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Abstract
In this paper, a method combining the use of discrete shearlet transform (DST) and the gray-level co-occurrence matrix
(GLCM) is presented to classify surface defects of hot-rolled steel strips into the six classes of rolled-in scale, patches, crazing,
pitted surface, inclusion and scratches. Feature extraction involves the extraction of multi-directional shearlet features from
each input image followed by GLCM calculations from all extracted sub-bands, from which a set of statistical features is
extracted. The resultant high-dimensional feature vectors are then reduced using principal component analysis. A supervised
support vector machine classifier is finally trained to classify the surface defects. The proposed feature set is compared against
the Gabor, wavelets and the original GLCM in order to evaluate and validate its robustness. Experiments were conducted on
a database of hot-rolled steel strips consisting of 1800 grayscale images whose defects exhibit high inter-class similarity as
well as high intra-class appearance variations. Results indicate that the proposed DST–GLCM method is superior to other
methods and achieves classification rates of 96.00%.

Keywords Steel surface classification · Manufacturing defects detection · Discrete shearlet transform · Hot-rolled steel
strips · Gray-level co-occurrence matrix · Principal component analysis · Support vector machines

1 Introduction

Steel is a strong and robust material that is used to produce
high-quality strips [1]. The quality of the flat steel surface
is a crucial parameter determining the quality of the final
product [2]. Hot-rolled steel is a common type of steel that
is roll-pressed at temperatures over 1700◦F, which is well
above the recrystallization temperature for most steels [3].
This makes it more pliable and easier to work with. During
the manufacturing process, a variety of surface defects for
hot-rolled steel products are reported to be very high [4–6].
Many types of defects exhibit large inter-group similarity and
intra-group diversity, meaning that it becomes very challeng-
ing to differentiate between defect types [7]. Coupled with
the lack of defect-type standardization, the characterization
and classification can vary from mill to mill and operator to
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operator. Further manifestations of certain defects can also
change due to variations in the production process.

During production, manual inspection of strips is time-
consuming and error-prone due to human factors (e.g.,
fatigue and inconsistency [8]). Thus, automated methods are
desirable to guarantee the consistency of inspection with a
reasonable degree of confidence. Specifically, image process-
ing and computer vision techniques can be used where steel
strip images can be acquired using specific sensing hard-
ware and analyzed using specialized computer algorithms
[2]. Specifically, computer vision methods can extract dis-
criminative visual features from a material’s surface image
and those features are fed into a decision-making engine (e.g.,
supervised learning classifier) to determine the actual surface
defect [2,9,10].

Generally, feature extraction methods can be extracted
from the frequency and spatial domains [11]. Spatial-domain
features deal with pixel value changes with respect to the
scene [9]. One example is the gray-level co-occurrence
matrix (GLCM), which is shown to be an effective feature
for machined surfaces classification [12]. The GLCM is a
texture descriptor that calculates how often specific pixel
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value pairs with specific spatial relationships occur within
an image. However, since GLCM and its variants are merely
spatial descriptors, they cannot capture the high- or low-
frequency components of the multi-directional defects on
a surface [13,14]. Frequency-domain features are therefore
useful in such situations by modifying the spectral transform
of an image. The discrete shearlet transform (DST), Gabor
filters (GF) [15] and wavelet transforms (WT) [14] are popu-
lar techniques that have previously been used in early surface
defects classification work. DST uses multiple directions at
various decomposition scales, whereas shearlet is ideal in
two-dimensional smooth functions approximation with dis-
continuities alongC2-curves that produce almost the optimal
properties of approximation [16]. Since steel strip surface
defects vary widely (e.g., various types, shapes and orien-
tations) [2,7], we postulate that shearlet transform might be
highly suitable [10]. The proposed feature method in this
paper is termed DST–GLCM for the task of surface defects
classification of hot-rolled steel strips. The rest of this arti-
cle is organized as follows: Sect. 2 provides a background
of the features extraction methods. Section 3 discusses the
features selection and reduction method of the extracted data
using principal component analysis (PCA). Section 4 intro-
duces the dataset and experimental setup. Section 5 presents
the results and discussion. Finally, this work is concluded in
Sect. 6.

