cost or objective function:

Ji (l) = 1

N

N∑

m=1

[emi (l)]2, (1)
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where

emi (l) = dmi (l) − ymi (l), (2)

which represents themth error of the i th particle and it is the
difference between the received signal y from the desired
signal d. The symbol N is the input data window size of
the equalizer. The symbol l takes the values from 1,…, L ,
where L is the number of iterations. This cost function will
be applied to each and every particle, then the minimum
among all the particles is identified and is called global min-
ima (best) or gbest. Every particle memorizes the minimum
value achieved so far among all its previous values, and this
is known as particle best or (pbest). The positions of the par-
ticles should be changed in such a way that they approach an
optimized value. While generating and applying the position
and velocity updates for the particles, no particle should fly
out from the specified range.

ThePSOalgorithmstarts bygenerating a randompotential
solution for each particle. Let the i th particle has D dimen-
sions, then the solution for this particle will be represented
by

Xi = (xi1, xi2, xi3, . . . , xiD). (3)

Here every particle will follow its coordinates in a multi-
dimensional space, related to the most plausible solution that
a specificparticle has achieved so far. Thefitness value,which
has been achieved so far by any specific particle i , (pbest), is
also stored as

Pi = (pi1, pi2, pi3, . . . , piD). (4)

As stated earlier, the PSO algorithm also keeps tracks glob-
ally. Therefore, each particle will calculate the best value
globally (gbest) and find its location, which has been secured
so far. At every iteration, l, the PSO algorithm will keep on
varying the velocity of each particle, i , in the direction of its
pbest and gbest, according to the following recursion [24]:

vid = w × vid + c1 × rand() × (pid − xid)

+c2 × rand() × (
pgd − xid

)
, 1 ≤ d ≤ D, (5)

where w is the inertia weight, c1 and c2 are acceleration
constants, rand(), which is a uniformly distributed ran-
dom number between zero and one, is used to introduce the
stochastic behavior in the velocity equation, pid = pbest,
and pgd = gbest. Ultimately, the position update equation is
given by

xid = xid + vid , 1 ≤ d ≤ D. (6)

It is worth noting here that the position x is related to the
velocity v by multiplying v with time t , where it is assumed
that t is the unit one of time. The same principle is assumed
when relating v to the acceleration. Now, the effect of each
parameter, that is the inertia weight, w, and the constants
c1 and c2, used in the PSO algorithm, on the performance
and the efficiency of the algorithm, will be discussed. The
inertia weight controls the momentum expression, w × vid ,
which denotes the effect of the preceding velocity of the
i th particle on its present velocity. A large value of w will
make the present velocity, vid , large and due to this effect
the particle will search a larger solution space, which will
obviously help finding the global best solution, but it will
slowdown the convergence rate. On the other hand, small
values of w will result in a fast convergence; however, this
might result in a solution that may trap the particle in a local
minimum [4].

The rate, at which the particles move in the direction of
their local best values, is controlled by the acceleration con-
stants c1 and c2 which control the movement of the particle
in the direction of the global value. When c1 = 0, the par-
ticles will have global experience only, which means that
the particles will not have any cognitive control but will
be affected by social weight only, and hence all particles
will move freely in a swarm with less probability to reach
a global solution. If we assign c2 = 0, then every particle
will endure only self-experience, meaning it will make the
decisions only by cognitive sense. The convergence rate in
this case is quite high but there will be a possibility that the
particles will get trapped in some local optimumvalue.When
c1 = c2 = 0, then all particles will not be having any kind
of social or cognitive experience, and this will result in a
disordered movement of the particles in the swarm. There-
fore, a trade-off has to be made among these parameters. In
order to make sure that all particles should not fly out from
the solution space, the velocities of every particle will be
constrained in some selected range [−vmax, vmax], where the
value of vmax is a problem dependent. Here, the vector of
velocity for the i th particle will be defined as

Vi = (vi1, vi2, vi3, . . . , vi D). (7)

Random weight assignment to the acceleration will be car-
ried out separately, and ultimately will ensure the particles
to move toward pbest and gbest.

