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Abstract
In this article, we present a novel word-based lossless compression algorithm for text files using a semi-static model. We
named this method the ‘Multi-stream word-based compression algorithm (MWCA)’ because it stores the compressed forms
of the words in three individual streams depending on their frequencies in the text and stores two dictionaries and a bit vector
as side information. In our experiments, MWCA produces a compression ratio of 3.23 bpc on average and 2.88 bpc for files
greater than 50 MB; if a variable length encoder such as Huffman coding is used after MWCA, the given ratios are reduced to
2.65 and 2.44 bpc, respectively. MWCA supports exact word matching without decompression, and its multi-stream approach
reduces the search time with respect to single-stream algorithms. Additionally, the MWCA multi-stream structure supplies
the reduction in network load by requesting only the necessary streams from the database. With the advantage of its fast
compressed search feature and multi-stream structure, we believe that MWCA is a good solution, especially for storing and
searching big text data.

Keywords Data compression · Text compression · Dictionary-based compression · Compressed matching · MWCA

1 Introduction

Everyday,manyGBsof text data are submitted to the internet,
andwidespread use of socialmedia has particularly increased
this amount. The size of text data on the web is measured in
terabytes. With the aid of text compression, this type of data
could be stored using less disk space. Text compression is
about exploiting redundancies in the text to represent it in
less space [1].

With advances in technology, the capacity of storage
devices are increasing and the cost is simultaneously decreas-
ing. However, this increase in capacity is not sufficient to
meet demand due to the increase in the amount of data
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produced. At the same time, similar to storage media, the
processing power of CPUs is continuously increasing. With
the allocation of a certain amount of CPU power, compres-
sion could be used to reduce the required storage space and
input/output load. Another advantage of compression is a
reduction in the search space in the case of compressed search
support. Reducing the search space ensures a gain of both
CPU time and input/output operations.

It is necessary to be able to access these rapidly increas-
ing data, and at the same time, it is necessary to be able
to obtain information from these data when requested. For
this reason, large text databases are created and used. Com-
pression algorithms suitable for text databases should meet
two requirements. Thefirst requirement is compressed search
support, and the second is that the file can be decompressed
from a desired location [2]. Text compression algorithms
that use a semi-static model can supply these two features.
Although general-purpose adaptive compression algorithms
are successful in terms of compression ratio, they are gen-
erally not suitable for text databases because they do not
supply compressed search support and decompression from
a desired location [3]. Adaptive compression algorithmswith
compressed search support are ineffective due to their need
for decompression to conduct a search operation [4].
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Although classic Huffman is a known character-based
technique, it is not suitable for text databases due to its poor
compression ratio [2]. Moffat suggests the use of words as
symbols to solve this problem [5]. Additionally, the use of
words instead of characters is more suitable for text-retrieval
systems [2]. Because methods such as ETDC and SCDC
support compressed text search and decompression from the
desired point of the stream, they can be used effectively in text
databases by addressing the limitations of general-purpose
algorithms.

This work introduces a word-based compression algo-
rithm that uses a semi-static model known as MWCA.
MWCA aims to increase the search efficiency with a multi-
streamstructure in addition to the compressed search support.
This algorithm is designed to reduce the search space by
offering compressed search support (such as ETDC) and
using only the required streams. The search space, which
is previously minimized with the aid of compression, is fur-
ther reduced by only requesting the required streams. Thus,
this approach aims to reduce the network and input/output
loads. The CPU time required for the search operation is also
reduced because decompression is not used.

2 RelatedWork

This section describes general-purpose andword-based com-
pression methods. In addition, general string-matching algo-
rithms are addressed. Text files are commonly compressed
with lossless compression methods to avoid loss of informa-
tion.General-purpose compression algorithms such as LZ77,
LZ78, LZW, LZMA, Deflate, and the PPM family (PPMa,
PPMb, PPMd) andword-based compression algorithms such
as ETDC and SCDC are widely used in lossless text com-
pression.

The LZ77 [6] and LZ78 [7] algorithms were developed by
Abraham Lempel and Jacob Ziv. The LZ77 algorithm works
bymaintaining a history window of themost recently viewed
data and comparing the current data under encoding with the
data in the history window. The information that is actually
placed into the compressed stream is referenced to the posi-
tion in the history window and the length of the match. The
LZ78 algorithm searches the longest match of a substring
(phrase) in the dictionary that is constructed on the fly.When
the longest match is found, the algorithm encodes the dictio-
nary index, forms a new phrase by adding the next character
in the source file to the end of thematching substring and adds
this phrase to the dictionary. The LZW (Lempel Ziv Welch)
algorithm, which was developed by TerryWelch in 1984, is a
variant of LZ78 [8]. LZMA (Lempel ZivMarkov algorithm),
which is the native compression mode of the 7-zip archiver,
is a variant of LZ77. Deflate, which is used in ZIP archiving
tools (pkzip, gzip), is an algorithm that combines LZ77 and

Huffman coding [9]. PPM (prediction by partial matching)
is an adaptive statistical data compression method proposed
by Cleary and Witten in 1984 [10]. PPM attempts to predict
the probability that a character is in a specific location from
the previously occurring n symbols.