2 Features Extraction

Features extraction and encoding is one of the most crucial
stages in the design of a good classification system [17]. It
mainly deals with the extraction of image properties result-
ing from low-level image processing operations. It is crucial
that the extracted features are highly descriptive and discrim-
inative of the class they are trying to represent [18]. In this
section, we discuss the features used in this work, both the
frequency and spatial domains.

2.1 Discrete Shearlet Transform

Shearlet transformwas designed to be applied as a framework
of affine systems to extract geometrical features from multi-
dimensional signals. Over the past years, Guo and Labate
[19] studied the construction of irregular shearlet systems
and provided a framework for the construction of a variety
of discrete directional multi-scale systems with the ability to
detect orientations inherited from continuous shearlet trans-
form. In 2008, they proposed a Fourier integral operator with
respect to a Parseval frame of shearlets and the matrix rep-
resentation of the method was proved to be sparse and well
organized [20]. In 2010,W. Lim proposed the extended DST,
adding extra basis elements to shearlet systems to obtain

orthonormal basis for each shear matrix [16]. DST is a com-
pactly supported shearlet generated by separable functions
constructed using multi-resolution analysis [21]. DST can
be configured to have various shapes, bandwidths, center
frequencies and orientations. The main purpose of choos-
ing DST in our work is because it provides a more flexible
theoretical tool for approximating two-dimensional smooth
functions with discontinuities and extract singularities of an
image properly [22].

The two-dimensional DST of an image h[x, y] of size
Nx × Ny is a space frequency representation that can be
expressed as two nested one-dimensional DST [23], i.e.,

S[nx , ny , kx , ky ] =
Nx−1∑

lx=0

Ay [ny , lx , kx , ky ]e
− 2π2l2x

k2x e
i2πlx nx

Nx
, (1)

where

Ay[ny, kx , ky] =
Ny−1∑

ly=0

H [kx , lx + ky]e
2π2l2y

k2y e
i2πlyny

Ny
. (2)

H [kx , ky] represents the DFT of h[x, y]. S[nx , ny, kx , ky]
contains the 2D frequency index [kx , ky] at the pixel [nx , ny].
Equation 1 is valid when kx and ky are positive. If both are
positive and ky = 0, the 2D DST is defined as:

S[nx , ny, kx , 0] =
Nx−1∑

lx=0

Ay[lx , kx ]e− 2π2l2x
k2x e

i2πlxnx
Nx

, (3)

where

Ay[Kx ] = 1

Nx Ny

Nx−1∑

ix=0

Ny−1∑

iy=0

h[ix , iy]e− i2πkx ix
Nx ; (4)

if Kx = 0 and Ky = 0 is positive, the 2D DST can be
obtained by interchanging the subscripts x and y in (3) and
(4). If Kx = 0 and Ky = 0, the 2D ST is computed as

S[nx , ny, 0, 0] = 1

Nx Ny

Nx−1∑

ix=0

Ny−1∑

iy=0

h[ix , iy]. (5)

Shearlet transform can decompose an image into 2×2nj+
1-directional sub-bands in the horizontal cone and the ver-
tical cone at any scale, respectively. The j is denoted as the
decomposition level, and n j refers to the direction parame-
ter (ndir). The schematic diagram of applying DST–GLCM
method is illustrated in Fig. 1. The aim of this method is
firstly to extract all the significant information from the tex-
tured surface image by means of the DST and, secondly, to
calculate the GLCM for all the extracted sub-bands. This is
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Fig. 1 Schematic diagram of DST–GLCM

performed in order to detect the information nonvisible by
the GLCM-based approaches while still capitalizing on the
effectiveness of the traditional co-occurrence matrix.

