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Abstract
This paper considers the problem on containment control of general linear multi-agent systems (MASs) with communication
time-varying delay. Based on directed interaction topology, some sufficient conditions on the existence of feedback controller
gains are provided to ensure the desired control. Through choosing an augmented Lyapunov–Krasovskii (K–L) functional and
using some novel integral inequalities to estimate the derivative of Lyapunov functional, the previously ignored information
can be reconsidered and the application area of the derived results can be greatly extended. Moreover, a novel constructive
method is proposed to compute out the controller gains based on LMI technique. Finally, a numerical example with some
simulations is provided to illustrate the effectiveness of the obtained results.

Keywords Containment control · General linear multi-agent systems · Time-varying delay · LMI technique

1 Introduction

In recent years, the research on containment control of multi-
agent systems has received increasing attention owing to its
widely practical applications in many fields, such as animal
group behaviors, obstacle avoidance of robots and formation
of underwater unmaned vehicles. Prior to the discussions, the
agents are always classified into leaders and followers. Then
the purpose of this control is to ensure the states/ outputs
of the followers converge to the convex hull formed by the
states/outputs of the leaders, and a great deal of results have
been reported [1–33].

Initial studies on containment control for MASs could be
found in [1], and aiming at this issue, the MASs with nonlin-
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ear dynamicswere studied [2–5]. Theworks [6–8] focused on
the event-triggered containment control. In [9], the algebraic
graph theory was used to establish some sufficient condi-
tions to make the UAVs complete a pre-specified formation
containment and in [10], the finite-time attitude containment
control was also studied for multiple rigid bodies. Owing
to more generality, containment control was also applied
to discuss the tracking problem and the controller law was
designed for multi-vehicles on Lie Group [11]. In [12], static
and adaptive protocols were proposed to keep the distances
among the followers with the safe ones. Under a directed
random graph, the problem on leader–follower consensus
for multi-agent systems was studied [13]. Through trans-
forming containment problem into a asymptotic stability one,
some sufficient conditions were provided for second-order
MASs in [14].Under directed interaction topologies, the con-
tainment control via dynamic output feedback was analyzed
andMarkov jumping parameters were involved [15]. In [16],
the uncertain topologies were applied to study containment
control and the derived results were based on LMIs. Particu-
larly, [17] studied constant time delays in fixed-networks. In
[18], the containment control of leader-followingMASswith
jointly connected topologies and time-varying delays were
fully studied and sampled-data-based protocol was put for-
ward [19].Moreover, In [20,21], distributed control protocols
were proposed by using the relative states among neigh-
boring agents via LMI technique. In [22,23], the state and
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output feedback protocols were separately designed to solve
theMASswith input saturation. Furthermore, in [24–26], the
H∞ containment control forMASswith external disturbance
was also discussed. Wang et al. [27] developed a follower-
based observer to estimate the relative states of neighbors. In
[28,29,31], the containment control of general linear MASs
was studied. Particularly, variable topologies were involved
in [28] and communication variable delays were studied in
[29,31].

In this paper, we consider an improved approach to
deal with the problem on containment control on general
high-order multi-agent systems and a control protocol with
time-varying delay is proposed. By choosing some aug-
mented K–L functionals and using some Wirtinger-based
inequalities, some less conservative results can be achieved.
The derived results are presented in terms of LMIs. Par-
ticularly, a constructive method can help to design and
compute out the controller gain by solving the derived
LMIs.

The contributions of this work can be illustrated in three
points. Firstly, since the results in [25] were presented in
the forms of complicated inequalities, they could not be
conveniently checked by resorting to the most developed
algorithms and applied to real systems. Thus in this work,
the derived results are presented in terms of LMIs and
the controller gains can be easily achieved. Secondly, in
[12,14,24,32,33], the dynamics of each agent were always
expressed as first-order or second-order one, which makes
the results not applicable to more general cases. Since the
lower-order agent can be regarded as a special case of gen-
eral higher-order ones, the problem considered in this work
can be more meaningful. Particularly, in [23], the higher-
order MASs were studied but communication delay was not
involved. Thirdly, in this work, two augmented L–K func-
tionals are constructed and some novel techniques are used
to extend the application area. Even though in [14,29], the
containment control onMASs have studied the effect of com-
munication delay. As for the issue of delay dependence, the
methods still need to be improved. On the one hand, most
recently, many effective techniques have been put forward
to tackle time delay [34–39]. Yet they have not been utilized
to consider the containment control of MASs, especially as
time delay is variable. On the other hand, as we know, since
it is always assumed that the communication delay is vari-
able and bounded, both the upper bound and lower one of
its variation rate should be measured. However, most works
only took its upper bound into consideration but ignored the
lower one [34–40]. Thus it will be more meaningful to con-
sider the information on the communication delay as much
as possible.

The paper is organized as follows. In Sect. 2, some valu-
able concepts on graph theory are introduced and themodel is
described briefly. In Sect. 3, the containment control ofMASs
with communication time-varying delay is investigated and
some LMI-based results are given to compute out the con-
troller gains. Numerical simulations are given to prove the
efficiency of our work in Sect. 4 and conclusions are given
in Sect. 5.

Notations. The set Rn denotes the n-dimensional
Euclidean space, and Rn×m is the set of all n × m real
matrices. Define ΛM as ΛM = diag{M,M}, sym{X} means
sym{X} = X + XT. For the symmetric matrices X ,Y , X >

Y (respectively, X ≥ Y ) means that X − Y > 0 (X − Y ≥
0) is a positive-definite (respectively, positive-semidefinite)
matrix; Im represents an identity matrix of them×m dimen-
sions, 0m·n represents the Zero matrix of m × n dimensions;
A ⊗ B means the Kronecker product of the matrices A and
B; and ∗ denotes the symmetric term in a symmetric matrix,

i.e.,

[
X Y
Y T Z

]
=

[
X Y
∗ Z

]
.