Word-based text compression methods encode the words
in the text as symbols, and high compression ratios can be
gained based on the characteristics of frequency distribution
in natural language data [5,11]. Based on this foundation,
algorithms such as word-based Huffman code [12], plain
Huffman code [13], tagged Huffman code [13], End-tagged
dense code (ETDC) and (s,c)-dense code (SCDC) [14] are
proposed.

In ETDC, the words that are acquired using a spaceless
word model [5] are sorted according to their frequencies in
the first pass. The first 128 are represented with one byte.
Two-byte codewords are applied for the words from 129 to
1282 + 128. If the source file has additional individual words,
codewords of three or more bytes can be used. The first bit
of each byte is a flag. If the flag is 1, it indicates that this
byte is the last byte of the codeword. In other words, one-
byte codewords are between 10000000 and 11111111, and
two-byte codewords are between 000000000:10000000 and
01111111:11111111. Although ETDC uses 128 symbols for
the bytes that do not end a codeword (continuers) and the
other 128 symbols for the last byte of the codeword (stop-
pers), SCDC adapts the number of stoppers and continuers to
theword frequency distribution of the text. In SCDC, s values
are used as stoppers, and c = 256− s values are used as con-
tinuers. For example, the first 230 words could be encoded
with 1-byte codewords, and the remaining words could be
encoded with 2-byte codewords (s = 230, c = 26). Using this
scheme, 230+26*230 = 6210 words could be encoded using
only 1- and 2-byte codewords.

Dynamic versions of ETDC and SCDC (DETDC and
DSCDC) are better than semi-static ETDC and SCDC in
terms of compression time [15], but they are worse in
terms of decompression time and slightly worse in compres-
sion ratio. The subsequently developed dynamic lightweight
dense codes (DLETDC and DLSCDC) are able to perform
decompression as quickly as semi-static dense codes [16].
However, the compression speeds and compression ratios of
dynamic lightweight dense codes are worse than those of
the dynamic dense codes. In summary, semi-static methods
are best in terms of compression ratio and decompression
time, and dynamic methods are best in terms of compression
time. Carus and Mesut proposed another compression algo-
rithm that uses a semi-static model (CAFTS: compression
algorithm for fast text search) [17]. CAFTS produces a main
dictionary that contains several sub-dictionaries in the first
pass. Each sub-dictionary contains the most frequently used
tri-grams after a particular di-gram. The algorithm selects the
appropriate sub-dictionary by looking at the last encoded di-
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gram, and the corresponding index is encoded in the second
pass. Carus and Mesut also show that word-based com-
pression methods such as dense codes are not efficient for
agglutinative languages such as Finnish and Turkish because
the numbers of different words in these languages are greater
than those of other languages.

Word-based text compression algorithms such as ETDC
and SCDC could be used as a preprocessor for general
lossless compression algorithms to gain more efficient com-
pression ratios [18,19]. However, transformation algorithms
such as BWT [20], LIPT [21], StarNT [22] and WRT [23]
could be more effective in the pre-processing stage.

To conduct the search operation on compressed text files,
the file can be decompressed prior to searching, or the search
operation can be performed directly over the compressed
file if the compressed form of the text is suitable for pat-
tern matching. Direct pattern matching on compressed texts
is generally known as compressed pattern matching, and
it was first defined in the work of Amir and Benson [24].
Searching on the compressed file could be up to 8 times
faster than searching on the original text file [13,25]. Gen-
eral string-matching algorithms such as Boyer Moore [26],
Berry Ravindran [27], Horspool [28] and KMP [29] can be
used with compressed texts instead of brute force search.

Although the LZMA and PPM compression algorithms
give better results for the compression ratio than LZ78/LZW
and word-based text compression algorithms, they are not
suitable for fast compressed pattern matching. LZGrep,
which was proposed by Navarro and Tarhio in 2005 [30],
could be used in compressed string matching over texts that
are compressed with LZW-based Unix Compress. LZgrep
can also search files compressed with Unix Gzip using a fast
decompress-then-search technique. Although decompress-
then-search techniques are useful when decompression is
fast, direct searching on a compressed file is more effective
[31].

3 ProposedMethod

In this section, we propose a word-based text compres-
sion method using semi-static dictionaries (MWCA). The
descriptions of our compression and decompression algo-
rithms are given in the following subsections.

3.1 MWCA Encoding

MWCA creates two dictionaries. The first dictionary con-
sists of 255 words, and thus words in this dictionary can be
represented with one byte. We reserve the index ‘0’ in the
dictionary for the escape situation. The second dictionary
contains 65536 words that are represented with two bytes.

The dictionaries are created by obtaining the words and
their frequencies from the given file. In the first pass, the
words and their frequencies are acquired, and the words are
ordered by their frequencies. In the encoding stage, MWCA
creates the first dictionary with the most frequent 255 words
and the second dictionary with the next 65536 most frequent
words. To obtain the words, MWCA searches for a sequence
of punctuation or alphanumeric characters. MWCA uses
‘spaceless word model’ and assumes all non-alphanumeric
characters as punctuation. A sequence can be described as
a group of successive characters with the same type. The
encoder reads a sequence to obtain a word until it encounters
a character with a different attribute. If given word is present
in the dictionary, its frequency is increased by 1. A space
that comes after an alphanumeric sequence is not encoded.
In the decoding stage, the decoder looks for the attribute that
can be ‘alphanumeric’ or ‘punctuation’. If two alphanumeric
sequences are read from the encoded file, the decoder places
a space character in the output file. To obtain a distinct word
alphabet,MWCAuses a hash implementation used in ETDC.
We determine the hash size according to the file size using
Heaps’ law [32].