In this work, we choose the parameters of five decom-
position levels, with [2, 4, 8, 16] shearing directions and
filter of sizes 32 × 32, 32 × 32, 16 × 16 and 8 × 8 for the
decomposition levels. Note that these parameters returned
the best classification rates in our experiments. The out-
put of this algorithm is the shearlet coefficients we acquire
from each image. So, with the aforementioned filter structure
and for every input image (Ix ) of size 200 × 200, there are
1 + 2 + 4 + 8 + 16 = 31 filters and each one of them has
200×200 = 40,000 coefficients. For each one of the 31 gen-
erated sub-band images from the five-level decomposition
procedure, GLCM is computed and then the set of 24 sta-
tistical features are computed from all the resultant GLCMs.
This method results in a feature vector of size 744 features.

2.2 Gabor Filters

Generally, Gabor filters can be configured to have vari-
ous shapes, bandwidths, center frequencies and orientations
by the adjustment of suitable parameters. By varying these
parameters, i.e., the tunable orientation and radial frequency
bandwidths, a filter can be made to pass any elliptical region
of spatial frequencies. It optimally achieves joint resolution
in space and spatial frequency domains. In this work, the
two-dimensional GF is used to extract the high-frequency
components of every input image in twelve orientations,
specifically 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦,
150◦ and 165◦. This is so that all possible directions are taken
into account, hence offering the best texture description for
the surface image. The parameters’ values of the used GF
were as follows: wavelength = 10, phase offset = 0, aspect
ratio = 0.5, and bandwidth = 1. These parameters were cho-

sen after performing a number of trials in order to select
the ideally suited values for extracting the most significant
features. After extracting Gabor coefficients from the input
image, GLCM is computed for each one of the twelve gen-
erated sub-bands and then a set of 24 statistical features are
computed from all the resultant GLCMs. This method results
in a feature vector of size 288 features.

2.3 BiorthogonalWavelet

Biorthogonal wavelets, which are symmetric, prevent the
contents of an image from shifting between sub-bands while
allowing extension at the boundaries. The two-dimensional
wavelet transforms (2D-WT) usually decompose images
into four coefficients at level j . The approximation, and
the details in three orientations (horizontal, vertical and
diagonal). In this work, the two-dimensional biorthogonal
wavelet transform is employed to decompose input image
into four multiple levels. Every decomposing level produces
one approximation and three details in (horizontal, vertical
and diagonal). The aim is to extract the frequency compo-
nents that represent all the surface defects of an image. In this
process, the biorthogonal wavelet was applied on the input
image, to be decomposed into 4 sub-images, where each one
has (m × n)/2 size: L10L10, L10H10, H10L10 and H10H10.
In the L10L10 sub-image, there are “low frequencies” in
both directions: “horizontal and vertical.” In the L10H10 sub-
image, there are “low frequencies in horizontal direction and
high ones in the vertical direction.” In the H10L10 sub-image,
there are “high frequencies in horizontal direction and low
ones in the vertical direction,” and in the H10H10 sub-image,
there are high frequencies in both directions. The biorthog-
onal wavelet was then applied again on L10L10 image with
size ( m × n)/2 to get four new sub-images, each one with
(m × n)/4 size: L11L11, L11H11, H11L11 and H11H11. The
same process continues for two more times to have sub-
images with (m × n)/8 and (m × n)/16, respectively. For
each one of the twelve generated sub-band images from the
four-level decomposition procedure,GLCM is computed and
then the set of 24 statistical features are computed from all
the resultant GLCMs. This method results in a feature vector
of size 288 features.