2.1 Conventionally Used PSO Algorithms for
Adaptive Equalization

As can be seen from (5), the inertia weight is a constant value
throughout the use of the PSO algorithm. Unlike (5), then the
first change in the algorithmwasmade by adjusting its inertia
weight as a function of time. This helps improving the speed
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of convergence. In [13], a linearly decreasing time inertia
weight is proposed and updated according to

wl = (winitial − wfinal) × L − l

L − 1
+ wfinal, (8)

where winitial is the initial weight, wfinal is the final weight,
L is the maximum number of iterations, and l is the current
iteration. The position update equation will remain the same.
This algorithm is named as the PSO-W algorithm.

As stated earlier, the inertia weight term is used to control
the effect of velocity updates on both the present position
and the exploration of local and global solutions in the search
space. Hence, the motive for using a linearly time decreasing
inertia weight parameter is that large values of inertia weight
will be used at the start of the operation to make sure that
the particles explore globally the search space. Near the end
of the operation, smaller values are used to make sure that
the particles explore only locally around a globally optimum
value.

To improve more the convergence rate, instead of the iner-
tia weight a constriction factor is used to make sure that the
PSO algorithmwill converge in a less number of iterations. A
basic constriction factor was anticipated in [13] and is given
by the following:

K = k

|2 − φ − √
φ2 − 4φ| , (9)

where k = 2, φ = c1 + c2, and φ > 4. This algorithm is
named as the PSO-CCF algorithm. Consequently, the veloc-
ity update vector is carried out according to

vid = K [vid + c1 × rand() × (pid − xid)

+c2 × rand() × (
pgd − xid

)]
, 1 ≤ d ≤ D. (10)

An idea of using a variable constriction factor was pro-
posed in [4]. This variable constriction factor is shown to be
governed by the following update equation:

kl = kmin + (kmax − kmin) × L − l

L − 1
, (11)

where L is themaximum number of iterations, l is the current
iteration and kmax and kmin are the maximum and minimum
values of kl , respectively. Ultimately, the velocity update
equation becomes

vid = kl [vid + c1 × rand() × (pid − xid)

+c2 × rand() × (
pgd − xid

)]
, 1 ≤ d ≤ D, (12)

where kl is given by (11). Unlike (10), Equation (12) has a
variable constriction factor updated every iteration in accor-
dance with (11), which is similar to the idea of variable step

size in the LMS algorithm [25]. This resulted in the PSO-
VCF algorithm [4].

2.2 Identified Problems

In the previously used PSOalgorithms,whenever a new gbest
is found all particles will start to move toward it in the same
general direction. Due to this behavior, there is a chance
that some regions, other than this new minima discovered,
will be excluded from the search space. Particles which are
closer to gbest will tend to converge to it prematurely, i.e.,
there will be no update in their positions. These particles
will become stagnant and will not contribute further in the
search procedure. Eventually, this might result in a degraded
steady-state error. In the next section, the proposed algorithm
is designed to address these issues.

3 The Proposed Hybrid PSO Algorithm

Here,wepropose a newhybridPSO (HPSO) algorithmwhich
will incorporate three techniques to address the above-stated
problems, namely:

– The re-randomization of the particles around gbest,
– An enhanced socialized effect through parameter local
best (lbest),

– An adaptive inertia weight assignment to the particles.