After the dictionaries are created, the encoding phase
begins. The MWCA stores the encoded words in three dif-
ferent streams. The first stream contains one-byte codewords
of the words present inD1, and the second one contains two-
byte codewords of the words present inD2. The third stream
contains the words that are not present in either dictionary.
We refer to these streams as S1, S2 and S3, respectively. The
encoder also generates a bit vector BV to store the informa-
tion related to which dictionary is used to encode the words
(we use 0 forD1 and 1 forD2). The function C describes the
code of the word, meaning that C(word) is a one- or two-byte
code of the word. The file to be compressed is read in pieces
using a buffer of given size to obtain the words (

∑n
i=0 Wi ).

When the encoder encounters a word Wi, we look up the
word inD1. IfWi ∈D1, we insert a ‘0’ bit into BV and C(Wi)
into S1. IfWi /∈D1, we look up ifWi ∈D2. IfD2 contains the
wordWi, a ‘1’ bit is inserted into BV , and the two-byte code
C(Wi) of the word is sent to S2. If the wordWi is not present
in both dictionaries, a ‘0’ bit is inserted into BV , and a null
character (NUL) is inserted into S1. This NUL indicates the
escape character, and the word is inserted into the S3 stream
without encoding. The words in S3 are separated with an
NUL. The created streams could be saved as separate files or
as a single file after the encoding process. Huffman coding
[33] could be applied to the dictionaries, streams and the bit
vector BV to increase the compression ratio. The pseudo-
code of MWCA encoding is given in Fig. 1.

As an example, we explain the compression of the
sentence The book is composed of text, footnotes, and appen-
dices’ as presented in one of our test files English50MB.txt.
The dictionaries are generated according to the word fre-
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Fig. 1 MWCA encoding algorithm

Table 1 Words and assigned codes

First dictionary (D1)

,_ 5 (00000101)

and 6 (00000110)

of 7 (00000111)

is 25 (00011001)

The 33 (00100001)

Second dictionary (D2)

book 664 (0000001010011000)

text 1338 (0000010100111010)

composed 2235 (0000100010111011)

footnotes 41,884 (1010001110011100)

quencies. The related words and their codes taken from the
dictionaries of English50MB.txt are given in Table 1.

In the beginning, the encoder reads the first word ‘The’
and searches for it in the first dictionary D1. This word is
found in D1 at position 32, and therefore, we insert ‘0’ into
BV and ‘00100001’ into S1. Subsequently, we read ‘book’
and obtain the code C(‘book’) as ‘0000001010011000’. The
word is in D2, and therefore, we insert ‘1’ into BV and
‘0000001010011000’ into S2. The encoder next encounters
the word ‘is’. For this step, the encoder finds the word ‘is’ in
the dictionary and the codeword C(‘is’) as ‘00011001’ in the
first dictionary, andwrites ‘0’ toBV andC(‘is’) into S1 due to
the occurrence in D1. The encoder finds the C(‘composed’),
which is ‘0000100010111011’ and writes ‘1’ to BV and
C(‘composed’) to S2. The process is the same until the last
word ‘appendices’ is encountered. When the encoder finds
‘appendices’, which is not present in D1 or D2, it inserts
‘0’ into BV and ‘00000000’ into S1 as an escape character.
Finally, the encoder writes the word ‘appendices’ with one
null character into S3. The streams after the full process are
given in Table 2.

After the process is finished, the encoder writes the dic-
tionaries, streams and bit vector into separate files or into a
single file with the side information of their sizes.

Table 2 Contents of streams and bit vector after compression

Content Content (decimal)

BV 0 1 0 1 0 1 0 1 0 0 0

S1 00100001 00011001 00000111
00000101

00000101 00000110 00000000 (33, 25, 7, 5, 5, 6)

S2 0000001010011000
0000100010111011

0000010100111010
1010001110011100

(664, 2235, 1338, 41,884)

S3 appendicesNUL

Fig. 2 MWCA decoding algorithm

3.2 MWCA Decoding

If Huffman coding is applied to the streams or dictionaries
at the encoding stage, these items are decoded first at the
decoding stage. The MWCA reads symbols (BVi) from BV ,
where BVi can be ‘0’ or ‘1’. If BVi is ‘0’, one-byte code is
read from S1. If S1i �= 0, the word corresponding to the code
is read from the dictionary and inserted into the output file. If
S1i = 0, it indicates an escape, and the decoder reads a word
from S3 and writes it to the output file. If BVi is ‘1’, a two-
byte code is read from S2, and the corresponding element
from D2 is written into the output file. The decoding stage is
repeated until it reaches the end of BV . The pseudo-code of
MWCA decoding is given in Fig. 2.