2.4 Gray-Level Co-occurrence Matrix

The gray-level co-occurrence matrix was introduced by Har-
alick et al. [24]. It is generally referred to as the matrix whose
entries are transitions between all pairs of two gray lev-
els. The gray-level transitions are calculated based on two
parameters, displacement and angular rotation, giving four
gray-level co-occurrence matrices at 0◦, 45◦, 90◦, 135◦ ori-
entations. In this paper the GLCM is computed for the input
image in the four directions; then, the same set of 24 statistical
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features is calculated from the generated four GLCMs. All
the calculated statistical features from the all the matrices are
then combined in one high-dimensional feature vector. The
dimensionality of the resultant feature vector space is then
reduced using PCA. This method results in a feature vector
of size 96 features.

2.5 Statistical Features Computation

The proposed statistical features set aims to minimize the
number of features extracted from every image. Several tests
were performed on various types of features to come up with
the optimum set consisting of the features in Eqs. (6–29).
The statistical features set is computed from every GLCM
that is calculated from an extracted sub-band image based on
the earlier-mentionedmethodsDST,GF,WT and the original
GLCM. The statistical features set comprises the following
features:

Mean: μ =
G−1∑

i=0

i p (i) (6)

Variance: σ 2 =
G−1∑

i=0

(i − μ)2 p (i) (7)

Energy:
G−1∑

i=0

G−1∑

j=0

[p(i, j)]2 (8)

Entropy:
G−1∑

i=0

G−1∑

j=0

P(i, j) log2 [p(i, j)] (9)

Homogeneity:
G−1∑

i=0

G−1∑

j=0

1

1 − (i − j)2
P (i, j) (10)

Contrast:
G−1∑

i=0

G−1∑

j=0

(i − j)2 P (i, j) (11)

Correlation:
G−1∑

i=0

G−1∑

j=0

i j p(i, j) − μxμy

σxσy
(12)

Skewness: μ3 = σ−3
G−1∑

i=0

(i − μ)3 p (i) (13)

Kurtosis: μ3 = σ−4
G−1∑

i=0

(i − μ)4 p (i) (14)

Dissimilarity:
G−1∑

i=0

G−1∑

j=0

|i − j |.p(i, j) (15)

Autocorrelation:
G−1∑

i=0

G−1∑

j=0

(i j)p(i, j) (16)

Cluster shade :
G−1∑

i=0

G−1∑

j=0

(i + j − μx − μy)
3 p(i, j) (17)

Maximum probability: max(i, j)p(i, j) (18)

Sum of squares :
G−1∑

i=0

G−1∑

j=0

(i − μ)2 p(i, j) (19)

Sum average :
2G−2∑

i=0

i px+y(i) (20)

Sum variance
2G−2∑

i=0

(i − SumAverage)2 px+y(i) (21)

Sum entropy:
2G−2∑

i=0

px+y(i) log(px+y(i)) (22)

Difference variance :
G−1∑

i=0

(i − μx−y)
2 px−y(i) (23)

Difference entropy: −
G−1∑

i=0

px−y(i) log(px−y(i)) (24)

Information measures of correlation 1:

Entropy − HXY1

max{HX , HY } (25)

Information measures of correlation 2:

√
1 − exp[−2(HXY2 − Entropy)] (26)

Maximum correlation coefficient: (second largest eigenvalue
of Q)0.5, where

Q(i, j) =
G∑

k=1

P(i, k)p( j, k)

px (i)py(k)
(27)

Inverse difference normalized:

∑

i

∑

j

p(i, j)

1 + |i − j | (28)

Inverse difference moment normalized:

∑

i

∑

j

p(i, j)

1 + (i − j)2
, (29)

where

Px =
G∑

j=1

p(i, j), and Px =
G∑

i=1

p(i, j)
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Px+y(k) =
G∑

i=1

G∑

j=1i+ j=k

p(i, j), for k = 2, 3, . . . 2G

Px−y(k) =
G∑

i=1

G∑

j=1|i− j |=k

p(i, j), for k = 0, 1, . . .G

HX =
G∑

i=1

px (i) log(px (i))

HY =
G∑

j=1

py( j) log(py( j)).

The function p(i, j) stands for (i, j)th entry or value in a
matrix of an image, where (G) is the total number of intensity
levels in the image, whileμx ,μy and σx ,σy denote the mean
and standard deviations of the row and column sums of the
matrix, respectively.