2 Model Descriptions and Preliminaries

In this work, a directed digraph G = {V , ε, A} is used to
represent the interaction topology of MASs, where V =
{1, 2, · · · , N } is a vertex set, ε ⊂ V × V is a link set
and A = [ai j ] ∈ Rn×n is a nonnegative weighted adja-
cency matrix. A directed link from vertex j to vertex i is
indicated by ei j = { j, i}. If and only if ei j ∈ ε, the ele-
ments of matrix A satisfies that ai j > 0. If not, ai j = 0.
Ni = { j ∈ V | ( j, i) ∈ ε} can be used to denote neighbors’
set of the node i . It is supposed that there are no self-loops
aii = 0 for all i ∈ V . In addition, let deg(i) = ∑n

j=1 ai j and
D = diag{deg(1), · · · , deg(n)}, the Laplacian matrix of G
is defined as L = D − A.

Definition 1 In MASs, an agent is called a leader if it has no
neighbor and an agent is called a follower if it has at least
one neighbor.

Consider a general high-order LTI multi-agent system,
including M followers and N − M leaders. The interaction
strength is represented byai j . The dynamic of themulti-agent
system is described by

ẋi (t) = Axi (t) + Bui (t), (1)

where xi (t) ∈ Rn is state vector, A = [pi j ]n×n, B =
[qi j ]n×n, and ui (t) = [

ui1(t), . . . , uin(t)
]T.

Based on the mentioned above, there are M followers and
N−M leaders in system (1). The subscript set of the follower
and leaders are, respectively, described as F = {1, 2 . . . M}
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and E = {M + 1, M + 2 . . . N }. Then the matrix L can be
partitioned as

L =
[
L1 L2

0 0

]
, (2)

where L1 ∈ RM×M , L2 ∈ RM×(N−M) are nonsingular ones.
Here L1 represents the interactions among the followers and
L2 denotes the interactions from the leaders to followers.

Definition 2 Multi-agent system (1) is said to achieve state
containment if for any given bounded initial states and i ∈
F , there exist nonnegative constants ωi j ( j ∈ E) satisfying∑N

j=M+1 ωi j = 1 such that

lim
t→∞

⎛
⎝xi (t) −

N∑
j=M+1

ωi j x j (t)

⎞
⎠ = 0.

Here are some lemmas that will be used to derive main
results.

Lemma 1 ([10]) All the eigen values of L1 have positive real
parts and each entry of −L−1

1 L2 is nonnegative, and each
row of −L−1

1 L2 has a sum equal to one if there is at least
one leader has a directed path to each follower.

Lemma 2 ([37]) For an any constant matrix M > 0, the
following inequality holds for all continuously differentiable
function ϕ(·) in [a, b] −→ Rn:

−(b − a)

∫ b

a
ϕT(s)Mϕ(s)ds

≤ −
( ∫ b

a
ϕ(s)ds

)T

M

(∫ b

a
ϕ(s)ds

)
− 3ΘTMΘ,

where Θ = ∫ b
a ϕ(s)ds − 2

b−a

∫ b
a

∫ s
a ϕ(u)duds.

Lemma 3 ([41]) For one given scalar α ∈ (0, 1), four
constant matrices Ri > 0 (i = 1, 2),W1,W2, and the appro-
priately dimensional vector ξ , then the functionΘ(α, R) can
be defined as

Θ(α, R) = 1

α
ξTWT

1 R1W1Wξ + 1

1 − α
ξTWT

2 R2W2Wξ.

Thus if there exists one appropriate dimensional matrix X

such that

[
R1 X
XT R2

]
≥ 0, the following inequality holds,

Θ(α, R) ≥
[
W1ξ

W2ξ

]T [
R1 X
XT R2

] [
W1ξ

W2ξ

]
.

Lemma 4 ([35]) For an any constant matrix M > 0, the
following inequality is true for all continuously differentiable
function ϕ(·) in [a, b] → Rn:

− (b − a)2

2

∫ b

a

∫ s

a
ϕT(u)Mϕ(u)duds

≤ −
( ∫ b

a

∫ s

a
ϕ(u)duds

)T

M

(∫ b

a

∫ s

a
ϕ(u)duds

)

−2ΘTMΘ,

where

Θ =
∫ b

a

∫ s

a
ϕ(u)duds − 3

b − a

∫ b

a

∫ s

a

∫ u

a
ϕ(v)dvduds.

Lemma 5 ([41]) As for the constant matrix A of appropriate
dimension, the following statements are equivalent:

(a) There exists two symmetric and positive-definitivematri-

ces P, Q satisfying

[−P AT

A −Q−1

]
< 0;

(b) There exists two symmetric and positive-definitivematri-
ces P, Q, and constant matrix Y such that

[−P (Y A)T

Y A sym(−Y ) + Q

]
< 0.

Lemma 6 ([30]) Assuming that P is a nonsingular matrix
and P−1L1P = J , where J is the Jordan canonical form of
L1. Denoting the eigen values of L1 as λi (i = 1, 2, . . . , M).
Describing that the maximum and minimum of the real part
of J as Re(λmax) and Re(λmin), respectively. Furthermore,
we assume that the maximum of the imaginary part of J as
Im(λmax). Then let λ̄1,2 = Re(λmin)±Im(λmax)i and λ̄3,4 =
Re(λmax) ± Im(λmax)i . Let Θ0,Θ1,Θ2 be real symmetric
matrices independent of λi (i ∈ F) and λ̄i (i = 1, 2, 3, 4).
Then by [30], we can conclude that if for all i ∈ {1, 2, 3, 4},
Θ0 + Re(λ̄i )Θ1 + Im(λ̄i )Θ2 < 0, then for i ∈ F, Θ0 +
Re(λi )Θ1 + Im(λi )Θ2 < 0 holds.