For the decoding example, we use the same sentence ‘The
book is composed of text, footnotes, and appendices’ that
is given in the encoding stage. The decoder first reads ‘0’
from BV , and therefore, it reads a byte from S1. The value
of this byte is ‘33’, and the process finds the corresponding
element ‘The’ from D1 and writes it into the output file. In
the second step, the decoder encounters a ‘1’ bit and reads
two bytes from S2. The first word inD2 is ‘book’, and there-
fore, the decoder must write the ‘book’ word into the output
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Table 3 Steps of decoding algorithm

BV S1 S2 S3 Prev./Pres. Add. Output

0 33 -A The

(The)

1 664 AA ‘_’ The_book

(book)

0 25 AA ‘_’ The_book_is

(is)

1 2235 AA ‘_’ The_book_is_composed

(composed)

0 7 AA ‘_’ The_book_is_composed_of

(of)

1 1338 AA ‘_’ The_book_is_composed_of_text

(text)

0 5 AP The_book_is_composed_of_text,_

(,_)

1 41884 PA The_book_is_composed_of_text,_footnotes

(footnotes)

0 5 AP The_book_is_composed_of_text,_footnotes,_

(,_)

0 6 PA The_book_is_composed_of_text,_footnotes,_and

(and)

0 0 appendices AA ‘_’ The_book_is_composed_of_text,_footnotes,_and_appendices

Escape

file. However, before writing this word, the decoder checks
whether the previous word is alphanumeric. If the current
word and previous word are both alphanumeric, a space char
is written into the output file before the second word. There-
fore, the output is similar to ‘_book’. If one of the words is
punctuation, a space char is included at the end of this word.
Therefore, there is no need to write a space character into the
output file. The steps of the decoding algorithm are given in
Table 3. Prev./Pres. shows the attribute of the previous and
present word as alphanumeric (A) or punctuation (P). If the
previous and present words are both alphanumeric (AA), a
space character is added before the second word. The Add.
column shows when a space character is written into the out-
put file before the second word. The output column shows
the content of the decoded file.

4 SearchingWords Directly onMWCA
Compressed Texts

Our method allows for us to search for a word directly in a
compressed file. Our statistical analysis of text files shows
that the most frequent words in the files are prepositions
or pronouns. The most frequent words in the Calgary, Can-
terbury and Pizza&Chili corpuses are given in Table 4. As

shown in this table, the most frequent words are stop words,
and they are less likely to be searched.

It is obvious that the least frequent words are searched
more than the most frequent words because searching by
prepositions or pronouns is not meaningful. This means that
most search operations are performed in our S2 stream.Using
different streams, we can shrink the search space such that
the search process is shorter.

Our search method can find the occurrence count of a
given word in a MWCA compressed text file. To return the
occurrence count of a given word, search algorithm will first
search for word W in dictionaries. If the algorithm finds the
word in one of the dictionaries, it will obtain the correspond-
ing codeword of W, C(W). If the given word is found in D1,
the algorithmwill search C(W) in S1 and if the word is found
inD2, search operation will be carried out on S2. If the given
word could not be found in either D1 or D2, the algorithm
will search W in S3 with a selected string-matching algo-
rithm. At the end of the procedure, the count of given word
will be returned. Steps of search algorithm are given in Fig.
3.

For example, if we search for the word ‘and’, the algo-
rithm first searches the word in D1. After finding the word,
codeword C(‘and’) = 6 is obtained from the dictionary. The
algorithm searches for the ‘6’ byte in S1, and for each occur-
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Table 4 The most frequent 40 words in Calgary, Canterbury and Pizza&Chili corpuses

1 the 9 was 17 her 25 at 33 my

2 and 10 he 18 had 26 by 34 me

3 of 11 his 19 him 27 which 35 they

4 to 12 it 20 not 28 this 36 all

5 a 13 with 21 be 29 have 37 were

6 in 14 is 22 on 30 but 38 said

7 I 15 for 23 you 31 from 39 so

8 that 16 as 24 at 32 she 40 one

Fig. 3 Pseudo-code of SM2 algorithm

rence, it increases the count by one. If we search for the
word ‘book’, the algorithm first looks at D1. After it cannot
find ‘book’ inD1, it searches that word inD2. The algorithm
obtains a two-byte codewith value ‘664’ and searches it inS2.
In the worst case (e.g., searching for the word ‘appendices’),
the algorithm searches S3 with a preferred string-matching
algorithm and counts the occurrences of the word.

5 Experimental Results

We obtained the source codes of ETDC and SCDC for
comparison with our method. We also obtained the general-
purpose lossless compression algorithm results for LZMA,
PPMd, Gzip, Bzip2 and DEFLATE. To obtain these results,
we compiled 7z 15.09 x64 from its source, and we used mx1,
mx5 and mx9 as the three different compression parameters,
where mx1 means ‘the fastest compression’ and mx9 means
‘the highest compression ratio’.

In our experiments, we used a machine with an Intel Core
i7 2.5 GHz, 256 KB L2 cache, 6 MB L3 cache processor and
16 GB of RAM. The source codes are compiled with gcc
5.2.1 at the maximum optimization level.

We used a test corpus that contains selected natural lan-
guage text files from the Calgary, Canterbury, Silesia and
Pizza&Chili corpuses and from Project Gutenberg. Our test

corpus is given in Table 5 with grouping of the text files
according to their sizes.