3 Features Selection and Reduction

In general, features selection and reduction is applied to the
high-dimensional feature vectors in order to remove use-
less features and redundant information. Large number of
features that represent a single image may increase the com-
plexity of the classifier which in turn may slow down the
training process and affect badly the final classification accu-
racy [25]. In this work, the features reduction is performed
by applying PCA to minimize the size of the combined input
vectors at the feature extraction level. PCA is an effective sta-
tistical analysis technique for producing a lower-dimensional
representation of larger dataset [26]. Themain idea of PCA is
based on a mathematical procedure that uses an orthogonal
transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorre-
lated variables called the principal components [27]. Usually,
the number of principal components is less than or equal
to the number of original variables. This transformation is
defined in such a way that the first principal component has
the largest possible variance (that is, accounts for as much
of the variability in the data as possible), and each succeed-
ing component in turn has the highest variance possible under
the constraint that it be orthogonal to (i.e., uncorrelated with)
the preceding components. In this stage, the aim is to reduce
the dimensional size of feature vector obtained from features
extraction methods to the lowest possible size which allows
better discrimination between different classes and produces
the highest classification accuracy rates. The obtained num-
ber of features using the four methods DST, GF, WT and
GLCM was 744, 288, 288 and 96, respectively. Figure 2
shows the detailed process of features extraction and reduc-
tion for all the four features methods. The PCA is applied
several times on the extracted feature vectors to generate a

Fig. 2 Features extraction and reduction for DST, GF, WT and GLCM
methods

reduced number of features than the original for every image.
After conducting a number of trials, on reducing the dimen-
sional size of the feature vectors to 30, 60, 90 and 120, the
dimensions of size 90 features seem to be superior in classi-
fication than the others.

4 Experimental Work

The dataset used in this research is the Northeastern Univer-
sity (NEU) surface defect database [7], where six types of
typical surface defects of the hot-rolled steel strip are col-
lected as: rolled-in scale (RS), patches (Pa), crazing (Cr),
pitted surface (PS), inclusion (In) and scratches (Sc). The
database includes 1800 grayscale images divided into six dif-
ferent types of typical surface defects each of 300 samples.
The original resolution of each image is 200 × 200 pixels.
The main challenges of this database are (i) high intra-class
differences, as shown in Fig. 3a, and (ii) low inter-class dif-
ference as shown in Fig. 3b.

The proposed framework presented in Fig. 4 utilizes the
concept of multi-level image analysis. Firstly, each input
image undergoes an enhancement process using histogram
equalization, and then the feature extraction process is per-
formed followed by calculating the GLCM in zero degrees
for all the extracted coefficients. The set of 24 statistical fea-
tures is then computed for the generated GLCMs. This aims
to uncover patterns not visible through the GLCM-based
approaches while still capitalizing on the effectiveness of
the traditional co-occurrence matrix. Next, all the extracted
features from the input image are combined in one high-
dimensional feature vector. This vector is reduced to the size
of 90 features using PCA. The steps of the proposed image
analysis algorithm are summarized as follows:

1. DST- based method for (Ix ).

• Extract DST coefficients at five different scales and
orientations.

• For every sub-band image 1:31
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Fig. 3 a Patches, inclusion and scratches defects. b Rolled-in scale,
crazing and pitted surface defects

• Calculate the GLCM at (0◦).
• Extract the set of 24 statistical features for the gener-
ated GLCMs.

2. GF-based method for (Ix ).

• Extract multiple Gabor features by using 2D-GF in
twelve different orientations (0◦, 15◦, 30◦, 45◦, 60◦,
75◦, 90◦, 105◦, 120◦, 135◦, 150◦, 165◦).

Fig. 4 Proposed workflow

• For every sub-band image 1:12
• Calculate the GLCM at (0◦).
• Extract the set of 24 statistical features for the gener-
ated GLCMs.