Lemma 7 ([40]) Suppose that Ω,Ξi j , Ξmn (i,m = 1, 2, 3,
4; j, n = 1, 2) are the constant matrices of appropriate
dimensions, α ∈ [0, 1], β ∈ [0, 1], γ ∈ [0, 1], and δ ∈ [0, 1],
then

� + [
αΞ11 + (1 − α)Ξ12

] + [
βΞ21 + (1 − β)Ξ22

]
+ [

γΞ31 + (1 − γ )Ξ32
] + [

δΞ41 + (1 − δ)Ξ42
]

< 0

holds, if and only if the following inequalities hold simulta-
neously,

� + Ξi j + Ξmn < 0 (i,m = 1, 2, 3, 4; j, n = 1, 2).
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The containment control protocol for the system (1) is
proposed, which can be described as

ui (t) = K1xi (t) + K2

∑
j∈Ni

ai j
[
xi (t − τ(t)

−x j (t − τ(t))
]
, i ∈ F;

ui (t) = K1xi (t), i ∈ E . (3)

Assumption 1 The term τ(t) denotes the communication
delay satisfying

0 ≤ τ(t) ≤ τm, μ0 ≤ τ̇ (t) ≤ μm < +∞,

where τm, μ0, μm are known constants.

Assumption 2 For each follower, at least one leader has a
directed path to it.

Let xF (t) = [xT1 (t), xT2 (t), . . . , xTM (t)]T, xE (t) =
[xTM+1(t), x

T
M+2(t), . . . , x

T
N (t)]T. Under the control proto-

col in (3), we will get that the dynamics of the leaders and
followers can be separately described as

ẋF (t) = (L1 ⊗ BK2)xF (t − τ(t)) + (L2 ⊗ BK2)

× xE (t − τ(t)) + (IM ⊗ (A + BK1))xF (t),

ẋE (t) = (IN−M ⊗ (A + BK1))xE (t). (4)

3 Containment Analysis and Controller
Design

In what follows, in order for the simplification, some deno-
tation will be presented as

τ̄ (t) = τm − τ(t), μ̄m = μm − μ0; (5)

σi (t) = 1

τ̄ (t)

∫ t−τ(t)

t−τm

zi (s)ds; (6)

ρi (t) = 1

τ(t)

∫ t

t−τ(t)
zi (s)ds; (7)

υi (t) = 2

τ 2(t)

∫ t

t−τ(t)

∫ s

t−τ(t)
zi (u)duds; (8)

ωi (t) = 2

τ̄ 2(t)

∫ t−τ(t)

t−τm

∫ s

t−τm

zi (u)duds; (9)

ψi (t) = 2

τ̄ 2(t)

∫ t−τ(t)

t−τm

∫ t−τ(t)

s
zi (u)duds; (10)

μi (t) = 2

τ 2(t)

∫ t

t−τ(t)

∫ t

s
zi (u)duds; (11)

ηTi (t) =
[
zTi (t) zTi (t − τ(t)) zTi (t − τm) σT

i (t)

ρT
i (t) υT

i (t) ωT
i (t) ψT

i (t) δTi (t) żi
T(t)

]
; (12)

M1 = − eT5 (4R2)e5 + sym
(
eT5 (3R2)e6

)
− eT6 (3R2)e6

− eT2

(
R3

τm

)
e2 + sym

(
eT2

R3

τm
e3

)

− eT3

(
R3

τm

)
e3;

M2 = − eT4 (4R2)e4 + sym
(
eT4 (3R2)e7

)
− e7(3R2)e7

(13)

− eT1

( R4

τm

)
e1 − eT2

( R4

τm

)
e2

+ sym
(
eT1

R4

τm
e2

)
; (14)

R̄ =
[

R1
τm

0

0 3R1
τm

]
, M = −

[
E1

E2

]T [
R̄ X
X R̄

] [
E1

E2

]
, (15)

where ei are described as

eTi = [
0n×(i−1)n In 0n×(10−i)n

]T
(1 ≤ i ≤ 10), (16)

and

E1 =
[

e1 − e2
e1 + e2 − 2e5

]
, E2 =

[
e2 − e3

e2 + e3 − 2e4

]
. (17)

Denoting the eigen values of L1 as λi (i = 1, 2, . . . , M).
λ̄i (i = 1, 2, 3, 4) are defined as λ̄1,2 = Re(λmin) ±
Im(λmax)i and λ̄3,4 = Re(λmax)± Im(λmax)i , and for any λ,
the expression Ψλ is represented as

Ψλ =
[
Re(λ)I −Im(λ)I
Im(λ)I Re(λ)I

]
.

In what is next, we will give some sufficient conditions on
containment control for the system (1).

Theorem 1 For given scalars τm ≥ 0,μm, μ̄m, andΨλ̄i
(i =

1, 2, 3, 4) in Lemma 6, the multi-agent system (1) under the
time delay protocol (3) can achieve the desired containment
control, if there exist constant matrices P > 0, Qi > 0 (i =
1, 2), Ri > 0 (i = 1, 2, 3, 4), and X , N1, N2 with appro-

priate dimensions such that

[
R̄ X
∗ R̄

]
≥ 0 and the matrix

inequalities in (18) hold

� + M + τmMj + μ̄me
T
2 Qhe2

+ sym
(
eT10N

T
1 Ψλ̄i

ΛBΛK2e2
)

+ sym
(
eT2 N

T
2 Ψλ̄i

ΛBΛK2e2
)

< 0, (18)

where j, h ∈ {1, 2} and M, M1, M2, R̄ are expressed in
(15), (13), (14), (15) respectively. Particularly, ei (i =
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1, 2, . . . , 10) is defined in (16)andpart elements of thematrix
� = [�i j ]10n×10n can be listed as

�11 = −3

2
R4 + τm R2 + Q1 − 1

2
R3,

�12 = ΛT
A+BK1

N2, �15 = �24 = −R3,

�16 = �27 = 3

2
R3, �19 = �28 = 3

2
R4,

�1,10 = P + ΛT
A+BK1

N1, �2,10 = −NT
2 ,

�22 = −3

2
(R3 + R4) + (1 − μm)Q2 + (μ0 − 1)Q1,

�25 = �34 = R3, �33 = −Q2 − R3,

�44 = �55 = −3R4 − 3R3,

�47 = �56 = 3R3, �48 = �59 = 3R4,

�66 = �77 = −9

2
R3, �88 = �99 = −9

2
R4,

�10,10 = −NT
1 − N1 + τm R1 + τ 2m

4
(R4 + R3).