In our corpus, the first group consists of English text files
smaller than 10 MB, the second group consists of 8 files
with 30 MB size (each in different languages), and the last
group consists of files equal to or larger than 50 MB. The
last group contains one multilingual ‘GutenbergCorpus’ file
derived from Project Gutenberg and 5 other files in English
from the Pizza&Chili corpus.

The compression results forMWCAand the other selected
algorithms are given in Tables 6, 7 and 8. We give 4 different
MWCA results in these tables. The first result does not use
Huffman coding, the second uses Huffman coding only on
the dictionaries, the third uses Huffman coding on the dictio-
naries and S3 stream, and the last uses Huffman coding on
all streams (D1, D2, S1, S2, S3 and BV ). The best results for
each column are given in bold to increase readability.

As shown in Table 6, in most situations, the general-
purpose algorithms produce better results than the word-
based text compression algorithms. The most successful
algorithm in this group is PPMd.AlthoughMWCA is slightly
worse than ETDC, if we use Huffman encoding only on D1
and D2, we achieve better results than ETDC and SCDC
(SCDC is better only on the Dickens file). Due to the small
size of the files,D2 does not contain 65536words, and there is
no S3 stream. Therefore, use of the MWCA + Huffman (D1,
D2, S3) method does result in any change in the compression
ratio.

The size ratios of the dictionaries, streams and bit vector
over the compressed files are given in Fig. 4. It is clear that
as the file size increases, the weight of the dictionaries over
the total size of the files decreases. It is difficult to observe
the length of D1 because it contains only 255 words, and its
size is a slightly greater than 1 KB in all test files.

As shown in Table 7, the compression results change with
the language of the files. Word-based compression methods
ETDC, SCDC and MWCA produce their worst results in
Finnish and Turkish because of the agglutinating structure of
these languages. PPMd is again the best compression algo-
rithm, and the English file is the most compressible one. This
time, using MWCA + Huffman (D1, D2, S3) gives better
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Table 5 Test corpus Group File Taken from Size (byte)

(<10 MB) Book1 Calgary Corpus 768,771

Book2 610,856

News 377,109

Bible Canterbury Corpus 4,047,392

World192 2,473,400

Dickens Silesia Corpus 10,192,446

(= 30 MB) Dutch Derived from Project Gutenberg 30,792,532

English 30,792,111

Finnish 30,792,616

French 30,792,398

German 30,792,171

Italian 30,792,700

Spanish 30,792,223

Turkish 30,792,241

(>50 MB) GutenbergCorpus Derived from Project Gutenberg 635,293,766

English 50 MB Pizza&Chili Corpus 52,428,800

English 100 MB 104,857,600

English 200 MB 209,715,200

English 1024 MB 1,073,741,802

English 2108 MB 2,210,395,521

Table 6 Compression ratios of Group 1 (bpc)

Compression algorithms News Book2 Book1 World192 Bible Dickens

ETDC 4.87 3.6 3.71 3 2.54 2.75

ETDC + Huffman(vocabulary) 4.23 3.25 3.24 2.80 2.44 2.66

SCDC 4.77 3.47 3.63 2.93 2.43 2.67

MWCA 4.96 3.66 3.79 3.04 2.61 2.8

MWCA + Huffman(D1, D2) 4.31 3.3 3.32 2.84 2.52 2.71

MWCA + Huffman(D1, D2, S3) 4.31 3.3 3.32 2.84 2.52 2.71

MWCA + Huffman(D1, D2, S1, S2, S3, BV ) 3.96 2.92 2.93 2.47 2.08 2.34

Bzip2 mx1 2.85 2.4 2.82 2.17 1.98 2.59

Bzip2 mx5 2.52 2.06 2.42 1.58 1.67 2.2

Bzip2 mx9 2.52 2.06 2.42 1.58 1.67 2.2

DEFLATE mx1 2.9 2.59 3.18 2.14 2.32 2.98

DEFLATE mx5 2.53 2.23 2.72 1.62 1.76 2.22

DEFLATE mx9 2.52 2.22 2.72 1.58 1.75 2.22

Gzip mx1 3.18 2.83 3.41 2.44 2.48 3.17

Gzip mx5 2.98 2.59 3.13 2.26 2.2 2.89

Gzip mx9 2.97 2.59 3.12 2.25 2.19 2.89

LZMA mx1 2.9 2.59 3.18 2.12 2.31 2.97

LZMA mx5 2.53 2.23 2.72 1.62 1.76 2.22

LZMA mx9 2.52 2.22 2.72 1.58 1.75 2.22

PPMd mx1 2.49 2.02 2.38 1.83 1.65 2.12

PPMd mx5 2.22 1.85 2.18 1.36 1.48 1.84

PPMd mx9 2.36 1.88 2.22 1.26 1.45 1.82
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Table 7 Compression ratios of Group 2 (bpc)

Compression algorithms Dutch English Finnish French German Italian Spanish Turkish