3. WT-based method for (Ix ).

• Extract biorthogonal wavelet coefficients for four
decomposition levels and three orientations: horizon-
tal (0◦), diagonal (135◦) and vertical (90◦).

• For every sub-band image 1:12
• Calculate the GLCMs at (0◦).
• Calculate the set of 24 statistical features for the gen-
erated GLCMs.

4. GLCM-based method for (Ix ).

• Extract GLCM coefficients at the four orientations
(0◦, 45◦, 90◦, 135◦).

• For every sub-band image 1:4
• Extract the set of 24 statistical features
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Table 1 Overall classification of different methods with evaluation set
(50–50%)

Feature
extraction
method

Feature dimension Samples
classified

SVM
classification
rate (%)Original PCA-based

GLCM 96 90 731/900 81.22

WT–GLCM 288 90 779/900 86.55

GF–GLCM 288 90 809/900 89.88

DST–GLCM 744 90 847/900 94.11

Table 2 Overall classification of different methods with evaluation set
(75–25%)

Feature
extraction
method

Feature dimension Samples
classified

SVM
classification
rate (%)Original PCA-based

GLCM 96 90 379/450 84.22

WT–GLCM 288 90 403/450 89.55

GF–GLCM 288 90 418/450 92.88

DST–GLCM 744 90 432/450 96.00

The SVM setup as presented in our previous work [15]
was used for the classification in the final stage. The feature
vectors of every method are fed individually into our SVM
classifier with RBF for final classification of the defects. The
evaluation of classification stage is accomplished with two
data partition sets for training and testing as (50–50%) and
(75–25%). Random sets of images per class are chosen for
training and the remaining for testing. The reason of using
multiple partition sets in classification is to achieve the best
discrimination using the lowest number of training samples,
and thus reduce classification complexity and increase the
time of defect detection. The next section presents the results
and discussion of this research.

5 Results and Discussion

The classification results of the proposed framework are pre-
sented in Tables 1 and 2 showing the two training–testing
splits of 50–50 and 75–25%, respectively. The overall clas-
sification results are presented for the four different features
extraction methods DST–GLCM, GF–GLCM, WT–GLCM
and the original GLCM. The results can clearly show that the
highest classification accuracy rate was achieved using the
evaluation set (75–25%). The DST–GLCMmethod achieved
the highest accuracy rates among all other methods in both
classification sets. As presented in Table 2, the highest clas-
sification accuracy rate was 96.00% and it was achieved by
the DST–GLCM with the (75–25%) set. The second highest
accuracywas achievedusingGaborfilters, the thirdwas using
wavelets, and then finally the lowest rate was achieved using

Fig. 5 Overall results of different methods

Fig. 6 Confusion matrix of DST–GLCM method

the originalGLCM.The summaryof the overall results is pre-
sented in Fig. 5. The confusion matrix of the DST–GLCM
method which is presented in Fig. 6 shows the classification
results for the six classes. The (Pa), (In) and (Sc) classes have
achieved higher classification rate than the others. This was
due to the large differences in appearance that exist in the
intra-class samples. The inter-class defect which has similar
aspects in appearance achieved lower accuracy rate.

6 Conclusions and FutureWork

In this paper a high discriminative feature extraction method
called DST–GLCM was presented for accurate defects clas-
sification of steel strip surfaces. A dataset of 1800 hot-rolled
steel strips was used for classification. Our technique has
shown an improvement in classification accuracy compared
to other methods. These improvements were achieved by
taking advantages of the combined features extracted using
DST–GLCM along with the set of 24 statistical features. The
reduced feature set using PCA managed to maintain its dis-
criminative prowess, which further helped in speeding up the
whole process. Overall accuracy rate of 96.00%was reported
using the proposed method, while accuracy rates of 92.88,
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89.55 and 84.22% were achieved, respectively, using GF–
GLCM, WT–GLCM and original GLCM methods.
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