Proof Firstly, assume that

φi (t) =
∑
j∈Ni

ωi j (xi (t) − x j (t)) (i ∈ F). (19)

Then (19) can be written in a vector form as

φF (t) = (L1 ⊗ I ) xF (t) + (L2 ⊗ I )xE (t), (20)

where φF (t) = [φT
1 , φT

2 , . . . , φT
M ]T, and L1, L2 are defined

in (2). Now by some alternation, we can obtain that

xF (t) = (L−1
1 ⊗ I )φF (t) − (L−1

1 L2 ⊗ I )xE (t). (21)

It follows from Lemma 1 that if φ converges to zero, then the
multi-agent system (1) can achieve the desired containment
control.

Now taking the derivative of φF (t), we have

φ̇F (t) = (L1 ⊗ I )ẋF (t) + (L2 ⊗ I )ẋE (t). (22)

Substituting (4) and (21) into (22), one gets

φ̇F (t) = I ⊗ (A + BK1)φF (t)

+ (L1 ⊗ BK2)φ(t − τ(t)). (23)

Describing the eigen values of L1 as λi (i = 1, 2, . . . , M)

and J as the Jordan canonical form of L1. The matrix P
satisfies P−1L1P = J . Then by using the diagonal trans-
formation, we let ιF (t) = (P−1 ⊗ I )φF (t). The multi-agent
system (23) can be further alternated into

ι̇F (t) = I ⊗ (A + BK1)ιF (t) + (J ⊗ BK2)ι(t − τ(t)).

(24)

Then from the term (24),we can transfer it intoM subsystems
and obtain

Φ̇i (t) = (A + BK1)Φi (t) + λi BK2Φi (t − τ(t)). (25)

Consider the asymptotic stability of (25) and let zi (t) =
[Re(fli(t))T, Im(fli(t))T]T. For i = 1, 2, . . . , M , through the
decomposition of real and imaginary parts, the system (25)
can be transferred as

żi (t) = ΛA+BK1 zi (t) + Ψλi ΛBΛK2 zi (t − τ(t)). (26)

Now based on the term (26), we can construct the Lyapunov–
Krasovskii functional candidate

V (zi (t)) = V1(zi (t)) + V2(zi (t)), (27)

where

V1(zi (t)) = zTi (t)Pzi (t) +
∫ t

t−τ(t)
zTi (θ)Q1zi (θ)dθ

+
∫ t−τ(t)

t−τm

zTi (θ)Q2zi (θ)dθ,

V2(zi (t)) =
∫ 0

−τm

∫ t

t+s
żi
T(θ)R1 żi (θ)dθds

+
∫ 0

−τm

∫ t

t+s
zTi (θ)R2zi (θ)dθds

+ 1

2

∫ t

t−τm

∫ �

t−τm

∫ t

θ

żi
T(s)R3 żi (s)dsdθd�

+ 1

2

∫ t

t−τm

∫ t

�

∫ t

θ

żi
T(s)R4 żi (s)dsdθd�

with the matrices P > 0, Qi > 0 (i = 1, 2), Ri > 0 (i =
1, 2, 3, 4) waiting to be determined.

Now the derivative of Vj (zi (t)) ( j = 1, 2) along the sys-
tem (26) can be directly computed out as

V̇1(zi (t)) = żi
T(t)Pzi (t) + zTi (t)Pżi (t) + zTi (t)Q1zi (t)

+ (τ̇ (t) − μ0)
(
zTi (t − τ(t)

)
Q1zi (t − τ(t))

+ (μ0 − 1)
(
zTi (t − τ(t)

)
Q1zi (t − τ(t)))

+ (1 − μm)zTi (t − τ(t))Q2zi (t − τ(t))

+ (μm − τ̇ (t))zTi (t − τ(t)) Q2zi (t − τ(t))

− zTi (t − τm)Q2zi (t − τm), (28)

V̇2(zi (t)) = żi
T(t)

(
τm R1 + τ 2m

4
R3 + τ 2m

4
R4

)
żi (t)

+ zTi (t)(τm R2)zi (t)

−
∫ t

t−τm

[
żi
T(θ)R1 żi (θ) + zi

T(θ)R2zi (θ)
]
dθ
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− 1

2

∫ t

t−τm

∫ θ

t−τm

żi
T(θ)R3 żi (s)dsdθ

− 1

2

∫ t

t−τm

∫ t

θ

żi
T(θ)R4 żi (s)dsdθ. (29)

Then, as for the integral terms in (29), it follows from Lem-
mas 2–3 and denotations (6)–(7) that

−
∫ t

t−τm

żi
T(θ)R1 żi (θ)dθ

≤ − 1

τ(t)

[
zi (t) − zi (t − τ(t))

]T R1
[
zi (t) − zi (t − τ(t))

]

− 1

τ(t)

[
zi (t) + zi (t − τ(t)) − 2ρi (t)

]T
(3R1)

× [
zi (t) + zi (t − τ(t)) − 2ρi (t)