ETDC 2.76 2.59 3.8 3.04 3.07 3.03 3.13 3.95

ETDC + Huffman(vocabulary) 2.60 2.53 3.35 2.95 2.81 2.85 2.99 3.78

SCDC 2.72 2.54 3.76 2.98 3.04 2.99 3.09 3.88

MWCA 2.76 2.64 3.94 3.09 3.11 3.04 3.15 4.02

MWCA + Huffman(D1, D2) 2.69 2.58 3.86 3.03 3.04 2.97 3.09 3.96

MWCA + Huffman(D1, D2, S3) 2.59 2.58 3.33 3.01 2.78 2.82 2.99 3.79

MWCA + Huffman(D1, D2, S1, S2, S3, BV ) 2.3 2.23 2.91 2.62 2.51 2.53 2.62 3.32

Bzip2 mx1 2.5 2.48 2.66 2.52 2.56 2.68 2.58 2.66

Bzip2 mx5 2.16 2.08 2.35 2.1 2.2 2.37 2.23 2.27

Bzip2 mx9 2.16 2.08 2.35 2.1 2.2 2.36 2.23 2.27

DEFLATE mx1 2.85 2.85 2.99 2.84 2.9 3.03 2.92 2.92

DEFLATE mx5 2.11 1.78 2.28 2.05 2.05 2.24 2.17 1.9

DEFLATE mx9 2.11 1.78 2.27 2.04 2.04 2.12 2.16 1.89

Gzip mx1 3.05 3.05 3.19 3.06 3.12 3.24 3.14 3.14

Gzip mx5 2.73 2.76 2.9 2.75 2.83 2.94 2.82 2.88

Gzip mx9 2.73 2.76 2.9 2.75 2.83 2.94 2.82 2.88

LZMA mx1 2.84 2.83 2.97 2.82 2.88 3.01 2.9 2.91

LZMA mx5 2.11 1.78 2.28 2.05 2.05 2.24 2.17 1.9

LZMA mx9 2.11 1.78 2.27 2.04 2.04 2.12 2.16 1.89

PPMd mx1 2.07 2.02 2.24 2.03 2.16 2.26 2.15 2.24

PPMd mx5 1.85 1.73 2.03 1.77 1.86 2.03 1.92 1.91

PPMd mx9 1.82 1.73 2 1.73 1.83 1.99 1.88 1.86

results thanMWCA +Huffman(D1,D2) because all of these
files (except English) produce an S3 stream (see Fig. 4).

It can be observed in Table 8 that MWCA generally gives
better results than the mx1 versions of DEFLATE, Gzip and
LZMA, and Gzip-m9 compresses more than MWCA and
is faster in decompression. However, MWCA gives worse
results than ETDC if we use Huffman encoding in last stage,
and it could obtain better results than ETDC and SCDC with
the exchange of compression time. Use of Huffman encoding
in the last stage also causes it to lose the ability to conduct
search operations on compressed files.

Use of MWCA + Huffman (D1, D2) does not have much
effect on the compression ratio for text files larger than 200
MB, because the size of D1+D2 becomes quite small com-
pared with the total size (see Fig. 4).

Word-based compression algorithms give worse results
on Gutenberg, which is multilingual. In multilingual files,
the unique word count is higher than that of files that consist
of one language. Therefore, the dictionaries for these files
are larger than monolingual files. The assigned codes for
the words become larger in ETDC and SCDC, and in our
algorithm, words after 255+65536 are written in S3, which
is not compressed if Huffman coding is not used.

The average compression and decompression speeds of
MWCA and the other algorithms are given in terms of Mbps

in Tables 9 and 10. In terms of compression speed, MWCA
gives the best results on Group 1 and Group 3 but is slightly
worse than ETDC in Group 2, which contains 7 non-English
files. This result probably occurs because in non-English
files, the unique word count is larger than in English files.
This scenario causes our algorithm to use the S3 streammore
frequently than in English texts. Use of the S3 stream means
writing words into S3 without encoding, and thus the time
complexity of writing strings is higher than writing one byte
into S1 or two bytes into S2.

Our algorithm gives worse compression ratios than other
general-purpose compression algorithms used with the mx5
and mx9 flags, but it is faster even if the mx1 flag is cho-
sen for the given algorithms. Our test results show that using
mx9 instead of mx5 decreases the compression speed dra-
matically, especially in Gzip and Bzip2, and does not have
sufficient impact on the compression ratio. If we encode our
files with Huffman coding, we lose speed in exchange for
compression ratio.

Although all of these compression algorithms increase
their decompression speed as the file size grows, MWCA
is more successful than the others. Even though our decod-
ing algorithm is slower than ETDC and SCDC, it catches up
with these algorithms at Group 3. The reason for this obser-
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Table 8 Compression ratios of Group 3 (bpc)