In order to enhance the diversity, every time a new gbest is
found, re-randomize the particles around it [23]. To enhance
the socialized effect, Eberhart and Kennedy in [26] proposed
a version of PSO which uses local information for decision
making. Theymade ring type topology, in which a number of
particles are included, and they communicate only with each
other, not with the whole swarm for velocity and position
updates. In our proposed algorithm, we will incorporate this
technique with global best evaluations to improve the steady-
state error and this parameter will be named lbest. It operates
just like gbest parameter, except it will divide the particles
into a number of subgroups. Therefore, each particle will
have tomemorize three entities: the best position achieved by
the individual particle (pbest), the best position achieved so
far among all particles (gbest), and the best position achieved
by the particle in its subgroup (lbest). These two techniques
will degrade the convergence rate profoundly, as in both of
these techniques, particles are exploring more and more the
search space. Therefore, in order to ensure that at the end of
the convergence the particles should converge to the optimum
value, both of these two techniques will be applied with a
variance curve, which is shown in Fig. 1 and it is given by
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Fig. 1 The variance curve

the following relation:

variance(l) = Ae
−l+M

S

(1 + e
−l+M

S )
, (13)

where A is the starting value of the effectiveness of the re-
randomization, M is the iteration number corresponding to
the midpoint of the slope, and S is the slope.

It can be seen from Fig. 1 that the parameter S controls
the slope of the variance curve. The lower the value of S, the
steeper the curve is, and the higher the value of S, the flatter
the curve is. Using this technique, the search space will be
divided into two parts. The first one is a broad search, in
which the variance will be large and the particles will be re-
randomized far from gbest to explore more the search space.
In the second part, which is the fine search area, smaller
values are assigned to the variance so that the particles will
be re-randomized near the new gbest, because at the end, we
want the solution to converge to the optimal value. These
two regions will be separated by a midpoint M , where M
will decide on the duration of these broad and fine regions.

To implement the above mechanism, we can adjust the
inertiaweight of eachparticle independently at each iteration,
based on its new fitness evaluation. If a particle attains a
better position, then its inertia weight should be increased or
maintained as is. However, if its present fitness is not better
than its previous one, then there should be a reduction in
its inertia weight [23]. The relation of this adaptive inertial
weight, the current inertia weight of the i th particle, is given
by

wi (l) = 1

(1 + e
−�Ji (l)

s )

, (14)

where �Ji (l) is the difference of the fitness value of the
particle from its previous one, and s is used to control the
expected fitness range.

The values of Equation (14) will be in the range (0,1), with
0.5 as the midpoint. If the previous fitness level is better,
then it will assign a value less than 0.5, meaning that the

speed of the particle should be reduced as the new position is
not better than the previous one. Otherwise, it will assign a
value greater than 0.5, whichmeans that the newly calculated
position is better than the previous one, therefore, the speed
of the particle should be increased.

The three methodologies stated earlier will be adopted
here in such a way that at the beginning of the iterations, the
particles will converge swiftly. The adaptive inertia weight
technique works well for better convergence rate, and re-
randomization of the particles around gbest, usually slows
down the convergence rate. Therefore, at the beginning, since
stagnation will not occur, re-randomization (which is used
to avoid stagnation) will not be activated. For the proposed
hybrid PSO algorithm, adaptive inertia weight assignment
will be effective right from the start of the iterations along
with the second technique of enhanced socialized effect
through lbest. After a number of iterations, re-randomization
will be activated in the simulation, and this re-randomization
will be applied through the variance curve. Therefore, there
is a very good chance that there will be a reasonable improve-
ment in the steady-state error with a good convergence rate.

The position update equation will remain the same as in
(6) while the velocity update equation is now defined by the
newly proposed recursion given by

vid = wi (l) × vid + c1 × rand() × (pid − xid)

+c2 × rand() × (
pgd − xid

)

+√
variance(l) × rand() × (

plgd − xid
)
,

1 ≤ d ≤ D. (15)

If one compares (15) with (5) and (12), observes the fol-
lowing. Unlike (5) and (12), Equation (15) has an extra term
(i.e.,

√
variance(l)× rand()× (

plgd − xid
)
) which speeds

up the convergence. This is assessed in the simulation results
section. Also, Equation (15) has a variable inertia weight rep-
resented by (14). This term is either fixed as in (5) or variable
as in (12). Therefore, with the newly above-defined recursion
for the velocity of the proposed algorithm, the HPSO will
converge faster than the existing PSO-based algorithms.