]
− 1

τ̄ (t)

[
zi (t − τ(t)) − zi (t − τm)

]T R1

× [
zi (t − τ(t)) − zi (t − τm)

]
− 1

τ̄ (t)

[
zi (t − τ(t)) + zi (t − τm) − 2σi (t)

]T
(3R1)

× [
zi (t − τ(t)) + zi (t − τm) − 2σi (t)

]
= − τm

τ(t)
ηTi (t)

(
ET
1 R̄E1

)
ηi (t) − τm

τ̄ (t)
ηTi (t)

(
ET
2 R̄E2

)
ηi (t)

≤ −ηTi (t)

[
E1
E2

]T [
R̄ X
X R̄

] [
E1
E2

]
ηi (t), (30)

where R̄ is defined in (15), and E1, E2 are expressed in (17).
Now by utilizing Lemma 2 and denotations in (6)–(11), we
can check that − ∫ t

t−τm
ziT(θ)R2zi (θ)dθ in (29) satisfies

−
∫ t

t−τm

zi
T(θ)R2zi (θ)dθ

= −
[ ∫ t

t−τ(t)
+

∫ t−τ(t)

t−τm

]
zi
T(θ)R2zi (θ)dθ

≤ −τ(t)ρT
i (t)R2ρi (t)

−3τ(t) [ρi (t) − υi (t)]
T R2 [ρi (t) − υi (t)]

−τ̄ (t)σT
i (t)R2σi (t)

−3τ̄ (t) [σi (t) − ωi (t)]
T R2 [σi (t) − ωi (t)] . (31)

Furthermore, as for the double integral terms

− 1
2

∫ t
t−τm

∫ θ

t−τm
żiT(s)R3 żiT(s)dsdθ and

− 1
2

∫ t
t−τm

∫ t
θ
żiT(s)R4 żi (s)dsdθ in (29), it follows from

Lemma 4 that

−1

2

∫ t

t−τm

∫ θ

t−τm

żi
T(s)R3 żi

T(s)dsdθ

= − 1

2

[ ∫ t

t−τ(t)

∫ θ

t−τ(t)
+

∫ t−τ(t)

t−τm

∫ θ

t−τm

− 1

2

∫ t

t−τ(t)

∫ t−τ(t)

t−τm

]
żi
T(s)R3 żi (s)dsdθ

≤ − [ρi (t) − zi (t − τ(t))]T R3 [ρi (t) − zi (t − τ(t))]

−
[1
2
zi (t) + ρi (t) − 3

2
υi (t)

]T
(2R3)

×
[1
2
zi (t) + ρi (t) − 3

2
υi (t)

]

− [σi (t) − zi (t − τm)]T R3 [σi (t) − zi (t − τm)]

−
[1
2
zi (t − τ(t)) + σi (t) − 3

2
ωi (t)

]T
(2R3)

×
[1
2
zi (t − τ(t)) + σi (t) − 3

2
ωi (t)

]

− τ(t)

τm
[zi (t − τ(t)) − zi (t − τm)]T R3

× [zi (t − τ(t)) − zi (t − τm)] , (32)

− 1

2

∫ t

t−τm

∫ t

θ

żi
T(s)R4 żi (s)dsdθ

= −1

2

[ ∫ t

t−τ(t)

∫ t

θ

+
∫ t−τ(t)

t−τm

∫ t−τ(t)

θ

− 1

2

∫ t−τ(t)

t−τm

∫ t

t−τ(t)

]
żi
T(s)R4 żi (s)dsdθ

≤ − [zi (t) − ρi (t)]
T R4 [zi (t) − ρi (t)]

−
[1
2
zi (t) + ρi (t) − 3

2
δi (t)

]T
(2R4)

×
[1
2
zi (t) + ρi (t) − 3

2
δi (t)

]

− [zi (t − τ(t)) − σi (t)]
T R4 [zi (t − τ(t)) − σi (t)]

−
[1
2
zi (t − τ(t)) + σi (t) − 3

2
ψi (t)

]T
(2R4)

×
[1
2
zi (t − τ(t)) + σi (t) − 3

2
ψi (t)

]

− τ̄ (t)

τm
[zi (t) − zi (t − τ(t))]T R4

× [zi (t) − zi (t − τ(t))] . (33)

For any n × n matrices Ni (i = 1, 2), it follows from the
closed-loop system (26) that

0 = 2
[
żi
T(t)NT

1 + zTi (t − τ(t))NT
2

][
− żi (t)

+ ΛA+BK1 zi (t) + Ψλi ΛBΛK2 zi (t − τ(t))
]
. (34)

Now by combining the right terms from (28) to (34), then
V̇ (zi (t)) can be estimated to satisfy

V̇ (zi (t)) ≤ ηTi (t)
[
� + M + τ(t)M1 + τ̄ (t)M2 +(

τ̇ (t) − μ0)e
T
2 Q1e2 + (μm − τ̇ (t)

)
eT2 Q2e2

+ sym
(
eT10N

T
1 Ψλi ΛBΛK2e2

)
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+ sym
(
eT2 N

T
2 Ψλi ΛBΛK2e2

)]
ηi (t)

=̇ ηTi (t)�(t)ηi (t), (35)

where the terms �, M, M1, M2 are denoted in (18), (15),
(13), (14), respectively.