Compression algorithms English
50 MB

English
100 MB

English
200 MB

Gutenberg English
1024 MB

English
2108 MB

ETDC 2.82 2.79 2.73 2.82 2.68 2.67

ETDC + Huffman(vocabulary) 2.76 2.75 2.70 2.78 2.67 2.66

SCDC 2.76 2.74 2.68 2.77 2.63 2.62

MWCA 2.86 2.85 2.82 3.06 2.83 2.84

MWCA + Huffman(D1, D2) 2.82 2.84 2.81 3.06 2.83 2.84

MWCA + Huffman(D1, D2, S3) 2.79 2.78 2.75 2.9 2.76 2.76

MWCA + Huffman(D1, D2, S1, S2, S3, BV ) 2.43 2.43 2.4 2.57 2.4 2.4

Bzip2 mx1 2.63 2.63 2.63 2.64 2.63 2.63

Bzip2 mx5 2.27 2.25 2.25 2.25 2.27 2.27

Bzip2 mx9 2.27 2.24 2.24 2.25 2.27 2.27

DEFLATE mx1 2.94 2.95 2.96 2.96 2.97 2.97

DEFLATE mx5 1.61 1.77 1.93 1.87 2.04 2.09

DEFLATE mx9 1.59 1.73 1.71 1.8 1.94 2

Gzip mx1 3.17 3.17 3.18 3.16 3.19 3.18

Gzip mx5 2.88 2.89 2.89 2.89 2.9 2.89

Gzip mx9 2.88 2.88 2.88 2.88 2.89 2.89

LZMA mx1 2.92 2.93 2.94 2.94 2.95 2.95

LZMA mx5 1.61 1.76 1.91 1.85 2.02 2.07

LZMA mx9 1.59 1.73 1.71 1.78 1.93 1.98

PPMd mx1 2.23 2.21 2.2 2.24 2.21 2.21

PPMd mx5 1.9 1.9 1.92 1.94 1.93 1.94

PPMd mx9 1.69 1.75 1.81 1.77 1.88 1.89

G

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 4 Size ratios of dictionaries, streams and bit vector over com-
pressed file (%)

vation is that the ratio of time spent in controlling flows is
reduced with increasing file size.

The memory usage of our encoding and decoding algo-
rithms for each file is given in Table 11.

Our encoding algorithm uses more than 20 MB of mem-
ory even if the file size is too small because MWCA uses
a hash table to store the vocabulary of file. This means that
we must predict the unique word count to open a hash table
before reading and obtaining the words from the file. To pre-
dict the unique word count, we could use Heaps’ law, but if
the language of the text is changed, the prediction parameters
should also be changed. Therefore, we define three different
hash table sizes for three different file sizes. With increas-
ing file size, the allocated memory is also increased because
of the change in unique word count and word length in dif-
ferent languages. However, the (required memory/file size)
ratio decreases as the file size increases. For example, the dif-
ference in required memory for encoding between English
100 MB and English 1024 MB is only 32.5 MB, although
the file size difference is 924 MB. When the source file is
too large, to reduce the memory requirement, MWCA uses
buffers with a size of 100 MB in the encoding and decoding
stage.
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Table 9 Average compression speeds (Mbps)

Compression algorithms Group 1 (<10 MB) Group 2 (= 30 MB) Group 3 (>50 MB)

ETDC 305.04 336.64 356.77

ETDC + Huffman(vocabulary) 144.47 219.19 320.34

SCDC 244.19 316.07 336.49

MWCA 310.70 327.97 376.86

MWCA + Huffman(D1, D2) 268.00 321.63 375.21

MWCA + Huffman(D1, D2, S3) 266.87 312.20 367.18

MWCA + Huffman(D1, D2, S1, S2, S3, BV ) 190.54 242.32 281.09

Bzip2 mx1 228.66 290.94 289.35

Bzip2 mx5 105.01 185.08 196.03

Bzip2 mx9 13.28 19.01 22.45

DEFLATE mx1 230.30 456.56 470.49

DEFLATE mx5 30.01 13.49 34.41

DEFLATE mx9 27.61 12.80 20.91

Gzip mx1 214.85 213.13 219.22

Gzip mx5 49.57 47.75 48.10

Gzip mx9 8.18 7.54 7.66

LZMA mx1 105.17 107.94 105.77

LZMA mx5 30.06 13.45 20.18

LZMA mx9 29.25 12.76 10.43

PPMd mx1 113.16 130.84 115.62

PPMd mx5 82.73 77.56 72.67

PPMd mx9 38.78 27.49 27.61

Table 10 Average decompression speeds (Mbps)

Compression algorithms Group 1 (<10 MB) Group 2 (= 30 MB) Group 3 (>50 MB)

ETDC 1092.97 949.91 1077.98

ETDC + Huffman(vocabulary) 862.95 1062.82 1158.82

SCDC 875.47 941.14 1130.07

MWCA 275.87 495.76 776.51

MWCA + Huffman(D1, D2) 189.38 454.78 761.75

MWCA + Huffman(D1, D2, S3) 189.38 416.55 705.22

MWCA + Huffman(D1, D2, S1, S2, S3, BV ) 96.88 223.10 304.75

Bzip2 mx1 423.14 549.44 577.18

Bzip2 mx5 227.36 296.81 285.83

Bzip2 mx9 243.50 260.62 283.10

DEFLATE mx1 330.95 379.87 390.35

DEFLATE mx5 393.83 509.07 584.91

DEFLATE mx9 408.35 506.63 588.14

Gzip mx1 595.71 774.00 809.77

Gzip mx5 627.81 836.50 864.06

Gzip mx9 645.87 844.60 868.90

LZMA mx1 337.11 385.38 389.08

LZMA mx5 400.75 495.94 589.63

LZMA mx9 413.89 467.77 590.87

PPMd mx1 97.38 96.85 98.36

PPMd mx5 74.49 56.21 63.69

PPMd mx9 37.28 23.92 26.42
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Table 11 Memory usage of encoding and decoding algorithms (MB)