Finally, Table 1 summarizes the velocity update equations
for the different PSO algorithms. As can be seen from this
table that our proposed algorithm has four extra multiplica-
tions and one extra addition over both PSO algorithms of [4]
and [24].

4 Simulation Results

This section reports the simulation results findings for the
HPSO algorithm in an equalization setup. First, a perfor-
mance behavior of the proposed algorithm is compared to
those of the popular algorithms in an equalization setup, then
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Table 1 Velocity update equations for the different PSO algorithms

Algorithm Velocity update

PSO-VCF [4] vid = kl × vid + kl × c1 × rand() × (pid − xid ) +
kl × c2 × rand() × (

pgd − xid
)
, 1 ≤ d ≤ D

PSO-W [24] vid = w × vid + c1 × rand() × (pid − xid ) + c2 ×
rand() × (

pgd − xid
)
, 1 ≤ d ≤ D

Proposed
HPSO

vid = wi (l)×vid +c1×rand()×(pid − xid )+c2×
rand() × (

pgd − xid
) + √

variance(l) × rand() ×(
plgd − xid

)
, 1 ≤ d ≤ D

the Bit Error Rate (BER) analysis is performed to compare
the proposed HPSO algorithm with that of the LMS algo-
rithm.

4.1 Adaptive Equalization Using the HPSO
Algorithm

In this section, the performance of the proposed HPSO
algorithm will be tested on an adaptive channel equaliza-
tion scenario. The proposed algorithm will be compared
with the main PSO-based algorithms and the LMS algo-
rithm. The digital message applied to the channel is a binary
sequence of uniformly distributed random numbers taking
on the values (−1, 1). The algorithms will be applied on
two systems: a linear and a nonlinear one. For the lin-
ear system, two linear time-invariant (LTI) channels will
be used and described by the following transfer functions:
H1(z) = 0.2602 + 0.9298z−1 + 0.2602z−2 and H2(z) =
0.408 + 0.816z−1 + 0.408z−2. It should be noted here that
the second channel has a large eigenvalue spread causing
more damage to the signal. With the nonlinear system, the
channel described by H1(z) will be used for the nonlinear as
shown in Fig. 2.

For a fair comparison, the following parameters are used
for all the algorithms: the number of taps is 9, the signal-

Fig. 2 A nonlinear system where b1 = 1, b2 = 0.1, and b3 = 0.05

to-noise ratio (SNR) is set to 20dB, the window size, N ,
is 200, the maximum number of iterations, L , is 500, and
all the results produced are obtained by averaging 25 trials
in Monte Carlo simulations. For the PSO-based algorithms
xmin = −2 and xmax = 2. The step size used for the LMS
algorithm is 0.025. Finally, the rest of the parameters are
reported in Table 2.

Figures 3 and 4 depict the simulation comparison of all the
algorithms for the LTI channels given by H1(z) and H2(z),
respectively. It can be concluded from these two figures that
the HPSO exhibits better performance when compared to
the rest of the algorithms for both channels. Its consistency
in performance is observed on both channels. This is due
mainly to the hybridisation action. The three features added
to the HSPO algorithm removed all the hurdles facing the
other PSO-based algorithms.A3dB improvement is obtained
for both channels. Also, as depicted in Fig. 4, the effect of
channel 2 on the performance is more pronounced.

To further investigate the consistency test in performance
of the HPSO algorithm, a nonlinear system is used for this
purpose. Figure 2 depicts this systemwhere channel 1 is used
for this testing. The main reason for using PSO algorithms in
nonlinear systems is that they are more effective in such sys-
tems compared to other conventional algorithms. Therefore,
in order to strengthen this statement, a simulation compari-
son is carried out and its results are reported in Fig. 5 where
all PSO-based algorithms have better performance compared
to that of the LMS algorithm, which shows that PSO-based