Then together with Lemma 7, if four following cases can
be true simultaneously, i.e.,
Case 1: τ̇ (t) = μ0, τ (t) = 0, τ̄ (t) = τm , it has

� + M + τmM2 + (μm − μ0) e
T
2 Q2e2

+ sym
(
eT10N

T
1 Ψλi ΛBΛK2e2

)

+ sym
(
eT2 N

T
2 Ψλi ΛBΛK2e2

)
< 0; (36)

Case 2: τ̇ (t) = μm, τ (t) = 0, τ̄ (t) = τm , it has

� + M + τmM2 + (μm − μ0)e
T
2 Q1e2

+ sym
(
eT10N

T
1 Ψλi ΛBΛK2e2

)

+ sym
(
eT2 N

T
2 Ψλi ΛBΛK2e2

)
< 0; (37)

Case 3: τ̇ (t) = μ0, τ (t) = τm, τ̄ (t) = 0, it has

� + M + τmM1 + (μm − μ0)e
T
2 Q2e2

+ sym
(
eT10N

T
1 Ψλi ΛBΛK2e2

)

+ sym
(
eT2 N

T
2 Ψλi ΛBΛK2e2

)
< 0; (38)

Case 4: τ̇ (t) = μm, τ (t) = τm, τ̄ (t) = 0, it has

� + M + τmM1 + (μm − μ0)e
T
2 Q1e2

+ sym
(
eT10N

T
1 Ψλi ΛBΛK2e2

)

+ sym
(
eT2 N

T
2 Ψλi ΛBΛK2e2

)
< 0, (39)

the terms in (36)–(39) can guarantee the term in (18) to be
true, which indicates that there must exist a scalar ς > 0
such that (35) satisfies

V̇ (zi (t)) ≤ −ς ‖ ηi (t) ‖≤ −ς ‖ zi (t) ‖2< 0. (40)

Then on the basis of Lemma 6, the multi-agent system (1)
can achieve the containment by resorting to the time delay
protocol (3) with Ψλi = Ψλ̄i

(i = 1, 2, 3, 4). Therefore the
proof is completed. ��
Remark 1 During proving Theorem 1, the Lyapunov–
Krasovskii functional terms in V (zi (t)) have effectively uti-
lized the information on the communication delay and several
multiple integral Lyapunov functional terms have been con-
structed. Particularly, some novel Wirtinger-based integral

inequalities have been utilized to consider those previously
ignored information and the application area can be greatly
extended.

Remark 2 Our work focuses on the general linear multi-
agent systems and the communication delay is time-varying,
while most existent results concentrate on first-order MASs
or second-order ones, such as [14,16,32,33]. Particularly,
Theorem 1 considers both the lower bound and upper one
on variation rate of time delay, which has not been studied
presently.

It is worth noting that, the derived inequalities in The-
orem 1 are nonlinear and the gain K2 cannot be tested by
resorting to the most recently developed algorithms. In what
follows, we will use Lemma 5 to obtain the controller gain
via LMI approach.

Theorem 2 For any given scalars τm ≥ 0, μm, μ̄m, ε > 0,
and Ψλ̄i

(i = 1, 2, 3, 4), the system (1) under the time-
delayed protocol (3) can reach the containment control with
the gain matrix K2 = Z−1L, if there exist constant matrices
P > 0, Qi > 0 (i = 1, 2), J > 0, Ri > 0 (i = 1, 2, 3, 4),
Hi (i = 1, 2, 3, 4) X, N1, Z , L with appropriate dimensions

such that

[
R̄ X
∗ R̄

]
≥ 0 and the LMIs in (41) hold

⎡
⎢⎢⎣
H̄ j Γ T

1 ZT
(
Ψλ̄i

ΛB

)T
Ψλ̄i

ΛB 0

∗ sym
(

−
(
Ψλ̄i

ΛB

)T
Ψλ̄i

ΛB Z
)

Π1

∗ ∗ −J

⎤
⎥⎥⎦ < 0 (41)

where H̄ j = H j + sym
(
ΠT

0 Γ0

)
+ J ( j = 1, 2, 3, 4) with

H1 = � + M + τmM2 + μ̄me
T
2 Q2e2,

H2 = � + M + τmM2 + μ̄me
T
2 Q1e2,

H3 = � + M + τmM1 + μ̄me
T
2 Q2e2,

H4 = � + M + τmM1 + μ̄me
T
2 Q1e2,

ΠT
1 =

⎡
⎢⎢⎢⎢⎣

0

ε
(
NT
1 Ψλ̄i

ΛB − Ψλ̄i
ΛB Z

)
0(

NT
1 Ψλ̄i

ΛB − Ψλ̄i
ΛB Z

)

⎤
⎥⎥⎥⎥⎦ ,

Γ1 = [
0 Z−1L 0

]
,

ΠT
0 =

⎡
⎢⎢⎣

0
εΨλ̄i

ΛB

0
Λ̄B

⎤
⎥⎥⎦ , Γ0 = [

0 L 0
]
.

Proof Firstly, we denote

H(t) = � + M + τ(t)M1 + τ̄ (t)M2 + (τ̇ (t) − μ0)
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×eT2 Q1e2 + (μm − τ̇ (t))eT2 Q2e2. (42)

Then based on the derived results in Theorem 1 and using
the terms K2 = Z−1L, N2 = εN1 (ε > 0) to replace the
relevant ones in �(t) of (35), we can deduce that

H(t) + sym

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0
NT
2
0
NT
1

⎤
⎥⎥⎦[

0 Ψλ̄i
ΛBΛK 0

]
⎞
⎟⎟⎠

= H(t) + sym

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0
εNT

1
0
NT
1

⎤
⎥⎥⎦ [

0 Ψλ̄i
ΛBΛK 0

]
⎞
⎟⎟⎠

= H(t)

+ sym

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

0

ε
(
NT
1 Ψλ̄i

ΛB − Ψλ̄i
ΛB Z

)
0(

NT
1 Ψλ̄i

ΛB − Ψλ̄i
ΛB Z

)