Files MWCA encoding MWCA decoding

News 23.24 10.22

Book2 20.54 10.27

Book1 20.62 10.35

World192 25.45 10.92

Bible 26.85 11.26

Dickens 33.21 13.44

Dutch 63.02 20.18

English 61.86 19.7

Finnish 66.15 24.46

French 62.28 21.39

German 64.32 21.45

Italian 63.35 21.19

Spanish 63.12 21.6

Turkish 63.91 24.79

English 50 MB 101.31 27.86

English 100 MB 153.92 35.25

English 200 MB 157.84 40.21

GutenbergCorpus 177.85 79.54

English 1024 MB 186.4 84.6

English 2108 MB 262.84 146.4

In our experiments, we used the brute force, KMP, Hor-
spool, and Berry Ravindran algorithms to obtain the search
time results. We selected 5 random words each from the D1,
D2 and S3 files to use in the search time comparison. The
average search time results of these 15 words are given in
Table 12 for each file.

In the search algorithm, the string-matching algorithms
are used to find an occurrence of a word in the dictionaries or
the S3 stream. Use of string-matching algorithms to search
the occurrence of a word in the D1 and D2 dictionaries does
not have a high impact on search time because D1 and D2
are small in size (nearly 1 KB for D1 and 500 KB for D2).
However, if we use a string-matching algorithm on S3, a gain
is obtained in average search time (this gain could be greater
than 35% for large files).

The search algorithm implementation that can be obtained
from the Dense Codes site that is used on the ETDC and
SCDC compressed files returns the occurrence number of
a given word in a given file. Therefore, it is appropriate to
compare our algorithm with the search algorithm of ETDC
and SCDC. Due to the advantage of using multiple streams
and an untagged file structure, our search algorithm with BF
is 6 times faster than ETDC and 6.2 times faster than SCDC
on average. Use of Horspool instead of BF is 8.8 times faster
than ETDC and 9.1 times faster than SCDC.

Table 12 Search times of search algorithm using Brute Force (BF), KnuthMorris Pratt (KMP), Horspool (HP) andBerry Ravindran (BR) algorithms
(ms)

Files MWCA Dense codes

BF KMP HP BR ETDC SCDC

News 2 4 2 2.1 2.3 2.8

Book2 2 2.2 2 2 2.1 2.6

Book1 2.1 2.1 2.4 2 3.1 3.3

World192 2.3 2.1 2.7 2.6 5.5 6.2

Bible 2.7 2.8 2.6 2.8 5 5.7

Dickens 3.7 4.8 3.6 3.7 13.4 15.3

Dutch 6.3 5.8 5.1 5.3 39.7 45.7

English 6.8 5.8 5.2 5.1 27.1 35.8

Finnish 7 7.5 6.7 6.5 78.2 91.2

French 7.5 6.8 6 6.1 31.9 34.5

German 6.2 6 5.1 5.3 52.3 62

Italian 6.5 6.3 5.4 5.4 44.7 54

Spanish 7 7.2 5.4 5.8 41.2 46.4

Turkish 8 7.2 6.6 6.7 56.1 65

English 50 MB 10.3 8.3 7.6 7.6 50.1 61.2

English 100 MB 19.6 13.2 12.2 12.1 95.9 123.5

English 200 MB 36.7 23.9 24.1 25.2 183.6 207

GutenbergCorpus 105.1 68.6 67.7 68.4 565.6 616.1

English 1024 MB 155.1 100.7 101 104.5 949.8 1077

English 2108 MB 268.2 179.6 179.9 189.1 1559.9 1590.2
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6 Conclusions

Although the presented word-based text compression tech-
nique in this article achieves worse compression results than
the general-purpose compression algorithms, it supplies a
considerable advantage over these algorithms by supporting
compressed search and minimizing the search space with a
multi-stream structure. Such as ETDC and SCDC, MWCA
is also suitable for use in text databases because of its word-
based model. Because MWCA compresses data using block
buffers, the size of the data to be compressed is not impor-
tant. The block buffer size can be adjusted according to the
amount of memory to be used and could be tailored to the
desired configuration.

MWCA differs from ETDC with its multi-stream file
structure. Although this structure reduces the speed of
decompression, with the aid of compressed matching, the
decompression is often not necessary. The limitation of our
compressed search algorithm is that it supports only exact
word matching, such as in ETDC. Although the compression
ratio of MWCA is worse than that of ETDC, its multi-stream
file structure allows it to find words faster without decom-
pression.

Retrievingbig text data stored in databases for searchoper-
ations could result in a notably load on the network.Although
compression algorithms such as ETDC reduce the size of
the data, the need exists for retrieval of the whole file from
the database. With the advantage of a multi-stream struc-
ture, MWCA can obtain only the necessary streams from the
database, and thus the load on the network could be reduced.
Additionally, the server load is decreased, and better perfor-
mance could be obtained with reduced data exchange. We
believe that our proposed compression algorithm is suitable
for addressing the need to store big text data that are expected
to be frequently searched.

Our test results show that we can achieve high compres-
sion ratios using Huffman coding after MWCA. However,
in that case, direct search on the compressed files could not
be used. It was shown in [18] that semi-static word-based
byte-oriented compressors such as ETDC and SCDC can be
used as a text transformation to boosts classical compression
or indexing techniques. We believe that MWCA can also be
used as a transform method because of its similar structure.
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