Table 2 The values of the parameters used in simulation for all algo-
rithms

Parameters PSO-W PSO-CCF PSO-VCF HPSO

xmin −2 −2 −2 −2

xmax 2 2 2 2

Window size N 200 200 200 200

Iteration Number 500 500 500 500

Averaged runs 25 25 25 25

SNR 20 dB 20 dB 20 dB 20 dB

Number of taps 9 9 9 9

vmax 0.07xmax 0.2xmax 0.2xmax 0.09xmax

wmin 0.6 Non Non 0.6

wmax 1 Non Non 1

c1 = c2 1.5 4 4 2.5

Particles Number 40 40 Non 30

k Non 5 Non Non

kmin Non Non 4 Non

kmax Non Non 6 Non

S Non Non Non 45

M Non Non Non 200

A Non Non Non 1
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Fig. 3 Convergence behavior of PSO-W, PSO-CCF, PSO-VCF, LMS
and HPSO algorithms using H1(z)
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Fig. 5 Convergence behavior of PSO-W, PSO-CCF, PSO-VCF, LMS
and HPSO algorithms using the nonlinear system of Figure 2

algorithms have better functionality in nonlinear systems.
More importantly, the HPSO algorithm secured an improve-
ment of almost 6dB in steady-state error compared to PSO-W
and PSO-VCF. Ultimately, the HPSO secured the minimum
steady-state error among all algorithms.

4.2 Bit Error Rate (BER) Analysis

In this section, the performance of the proposed HPSO algo-
rithm is compared with those of the LMS algorithm and the
PSO-VCF using the Bit Error Rate (BER) as a metric. The
LMS algorithm is the most commonly used algorithm and
for this reason is chosen here for this comparison, while the

PSO-VCF is chosen as it resulted, except for the HPSO, in
the best performance among the rest of the PSO-based algo-
rithms. The BER is obtained for the three algorithms for both
the linear system and the nonlinear system described before
for the LTI channel given by H1(z). Figures 6 and 7 show
the simulation results of the BER of the three algorithms for
the linear system and the nonlinear system, respectively. As
expected, the LMS-based equalizer shows a very poor per-
formance, whereas the HPSO equalizer resulted in the best
performance.

Figure 6 shows that a BER of 10−4 is achieved for an SNR
of about 17 dB and 13.5 dB for LMS andHPSO, respectively.
Therefore,HPSOoutperformsLMSbyabout 3.5 dBat aBER
of 10−4. Figure 7 shows that a BER of 10−4 is achieved for
an SNR of about 19 dB and 14 dB for LMS and HPSO,
respectively. Therefore, HPSO outperforms LMS by about
5 dB at a BER of 10−4. This shows the impact of particle
swarm strength over the traditional LMS algorithm.

In conclusion, our proposed HPSO algorithm outper-
formed both the LMS algorithm and the other PSO-based
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Fig. 6 BER performance of LMS, PSO-VCF and HPSO algorithms for
the linear system
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Fig. 7 BER performance of LMS, PSO-VCF and HPSO algorithms for
the nonlinear system
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algorithms. More importantly, the PSO-based algorithms are
in general insensitive to the eigenvalue spread of the channel
autocorrelation matrix of the input signal and behave better
than the LMS algorithm in nonlinear environments.

5 Conclusion

A new particle swarm optimization algorithm, which is a
hybrid PSO (HPSO), is proposed. It incorporates three tech-
niques in order to avoid premature convergence and hence
improves the steady-state error. These techniques are: a re-
randomization of the particles around gbest, an enhanced
socialized effect through parameter local best (lbest), and an
adaptive inertia weight assignment to the particles. The con-
vergence behavior of the HPSO was compared to the most
popular PSO-based algorithms such as PSO-W, PSO-CCF,
and PSO-VCF plus the LMS algorithm in linear and nonlin-
ear channels. All simulation results show that the proposed
HPSO has a better steady-state error when compared to these
algorithms.When compared to LMS, the HPSO has a gain of
about 4dB and 7dB in linear and nonlinear systems, respec-
tively, and its BER performance is found to be better than
that of the LMS algorithm as well.
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