⎤
⎥⎥⎥⎥⎦

[
0 Z−1L 0

]
⎞
⎟⎟⎟⎟⎠

+ sym

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0
εΨλ̄i

ΛB Z
0

Ψλ̄i
ΛB Z

⎤
⎥⎥⎦ [

0 Z−1L 0
]
⎞
⎟⎟⎠ .

Let

ΠT
1 =

⎡
⎢⎢⎢⎢⎣

0

ε
(
NT
1 Ψλ̄i

ΛB − Ψλ̄i
ΛB Z

)
0(

NT
1 Ψλ̄i

ΛB − Ψλ̄i
ΛB Z

)

⎤
⎥⎥⎥⎥⎦ , Γ1 = [

0 Z−1L 0
]
,

ΠT
0 =

⎡
⎢⎢⎣

0
εΨλ̄i

ΛB

0
Λ̄B

⎤
⎥⎥⎦ , Γ0 = [

0 L 0
]
.

Since the term �(t) in (35) is equivalent to

H(t) + sym
(
ΠT

0 Γ0

)
+ sym

(
ΠT

1 Γ1

)
< 0,

there exists any constant matrix J > 0 of appropriate dimen-
sion such that

H(t) + sym
(
ΠT

0 Γ0

)
+ Γ T

1 Π1 J
−1ΠT

1 Γ1 + J < 0.

In what is next, we denote H̄(t) = H(t)+ sym
(
ΠT

0 Γ0

)
+ J

and use the Schur-complement to derive

[
H̄(t) Γ T

1

∗ −
(
Π1 J−1ΠT

1

)−1

]
< 0. (43)

Then it follows from Lemma 5 and (43) that

⎡
⎢⎣H̄(t) Γ T

1 ZT
(
Ψλ̄i

ΛB

)T
Ψλ̄i

ΛB

∗ sym
(

−
(
Ψλ̄i

ΛB

)T
Ψλ̄i

ΛB Z

)
+

(
Π1 J

−1ΠT
1

)
⎤
⎥⎦ < 0.

Therefore, by resorting to definition on Schur-complement,
we can deduce that

⎡
⎢⎢⎢⎣
H̄(t) Γ T

1 ZT
(
Ψλ̄i

ΛB

)T
Ψλ̄i

ΛB 0

∗ sym
(

−
(
Ψλ̄i

ΛB

)T
Ψλ̄i

ΛB Z

)
Π1

∗ ∗ −J

⎤
⎥⎥⎥⎦ < 0.

Thus the term in (41) can guarantee the following inequality
to be true

�(t) = H(t) + sym
(
ΠT

0 Γ0

)
+ sym

(
ΠT

1 Γ1

)
< 0,

whichmeans that the system (1) can achieve the containment
control with controller gain K2 = Z−1L .

By using Lemma 7 and (42), similar to Theorem 1, we
can get following cases:
Case 1: τ̇ (t) = μ0, τ (t) = 0, τ̄ (t) = τm , one has

H(t) = H1 = � + M + τmM2 + (μm − μ0)e
T
2 Q2e2;

Case 2: τ̇ (t) = μm, τ (t) = 0, τ̄ (t) = τm , one has

H(t) = H2 = � + M + τmM2 + (μm − μ0)e
T
2 Q1e2;

Case 3: τ̇ (t) = μ0, τ (t) = τm, τ̄ (t) = 0, one has

H(t) = H3 = � + M + τmM1 + (μm − μ0)e
T
2 Q2e2;

Case 4: τ̇ (t) = μm, τ (t) = τm, τ̄ (t) = 0, one has

H(t) = H4 = � + M + τmM1 + (μm − μ0)e
T
2 Q1e2.

It completes the proof.

Since many existing works have not considered the infor-
mation on the lower bound of delay’s variation rate, thus
based on the proof of Theorem 1 we also can derive the fol-
lowing corollary.

Corollary 1 For any given scalars τm ≥ 0, μm, ε > 0, and
Ψλ̄i

(i = 1, 2, 3, 4), the system (1) under the time-delayed
protocol (3) can achieve the containment control with the
gain matrix K2 = Z−1L, if there exist constant matrices
P > 0, J > 0, Qi > 0 (i = 1, 2), Ri > 0 (i = 1, 2, 3, 4),
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Hi (i = 1, 2), X, N1, Z , L with appropriate dimensions such

that

[
R̄ X
∗ R̄

]
≥ 0 and the LMI in (44) hold

⎡
⎢⎢⎢⎣
H̃ j Γ T

1 ZT
(
Ψλ̄i

ΛB

)T
Ψλ̄i

ΛB 0

∗ sym
(

−
(
Ψλ̄i

ΛB

)T
Ψλ̄i

ΛB Z

)
Π1

∗ ∗ −J

⎤
⎥⎥⎥⎦ < 0, (44)

where H̃ j = H̄ j + sym
(
ΠT

0 Γ0

)
+ J with

H̄1 = �̄ + M + τmM1,

H̄2 = �̄ + M + τmM2

with the term �̄ = [�̄i j ]10×10. Particularly, most elements
of �̄ are identical to the relevant ones of � in Theorem 2
except for

�̄11 = −3

2
R4 + τm R2 + Q1 + Q3 − 1

2
R2,

�̄22 = −3

2
R4 − 3

2
R3 + (μm − 1)Q1, �̄33 = −R3 − Q2.

Proof Since the lower bound of time delay variation rate
cannot be available, then we can choose the following
Lyapunov–Krasovskii functional

V (zi (t)) = zi (t)
TPzi (t) +

∫ t

t−τ(t)
zi
T(θ)Q1zi (θ)dt

+
∫ t

t−τm

zTi (θ)Q2x(θ)dt

+
∫ 0

−τm

∫ t

t+s
żi
T(θ)R1 żi (θ)dθds

+
∫ 0

−τm

∫ t

t+s
zTi (θ)R2zi (θ)dθds

+ 1

2

∫ t

t−τm

∫ �

t−τm

∫ t

θ

żi
T(s)R3 żi (s)dsdθd�

+ 1

2

∫ t

t−τm

∫ t

�

∫ t

θ

żi
T(s)R4 żi (s)dsdθd�.

Then based on Theorems 1 and 2, this corollary can be easily
achieved and the proof is omitted.

Remark 3 Together with Theorems 1–2 and Corollary 1,
it is shown that regardless of the numbers of the follow-
ers and leaders, the gain matrix K2 can be determined by
λ̄i (i = 1, 2, 3, 4). Furthermore, because some novel inte-
gral inequalities have been used and both the upper and lower
bound of τ(t) and its variation rate have been fully studied,
we can get much less conservative results. By solving the

derived LMIs, the maximum allowable upper bound of τ(t)
can be greatly extended.

Remark 4 It should be mentioned that the conditions for
designing K2 in the protocol (3) given in (18) are non-convex,
which cannot be solved directed via the LMI Toolbox. How-
ever, based on Lemma 5 and the Schur-complement, a new
feasible method for the controller gain K2 is presented in
Theorem 2 and Corollary 1 by resorting to a novel con-
structive technique to separate the coupling among control
gains.

4 Numerical Example

In this section, a numerical example will be provided to illus-
trate the efficiency of the derived results.

Example 1 Consider the third-order MASs which has an
interaction topology shown in Fig. 1 and the weight is set
as 0–1.

A =
⎡
⎣1 3 5
2 4 6
7 8 9

⎤
⎦ , B =

⎡
⎣0
0
1

⎤
⎦ . (45)

Specifying the eigen values of (A + BK1) at 0.8i,
−0.8i,−2 with i2 = −1, we can choose the controller gain
K1 as

K1 = [−8.84,−12.74,−16].

If one of the real parts of (A+BK1) is equal to 0, the leaders’
trajectories will achieve the oscillation.

Assuming that the initial states xi j (0) (i = 6, 7, 8, 9; j =
1, 2, 3) of four leaders are

Fig. 1 Directed interaction topology G
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Fig. 2 Intial trajectory snapshots of leaders and followers

Table 1 Calculated MAUBs τm for various μm

μm 0.1 0.4 0.8 1 2

τm [29] 0.212 0.191 0.186 – –

τm 0.267 0.264 0.259 0.256 0.247

x6 j (0) =
⎡
⎣ 0.1

0, 2
−0.2

⎤
⎦ , x7 j (0) =

⎡
⎣ 0.1

−0, 2
0.3

⎤
⎦ ,

x8 j (0) =
⎡
⎣−0.2

−0.3
−0.5

⎤
⎦ , x9 j (0) =

⎡
⎣0.2
0, 2
0.4

⎤
⎦ .

The initial values above allow that the leaders can form the
convex hull. Yet the initial states of followers xi j (0) (i =
1, 2, 3, 4, 5; j = 1, 2, 3) are random values whose distribu-
tions are located on the interval (0,1). The initial states of
leaders and followers are shown in Fig. 2. The pentagrams
represent the leaders, and the asterisks represent the follow-
ers. The convex hull formed by leaders are also marked by
the solid lines.

According to the feasibility of LMIs in Theorem 2, we
can get Table 1 which shows the calculated maximum delay
upper bounds (MAUBs) τm for various μm and μ0 = −2.

Comparing with [29], for differentμm , theMAUBs in our
work has increased a lot.Meanwhile, there is a limit |μm | < 1
in [29], while our work still can be verified to be effective
when μm > 1. Furthermore, since the work [31] studies the
case that τ(t) is a constant, which means μ0 = μm = 0,
the available MAUBs of τ is 0.17, while our result can reach
to 0.267, which means that our theorem can be of larger
application area.

Now in order to better illustrate the efficiency of our
results, wewill give some simulation results in two following
cases.

Case 1: As for μm = 0.4, we can choose τ(t) =
0.264sin2(1.51t), then τm = 0.264 and μm = 0.4, μ0 =
−0.4. By using Theorem 2 and LMI Toolbox, K2 can be
computed out as

K2 = [ − 0.3105 − 0.4013 − 0.5192
]
.

The tendency of the leaders and followers is shown in
Fig. 3, which demonstrates that the relationship of xi j (i =
1, 2, . . . , 9; j = 1, 2, 3) at t = 5.6s, t = 18.8s and t = 34s,
respectively.

Case 2: As for μm = 2, let τ(t) = 0.247sin2(8.09t). By
resorting to Theorem 2 and LMI Toolbox, the controller fain
K2 can be achieved as

K2 = [ − 0.3017 − 0.3986 − 0.5011
]
.

The trajectory snapshots of leaders and followers are shown
in Fig. 4. Figure 4 verifies that the relationship of xi j (i =
1, 2, . . . , 9; j = 1, 2, 3) and the one of (xi1 − xi2), (xi1 −
xi3), (xi2 − xi3) (i = 1, 2, . . . , 9) respectively at t = 31s.

Based on Figs. 3 and 4, we can check that MAS (45) can
achieve the desired containment control with the protocol
(3) when τm = 0.264, μm = 0.4 at t = 18.8, 34s and
τm = 0.247, μm = 2 at t = 31s, which proves the efficiency
of our work.

5 Conclusions

This paper has investigated the problem on containment con-
trol of MASs with the help of time delay protocol. In the
protocol, we design K1 to specify themotionmode of leaders
and K2 to enable the followers to form the containment con-
trol. By constructing two improved Lyapunov–Krasovskii
functionals and employing some novel integral inequalities,
the application area can be greatly extended. Meanwhile, in
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Fig. 3 The trajectory snapshots of xi j (t) at t = 5.6s, t = 18.8s, and
t = 34s with μm = 0.4, τm = 0.264

order to compute out the controller gain, a novel construc-
tive method has been established in terms of LMI, which
presents much less conservatism. Finally, some comparing
results with simulations are given to illustrate the efficiency
of our results.
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